0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
78Q8430

78Q8430

  • 厂商:

    TERIDIAN

  • 封装:

  • 描述:

    78Q8430 - 10/100 Ethernet MAC and PHY - Teridian Semiconductor Corporation

  • 数据手册
  • 价格&库存
78Q8430 数据手册
78Q8430 10/100 Ethernet MAC and PHY Simplifying System Integration TM DATA SHEET March 2009 DESCRIPTION The Teridian 78Q8430 is a 10/100 Fast Ethernet controller supporting multi-media offload. The device is optimized for host processor offloading and throughput enhancements for demanding multi-media applications found in Set Top Box, IP Video and Broadband Media Appliance applications. The 78Q8430 seamlessly interfaces to non-PCI processors through a simplified pseudo SRAM-like Host Bus Interface supporting 32/16/8 bit data bus widths. Supported features include IEEE802.3x flow control and full IEEE802.3 and 802.3u standards compliance. Supporting 10Base-T and 100Base-TX, the transceiver provides Auto MDI-X cable cross-over correction, AUTO Negotiation, Link Configuration and full/half duplex support with full duplex flow control. The line interface requires only a dual 1:1 isolation transformer. Numerous packet processing and IP address resolution control functions are incorporated, including an extensive set of Error Monitoring, Reporting and Troubleshooting features. The 78Q8430 provides optimal 10/100 Ethernet connectivity in demanding video streaming and mixed-media applications. BENEFITS • • Support for IEEE-802.3, IEEE-802.3u and IEEE-802.3-2000 Annex 31.B Low host CPU utilization/overhead with minimal software driver overhead and small driver memory space requirements Improved packet processing, low latency and low host CPU utilization Highest performance streaming Video over IP Optimized performance in mixed media application such as video, data and voice Ease of use, faster development cycles, high throughput Optimized power conservation with automatic turn on when needed Reduced host CPU utilization and overhead Improved packet processing Optimized performance in mixed media applications FEATURES • Single chip 10Base-T/100Base-TX IEEE-802.3 compliant MAC and PHY  Adaptive 32 kB SRAM FIFO memory allocation between Tx and Rx paths  Queue independent user settable water marks  Per queue status indication Address Resolution Controller (ARC)  Multiple perfect address filtering: 8 default (max 12)  Wildcard address filtering, individual, multicast and broadcast address recognition and filtering  Positive/negative filtering and promiscuous mode 64 kB JUMBO packet support QoS: 4 Transmit priority levels Non-PCI pseudo-SRAM Host Bus Interface  8-bit, 16-bit and 32-bit bus width  Big/little endian support for 16-bit/32-bit bus widths  Asynchronous (100 MHz) and synchronous (50 MHz) bus clock support Low power and flexible power supply management  Power down/save  Wake on LAN (Magic Packet™, OnNow packet)  Link status change Traffic Offload Engine Functionality  Transfer frame: APF & ICMP Echo  IP Firewall configuration: drop frames on source IP address  IP Checksum Available in an industrial temperature range (-40 °C to +85 °C) RoHS compliant (6/6) lead-free package • • • • • • • • • • • • • • • • APPLICATIONS • • • • • • • • • Satellite, cable and IPTV Set Top Boxes Multi Media Residential Gateways High Definition 1080p/1080i DTVs IP-PVR and video distribution systems Digital Video Recorders/Players Routers and IADs Video over IP system, IP-PBX IP Security Cameras / PVRs Low latency industrial automation 1 Rev. 1.2 © 2009 Teridian Semiconductor Corporation 78Q8430 Data Sheet DS_8430_001 Table of Contents 1 Introduction ......................................................................................................................................... 7 1.1 Systems Applications ................................................................................................................... 7 1.2 System Level Application Information.......................................................................................... 8 1.2.1 Set Top Box Application .................................................................................................. 8 1.2.2 IP Security Application ..................................................................................................... 8 1.2.3 IP PBX Application ........................................................................................................... 9 1.3 Overview ...................................................................................................................................... 9 1.4 Application Environments .......................................................................................................... 10 1.5 Supply Voltages ......................................................................................................................... 10 1.6 Power Management ................................................................................................................... 10 Pinout ................................................................................................................................................. 11 Pin Description .................................................................................................................................. 12 3.1 Pin Legend ................................................................................................................................. 12 3.2 Pin Descriptions ......................................................................................................................... 12 3.2.1 Clock Pins ...................................................................................................................... 12 3.2.2 Media Dependent Interface (MDI) Pins ......................................................................... 13 3.2.3 LED Display (PHY) Pins ................................................................................................ 13 3.2.4 EEPROM Pins ............................................................................................................... 13 3.2.5 GBI Data Pins ................................................................................................................ 14 3.2.6 GBI Address Pins .......................................................................................................... 15 3.2.7 GBI Control Pins ............................................................................................................ 15 3.2.8 Mode Pins ...................................................................................................................... 16 3.2.9 JTAG Pins ...................................................................................................................... 16 3.2.10 Power Pins ..................................................................................................................... 17 Electrical Specification..................................................................................................................... 18 4.1 Absolute Maximum Ratings ....................................................................................................... 18 4.2 Recommended Operation Conditions........................................................................................ 18 4.3 DC Characteristics ..................................................................................................................... 18 4.4 Digital I/O Characteristics .......................................................................................................... 19 4.5 Analog Electrical Characteristics ............................................................................................... 19 4.5.1 100Base-TX Transmitter................................................................................................ 19 4.5.2 100Base-TX Transmitter (Informative) .......................................................................... 19 4.5.3 100Base-TX Receiver.................................................................................................... 20 4.5.4 10Base-T Transmitter .................................................................................................... 20 4.5.5 10Base-T Transmitter (Informative) ............................................................................... 20 4.5.6 10Base-T Receiver ........................................................................................................ 21 Host Interface Timing Specification ................................................................................................ 22 5.1 Host Interface ............................................................................................................................. 22 5.1.1 Synchronous Mode Timing ............................................................................................ 23 5.1.2 Bus Clock Timing ........................................................................................................... 24 5.1.3 Reset Timing .................................................................................................................. 24 Functional Description ..................................................................................................................... 25 6.1 Internal Block Diagrams ............................................................................................................. 25 6.1.1 Internal Digital Block ...................................................................................................... 25 6.1.2 Internal PHY................................................................................................................... 25 6.2 Data Queuing ............................................................................................................................. 26 6.3 Host Interface ............................................................................................................................. 27 6.3.1 Reading Receive Data ................................................................................................... 27 6.3.2 Writing Transmit Data .................................................................................................... 27 6.3.3 DMA Slave Mode Access .............................................................................................. 29 6.4 Snoop Mode Access .................................................................................................................. 29 6.5 Water Marking ............................................................................................................................ 30 6.5.1 Interrupt Watermark ....................................................................................................... 30 Teridian Proprietary and Confidential Rev. 1.2 2 3 4 5 6 2 DS_8430_001 78Q8430 Data Sheet 6.5.2 PAUSE Watermark ........................................................................................................ 30 6.5.3 Headroom Watermark ................................................................................................... 30 6.6 Counters..................................................................................................................................... 30 6.6.1 Summary of Counters .................................................................................................... 30 6.6.2 Reading and Setting Counter Values ............................................................................ 31 6.6.3 Precision Counting ......................................................................................................... 32 6.6.4 Rollover Interrupts ......................................................................................................... 32 6.7 Packet Classification .................................................................................................................. 32 6.7.1 Address Filtering ............................................................................................................ 34 6.7.2 Configuring the CAM ..................................................................................................... 38 6.7.3 Frame Format ................................................................................................................ 39 6.7.4 Default CAM Rule Summary.......................................................................................... 39 6.8 Timers ........................................................................................................................................ 44 6.8.1 PAUSE Timer................................................................................................................. 44 6.8.2 HNR Timer ..................................................................................................................... 44 6.8.3 Interrupt Delay Timer ..................................................................................................... 44 6.9 EEPROM Controller ................................................................................................................... 44 6.10 Ethernet MAC ............................................................................................................................ 44 6.10.1 MAC Transmit Block ...................................................................................................... 44 6.10.2 MAC Receive Block ....................................................................................................... 45 6.10.3 MAC Control Register .................................................................................................... 45 6.10.4 Transmitting a Frame ..................................................................................................... 45 6.10.5 IEEE 802.3 Transmit Protocols...................................................................................... 45 6.10.6 Transmit Operation ........................................................................................................ 46 6.10.7 Receiving a Frame ......................................................................................................... 46 6.10.8 Strip Padding/FCS ......................................................................................................... 47 6.11 MAC Error Reporting ................................................................................................................. 47 6.11.1 MAC Transmit Errors ..................................................................................................... 47 6.11.2 MAC Receive Errors ...................................................................................................... 48 6.12 PHY Operations ......................................................................................................................... 49 6.12.1 Automatic MDI/MDIX Cable Crossover Configuration ................................................... 49 6.12.2 100Base-TX Transmit .................................................................................................... 49 6.12.3 100Base-TX Receive ..................................................................................................... 49 6.12.4 10Base-T Transmit ........................................................................................................ 49 6.12.5 10Base-T Receive ......................................................................................................... 50 6.12.6 SQE Test ....................................................................................................................... 50 6.12.7 Polarity Correction ......................................................................................................... 50 6.12.8 Natural Loopback ........................................................................................................... 50 6.12.9 Auto-Negotiation ............................................................................................................ 51 6.12.10 LED Indicators .............................................................................................................. 51 6.12.11 PHY Interrupts .............................................................................................................. 51 6.12.12 Internal Clock PLL ........................................................................................................ 51 7 Register Descriptions ....................................................................................................................... 52 7.1 Register Overview...................................................................................................................... 52 7.2 QUE Register Overview ............................................................................................................. 53 7.3 CTL Register Overview .............................................................................................................. 54 7.4 Snoop Address Space Overview ............................................................................................... 55 7.5 QUE Registers ........................................................................................................................... 56 7.5.1 Packet Control Word Register ....................................................................................... 56 7.5.2 Packet Size Register ..................................................................................................... 56 7.5.3 Setup Transmit Data Register ....................................................................................... 57 7.5.4 Transmit Data Register .................................................................................................. 57 7.5.5 Receive Data Register ................................................................................................... 57 7.5.6 QUE First/Last Register ................................................................................................. 58 7.5.7 QUE Status Register ..................................................................................................... 58 7.6 CTL Registers ............................................................................................................................ 59 7.6.1 DMA Control and Status Register.................................................................................. 59 7.6.2 Receive Packet Status Register .................................................................................... 59 3 Rev. 1.2 78Q8430 Data Sheet DS_8430_001 7.7 7.6.3 Transmit Packet Status Register ................................................................................... 59 7.6.4 Transmit Producer Status .............................................................................................. 60 7.6.5 Receive Producer Status ............................................................................................... 60 7.6.6 Revision ID..................................................................................................................... 61 7.6.7 Configuration.................................................................................................................. 61 7.6.8 Receive to Transmit Transfer Register .......................................................................... 61 7.6.9 Frame Disposition Register ........................................................................................... 61 7.6.10 Receive FIRST BLOCK Status Register ....................................................................... 61 7.6.11 Receive Data Status Register........................................................................................ 62 7.6.12 BIST Control Register .................................................................................................... 62 7.6.13 BIST Bypass Mode Data Register ................................................................................. 63 7.6.14 Station Management Data Register .............................................................................. 63 7.6.15 Station Management Control and Address Register ..................................................... 63 7.6.16 PROM Data Register ..................................................................................................... 63 7.6.17 PROM Control Register ................................................................................................. 64 7.6.18 MAC Control Register .................................................................................................... 64 7.6.19 Count Data Register ...................................................................................................... 65 7.6.20 Counter Control Register ............................................................................................... 65 7.6.21 Counter Management Register...................................................................................... 66 7.6.22 Snoop Control Register ................................................................................................. 66 7.6.23 Interrupt Delay Count Register ...................................................................................... 66 7.6.24 Pause Delay Count Register ......................................................................................... 66 7.6.25 Host Not Responding Count Register ........................................................................... 67 7.6.26 Wake Up Status Register .............................................................................................. 67 7.6.27 Water Mark Values Register .......................................................................................... 67 7.6.28 Power Management Capabilities ................................................................................... 67 7.6.29 Power Management Control and Status Register ......................................................... 68 7.6.30 CAM Address Register .................................................................................................. 68 7.6.31 Rule Match Register ...................................................................................................... 69 7.6.32 Rule Control Register .................................................................................................... 69 7.6.33 Que Status Interrupt Register ........................................................................................ 70 7.6.34 Que Status Mask Register ............................................................................................. 70 7.6.35 Overflow/Underrun Interrupt Register ............................................................................ 71 7.6.36 Overflow/Underrun Mask Register................................................................................. 71 7.6.37 Transmit RMON Interrupt Register ................................................................................ 71 7.6.38 Transmit RMON Mask Register ..................................................................................... 72 7.6.39 Receive RMON Interrupt Register ................................................................................. 72 7.6.40 Receive RMON Mask Register ...................................................................................... 72 7.6.41 Host Interrupt Register ................................................................................................... 72 7.6.42 Host Interrupt Mask Register ......................................................................................... 73 PHY Management Registers ..................................................................................................... 74 7.7.1 PHY Register Overview ................................................................................................. 74 7.7.2 PHY Control Register – MR0 ......................................................................................... 75 7.7.3 PHY Status Register – MR1 .......................................................................................... 76 7.7.4 PHY Identifier Registers – MR2, MR3 ........................................................................... 77 7.7.5 PHY Auto-Negotiation Advertisement Registers – MR4 ............................................... 77 7.7.6 PHY Auto-Negotiation Line Partner Ability Register – MR5 .......................................... 78 7.7.7 PHY Auto-Negotiation Expansion Register – MR6........................................................ 78 7.7.8 PHY Vendor Specific Register – MR16 ......................................................................... 79 7.7.9 PHY Interrupt Control / Status Register – MR17 ........................................................... 80 7.7.10 PHY Transceiver Control Register – MR19 ................................................................... 80 7.7.11 PHY Diagnostic Register – MR18.................................................................................. 81 7.7.12 PHY LED Configuration Register – MR23 ..................................................................... 81 7.7.13 PHY MDI / MDIX Control Register – MR24 ................................................................... 82 8 9 10 11 4 Isolation Transformers ..................................................................................................................... 83 Reference Crystal ............................................................................................................................. 83 System Bus Interface Schematic .................................................................................................... 84 Line Interface Schematic.................................................................................................................. 85 Rev. 1.2 DS_8430_001 12 13 14 15 78Q8430 Data Sheet Package Mechanical Drawing (100-pin LQFP) ............................................................................... 86 Ordering Information ........................................................................................................................ 87 Related Documentation .................................................................................................................... 87 Contact Information .......................................................................................................................... 87 Tables Table 1: Pin Legend .................................................................................................................................... 12 Table 2: Clock Pin Descriptions .................................................................................................................. 12 Table 3: MDI Pin Descriptions..................................................................................................................... 13 Table 4: LED Pin Descriptions .................................................................................................................... 13 Table 5: EEPROM Interface Pin Descriptions ............................................................................................ 13 Table 6: GBI Data Pin Descriptions ............................................................................................................ 14 Table 7: GBI Address Pin Descriptions....................................................................................................... 15 Table 8: GBI Control Pin Descriptions ........................................................................................................ 15 Table 9: Chip Mode Pin Descriptions .......................................................................................................... 16 Table 10: JTAG Pin Descriptions ................................................................................................................ 16 Table 11: Power Pin Descriptions ............................................................................................................... 17 Table 12: Absolute Maximum Ratings ........................................................................................................ 18 Table 13: Recommended Operating Conditions ......................................................................................... 18 Table 14: DC Characteristics ...................................................................................................................... 18 Table 15: Digital I/O Characteristics ........................................................................................................... 19 Table 16: MII 100Base-TX Transmit Timing ............................................................................................... 19 Table 17: MII 100Base-TX Transmitter (Informative) ................................................................................. 19 Table 18: MII 100Base-TX Receiver Timing ............................................................................................... 20 Table 19: MII 10Base-T Transmitter Timing ............................................................................................... 20 Table 20: MII 10Base-T Transmitter (Informative) ...................................................................................... 20 Table 21: MII 10Base-T Receive Timing..................................................................................................... 21 Table 22: Transmit Data Buffer Example .................................................................................................... 28 Table 23: Counter Summary ....................................................................................................................... 30 Table 24: CAM Rules Associated with Unicast Filter Bytes ........................................................................ 34 Table 25: CAM Rules Associated with Multicast Filter Bytes ..................................................................... 36 Table 26: Control Logic Actions .................................................................................................................. 38 Table 27: RCR Match Control ..................................................................................................................... 39 Table 28: Ethernet Frame for Classification................................................................................................ 39 Table 29: Process Destination Address Rules............................................................................................ 40 Table 30: Process Source Address Rules .................................................................................................. 42 Table 31: Process Length/Type, MAC Control Frames and Start IP Header Checksum Rules................. 42 Table 32: Process Rules for OnNow Packet............................................................................................... 43 Table 33: Process Rules for Magic Packet ................................................................................................. 43 Table 34: PHY Register Group ................................................................................................................... 74 Table 35: Isolation Transformers ................................................................................................................ 83 Table 36: Reference Crystal ....................................................................................................................... 83 Table 37: 78Q8430 Order Numbers and Packaging Marks........................................................................ 87 Rev. 1.2 5 78Q8430 Data Sheet DS_8430_001 Figures Figure 1: 78Q8430 Block Diagram ................................................................................................................ 7 Figure 2: Set Top Box Diagram .................................................................................................................... 8 Figure 3: Network Cameras Diagram ........................................................................................................... 8 Figure 4: Typical FXO VoIP Application........................................................................................................ 9 Figure 5: Device Block Diagram ................................................................................................................... 9 Figure 6: GBI Bus Block Diagram ............................................................................................................... 10 Figure 7: Pinout ........................................................................................................................................... 11 Figure 8: Host Interface Timing Diagram .................................................................................................... 22 Figure 9: Host Bus Output Timing Diagram ................................................................................................ 23 Figure 10: Host Bus Input Timing Diagram ................................................................................................. 23 Figure 11: Bus Clock Timing ....................................................................................................................... 24 Figure 12: Internal Digital Block Diagram ................................................................................................... 25 Figure 13: Internal PHY Block Diagram ...................................................................................................... 26 Figure 14: Classification Architecture ......................................................................................................... 33 Figure 15: System Bus Interface Schematic ............................................................................................... 84 Figure 16: Line Interface Schematic ........................................................................................................... 85 Figure 17: LQFP Drawing ........................................................................................................................... 86 6 Rev. 1.2 DS_8430_001 78Q8430 Data Sheet 1 Introduction The Teridian 78Q8430 is a single chip 10Base-T/100Base-TX capable Fast Ethernet Media Access Controller (MAC) and Physical Layer (PHY) transceiver. The device is optimized for video applications, such as the Set Top Box (STB), and easily interfaces to available STB core processors, such as the STi5100, STi5516, STi5514, ARM™ and Intel® based processors. The 78Q8430 is compliant with applicable IEEE-802.3 standards. MAC and PHY configuration and status registers are provided as specified by IEEE-802.3u. The 78Q8430 operates over Category-5 Unshielded Twisted Pair (Cat-5 UTP) cabling in 100Base-TX applications and over Cat-3 UTP in 10Base-T applications requiring only a dual 1:1 isolation transformer interface to the copper media. The Ethernet MAC section makes use of a 32 kB deep on-chip SRAM FIFO packet memory to adaptively buffer transmit and receive data. SRAM memory can be dynamically allocated to either the transmit queues or the receive queues as required to optimize throughput. The host processor accesses the FIFO(s) using a simple asynchronous pseudo-SRAM like host bus interface. A 32 bit wide bus is provided; the bus width can be pin-configured for 8-bit, 16-bit or 32-bit bus width at boot-up. Big endian, little endian and mixed endian options are available in 32-bit operation; little endian is available for 16-bit operation. Different End-in variations are supported through internal circuitry with minimal user intervention required. The MAC interface logic may assert MEMWAIT during bus transactions, requesting wait states from the host while critical internal data transfer completes. The MAC provides both half duplex and full duplex operation, as well as support for full duplex flow control. Complete, portable device drivers for Linux®, OS20 and VxWorks® are available. The 78Q8430 operates from a single 3.3 V supply. Power down modes and power saving modes are available. The 78Q8430 defaults to use an on-chip crystal oscillator. In this mode, a 25 MHz reference crystal is connected between the XTLP and XTLN pins. Alternatively, an externally generated 25 MHz clock can be connected to the XTLP pin. The chip will automatically configure itself to use the external clock. In this mode of operation, a crystal is not required. 1.1 Systems Applications Figure 1 presents an overview of the 78Q8430 in a block diagram. LED Link (Programmable) 8-bit/16-bit/32-bit System Bus Configuration EEPROM Interface (Optional) TERIDIAN 78Q8430 Single Chip 10/100 Ethernet Controller LED Activity (Programmable) RJ45 1:1 Transformer CAT 5 Cable JTAG Interface Figure 1: 78Q8430 Block Diagram Rev. 1.2 7 78Q8430 Data Sheet DS_8430_001 1.2 System Level Application Information This section provides an overview of system level applications in some typical high-volume consumer equipment. 1.2.1 Set Top Box Application Figure 2 shows a typical application diagram for a set top box. Figure 2: Set Top Box Diagram 1.2.2 IP Security Application Figure 3 shows a typical application diagram for an IPTV security camera application. Figure 3: Network Cameras Diagram 8 Rev. 1.2 DS_8430_001 78Q8430 Data Sheet 1.2.3 IP PBX Application Figure 4 shows a typical application diagram for an IP PBX application. 78Q8430 10/100 MAC/PHY 78Q8430 10/100 MAC/PHY Figure 4: Typical FXO VoIP Application 1.3 • • • • Overview Generic Bus Interface (GBI) Control Layer Queue Memory Layer Ethernet Media Access Control (MAC) Layer Ethernet Physical (PHY) Layer The 78Q8430 is divided into four sections, as shown in Figure 5. GBI Bus Layer Queue Memory Layer QUE Controller QUE Write Logic QUE Write Logic MAC Layer PHY Layer GBI Access Logic Memory Manager Flow Control MAC TX Logic TX FIFO RX FIFO TX PCS PMD RX PCS MAC Write Logic QUEUE SRAM MAC Read Logic Pause/ HNR Timers GBI QUE Write Logic QUE Write Logic QUE Read Logic DMA Slave Mode Logic RMON MAC RX Logic Snoop Controller Packet Classify MAC Control & Status Registers SMI Control & Status Register CTL Controller CAM Figure 5: Device Block Diagram Rev. 1.2 9 78Q8430 Data Sheet DS_8430_001 1.4 Application Environments This section provides an overview of the application environments such as the STMicroelectronics and Embest ARM9™ processors, for which the 78Q8430 provides a seamless interface. Figure 6 shows a simple application diagram for a design using the GBI based 10/100-Mbps Ethernet Controller. By providing a direct connection to the GBI bus, applications requiring Ethernet network access can be realized with a high degree of integration. The figure shows the processor and the Ethernet controller with connected address and data buses. This connection can be either on the motherboard, or via an expansion module. The GBI Controller controls the address and data and the system control signals. GBI 8/16/32-bit Bus 78Q8430 10/100 Mbps Ethernet Controller and PHY EEPROM or ROM 1:1 Transformer And RJ45 Connector Figure 6: GBI Bus Block Diagram Figure 6 shows the components that are likely to be used with the 10/100-Mbps Ethernet Controller. The integrated PHY is designed to directly connect to an integrated 1:1 transformer and RJ-45 connector, thereby providing a minimum parts solution. 1.5 Supply Voltages The 78Q8430 requires a single 3.3 V (+/-5%) supply voltage. No external components are required to generate on-chip bias voltages and currents. High accuracy is maintained through a closed-loop trimmed biasing network. On-chip power converters generate 1.8 V power for core digital logic and memory blocks. The voltage regulator is not affected by the power-down mode. 1.6 Power Management The 78Q8430 supports both normal and power-saving modes. When the GBI bus is active, it can be in normal mode or Power Management low-power modes. 10 Rev. 1.2 DS_8430_001 78Q8430 Data Sheet 2 Pinout WAITMODE The 78Q8430 is available in a 14x14 mm 100-pin LQFP package. BUSMODE CLKMODE BOOTSZ1 100 PROMDO ENDIAN1 ENDIAN0 PROMDI XTLN LED0 LED1 XTLP GND 99 GND GND GND VCC 96 VCC RXN VCC VCC TDO RXP TXN 98 TXP 97 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 BOOTSZ0 GND TMS TDI TRST TCLK RESET VCC ADDR1 ADDR0 WR OE MEMWAIT GND BUSCLK CS VCC ADDR2 ADDR3 ADDR4 ADDR5 ADDR6 ADDR7 ADDR8 ADDR9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 PROMCS PROMCLK PME INT VCC GND DATA31 DATA30 DATA29 DATA28 DATA27 DATA26 DATA25 DATA24 VCC GND DATA23 DATA22 DATA21 DATA20 DATA19 DATA18 DATA17 DATA16 VCC 78Q8430 49 26 GND 27 VCC 28 DATA0 29 DATA1 30 DATA2 31 DATA3 32 DATA4 33 DATA5 34 GND 35 GND Figure 7: Pinout 36 VCC 37 VCC 38 DATA6 39 DATA7 40 DATA8 41 DATA9 42 DATA10 43 GND 44 VCC 45 DATA11 46 DATA12 47 DATA13 48 DATA14 50 GND DATA15 Rev. 1.2 11 78Q8430 Data Sheet DS_8430_001 3 Pin Description 3.1 Pin Legend Table 1 lists the different pin types found on the 78Q8430 device. The Type field of the pin description tables refers to one of these types. Table 1: Pin Legend Type A IU IS O OD S I ID B OZ G Description Analog TTL-level Input, with Pull-up TTL-level Input, with Schmitt Trigger TTL-level Output TTL-level Output (Open Drain) Supply TTL-level Input TTL-level Input, with Pull-down TTL-level Bidirectional Pin TTL-level Output (Tristate) Ground 3.2 Pin Descriptions The pin descriptions in the following tables are grouped by interface. A pin number, type specification per Table 2 and a functional description is provided for each pin on the 78Q8430 device. 3.2.1 Signal XTLP XTLN Clock Pins Table 2: Clock Pin Descriptions Pin Number 87 88 Type A Description Crystal Positive/Negative To use the internal oscillator, connect a 25 MHz crystal across XTLP and XTLN. To use of an external clock, XTLN is grounded and XTLP is driven with a 25 MHz clock. Provides timing reference for all media dependant interface operations. An internal PLL is used to multiply this clock by four for use as the main system clock in internal clock mode. Peripheral Clock The source for the main system clock in external clock mode. In synchronous bus mode, all host bus signals are assumed to be synchronous to this clock. BUSCLK 15 I 12 Rev. 1.2 DS_8430_001 78Q8430 Data Sheet 3.2.2 Signal TXP TXN RXP RXN Media Dependent Interface (MDI) Pins Table 3: MDI Pin Descriptions Pin Number 97 98 94 93 Type A A A A Description Transmit Output Positive/Negative Transmitter outputs for both 10BASE-T and 100BASE-TX. MDI-X Mode: Receive Input Positive/Negative Receiver inputs for both 10BASE-T and 100BASE-TX. Receive Input Positive/Negative Receiver inputs for both 10BASE-T and 100BASE-TX. MDI-X Mode: Transmit Output Positive/Negative Transmitter outputs for both 10BASE-T and 100BASE- TX. 3.2.3 LED Display (PHY) Pins The LED pins use standard logic drivers. They output a logic low when the LED is meant to be on and are tri-state when it is meant to be off. The LED cathode should be connected to the output pin and a series resistor from the power supply connected to the LED anode. Table 4: LED Pin Descriptions Signal LED0 LED1 Pin Number 90 92 Type OZ OZ Description PHY display LED0 (Link OK) The default for LED0 is Link OK (LED is on for link established). PHY display LED1 (Activity) The default for LED1 is Link Activity (LED blinks for Rx or Tx data transferred). 3.2.4 EEPROM Pins Table 5: EEPROM Interface Pin Descriptions Pin Number 75 Type O Description EEPROM Chip Select Used to frame transmissions to and from an external EEPROM. EEPROM Clock Clock for transmitting to and from an external EEPROM/ROM. This is compatible with the slowest commercial parts, which specify a maximum frequency of 1 MHz. EEPROM Data In Data line for transmitting from the external EEPROM to the controller. Must be high with no EEPROM present. EEPROM Data Out Transfers data from the controller to an external EEPROM/ROM. Signal PROM_CS PROM_CLK 74 O PROM_DI 77 I PROM_DO 76 OZ Rev. 1.2 13 78Q8430 Data Sheet DS_8430_001 3.2.5 GBI Data Pins Table 6: GBI Data Pin Descriptions Pin Number 69 68 67 66 65 64 63 62 59 58 57 56 55 54 53 52 49 48 47 46 45 42 41 40 39 38 33 32 31 30 29 28 Type B Description Data Bus DATA[31:0] Bi-directional host bus data. The BOOTSZ pins determine how many of these are actually used. The OE input will disable the output drivers to prevent bus collisions. Signal DATA31 DATA30 DATA29 DATA28 DATA27 DATA26 DATA25 DATA24 DATA23 DATA22 DATA21 DATA20 DATA19 DATA18 DATA17 DATA16 DATA15 DATA14 DATA13 DATA12 DATA11 DATA10 DATA9 DATA8 DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0 14 Rev. 1.2 DS_8430_001 78Q8430 Data Sheet 3.2.6 GBI Address Pins Table 7: GBI Address Pin Descriptions Pin Number 25 24 23 22 21 20 19 18 9 10 Type I I I I I I I I I I Description Address Bus The address lines are required to be stable for the entire duration of a CS cycle. In synchronous bus mode, the address pins are sampled on the first rising edge of BUSCLK that CS is asserted low. In asynchronous bus mode, the address pins are sampled as soon as the falling edge of CS is synchronized to the internal system clock. In 32-bit bus mode, ADDR[1:0] are ignored. In 16-bit bus mode, ADDR[0] is ignored. In 8-bit bus mode, all ADDR bits are used to reference a register byte. Signal ADDR9 ADDR8 ADDR7 ADDR6 ADDR5 ADDR4 ADDR3 ADDR2 ADDR1 ADDR0 3.2.7 Signal GBI Control Pins Table 8: GBI Control Pin Descriptions Pin Number 7 Type I Description Reset (active low) Referred to as hardware reset. Causes all 78Q8430 outputs to enter a high-impedance state, stops all current operations and initializes registers. Chip Select (active low) The Processor asserts this signal to initiate a read or write operation. Write Enable (active low) The Processor asserts WR to indicate a write operation. Output Enable (active low) The Processor asserts OE to enable the 78Q8430 data drivers during a read cycle. Memory Wait During a bus cycle the 78Q8430 asserts MEMWAIT to indicate that it is not ready to drive or receive valid data on the DATA lines. The polarity is dependent on the WAITMODE pin. When WAITMODE is high then the pin is asserted high; when WAITMODE is low then the pin is asserted low. Interrupt (active low) The 78Q8430 asserts the INT signal low when it detects an interrupt event. Power Management Event (active low) The 78Q8430 asserts the PME signal low when it detects a wake-up event. RESET CS 16 I WR OE 11 12 I I MEMWAIT 13 OZ INT 72 OD PME 73 OD Rev. 1.2 15 78Q8430 Data Sheet DS_8430_001 3.2.8 Mode Pins Table 9: Chip Mode Pin Descriptions Pin Number 83 85 84 Type I I I Description BUSMODE, CLKMODE, WAITMODE Configuration 0,0,0 = Sync bus, ext. system clock, memwait act low 0,0,1 = Sync bus, ext. system clock, memwait act high 0,1,0 = Reserved 0,1,1 = Reserved 1,0,0 = Async bus, ext. system clock, memwait act low 1,0,1 = Async bus, ext. system clock, memwait act high 1,1,0 = Async bus, int. system clock, memwait act low 1,1,1 = Async bus, int. system clock, memwait act high Data Bus Endian Select 0,0 = Big endian (MSB at high bit positions) 0,1 = Bytes are little endian inside 16-bit words 1,0 = Word endian (MSW at low bit positions) 1,1 = Little endian (MSB at low bit positions) GBI Bus Size BOOTSZ[1:0]: is strapped to indicate the GBI bus size: 00 = Bus is 32 bits wide 01 = Bus is 16 bits wide. Only DATA[15:0] are used. 10 = Bus is 8 bits wide. Only DATA[7:0] are used. 11 = Reserved Signal BUSMODE CLKMODE WAITMODE ENDIAN0 ENDIAN1 79 80 I I BOOTSZ1 BOOTSZ0 100 1 I I Notes: 1. The internal PHY should never be powered down when the internal system clock is selected by the CLKMODE pin (CLKMODE=1) 2. There is no external visibility for the system clock when the internal clock mode is selected. The GBI interface must therefore always be used in asynchronous bus mode. 3.2.9 Signal TRST TCLK TMS JTAG Pins Table 10: JTAG Pin Descriptions Pin Number 5 6 3 Type I I IU Description Test Reset (active low) System provided reset for JTAG logic. Test Clock System provided clock for JTAG logic. Test Mode Select Enables JTAG boundary scan using serial in/serial out ports. Sampled on rising edge of TCLK. Test Data In Serial input port for clocking in test data to be shifted to the output at the end of the boundary scan chain (TDO). Test Data Out Serial output port for clocking out test data shifted from the input at the beginning of the boundary scan chain (TDI). TDI 4 IU TDO 81 O 16 Rev. 1.2 DS_8430_001 78Q8430 Data Sheet 3.2.10 Power Pins Table 11: Power Pin Descriptions Signal VCCA Pin Number 86 95 96 8 17 27 36-37 44 51 61 71 82 2 14 26 34-35 43 50 60 70 78 89 91 99 Type S Description 3.3 V supply for the analog transmit section. VCC S 3.3 V supply for the digital logic section. GND G Common ground return. Rev. 1.2 17 78Q8430 Data Sheet DS_8430_001 4 Electrical Specification 4.1 Absolute Maximum Ratings Operation above the maximum rating may permanently damage the device. Table 12: Absolute Maximum Ratings Parameter DC Supply Voltage (V CC ) Storage Temperature Pin Voltage (except TXOP/N and RXIP/N) Pin Voltage (TXOP/N and RXIP/N only) Pin Current Rating -0.5 to 4.0 VDC -65 to 150 °C -0.3 to (V CC +0.6) VDC -0.3 to (V CC +1.4) VDC ± 120 mA 4.2 Recommended Operation Conditions Unless otherwise noted all specifications are valid over these temperatures and supply voltage ranges. Table 13: Recommended Operating Conditions Parameter DC Voltage Supply (V CC ) Ambient Operating Temperature (T AMB ) Rating 3.3 ± 0.17 VDC -40 to +85 °C 4.3 DC Characteristics Table 14: DC Characteristics Symbol I CC Conditions V CC = 3.3 V Auto-Negotiation 10BT (Idle) 10BT (Normal Activity) 100BTX Power-down mode Min – Nom – 124 110 230 165 14 Max – 150 140 250 190 45 Unit – mA Parameter Supply Current Supply Current I CC – mA 18 Rev. 1.2 DS_8430_001 78Q8430 Data Sheet 4.4 Digital I/O Characteristics Table 15: Digital I/O Characteristics Symbol V IL V IH I IL , I IH C IN V OL V OH TT IZ Conditions Min – 2.0 -1 – – 2.4 – -1 Nom – – – 8 – – – – Max 0.8 – 1 – 0.4 – 6 1 Unit V V µA pF V V ns µA Parameter Input Voltage Low Input Voltage High Input Current Input Capacitance Output Voltage Low Output Voltage High** Output Transition Time Tri-state Output Leakage Current* I OL = 8 mA I OH = -8 mA C L = 20 pF I OH = -8 ma (H to Z ) Type tri-state only **PMEB and INTB are active low outputs requiring external pull-up resistors. V OH for these outputs is not specified. 4.5 4.5.1 Analog Electrical Characteristics 100Base-TX Transmitter Table 16: MII 100Base-TX Transmit Timing Conditions Best-fit over 14 bit times; 0.4 dB Transformer loss |V P +| |V P -| Percent of V P +, V P 10-90% of V P +, V P |t R - t F | Deviation from best-fit time-grid; 010101... Sequence Scrambled Idle, Internal Oscillator Mode Min 950 0.98 – 3 – – Nom – – – – – – Max 1050 1.02 5 5 500 ±250 % ns ps ps Unit mVpk Parameter Peak Output Amplitude (|V P +|, |V P -|) (see note below) Output Amplitude Symmetry Output Overshoot Rise/Fall time (t R , t F ) Rise/Fall time Imbalance Duty Cycle Distortion Jitter – – 1.4 ns Note: Measured at the line side of the transformer. Test Condition: Transformer P/N: TLA-6T103. Line Termination: 100 Ω±1% 4.5.2 100Base-TX Transmitter (Informative) Table 17: MII 100Base-TX Transmitter (Informative) Conditions 2 < f < 30 MHz 30 < f < 60 MHz 60 < f < 80 MHz -8 < I IN < 8 mA Min 16 f  16 − 20 log   30MHz  Parameter Return Loss Max – Unit dB 10 350 – µH Open-Circuit Inductance Note: The specifications in the preceding table are included for information only. They are mainly a function of the external transformer and termination resistors used for measurements. Rev. 1.2 19 78Q8430 Data Sheet DS_8430_001 4.5.3 100Base-TX Receiver Table 18: MII 100Base-TX Receiver Timing Conditions Min 600 300 – 4 -75 – – Nom 700 350 20 – – – – Max 800 400 – – +75 1000 4 Unit mVppd mVppd kΩ ns % µs µs Parameter Signal Detect Assertion Threshold Signal Detect De-assertion Threshold Differential Input Resistance Jitter Tolerance (pk-pk) Baseline Wander Tracking Signal Detect Assertion Time Signal Detect De-assertion Time Not tested Not tested 4.5.4 10Base-T Transmitter Table 19: MII 10Base-T Transmitter Timing Conditions All data patterns Any harmonic All ones data Not tested Last bit 0 Last bit 1 Min 2.2 27 Nom – – Max 2.8 – Unit V dB Parameter Peak Differential Output Signal (see note below) Harmonic Content (dB below fundamental) Link Pulse Width Start-of-Idle Pulse Width – – – 100 300 350 – – – ns ns ns Note: The Manchester-encoded data pulses, the link pulse and the start-of-idle pulse are tested against the templates and using the procedures found in Clause 14 of IEEE 802.3. Measured at the line side of the transformer. Test Condition: Transformer P/N: TLA-6T103. Line Termination: 100 Ω±1% 4.5.5 10Base-T Transmitter (Informative) Table 20: MII 10Base-T Transmitter (Informative) Conditions 1 MHz < freq < 20 MHz Min 15 f 29 − 17 log    10  Parameter Output Return Loss Output Impedance Balance Peak Common-mode Output Voltage Common-mode Rejection Nom – – – – Max – – 50 100 Unit dB dB mV mV Common-mode Rejection Jitter 15 V PK , 10.1 MHz sine wave applied to transmitter common-mode. All data sequences. 15 V PK , 10.1 MHz sine wave applied to transmitter common-mode. All data sequences. – – – – 1 ns Note: The specifications in the preceding table are included for information only. They are mainly a function of the external transformer and termination resistors used for measurements 20 Rev. 1.2 DS_8430_001 78Q8430 Data Sheet 4.5.6 10Base-T Receiver Table 21: MII 10Base-T Receive Timing Conditions Min – 30 500 275 – – 25 Nom 10 – 600 350 20 10-10 – Max – – 700 425 – – – Unit BT ns mVppd mVppd kΩ V Parameter DLL Phase Acquisition Time Jitter Tolerance (pk-pk) Input Squelched Threshold Input Unsquelched Threshold Differential Input Resistance Bit Error Ratio Common-mode Rejection Square wave 0 < f < 500 kHz Not tested Rev. 1.2 21 78Q8430 Data Sheet DS_8430_001 5 Host Interface Timing Specification 5.1 Host Interface CS WR/OE MEMWAIT ADDR DATA TSU TSL TWT THWT THCS THOWT THO TL TH Figure 8: Host Interface Timing Diagram Name T SU T SL Description CS and ADDR setup time Output settling time Requirement CS and ADDR must be stable on or before the falling edge of WR/OE. The maximum amount of time that it will take the MEMWAIT, or DATA when there is no MEMWAIT, outputs to become stable after the falling edge of WR/OE. The maximum amount of time that the MEMWAIT output will held asserted. The minimum amount of time that the WR/OE input must be held past the de-assertion of MEMWAIT. The CS input must be stable low for the entire duration of the WR/OE low cycle. The ADDR and DATA inputs must be stable for no less than this amount of time after the falling edge of WR. The minimum amount of time that the WR/OE inputs must be held low. The minimum amount of time that the WR/OE inputs must be held high. Min 0 ns – Max – 13.7 ns T WT T HWT Maximum wait time Wait hold time – 10 ns 17 ck – T HCS T HO CS hold time ADDR and DATA hold time 0 ns 2.5 ck – – TL TH WR/OE min low pulse WR/OE min high pulse 2 ck 2 ck – – Note: On read cycles when MEMWAIT is asserted the DATA outputs will be valid before the de-assertion of MEMWAIT. 22 Rev. 1.2 DS_8430_001 78Q8430 Data Sheet 5.1.1 Synchronous Mode Timing BUSCLK Output Delay TFALL Output Delay TRISE Figure 9: Host Bus Output Timing Diagram BUSCLK T SU TH Input Figure 10: Host Bus Input Timing Diagram Parameter Input Setup Time Input Hold Time Output Fall Delay Output Rise Delay CSB min low CSB min high Symbol T SU TH T FALL T RISE P WL P WH Min 6 6 – – 1 2 Nom – – – – – – Max – – 8 8 – – Unit ns ns ns ns clk clk Rev. 1.2 23 78Q8430 Data Sheet DS_8430_001 5.1.2 Bus Clock Timing TCYC THIGH VIH VIL 80% 50% 20% TLOW Figure 11: Bus Clock Timing Sync 50 Min Max 20 – – 50 8 – 8 – 1 3 Async 100 Min Max 10 – – 100 3 – 3 – 1 3 Parameter BUSCLK Cycle Time BUSCLK Frequency BUSCLK High Time BUSCLK Low Time BUSCLK Slew Rate Symbol T CYC – T HIGH T LOW – Units ns MHz ns ns V/ns 5.1.3 Reset Timing Symbol T RESET Min 1 Nom – Max – Units clocks Parameter RESETB Minimum Duration 24 Rev. 1.2 DS_8430_001 78Q8430 Data Sheet 6 Functional Description 6.1 6.1.1 Internal Block Diagrams Internal Digital Block Figure 12 presents an overview of the functional layers of the 78Q8430. On the left side are the signals, which connect to the GBI bus. On the upper and middle right, the blocks that implement the MAC side of the MII are shown. These blocks are connected to the embedded PHY. On the lower right, connections to the EEPROM are shown. Memory Manager BUSCLK RESETB INTB PMEB ADDR DATA BUSMODE CLKMODE WAITMODE BOOTSZ[1:0] ENDIAN[1:0] CSB WRB/OEB MEMWAIT TCLK TMS TDI TDO TRSTB Network Wake-up MII Register Controller MAC Half Duplex EMI System 4 Queue Write Logic 1 Queue Read Logic Snoop Controller Bus Control CTL Controller RMON Packet Classify Flow Control Queue Memory EMI Address & Data Queue Read/Write Logic MAC MII Transmit MAC MII Receive JTAG IEEE 1149.1 Boundary QUE Status Register Scan CAM TX/RX Packet Status DMA Status Register Register MAC Status Register EEPROM/ ROM Control PROM_CS PROM_CLK PROM_DO PROM_DI Figure 12: Internal Digital Block Diagram 6.1.2 Internal PHY Figure 13 shows the functional blocks of the internal 78Q8430 PHY. The signals shown on the left side are the internal MII signals to the MAC. These signals are multiplexed with their respective external pins for use with an external PHY device. The 78Q8430 is not a two-port device. Only one PHY interface can be operational. Rev. 1.2 25 78Q8430 Data Sheet DS_8430_001 TX_CLK TXD[3:0] TX_EN TX_ER 100M MII Transmit Logic Interrupt Logic MII Activity MII Receive Logic MII Registers 10M 4B/5B Encoder Scrambler, Parallel to Serial NRZ/NRZI MLT3 Encoder Tx Clock Generator Pulse Shaper and Filter LINK TXA RXA COLI 100BT 10BT FDX UTP Driver TXOP TXON INTR CRS COL RX_CLK RXD[3:0] RX_DV RX_ER MDC MDIO Parallel to Serial Manchester Encoder Carrier Sense, Collosion Detect Auto Negotiation 10M LED Control Logic LED0 LED1 Manchester Decoder, Serial to Parallel Serial to Parallel Descrambler, 5B/4B Decoder Clock Recovery Clock Reference XTLP/CLKIN XTLN UTP Receiver RXIP RXIN Adaptive Equalizer, 100M Baseline Wander, MLT3 Decoder, NRZI/NRZ VCC GND Figure 13: Internal PHY Block Diagram On the right side are the signals, which connect to the status LEDs and a 1:1 isolation transformer before connecting to an RJ-45 connector, or equivalent media components. 6.2 Data Queuing Ethernet frame data in the 78Q8430 is managed in queuing structures called QUEs. The host bus address space allocated for QUEs has enough space for eight, while the 78Q8430 circuit only implements five. QUEs are identified numerically, QUE0 through QUE7, based on the registers in the QUE register space that are used to access them. QUE1, QUE6 and QUE7 are unimplemented and reserved for future use. A QUE allocates main buffer memory as needed and stores discrete frames as they are written into the QUE. The QUE then reads back frames in the same order that they were written and frees the main buffer memory. A QUE can contain a maximum of 125 frames at any one time. If a QUE is unable to allocate main buffer memory when writing a frame, the frame will be partially added to the QUE as a truncated frame. If a QUE is unable to allocate main buffer memory to start a frame, the entire frame is dropped. The QUEs are divided into two categories: receive QUEs, that store received frame data and transmit QUEs, that store transmit frame data. Frames are written to a receive QUE by the MAC and read out by the host. Frames are written to a transmit QUE by the host and read out by the MAC. QUE0 and QUE1 are receive QUEs (only QUE0 is implemented), and QUE2 through QUE7 are transmit QUEs (QUE2 through QUE5 are implemented). Writing to the Transmit Data Register (TDR) for a receive QUE or reading from the Read Data Register (RDR) for a transmit QUE is not supported and the result is undefined in this specification. The transmit QUEs are further divided into standard QUEs, as described above, and static QUEs. Static QUEs differ from the standard QUEs in that they can only contain a single frame, and that frame must be 252 bytes or less in total size. Unlike standard QUEs, static QUEs do not remove a frame when it is read from the QUE. Once a frame is written to a static QUE, it can be read out any number of times and the static QUE will always read out the same one frame. If a second frame is written to a static QUE then it will replace the first as the one frame contained in the QUE. 26 Rev. 1.2 DS_8430_001 78Q8430 Data Sheet The purpose of a static transmit QUE is to allow the host to configure a frame that will need to be transmitted multiple times or transmitted at a later time without any interaction with the host. Transmit QUE2 and QUE5 are static QUEs. Transmit QUE2 is best suited for MAC control pause frames as it can be triggered to transmit by a main buffer watermark. Transmit QUE5 is best suited to Host Not Responding (HNR) frames as it can be triggered to transmit by a host interrupt timeout. When the MAC transmitter is idle and ready to transmit a frame, it determines which QUE to read from on a priority basis. The lowest numbered QUE containing data that needs to be transmitted is selected by the MAC, which means when more than one transmit QUE is ready, the one with the lowest number always gets priority. 6.3 6.3.1 Host Interface Reading Receive Data The status of the frame at the top of the receive FIFO can be obtained by reading the Receive Packet Status Register (RPSR). The 16 LSBs of the RPSR contain a count of the total number of bytes that have entered the receive FIFO for this frame. A value of zero means that there are no new frames in the receive FIFO. As frame bytes enter the FIFO, the count value is incremented. However, the count value does not decrease the bytes read out of the read FIFO such that the final value will always be the final frame size. The MSB of the RPSR is the DONE bit. Once the last byte in the frame has entered the receive FIFO, the DONE bit is set indicating that the count value contained in the total bytes field now contains the final size in bytes of the frame and the error status and classification fields now contain the final frame status. When the DONE bit is asserted, this also indicates that the status for this frame has been removed from the receive status FIFO and future reads of the RPSR will refer to the next frame in the receive FIFO, even if all of the data for the current frame has not been retrieved. The frame data is read from the receive FIFO 32 bits at a time by successive reads to the Receive Data Register (RDR). If the frame length is not an even multiple of 4 bytes then the final read of the RPDR register for that frame will be padded with zeros. 6.3.2 Writing Transmit Data A transmit QUE is initialized by writing to its Packet Control Word Register (PCWR). This will assign an ID to the frame and select various transmission options. The frame size must then be set by writing to the QUE Packet Size Register (PSZR). Transmit data is then written to the transmit FIFO 32 bits at a time via successive writes to the Transmit Data Register (TDR). If more bytes are written to the TDR than indicated n the PSZR, the excess bytes are ignored. Writes to the TDR past the end of the frame, however, will trigger a transmit FIFO overrun interrupt condition. Similarly, if a new frame is initialized by a write to the PCWR before the frame length counter is expired, a transmit FIFO under-run interrupt condition will result and the previous frame will be aborted. If there is any question, the PSZR can be queried for the remaining number of bytes expected in the previous frame before a new frame is initialized. In the event that the host wishes to terminate a frame early without triggering an under-run interrupt and aborting the frame, or if the size of the frame is not initially known, the PSZR can be rewritten at any time before the end of the frame’s transmission. As an example, no matter what the current value of the PSZR is, if it is written with a value of one then the next write to the TDR will add one byte to the completed frame. Conversely, if the frame byte counter is about to expire then writing a larger value to the PSZR will extend the frame. It is an error to write a value of zero to the PSZR and the circuit behavior in this case is undefined. As each frame egresses the transmit FIFO, its status is placed in the transmit status FIFO. Transmit frame status is recovered by reading the Transmit Packet Status Register (TPSR). The Packet ID field from the PCWR is also placed in the TPSR such that the status can be associated with the exact frame to which it belongs. Rev. 1.2 27 78Q8430 Data Sheet 6.3.2.1 Using the Setup Transmit Data Register DS_8430_001 The Setup Transmit Data Register (STDR) can be used to control the way in which 32-bit data words are transferred to the transmit FIFO. The STDR can be changed on a word-by-word basis to change the network endianness or buffer-byte-alignment, or the STDR can be used to setup the transfer of an entire buffer of transmit data. A new frame must be initialized by a write to the PCWR before the STDR is setup for transferring frame data to the QUE. The Count field of the STDR contains one less than the number of writes to the TDR that will be needed to complete the transfer of the buffer. The Start Offset field contains the number of bytes in the first write to the TDR to ignore. The End Offset field contains the number of bytes in the last write (when the Count field is equal to zero) to ignore. Table 22: Transmit Data Buffer Example Transmit Order: Start Offset = 2 Count decrements for each write End Offset = 3 Notes: 1. The End Offset will continue to be applied as long as the COUNT field of the STDR contains zero. If a non-zero End Offset is used, it must be cleared at the end of the block transfer. 2. The COUNT field must expire before the PSZR expires. Frames that are entirely contained within one block should not use the End Offset. Instead, use the PSZR to clip the last write to the TDR. The Endian field of the STDR is used to set the transmit order of the data written on the bus, or how host bus write data bytes are mapped to transmit buffer bytes. If the Endian bit is set then the most significant byte of the host bus as defined by the logical endianness, is mapped to the first transmitted byte in the buffer, otherwise, the least significant byte is mapped to the first transmitted byte. 6.3.2.2 Preloading Transmit Data Byte-1 X B3 … … B N-4 BN 32-bit Write Data Byte-2 Byte-3 X B1 B4 B5 … … … … B N-3 B N-2 X X Byte-4 B2 B6 … … B N-1 X A transmit QUE signals the MAC transmitter that it is ready to transmit by asserting the QUE Data Ready bit (QDR) in its QUE Status Register (QSR). The default behavior of the QDR for a transmit QUE is to assert anytime the QUE contains any data. This means that a transmit QUE can potentially begin transmitting as soon as the first BLOCK is added to the QUE. Once the QUE begins transmitting, data for the packet being transmitted must be added to the QUE faster than the transmitter removes it or a TX FIFO under-run condition will eventually abort the packet (see TPSR). In the event that interrupt latency, host bus performance, or other issues may prevent the host from loading data into the QUE faster than it is removed by the MAC, the QSR can be used to modify the QDR behavior and prevent an under-run condition on the QUE. Bits 25 and 24 of the QSR are the Mode field. The default setting for the Mode field is 00b. In this mode the QDR bit is set anytime the QUE contains at least one BLOCK. In this mode, the host must be diligent in keeping the QUE populated with data to avoid a TX FIFO under-run condition in the MAC. If the Mode setting is 01b then the QDR bit for the QUE is set only when the number of BLOCKs in the QUE is above the value indicated by the Threshold field. This will allow the host to fill the QUE up to the threshold level at its leisure without risk of a TX FIFO under-run. The drawback to this mode is that a small packet that uses fewer than the threshold number of BLOCKs will be stranded in the QUE until more data is added to the QUE to bring the total number of BLOCKs up and over the threshold. 28 Rev. 1.2 DS_8430_001 78Q8430 Data Sheet If small packets are a problem, then the Mode setting of 10b can be used. In this mode, the QDR bit for the QUE is set only when there is an EOF in the QUE, or in other words, the QUE contains at least one entire frame. In this mode, TX FIFO under-runs are not possible since the QUE will not begin to transmit until it contains the entire frame. The draw-back to this mode is with very large frames. If a frame is too large to fit into the QUE all at one time then it will never begin transmitting and the QUE will be stalled. If both small and large packets are to be handled then a Mode setting of 11b should be used. In this mode, the QDR bit for the QUE is set anytime there is an EOF in the QUE or the number of BLOCKs in the QUE is above the threshold. In this way, large packets can preload a fixed number of BLOCKs while small packets are guaranteed to transmit. To facilitate the handling of very large packets by a fast host, an interrupt that is tied to the QSR Threshold is provided. To make use of this, the host sets the Threshold field based on the interrupt latency. The host then preloads the QUE with some number of BLOCKs. As soon as the total number of blocks left in the QUE falls below the Threshold, an interrupt is generated. In response to the interrupt the host writes more data to the QUE to put the number back above the threshold. The host can then go on to other tasks until the next interrupt. This cycle is repeated until the frame is completed. 6.3.3 DMA Slave Mode Access Reading or writing large amounts of data into and out of a single QUE involves accessing the same RDR or TDR register repeatedly. A DMA Slave Mode is implemented to facilitate this activity and reduce overhead on the host side. While in DMA Slave Mode, the address bus on the host interface is ignored and all access is assumed to be to the programmed address until DMA mode is terminated. In this way the host can use a DMA engine or block transfer facility to write or read QUE data without regard to the addresses generated. DMA Slave Mode is controlled by the DMA Register (DMA) at address 0x100. To read data from a QUE using DMA Slave Mode, the host writes the address of the RDR for the desired QUE into bits nine through zero and sets bit 17, the Read Mode bit, in the DMA register at address 0x100. The host then starts the DMA transfer and all read access to the host interface will go to the programmed RDR address. When the DMA transfer is complete, the DMA Mode is terminated by writing a zero to bit 17 of the DMA Register (DMA). To write data to a QUE using DMA Slave Mode, the host writes the address of the TDR for the desired QUE into bits nine through zero and sets bit 16, the Write Mode bit, in the DMA Register. The host then starts the DMA transfer and all write access to the host interface will go to the programmed TDR address. When the DMA transfer is complete, reading the cleared Write Mode bit from the DMA Register terminates the DMA Mode. DMA Slave Mode does not have any effect on other operations of the interface such that, for example, the ENDIAN settings, STDR settings, etc. are all in effect during a DMA Mode transfer. During a DMA mode transfer, the actual register address of the host bus access is ignored. This means that using DMA Slave Mode to transfer data out of order is not supported. Data words must always be written to a transmit QUE in the desired transmit order and are always read from a receive QUE in received order. 6.4 Snoop Mode Access The Snoop Interface provides a means by which QUE data can be inspected and modified in situ, leaving the state of the QUE unchanged. The Snoop Interface works by presenting the contents of a specific BLOCK of QUE memory at the SNOOP address space 0x300-0x3FF. The Snoop Control Register (SNCR) is used to set which BLOCK of QUE memory is mapped into the SNOOP address space. For example, an application that wishes to inspect or modify the contents of the first frame in the receive QUE, QUE0, first reads the value of the FIRST BLOCK in QUE0 from its QFLR Register (QFLR). The pointer to the FIRST BLOCK in QUE0 is then written to the SNCR register. Now that the SNCR Register has programmed the SNOOP interface to point to the FIRST BLOCK for QUE0, accessing registers in the address space from 0x300 to 0x3FF will be directly accessing the data for the first frame contained in QUE0. Rev. 1.2 29 78Q8430 Data Sheet DS_8430_001 Snooping the contents of a frame before it is read out of the receive QUE can be useful if additional inspection of the frame is needed, beyond what is provided by classification, to determine the disposition of a received frame. It can also be used, in conjunction with the QUE transfer feature, to minimize host bus overhead in responding to simple ARP or ICMP requests. In this case, the host can use the Snoop Interface to modify a received ARP or ICMP request and convert it into the appropriate response, while the frame is still resident in the receive QUE. The QUE Transfer feature is then used to transfer the response directly to a TX QUE and transmit it back to the source without having to read the entire frame into host memory. 6.5 Water Marking The Timers module (see Section 6.8) monitors the number of free memory blocks in the system input. There are three watermarks (Interrupt, PAUSE and Headroom), accessed via the Water Mark Values Register (WMVR), which can be used to manage memory usage based on the size of the free memory pool. 6.5.1 Interrupt Watermark When the number of free BLOCKs falls below the interrupt threshold, the WATER MARK interrupt in the HIR is triggered. An interrupt threshold setting of zero disables this feature. 6.5.2 PAUSE Watermark When the number of free BLOCKs falls below the pause threshold, the QDR bit for the PAUSE QUE triggers the transmission of the pause frame. A pause threshold setting of zero disables this feature. 6.5.3 Headroom Watermark When the number of free BLOCKs falls below the headroom threshold then the MAC receiver is halted causing the MAC to drop any frames received after completion of the current frame. This condition is cleared once the number of free BLOCKs rises back above the threshold. This prevents a saturated receiver from consuming all free memory thereby locking out the local transmitter. A headroom setting of zero disables this feature. 6.6 Counters A block of hardware counters is implemented to allow monitoring transmit and receive statistics. These counters are accessed and managed by using the Count Data Register (CDR), the Counter Control Register (CCR) and the Counter Management Register (CMR). 6.6.1 Summary of Counters Table 23 provides a summary of all counters by address. Counters at addresses 0x00 through 0x0E are transmit counters. Counters at addresses 0x0F through 0x27 are receive counters. Table 23: Counter Summary Counter Address 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 30 Counter Description Transmitted Packets, 0 Collisions, not deferred or excessive deferred Transmitted Packets, 1 Collision Transmitted Packets, 2-15 Collisions Excessive Collisions Deferred transmissions Late Collisions MAC errors (TX under-run or transmit halted) Lost carrier sense errors Excessive deferrals Total packets transmitted Multicast packets Rev. 1.2 DS_8430_001 Counter Address 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F 0x20 0x21 Counter Description 78Q8430 Data Sheet 0x22 0x23 0x24 0x25 0x26 0x27 Broadcast packets SQE errors Pause packets transmitted Transmitted bytes Received packets, 63 bytes or less Received packets, 64 bytes Received packets, 65 to 127 bytes Received packets, 128 to 255 bytes Received packets, 256 to 511 bytes Received packets, 512 to 1023 bytes Received packets, 1024 to 1518 (1522 for VLAN tag) bytes Received packets, 1519 bytes or more (1523 or more for VLAN tag) bytes CRC error and no alignment error Alignment errors Fragment errors (less than 64 bytes with CRC or alignment error) Jabbers (greater than 1518 or 1522 and CRC or alignment error) MAC errors Dropped packets Classification dropped packet Total received packets with no errors Total received multicast packets with no errors Total received broadcast packets with no errors Range errors (length field
78Q8430 价格&库存

很抱歉,暂时无法提供与“78Q8430”相匹配的价格&库存,您可以联系我们找货

免费人工找货