IRFBE30
www.vishay.com
Vishay Siliconix
Power MOSFET
FEATURES
D
•
•
•
•
•
•
TO-220AB
G
G
D
S
S
Note
* This datasheet provides information about parts that are
RoHS-compliant and / or parts that are non RoHS-compliant. For
example, parts with lead (Pb) terminations are not RoHS-compliant.
Please see the information / tables in this datasheet for details
N-Channel MOSFET
PRODUCT SUMMARY
VDS (V)
RDS(on) (Ω)
DESCRIPTION
800
VGS = 10 V
3.0
Qg max. (nC)
78
Qgs (nC)
9.6
Qgd (nC)
Third generation power MOSFETs from Vishay provide the
designer with the best combination of fast switching,
ruggedized device design, low on-resistance and
cost-effectiveness.
The TO-220AB package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 W. The low thermal resistance
and low package cost of the TO-220AB contribute to its
wide acceptance throughout the industry.
45
Configuration
Dynamic dV/dt rating
Available
Repetitive avalanche rated
Fast switching
Available
Ease of paralleling
Simple drive requirements
Material categorization: for definitions of compliance
please see www.vishay.com/doc?99912
Single
ORDERING INFORMATION
Package
TO-220AB
Lead (Pb)-free
IRFBE30PbF
Lead (Pb)-free and halogen-free
IRFBE30PbF-BE3
ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
LIMIT
Drain-source voltage
VDS
800
Gate-source voltage
VGS
± 20
VGS at 10 V
Continuous drain current
TC = 25 °C
TC = 100 °C
Pulsed drain current a
ID
IDM
Linear derating factor
Single pulse avalanche energy
b
UNIT
V
4.1
2.6
A
16
1.0
W/°C
mJ
EAS
260
Repetitive avalanche current a
IAR
4.1
A
Repetitive avalanche energy a
EAR
13
mJ
Maximum power dissipation
TC = 25 °C
Peak diode recovery dV/dt c
Operating junction and storage temperature range
Soldering recommendations (peak temperature) d
Mounting torque
For 10 s
6-32 or M3 screw
PD
125
W
dV/dt
2.0
V/ns
TJ, Tstg
-55 to +150
300
°C
10
lbf · in
1.1
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)
b. VDD = 50 V, starting TJ = 25 °C, L = 29 mH, Rg = 25 Ω, IAS = 4.1 A (see fig. 12)
c. ISD ≤ 4.1 A, dI/dt ≤ 100 A/μs, VDD ≤ 600, TJ ≤ 150 °C
d. 1.6 mm from case
S21-0868-Rev. C, 16-Aug-2021
Document Number: 91118
1
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRFBE30
www.vishay.com
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum junction-to-ambient
RthJA
-
62
Case-to-sink, flat, greased surface
RthCS
0.50
-
Maximum junction-to-case (drain)
RthJC
-
1.0
UNIT
°C/W
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-source breakdown voltage
VDS temperature coefficient
Gate-source threshold voltage
VDS
VGS = 0 V, ID = 250 μA
800
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.9
-
V/°C
VGS(th)
VDS = VGS, ID = 250 μA
2.0
-
4.0
V
Gate-source leakage
IGSS
VGS = ± 20 V
-
-
± 100
nA
Zero gate voltage drain current
IDSS
VDS = 800 V, VGS = 0 V
-
-
100
VDS = 640 V, VGS = 0 V, TJ = 125 °C
-
-
500
μA
-
-
3.0
Ω
gfs
VDS = 100 V, ID = 2.5 A b
2.5
-
-
S
Input capacitance
Ciss
-
1300
-
Output capacitance
Coss
Reverse transfer capacitance
Crss
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
Drain-source on-state resistance
Forward transconductance
RDS(on)
ID = 2.5 A b
VGS = 10 V
Dynamic
Total gate charge
Qg
Gate-source charge
Qgs
Gate-drain charge
Turn-on delay time
Rise time
Turn-off delay time
-
310
-
-
190
-
pF
-
-
78
-
-
9.6
Qgd
-
-
45
td(on)
-
12
-
tr
VDD = 400 V, ID = 4.1 A
Rg = 12 Ω, RD = 95 Ω, see fig. 10 b
-
33
-
-
82
-
-
30
-
f = 1 MHz, open drain
0.6
-
1.6
-
4.5
-
-
7.5
-
-
-
4.1
S
-
-
16
TJ = 25 °C, IS = 4.1 A, VGS = 0 V b
-
-
1.8
V
-
480
720
ns
-
1.8
2.7
μC
td(off)
Fall time
tf
Gate input resistance
Rg
Internal drain inductance
LD
Internal source inductance
LS
VGS = 10 V
ID = 4.1 A, VDS = 400 V,
see fig. 6 and 13 b
Between lead,
6 mm (0.25") from
package and center of
die contact
D
nC
ns
Ω
nH
G
S
Drain-Source Body Diode Characteristics
Continuous source-drain diode current
IS
Pulsed diode forward current a
ISM
Body diode voltage
VSD
Body diode reverse recovery time
trr
Body diode reverse recovery charge
Qrr
Forward turn-on time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
TJ = 25 °C, IF = 4.1 A, dI/dt = 100 A/μs b
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)
b. Pulse width ≤ 300 μs; duty cycle ≤ 2 %
S21-0868-Rev. C, 16-Aug-2021
Document Number: 91118
2
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRFBE30
www.vishay.com
Vishay Siliconix
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
Fig. 1 - Typical Output Characteristics, TC = 25 °C
Fig. 3 - Typical Transfer Characteristics
Fig. 2 - Typical Output Characteristics, TC = 150 °C
Fig. 4 - Normalized On-Resistance vs. Temperature
S21-0868-Rev. C, 16-Aug-2021
Document Number: 91118
3
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRFBE30
www.vishay.com
Vishay Siliconix
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
Fig. 7 - Typical Source-Drain Diode Forward Voltage
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
Fig. 8 - Maximum Safe Operating Area
S21-0868-Rev. C, 16-Aug-2021
Document Number: 91118
4
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRFBE30
www.vishay.com
Vishay Siliconix
RD
VDS
VGS
D.U.T.
RG
+
- VDD
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
Fig. 10a - Switching Time Test Circuit
VDS
90 %
10 %
VGS
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
L
Vary tp to obtain
required IAS
VDS
VDS
tp
VDD
D.U.T
RG
+
-
IAS
V DD
VDS
10 V
tp
0.01 Ω
IAS
Fig. 12a - Unclamped Inductive Test Circuit
S21-0868-Rev. C, 16-Aug-2021
Fig. 12b - Unclamped Inductive Waveforms
Document Number: 91118
5
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRFBE30
www.vishay.com
Vishay Siliconix
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
10 V
12 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
S21-0868-Rev. C, 16-Aug-2021
Fig. 13b - Gate Charge Test Circuit
Document Number: 91118
6
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRFBE30
www.vishay.com
Vishay Siliconix
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T.
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
3
+
2
-
-
4
+
1
Rg
•
•
•
•
1 Driver gate drive
Period
P.W.
+
V
- DD
dv/dt controlled by Rg
Driver same type as D.U.T.
ISD controlled by duty factor “D”
D.U.T. - device under test
D=
P.W.
Period
V GS = 10 V a
2
D.U.T. ISD waveform
Reverse
recovery
current
3 D.U.T. VDS
Body diode forward
current
di/dt
waveform
Diode recovery
dv/dt
Re-applied
voltage
V DD
Body diode forward drop
4 Inductor current
Ripple ≤ 5 %
ISD
Note
a. VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?91118.
S21-0868-Rev. C, 16-Aug-2021
Document Number: 91118
7
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Package Information
www.vishay.com
Vishay Siliconix
TO-220-1
A
E
F
D
H(1)
Q
ØP
3
2
L(1)
1
M*
L
b(1)
C
b
e
J(1)
e(1)
MILLIMETERS
DIM.
INCHES
MIN.
MAX.
MIN.
MAX.
A
4.24
4.65
0.167
0.183
b
0.69
1.02
0.027
0.040
b(1)
1.14
1.78
0.045
0.070
c
0.36
0.61
0.014
0.024
D
14.33
15.85
0.564
0.624
E
9.96
10.52
0.392
0.414
e
2.41
2.67
0.095
0.105
e(1)
4.88
5.28
0.192
0.208
F
1.14
1.40
0.045
0.055
H(1)
6.10
6.71
0.240
0.264
J(1)
2.41
2.92
0.095
0.115
L
13.36
14.40
0.526
0.567
L(1)
3.33
4.04
0.131
0.159
ØP
3.53
3.94
0.139
0.155
Q
2.54
3.00
0.100
0.118
ECN: E21-0621-Rev. D, 04-Nov-2021
DWG: 6031
Note
• M* = 0.052 inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM
Document Number: 66542
1
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Revison: 04-Nov-2021
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product
with the properties described in the product specification is suitable for use in a particular application. Parameters provided in
datasheets and / or specifications may vary in different applications and performance may vary over time. All operating
parameters, including typical parameters, must be validated for each customer application by the customer's technical experts.
Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited
to the warranty expressed therein.
Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and
for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of
any of the products, services or opinions of the corporation, organization or individual associated with the third-party website.
Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website
or for that of subsequent links.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
© 2022 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED
Revision: 01-Jan-2022
1
Document Number: 91000