Si7856ADP
Vishay Siliconix
N-Channel 30-V (D-S) MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
30
RDS(on) (Ω)
ID (A)
0.0037 at VGS = 10 V
25
0.0048 at VGS = 4.5 V
23
Qg (Typ.)
39
PowerPAK SO-8
• Halogen-free available
Available
• TrenchFET® Power MOSFET
RoHS*
• Optimized for “Low Side” Synchronous
COMPLIANT
Rectifier Operation
®
• New Low Thermal Resistance PowerPAK Package with
Low 1.07 mm Profile
• 100 % Rg Tested
APPLICATIONS
S
6.15 mm
• DC/DC Converters
• Synchronous Rectifiers
5.15 mm
1
S
2
S
3
G
4
D
D
8
D
7
D
6
D
G
5
Bottom View
Ordering Information: Si7856ADP-T1
Si7856ADP-T1-E3 (Lead (Pb)-free)
Si7856ADP-T1-GE3 (Lead (Pb)-free and Halogen-free)
S
N-Channel MOSFET
ABSOLUTE MAXIMUM RATINGS TA = 25 °C, unless otherwise noted
Parameter
Drain-Source Voltage
Gate-Source Voltage
Symbol
VDS
VGS
Continuous Drain Current (TJ = 150 °C)a
TA = 25 °C
TA = 70 °C
IDM
IS
Pulsed Drain Current (10 µs Pulse Width)
Continuous Source Current (Diode Conduction)a
TA = 25 °C
TA = 70 °C
Maximum Power Dissipationa
ID
PD
TJ, Tstg
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)b, c
10 s
25
20
4.5
5.4
3.4
Steady State
30
± 20
15
12
60
1.6
1.9
1.2
- 55 to 150
260
Unit
V
A
W
°C
THERMAL RESISTANCE RATINGS
Parameter
Maximum Junction-to-Ambient
Symbol
a
Maximum Junction-to-Case (Drain)
t ≤ 10 s
Steady State
Steady State
RthJA
RthJC
Typical
18
50
1.0
Maximum
23
65
1.5
Unit
°C/W
Notes:
a. Surface Mounted on 1” x 1” FR4 board.
b. See Solder Profile ( http://www.vishay.com/ppg?73257). The PowerPAK SO-8 is a leadless package. The end of the lead terminal is exposed
copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and
is not required to ensure adequate bottom side solder interconnection.
c. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.
* Pb containing terminations are not RoHS compliant, exemptions may apply.
Document Number: 73157
S-80438-Rev. C, 03-Mar-08
www.vishay.com
1
Si7856ADP
Vishay Siliconix
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
Parameter
Symbol
Test Conditions
Min.
1.0
Typ.
Max.
Unit
Static
VGS(th)
VDS = VGS, ID = 250 µA
Gate-Body Leakage
IGSS
VDS = 0 V, VGS = ± 20 V
Zero Gate Voltage Drain Current
IDSS
On-State Drain Currenta
ID(on)
Gate Threshold Voltage
Drain-Source On-State Resistancea
Forward Transconductancea
Diode Forward Voltage
a
V
nA
VDS = 30 V, VGS = 0 V
1
VDS = 30 V, VGS = 0 V, TJ = 55 °C
5
VDS ≥ 5 V, VGS = 10 V
RDS(on)
3.0
± 100
µA
30
A
VGS = 10 V, ID = 25 A
0.0029
0.0037
VGS = 4.5 V, ID = 19 A
0.0036
0.0048
gfs
VDS = 15 V, ID = 25 A
95
VSD
IS = 2.9 A, VGS = 0 V
0.7
1.1
39
55
Ω
S
V
Dynamicb
Total Gate Charge
Qg
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
Gate Resistance
Rg
VDS = 15 V, VGS = 4.5 V, ID = 25 A
11.5
0.5
td(on)
Turn-On Delay Time
VDD = 15 V, RL = 15 Ω
ID ≅ 1 A, VGEN = 10 V, RG = 6 Ω
tr
Rise Time
td(off)
Turn-Off Delay Time
Fall Time
tf
Source-Drain Reverse Recovery Time
trr
nC
13.5
IF = 2.9 A, di/dt = 100 A/µs
1.0
1.5
21
35
15
25
100
150
30
45
50
80
Ω
ns
Notes:
a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %.
b. Guaranteed by design, not subject to production testing.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
60
60
VGS = 10 thru 4 V
50
I D - Drain Current (A)
I D - Drain Current (A)
50
40
30
20
3V
40
30
20
TC = 125 °C
10
10
25 °C
- 55 °C
0
0
1
2
3
4
VDS - Drain-to-Source Voltage (V)
Output Characteristics
www.vishay.com
2
5
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VGS - Gate-to-Source Voltage (V)
Transfer Characteristics
Document Number: 73157
S-80438-Rev. C, 03-Mar-08
Si7856ADP
Vishay Siliconix
25 °C, unless otherwise noted
0.0075
8000
0.0060
6400
0.0045
C - Capacitance (pF)
R DS(on) - On-Resistance (Ω)
TYPICAL CHARACTERISTICS
VGS = 4.5 V
VGS = 10 V
0.0030
Ciss
4800
3200
Coss
1600
0.0015
Crss
0
0.0000
0
10
20
30
40
0
50
6
12
30
Capacitance
1.8
6
VDS = 15 V
ID = 25 A
5
VGS = 10 V
ID = 20 A
1.6
R DS(on) - On-Resistance
(Normalized)
VGS - Gate-to-Source Voltage (V)
24
VDS - Drain-to-Source Voltage (V)
ID - Drain Current (A)
On-Resistance vs. Drain Current
4
3
2
1.4
1.2
1.0
0.8
1
0.6
- 50
0
0
10
20
30
40
50
60
- 25
0
25
50
75
100
125
150
TJ - Junction Temperature (°C)
Qg - Total Gate Charge (nC)
On-Resistance vs. Junction Temperature
Gate Charge
0.025
R DS(on) - On-Resistance (Ω)
50
I S - Source Current (A)
18
TJ = 150 °C
10
TJ = 25 °C
0.020
ID = 25 A
0.015
0.010
0.005
0.000
1
0
0.2
0.4
0.6
0.8
1.0
1.2
0
2
4
6
8
VSD - Source-to-Drain Voltage (V)
VGS - Gate-to-Source Voltage (V)
Source-Drain Diode Forward Voltage
On-Resistance vs. Gate-to-Source Voltage
Document Number: 73157
S-80438-Rev. C, 03-Mar-08
10
www.vishay.com
3
Si7856ADP
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
0.6
200
ID = 250 µA
0.4
0.2
Power (W)
V GS(th) Variance (V)
160
0.0
- 0.2
120
80
- 0.4
40
- 0.6
- 0.8
- 50
- 25
0
25
50
75
100
125
0
0.001
150
0.01
0.1
1
TJ - Temperature (°C)
Time (s)
Threshold Voltage
Single Pulse Power
10
100
I D - Drain Current (A)
Limited by RDS(on)*
10
1 ms
10 ms
1
100 ms
1s
10 s
0.1
0.01
0.1
TC = 25 °C
Single Pulse
1
DC
10
100
VDS - Drain-to-Source Voltage (V)
* VGS > minimum V GS at which R DS(on) is specified
Safe Operating Area Junction-to-Case
2
Normalized Effective Transient
Thermal Impedance
1
Duty Cycle = 0.5
0.2
Notes:
0.1
PDM
0.1
0.05
t1
t2
1. Duty Cycle, D =
t1
t2
2. Per Unit Base = R thJA = 50 °C/W
0.02
3. T JM - TA = PDMZthJA(t)
Single Pulse
4. Surface Mounted
0.01
10- 4
10- 3
10- 2
10- 1
1
10
100
600
Square Wave Pulse Duration (s)
Normalized Thermal Transient Impedance, Junction-to-Ambient
www.vishay.com
4
Document Number: 73157
S-80438-Rev. C, 03-Mar-08
Si7856ADP
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
2
Normalized Effective Transient
Thermal Impedance
1
Duty Cycle = 0.5
0.2
0.1
0.1
Single Pulse
0.05
0.02
0.01
10- 4
10- 3
10- 2
10- 1
Square Wave Pulse Duration (s)
1
10
Normalized Thermal Transient Impedance, Junction-to-Case
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?73157.
Document Number: 73157
S-80438-Rev. C, 03-Mar-08
www.vishay.com
5
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product
with the properties described in the product specification is suitable for use in a particular application. Parameters provided in
datasheets and / or specifications may vary in different applications and performance may vary over time. All operating
parameters, including typical parameters, must be validated for each customer application by the customer's technical experts.
Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited
to the warranty expressed therein.
Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and
for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of
any of the products, services or opinions of the corporation, organization or individual associated with the third-party website.
Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website
or for that of subsequent links.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
© 2022 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED
Revision: 01-Jan-2022
1
Document Number: 91000