0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SIHFU9220-GE3

SIHFU9220-GE3

  • 厂商:

    TFUNK(威世)

  • 封装:

    TO251-3

  • 描述:

    SIHFU9220-GE3

  • 数据手册
  • 价格&库存
SIHFU9220-GE3 数据手册
IRFR9220, IRFU9220, SiHFR9220, SiHFU9220 www.vishay.com Vishay Siliconix Power MOSFET FEATURES S DPAK (TO-252) • • • • • • • • IPAK (TO-251) G D D G S G D S D P-Channel MOSFET PRODUCT SUMMARY DESCRIPTION VDS (V) Third power MOSFETs technology is the key to Vishay advanced line of Power MOSFET transistors. The efficient geometry and unique processing of the Power MOSFETs design achieve very low on-state resistance combined with high transconductance and extreme device ruggedness. The DPAK is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU, SiHFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 W are possible in typical surface-mount applications. -200 RDS(on) (Ω) VGS = -10 V 1.5 Qg (Max.) (nC) 20 Qgs (nC) 3.3 Qgd (nC) 11 Configuration Dynamic dV/dt rating Repetitive avalanche rated Surface-mount (IRFR9220, SiHFR9220) Straight lead (IRFUFU9220, SiHFU9220) Available Available in tape and reel P-channel Fast switching Material categorization: for definitions of compliance please see www.vishay.com/doc?99912 Single ORDERING INFORMATION Package DPAK (TO-252) DPAK (TO-252) DPAK (TO-252) DPAK (TO-252) IPAK (TO-251) Lead (Pb)-free and halogen-free SiHFR9220-GE3 SiHFR9220TRL-GE3 a SiHFR9220TRR-GE3 a SiHFR9220TR-GE3 a SiHFU9220-GE3 IRFR9220PbF-BE3 IRFR9220TRPbF-BE3 - - - Lead (Pb)-free IRFR9220PbF IRFR9220TRLPbFa IRFR9220TRRPbFa IRFR9220TRPbFa IRFU9220PbF Note a. See device orientation ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted) PARAMETER SYMBOL LIMIT Drain-source voltage VDS -200 Gate-source voltage VGS ± 20 Continuous drain current VGS at -10 V TC = 25 °C TC = 100 °C Pulsed drain current a ID IDM UNIT V -3.6 -2.3 A -14 Linear derating factor 0.33 Linear derating factor (PCB mount) e 0.020 W/°C Single pulse avalanche energy b EAS 310 Repetitive avalanche current a IAR -3.6 A Repetitive avalanche energy a EAR 4.2 mJ Maximum power dissipation TC = 25 °C Maximum power dissipation (PCB mount) e TA = 25 °C Peak diode recovery dV/dt c Operating junction and storage temperature range Soldering recommendations (peak temperature) d For 10 s PD 42 2.5 dV/dt -5.0 TJ, Tstg -55 to +150 260 mJ W V/ns °C Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11) b. VDD = - 50 V, Starting TJ = 25 °C, L = 35 mH, Rg = 25 Ω, IAS = - 3.6 A (see fig. 12) c. ISD ≤ - 3.9 A, dI/dt ≤ 95 A/μs, VDD ≤ VDS, TJ ≤ 150 °C d. 1.6 mm from case e. When mounted on 1" square PCB (FR-4 or G-10 material) S21-0373-Rev. F, 19-Apr-2021 Document Number: 91283 1 For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFR9220, IRFU9220, SiHFR9220, SiHFU9220 www.vishay.com Vishay Siliconix THERMAL RESISTANCE RATINGS SYMBOL MIN. TYP. MAX. Maximum junction-to-ambient PARAMETER RthJA - - 110 Maximum junction-to-ambient (PCB mount) a RthJA - - 50 Maximum junction-to-case (drain) RthJC - - 3.0 UNIT °C/W Note a. When mounted on 1" square PCB (FR-4 or G-10 material) SPECIFICATIONS (TJ = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-source breakdown voltage VDS temperature coefficient Gate-source threshold voltage VDS VGS = 0 V, ID = - 250 μA - 200 - - V ΔVDS/TJ Reference to 25 °C, ID = - 1 mA - - 0.22 - V/°C VGS(th) VDS = VGS, ID = - 250 μA - 2.0 - - 4.0 V Gate-source leakage IGSS VGS = ± 20 V - - ± 100 nA Zero gate voltage drain current IDSS VDS = - 200 V, VGS = 0 V - - - 100 VDS = - 160 V, VGS = 0 V, TJ = 125 °C - - - 500 - - 1.5 Ω 1.1 - - S - 340 - - 110 - - 33 - - - 20 Drain-source on-state resistance Forward transconductance RDS(on) gfs ID = - 2.2 Ab VGS = - 10 V VDS = - 50 V, ID = - 2.2 A μA Dynamic Input capacitance Ciss Output capacitance Coss Reverse transfer capacitance Crss Total gate charge Qg Gate-source charge Qgs - - 3.3 Gate-drain charge Qgd - - 11 Turn-on delay time td(on) - 8.8 - Rise time Turn-off delay time Fall time tr td(off) VGS = 0 V, VDS = - 25 V, f = 1.0 MHz, see fig. 5 VGS = - 10 V ID = - 3.9 A, VDS = - 160 V, see fig. 6 and 13b VDD = - 100 V, ID = - 3.9 A, Rg = 18 Ω, RD = 24 Ω, see fig. 10b tf Internal drain inductance LD Internal source inductance LS Between lead, 6 mm (0.25") from package and center of die contact D pF nC - 27 - - 7.3 - - 19 - - 4.5 - - 7.5 - - - - 3.6 - - - 14 - - - 6.3 - 150 300 ns - 0.97 2.0 μC ns nH G S Drain-Source Body Diode Characteristics Continuous source-drain diode current IS Pulsed diode forward current a ISM Body diode voltage VSD Body diode reverse recovery time trr Body diode reverse recovery charge Qrr Forward turn-on time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = - 3.6 A, VGS = 0 Vb TJ = 25 °C, IF = - 3.9 A, dI/dt = 100 A/μsb V Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11) b. Pulse width ≤ 300 μs; duty cycle ≤ 2 % S21-0373-Rev. F, 19-Apr-2021 Document Number: 91283 2 For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFR9220, IRFU9220, SiHFR9220, SiHFU9220 www.vishay.com Vishay Siliconix TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) Fig. 1 - Typical Output Characteristics, TC = 25 °C Fig. 1 - Typical Output Characteristics, TC = 150 °C S21-0373-Rev. F, 19-Apr-2021 Fig. 2 - Typical Transfer Characteristics Fig. 3 - Normalized On-Resistance vs. Temperature Document Number: 91283 3 For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFR9220, IRFU9220, SiHFR9220, SiHFU9220 www.vishay.com Fig. 4 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 5 - Typical Gate Charge vs. Gate-to-Source Voltage S21-0373-Rev. F, 19-Apr-2021 Vishay Siliconix Fig. 6 - Typical Source-Drain Diode Forward Voltage Fig. 7 - Maximum Safe Operating Area Document Number: 91283 4 For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFR9220, IRFU9220, SiHFR9220, SiHFU9220 www.vishay.com Vishay Siliconix RD VDS VGS D.U.T. Rg +VDD - 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % Fig. 10a - Switching Time Test Circuit td(on) tr td(off) tf VGS 10 % Fig. 8 - Maximum Drain Current vs. Case Temperature 90 % VDS Fig. 10b - Switching Time Waveforms Fig. 9 - Maximum Effective Transient Thermal Impedance, Junction-to-Case S21-0373-Rev. F, 19-Apr-2021 Document Number: 91283 5 For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFR9220, IRFU9220, SiHFR9220, SiHFU9220 www.vishay.com Vishay Siliconix L VDS IAS Rg + VDD A D.U.T. IAS - 20 V tp Driver 0.01 Ω tp 15 V Fig. 12a - Unclamped Inductive Test Circuit VDS Fig. 12b - Unclamped Inductive Waveforms Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG - 10 V 12 V 0.2 µF 0.3 µF QGS - QGD D.U.T. VG + VDS VGS - 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform S21-0373-Rev. F, 19-Apr-2021 Fig. 13b - Gate Charge Test Circuit Document Number: 91283 6 For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRFR9220, IRFU9220, SiHFR9220, SiHFU9220 www.vishay.com Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit D.U.T. + Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + + - - Rg • dV/dt controlled by Rg • ISD controlled by duty factor “D” • D.U.T. - device under test + - VDD Note • Compliment N-Channel of D.U.T. for driver Driver gate drive P.W. Period D= P.W. Period VGS = - 10 Va D.U.T. lSD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Inductor current VDD Body diode forward drop Ripple ≤ 5 % ISD Note a. VGS = - 5 V for logic level and - 3 V drive devices Fig. 10 - For P-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91283. S21-0373-Rev. F, 19-Apr-2021 Document Number: 91283 7 For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information www.vishay.com Vishay Siliconix TO-252AA Case Outline VERSION 1: FACILITY CODE = Y E A C2 H D D1 L3 b3 e b2 e1 L gage plane height (0.5 mm) L4 b L5 E1 C A1 MILLIMETERS DIM. MIN. A 2.18 MAX. 2.38 A1 - 0.127 b 0.64 0.88 b2 0.76 1.14 b3 4.95 5.46 C 0.46 0.61 C2 0.46 0.89 D 5.97 6.22 D1 4.10 - E 6.35 6.73 E1 4.32 - H 9.40 10.41 e 2.28 BSC e1 4.56 BSC L 1.40 1.78 L3 0.89 1.27 L4 - 1.02 L5 1.01 1.52 Note • Dimension L3 is for reference only Revision: 03-Oct-2022 Document Number: 71197 1 For technical questions, contact: pmostechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information www.vishay.com Vishay Siliconix VERSION 2: FACILITY CODE = N E e A b3 E1 E1/2 c2 θ e L4 L5 L6 H D L3 D1 θ 0.25 (3°) DETAIL "B" C A B (3°) DETAIL "B" A1 C L (L1) b1 SEATING C PLANE θ L2 GAUGE PLANE H C (b) c1 3x b 2x e c 2x b2 MILLIMETERS MILLIMETERS DIM. A MIN. 2.18 MAX. DIM. MIN. 2.39 L 1.50 A1 - 0.13 L1 b 0.65 0.89 L2 MAX. 1.78 2.74 ref. 0.51 BSC b1 0.64 0.79 L3 b2 0.76 1.13 L4 - 1.02 b3 4.95 5.46 L5 1.14 1.49 c 0.46 0.61 L6 0.65 0.85 c1 0.41 0.56  0° 10° 1 0° 15° 2 25° 35° c2 0.46 0.60 D 5.97 6.22 D1 5.21 - E 6.35 6.73 E1 4.32 e H 2.29 BSC 9.94 0.89 1.27 Notes • Dimensioning and tolerance confirm to ASME Y14.5M-1994 • All dimensions are in millimeters. Angles are in degrees • Heat sink side flash is max. 0.8 mm • Radius on terminal is optional 10.34      ECN: E22-0399-Rev. R, 03-Oct-2022 DWG: 5347 Revision: 03-Oct-2022 Document Number: 71197 2 For technical questions, contact: pmostechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information www.vishay.com Vishay Siliconix Case Outline for TO-251AA (High Voltage) OPTION 1: 4 E1 3 E Thermal PAD 4 b4 θ2 4 A 0.010 0.25 M C A B L2 4 c2 A θ1 B D D1 A C 3 Seating plane 5 C L1 L3 (Datum A) C L B B A A1 3 x b2 View A - A 2xe c 3xb 0.010 0.25 M C A B Plating 5 b1, b3 Base metal Lead tip 5 c1 (c) (b, b2) Section B - B and C - C MILLIMETERS INCHES MILLIMETERS INCHES DIM. MIN. MAX. MIN. MAX. DIM. MIN. MAX. MIN. A 2.18 2.39 0.086 0.094 D1 5.21 - 0.205 MAX. - A1 0.89 1.14 0.035 0.045 E 6.35 6.73 0.250 0.265 4.32 - 0.170 - b 0.64 0.89 0.025 0.035 E1 b1 0.65 0.79 0.026 0.031 e b2 0.76 1.14 0.030 0.045 L 8.89 9.65 0.350 0.380 b3 0.76 1.04 0.030 0.041 L1 1.91 2.29 0.075 0.090 b4 4.95 5.46 0.195 0.215 L2 0.89 1.27 0.035 0.050 c 0.46 0.61 0.018 0.024 L3 1.14 1.52 0.045 0.060 c1 0.41 0.56 0.016 0.022 1 0' 15' 0' 15' c2 0.46 0.86 0.018 0.034 2 25' 35' 25' 35' D 5.97 6.22 0.235 0.245 2.29 BSC 2.29 BSC ECN: E21-0682-Rev. C, 27-Dec-2021 DWG: 5968 Notes • Dimensioning and tolerancing per ASME Y14.5M-1994 • Dimension are shown in inches and millimeters • Dimension D and E do not include mold flash. Mold flash shall not exceed 0.13 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body • Thermal pad contour optional with dimensions b4, L2, E1 and D1 • Lead dimension uncontrolled in L3 • Dimension b1, b3 and c1 apply to base metal only • Outline conforms to JEDEC® outline TO-251AA Revision: 27-Dec-2021 Document Number: 91362 1 For technical questions, contact: hvmos.techsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information www.vishay.com Vishay Siliconix OPTION 2: FACILITY CODE = N E A L2 b4 c2 E1 D2 θ1 CL L4 θ1 D D1 Ø 1.00 x 0.10 deep C B B L L3 L1 C b2 A1 b b1, b3 c c e c1 θ2 Third angle projection b, b2 Section “B-B” and “C-C” DIM. MIN. NOM. MAX. DIM. MIN. NOM. A 2.180 2.285 2.390 D2 5.380 - MAX. - A1 0.890 1.015 1.140 E 6.350 6.540 6.730 4.32 - - b 0.640 0.765 0.890 E1 b1 0.640 0.715 0.790 e b2 0.760 0.950 1.140 L 8.890 9.270 9.650 b3 0.760 0.900 1.040 L1 1.910 2.100 2.290 b4 4.950 5.205 5.460 L2 0.890 1.080 1.270 c 0.460 - 0.610 L3 1.140 1.330 1.520 c1 0.410 - 0.560 L4 1.300 1.400 1.500 c2 0.460 - 0.610 1 0° 7.5° 15° D 5.970 6.095 6.220 2 4° - - D1 4.300 - - 2.29 BSC ECN: E21-0682-Rev. C, 27-Dec-2021 DWG: 5968 Notes • Dimensioning and tolerancing per ASME Y14.5M-1994 • All dimension are in millimeters, angles are in degrees • Heat sink side flash is max. 0.8 mm Revision: 27-Dec-2021 Document Number: 91362 2 For technical questions, contact: hvmos.techsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Application Note 826 Vishay Siliconix RECOMMENDED MINIMUM PADS FOR DPAK (TO-252) 0.224 0.243 0.087 (2.202) 0.090 (2.286) (10.668) 0.420 (6.180) (5.690) 0.180 0.055 (4.572) (1.397) Recommended Minimum Pads Dimensions in Inches/(mm) Return to Index Return to Index APPLICATION NOTE Document Number: 72594 Revision: 21-Jan-08 www.vishay.com 3 Legal Disclaimer Notice www.vishay.com Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. © 2022 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED Revision: 01-Jan-2022 1 Document Number: 91000
SIHFU9220-GE3 价格&库存

很抱歉,暂时无法提供与“SIHFU9220-GE3”相匹配的价格&库存,您可以联系我们找货

免费人工找货