Si1903DL
Vishay Siliconix
Dual P-Channel 2.5-V (G-S) MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
- 20
RDS(on) (Ω)
ID (A)
0.995 at VGS = - 4.5 V
± 0.44
1.190 at VGS = - 3.6 V
± 0.40
1.8 at VGS = - 2.5 V
± 0.32
• Halogen-free According to IEC 61249-2-21
Definition
• TrenchFET® Power MOSFETs
• 2.5 V Rated
• Compliant to RoHS Directive 2002/95/EC
SOT-363
SC-70 (6-LEADS)
1
6
D1
G1
2
5
G2
D2
3
4
S2
Marking Code
QA
X
YY
S1
Lot Traceability
and Date Code
Part # Code
Top View
Ordering Information: Si1903DL-T1-E3 (Lead (Pb)-free)
Si1903DL-T1-GE3 (Lead (Pb)-free and Halogen-free)
ABSOLUTE MAXIMUM RATINGS TA = 25 °C, unless otherwise noted
Parameter
Drain-Source Voltage
Gate-Source Voltage
Continuous Drain Current (TJ = 150 °C)a
Symbol
VDS
VGS
TA = 25 °C
TA = 85 °C
ID
IDM
IS
Pulsed Drain Current
Continuous Diode Current (Diode Conduction)a
Maximum Power Dissipationa
TA = 25 °C
TA = 85 °C
PD
TJ, Tstg
Operating Junction and Storage Temperature Range
5s
Steady State
- 20
± 12
± 0.44
± 0.41
± 0.31
± 0.30
± 1.0
- 0.25
- 0.23
0.30
0.27
0.16
0.14
- 55 to 150
Unit
V
A
W
°C
THERMAL RESISTANCE RATINGS
Parameter
Maximum Junction-to-Ambienta
Maximum Junction-to-Foot (Drain)
Symbol
t≤5s
Steady State
Steady State
RthJA
RthJF
Typical
360
400
300
Maximum
415
460
350
Unit
°C/W
Notes:
a. Surface Mounted on 1" x 1" FR4 board.
Document Number: 71081
S10-0110-Rev. E, 18-Jan-10
www.vishay.com
1
Si1903DL
Vishay Siliconix
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
Parameter
Symbol
Test Conditions
Min.
- 0.6
Typ.
Max.
Unit
Static
VGS(th)
VDS = VGS, ID = - 250 µA
Gate-Body Leakage
IGSS
VDS = 0 V, VGS = ± 12 V
Zero Gate Voltage Drain Current
IDSS
On-State Drain Currenta
ID(on)
Gate Threshold Voltage
Drain-Source On-State Resistancea
Forward Transconductancea
Diode Forward
Dynamicb
Voltagea
-1
-5
A
0.850
0.995
VGS = - 3.6 V, ID = - 0.38 A
1.0
1.190
VGS = - 2.5 V, ID = - 0.25 A
1.4
1.80
VDS = - 10 V, ID = - 0.41 A
0.8
IS = - 0.23 A, VGS = 0 V
- 0.8
- 1.2
1.2
1.8
VDS = - 10 V, VGS = - 4.5 V, ID = - 0.41 A
0.45
Qg
Qgs
Gate-Drain Charge
Qgd
Turn-On Delay Time
td(on)
VDD = - 10 V, RL = 20 Ω
ID ≅ - 0.5 A, VGEN = - 4.5 V, Rg = 6 Ω
td(off)
tf
Source-Drain Reverse Recovery Time
trr
Ω
S
V
nC
0.25
tr
Fall Time
µA
- 1.0
VGS = - 4.5 V, ID = - 0.41 A
gfs
Total Gate Charge
Turn-Off DelayTime
VDS = - 20 V, VGS = 0 V
VSD
Gate-Source Charge
Rise Time
V
nA
VDS = - 20 V, VGS = 0 V, TJ = 85 °C
VDS = - 5 V, VGS = - 4.5 V
RDS(on)
1.5
± 100
IF = - 0.23 A, dI/dt = 100 A/µs
7.5
15
20
40
8.5
17
12
24
25
40
ns
Notes:
a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %.
b. Guaranteed by design, not subject to production testing.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
1.0
1.0
VGS = 5 V thru 3 V
TC = - 55 °C
0.8
0.8
I D - Drain Current (A)
I D - Drain Current (A)
2.5 V
0.6
0.4
2V
1V
0.4
0.5
1.0
1.5
1.5 V
2.0
2.5
VDS - Drain-to-Source Voltage (V)
Output Characteristics
www.vishay.com
2
125 °C
0.6
0.2
0.2
0.0
0.0
25 °C
3.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
VGS - Gate-to-Source Voltage (V)
Transfer Characteristics
Document Number: 71081
S10-0110-Rev. E, 18-Jan-10
Si1903DL
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
3.0
100
80
C - Capacitance (pF)
R DS(on) - On-Resistance (Ω)
2.5
2.0
VGS = 2.5 V
1.5
VGS = 3.6 V
1.0
Ciss
60
40
Coss
VGS = 4.5 V
20
0.5
Crss
0.0
0.0
0
0.2
0.4
0.6
0.8
1.0
0
12
16
I D - Drain Current (A)
VDS - Drain-to-Source Voltage (V)
Capacitance
20
1.6
VGS = 4.5 V
ID = 0.41 A
VDS = 10 V
ID = 0.41 A
1.4
3
2
(Normalized)
4
R DS(on) - On-Resistance
VGS - Gate-to-Source Voltage (V)
8
On-Resistance vs. Drain Current
5
1.2
1.0
0.8
1
0
0.0
4
0.2
0.4
0.6
0.8
1.0
1.2
0.6
- 50
1.4
- 25
0
Qg - Total Gate Charge (nC)
25
50
75
100
125
150
TJ - Junction Temperature (°C)
On-Resistance vs. Junction Temperature
Gate Charge
3.0
1
R DS(on) - On-Resistance (Ω)
I S - Source Current (A)
2.5
TJ = 150 °C
TJ = 25 °C
ID = 0.41 A
2.0
1.5
1.0
0.5
0.1
0.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0
1
2
3
4
VSD - Source-to-Drain Voltage (V)
VGS - Gate-to-Source Voltage (V)
Source-Drain Diode Forward Voltage
On-Resistance vs. Gate-to-Source Voltage
Document Number: 71081
S10-0110-Rev. E, 18-Jan-10
5
www.vishay.com
3
Si1903DL
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
5
0.4
4
ID = 250 µA
0.2
Power (W)
VGS(th) Variance (V)
0.3
0.1
3
2
0.0
1
- 0.1
- 0.2
- 50
- 25
0
25
50
75
100
125
0
10-3
150
10-2
10-1
1
10
100
600
Time (s)
TJ - Temperature (°C)
Threshold Voltage
Single Pulse Power
2
Normalized Effective Transient
Thermal Impedance
1
Duty Cycle = 0.5
0.2
Notes:
0.1
PDM
0.1
0.05
t1
t2
1. Duty Cycle, D =
0.02
t1
t2
2. Per Unit Base = RthJA = 400 C/W
3. TJM - TA = PDMZthJA(t)
Single Pulse
0.01
10-4
4. Surface Mounted
10-3
10-2
10-1
1
10
100
600
Square Wave Pulse Duration (s)
Normalized Thermal Transient Impedance, Junction-to-Ambient
2
Normalized Effective Transient
Thermal Impedance
1
Duty Cycle = 0.5
0.2
0.1
0.1
0.05
0.02
Single Pulse
0.01
10-4
10-3
10-2
10-1
1
10
Square Wave Pulse Duration (s)
Normalized Thermal Transient Impedance, Junction-to-Foot
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?71081.
www.vishay.com
4
Document Number: 71081
S10-0110-Rev. E, 18-Jan-10
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product
with the properties described in the product specification is suitable for use in a particular application. Parameters provided in
datasheets and / or specifications may vary in different applications and performance may vary over time. All operating
parameters, including typical parameters, must be validated for each customer application by the customer's technical experts.
Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited
to the warranty expressed therein.
Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and
for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of
any of the products, services or opinions of the corporation, organization or individual associated with the third-party website.
Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website
or for that of subsequent links.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
© 2022 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED
Revision: 01-Jan-2022
1
Document Number: 91000