New Product
Si2308BDS
Vishay Siliconix
N-Channel 60-V (D-S) MOSFET
FEATURES
PRODUCT SUMMARY
RDS(on) (Ω)
ID (A)a
0.156 at VGS = 10 V
2.3
0.192 at VGS = 4.5 V
2.1
VDS (V)
60
• Halogen-free According to IEC 61249-2-21
Available
• TrenchFET® Power MOSFET
• 100 % Rg Tested
• 100 % UIS Tested
Qg (Typ.)
2.3 nC
APPLICATIONS
• Battery Switch
• DC/DC Converter
TO-236
(SSOT23)
G
1
S
2
3
D
Top View
Si2308BDS (L8)*
*Marking Code
Ordering Information: Si2308BDS-T1-E3 (Lead (Pb)-free)
Si2308BDS-T1-GE3 (Lead (Pb)-free and Halogen-free)
ABSOLUTE MAXIMUM RATINGS TA = 25 °C, unless otherwise noted
Parameter
Drain-Source Voltage
Gate-Source Voltage
Continuous Drain Current (TJ = 150 °C)
Symbol
VDS
VGS
TC = 25 °C
TC = 70 °C
TA = 25 °C
TA = 70 °C
Pulsed Drain Current
Limit
60
± 20
2.3
1.8
ID
1.9b, c
1.5b, c
8
1.39
0.91b, c
6
1.8
1.66
1.06
1.09b, c
0.7b, c
- 55 to 150
IDM
Continuous Source-Drain Diode Current
TC = 25 °C
TA = 25 °C
IS
Avalanche Current
Single-Pulse Avalanche Energy
L = 0.1 mH
IAS
EAS
Maximum Power Dissipation
TC = 25 °C
TC = 70 °C
TA = 25 °C
TA = 70 °C
PD
TJ, Tstg
Operating Junction and Storage Temperature Range
Unit
V
A
mJ
W
°C
THERMAL RESISTANCE RATINGS
Parameter
≤5s
Maximum Junction-to-Ambientb, d
Maximum Junction-to-Foot (Drain)
Steady State
Notes:
a. Based on TC = 25 °C.
b. Surface Mounted on 1" x 1" FR4 board.
c. t = 5 s.
d. Maximum under Steady State conditions is 130 °C/W.
Document Number: 69958
S-83053-Rev. B, 29-Dec-08
Symbol
RthJA
RthJF
Typical
90
60
Maximum
115
75
Unit
°C/W
www.vishay.com
1
New Product
Si2308BDS
Vishay Siliconix
MOSFET SPECIFICATIONS TJ = 25 °C, unless otherwise noted
Parameter
Symbol
Test Conditions
Min.
VDS
VDS = 0 V, ID = 250 µA
60
Typ.
Max.
Unit
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
ΔVDS/TJ
V
55
mV/°C
VGS(th) Temperature Coefficient
ΔVGS(th)/TJ
ID = 250 µA
Gate-Source Threshold Voltage
VGS(th)
VDS = VGS, ID = 250 µA
3
V
Gate-Source Leakage
IGSS
VDS = 0 V, VGS = ± 20 V
± 100
nA
Zero Gate Voltage Drain Current
IDSS
VDS = 60 V, VGS = 0 V
1
VDS = 60 V, VGS = 0 V, TJ = 55 °C
10
On-State Drain Currenta
ID(on)
Drain-Source On-State Resistancea
Forward Transconductancea
RDS(on)
gfs
VDS ≥ 5 V, VGS = 10 V
-5
1
8
µA
A
VGS = 10 V, ID = 1.9 A
0.130
0.156
VGS = 4.5 V, ID = 1.7 A
0.160
0.192
VDS = 15V, ID = 1.9 A
5
Ω
S
Dynamicb
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Total Gate Charge
Qg
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
Gate Resistance
Rg
190
tr
Rise Time
td(off)
Turn-Off Delay Time
VDS = 30 V, VGS = 4.5 V, ID = 1.9 A
f = 1 MHz
VDD = 30 V, RL = 20 Ω
ID ≅ 1.5 A, VGEN = 10 V, RG = 1 Ω
td(on)
Turn-On Delay Time
tr
Rise Time
td(off)
Turn-Off Delay Time
VDD = 30 V, RL = 20 Ω
ID = 1.5 A, VGEN = 4.5 V, RG = 1 Ω
tf
Fall Time
4.5
6.8
2.3
3.5
0.8
nC
1
tf
Fall Time
pF
15
VDS = 30 V, VGS = 10 V, ID = 1.9 A
td(on)
Turn-On Delay Time
26
VDS = 30 V, VGS = 0 V, f = 1 MHz
0.6
2.8
5.6
4
6
10
15
10
15
7
10.5
15
23
16
24
11
17
11
17
Ω
ns
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
Pulse Diode Forward
Currenta
Body Diode Voltage
IS
TC = 25 °C
1.39
ISM
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Reverse Recovery Fall Time
ta
Reverse Recovery Rise Time
tb
8
IS = 1.5 A
IF = 1.5 A, dI/dt = 100 A/µs, TJ = 25 °C
A
0.8
1.2
V
15
23
ns
10
15
nC
12
3
ns
Notes:
a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %.
b. Guaranteed by design, not subject to production testing.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
www.vishay.com
2
Document Number: 69958
S-83053-Rev. B, 29-Dec-08
New Product
Si2308BDS
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
4
10
VGS = 10 thru 5 V
8
I D - Drain Current (A)
I D - Drain Current (A)
VGS = 4 V
6
4
3
TC = - 55 °C
2
TC = 125 °C
1
2
VGS = 3 V
TC = 25 °C
VGS = 2 V
0
0
1
2
3
4
0
0.0
5
0.7
2.1
2.8
3.5
VGS - Gate-to-Source Voltage (V)
VDS - Drain-to-Source Voltage (V)
Output Characteristics
Transfer Characteristics
0.30
300
240
0.24
VGS = 4.5 V
0.18
Ciss
C - Capacitance (pF)
R DS(on) - On-Resistance (Ω)
1.4
VGS = 10 V
180
120
0.12
60
Coss
0.06
Crss
0
0
2
4
6
8
10
0
10
20
30
40
50
ID - Drain Current (A)
VDS - Drain-to-Source Voltage (V)
On-Resistance vs. Drain Current and Gate Voltage
Capacitance
10
60
2.0
8
VGS = 10 V, ID = 1.9 A
6
VDS = 48 V
4
2
(Normalized)
1.7
VDS = 30 V
R DS(on) - On-Resistance
VGS - Gate-to-Source Voltage (V)
ID = 1.9 A
1.4
VGS = 4.5 V, ID = 1.7 A
1.1
0.8
0
0
1
2
3
4
5
0.5
- 50
- 25
0
25
50
75
100
125
Qg - Total Gate Charge (nC)
TJ - Junction Temperature (°C)
Gate Charge
On-Resistance vs. Junction Temperature
Document Number: 69958
S-83053-Rev. B, 29-Dec-08
150
www.vishay.com
3
New Product
Si2308BDS
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
0.35
10
TJ = 150 °C
R DS(on) - On-Resistance (Ω)
I S - Source Current (A)
ID = 1.9 A
TJ = 25 °C
1
0.1
0.0
0.30
TJ = 125 °C
0.25
0.20
TJ = 25 °C
0.15
0.10
0.2
0.4
0.6
0.8
1.0
3
1.2
4
5
VSD - Source-to-Drain Voltage (V)
6
7
8
9
10
VGS - Gate-to-Source Voltage (V)
On-Resistance vs. Gate-to-Source Voltage
Source-Drain Diode Forward Voltage
2.4
10
8
2.1
Power (W)
VGS(th) (V)
ID = 250 µA
1.8
TA = 25 °C
Single Pulse
6
4
1.5
2
1.2
- 50
- 25
0
25
50
75
100
125
0
0.01
150
1
0.1
10
100
600
Time (s)
TJ - Temperature (°C)
Threshold Voltage
Single Pulse Power
10
Limited by R DS(on)*
I D - Drain Current (A)
100 µs
1
1 ms
10 ms
0.1
100 ms
TA = 25 °C
Single Pulse
0.01
0.1
BVDSS Limited
1
1 s, 10 s
DC
10
100
VDS - Drain-to-Source Voltage (V)
* VGS > minimum VGS at which R DS(on) is specified
Safe Operating Area
www.vishay.com
4
Document Number: 69958
S-83053-Rev. B, 29-Dec-08
New Product
Si2308BDS
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
3.0
I D - Drain Current (A)
2.4
1.8
1.2
0.6
0.0
0
25
50
75
100
125
150
TC - Case Temperature (°C)
Current Derating*
2.0
1.2
1.6
Power (W)
Power (W)
0.9
1.2
0.8
0.6
0.3
0.4
0.0
0.0
0
25
50
75
100
125
TC - Case Temperature (°C)
Power Derating, Junction-to-Case
150
0
25
50
75
100
125
150
TA - Ambient Temperature (°C)
Power Derating, Junction-to-Ambient
* The power dissipation PD is based on TJ(max.) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package
limit.
Document Number: 69958
S-83053-Rev. B, 29-Dec-08
www.vishay.com
5
New Product
Si2308BDS
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
1
Normalized Effective Transient
Thermal Impedance
Duty Cycle = 0.5
0.2
0.1
Notes:
0.1
PDM
0.05
t1
0.02
t2
1. Duty Cycle, D =
t1
t2
2. Per Unit Base = RthJA = 130 °C/W
3. TJM - TA = PDMZthJA(t)
Single Pulse
4. Surface Mounted
0.01
10-4
10-3
10-2
10-1
1
Square Wave Pulse Duration (s)
10
100
600
Normalized Thermal Transient Impedance, Junction-to-Ambient
1
Normalized Effective Transient
Thermal Impedance
Duty Cycle = 0.5
0.2
0.1
0.1
0.05
0.02
Single Pulse
0.01
10-4
10-3
10-2
10-1
Square Wave Pulse Duration (s)
1
10
Normalized Thermal Transient Impedance, Junction-to-Foot
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?69958.
www.vishay.com
6
Document Number: 69958
S-83053-Rev. B, 29-Dec-08
Package Information
Vishay Siliconix
SOT-23 (TO-236): 3-LEAD
b
3
E1
1
E
2
e
S
e1
D
0.10 mm
C
0.004"
A2
A
C
q
Gauge Plane
Seating Plane
Seating Plane
C
A1
Dim
0.25 mm
L
L1
MILLIMETERS
Min
INCHES
Max
Min
Max
0.044
A
0.89
1.12
0.035
A1
0.01
0.10
0.0004
0.004
A2
0.88
1.02
0.0346
0.040
b
0.35
0.50
0.014
0.020
c
0.085
0.18
0.003
0.007
D
2.80
3.04
0.110
0.120
E
2.10
2.64
0.083
0.104
E1
1.20
1.40
0.047
e
0.95 BSC
e1
L
1.90 BSC
0.40
L1
q
0.0748 Ref
0.60
0.016
0.64 Ref
S
0.024
0.025 Ref
0.50 Ref
3°
0.055
0.0374 Ref
0.020 Ref
8°
3°
8°
ECN: S-03946-Rev. K, 09-Jul-01
DWG: 5479
Document Number: 71196
09-Jul-01
www.vishay.com
1
AN807
Vishay Siliconix
Mounting LITTLE FOOTR SOT-23 Power MOSFETs
Wharton McDaniel
Surface-mounted LITTLE FOOT power MOSFETs use integrated
circuit and small-signal packages which have been been modified
to provide the heat transfer capabilities required by power devices.
Leadframe materials and design, molding compounds, and die
attach materials have been changed, while the footprint of the
packages remains the same.
See Application Note 826, Recommended Minimum Pad
Patterns With Outline Drawing Access for Vishay Siliconix
MOSFETs, (http://www.vishay.com/doc?72286), for the basis
of the pad design for a LITTLE FOOT SOT-23 power MOSFET
footprint . In converting this footprint to the pad set for a power
device, designers must make two connections: an electrical
connection and a thermal connection, to draw heat away from the
package.
ambient air. This pattern uses all the available area underneath the
body for this purpose.
0.114
2.9
0.081
2.05
0.150
3.8
0.059
1.5
0.0394
1.0
0.037
0.95
FIGURE 1. Footprint With Copper Spreading
The electrical connections for the SOT-23 are very simple. Pin 1 is
the gate, pin 2 is the source, and pin 3 is the drain. As in the other
LITTLE FOOT packages, the drain pin serves the additional
function of providing the thermal connection from the package to
the PC board. The total cross section of a copper trace connected
to the drain may be adequate to carry the current required for the
application, but it may be inadequate thermally. Also, heat spreads
in a circular fashion from the heat source. In this case the drain pin
is the heat source when looking at heat spread on the PC board.
Figure 1 shows the footprint with copper spreading for the SOT-23
package. This pattern shows the starting point for utilizing the
board area available for the heat spreading copper. To create this
pattern, a plane of copper overlies the drain pin and provides
planar copper to draw heat from the drain lead and start the
process of spreading the heat so it can be dissipated into the
Document Number: 70739
26-Nov-03
Since surface-mounted packages are small, and reflow soldering
is the most common way in which these are affixed to the PC
board, “thermal” connections from the planar copper to the pads
have not been used. Even if additional planar copper area is used,
there should be no problems in the soldering process. The actual
solder connections are defined by the solder mask openings. By
combining the basic footprint with the copper plane on the drain
pins, the solder mask generation occurs automatically.
A final item to keep in mind is the width of the power traces. The
absolute minimum power trace width must be determined by the
amount of current it has to carry. For thermal reasons, this
minimum width should be at least 0.020 inches. The use of wide
traces connected to the drain plane provides a low-impedance
path for heat to move away from the device.
www.vishay.com
1
Application Note 826
Vishay Siliconix
0.049
(1.245)
0.029
0.022
(0.559)
(0.724)
0.037
(0.950)
(2.692)
0.106
RECOMMENDED MINIMUM PADS FOR SOT-23
0.053
(1.341)
0.097
(2.459)
Recommended Minimum Pads
Dimensions in Inches/(mm)
Return to Index Return to Index
APPLICATION NOTE
Document Number: 72609
Revision: 21-Jan-08
www.vishay.com
25
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a
particular product with the properties described in the product specification is suitable for use in a particular application.
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for
such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED
Revision: 08-Feb-17
1
Document Number: 91000