XC6118 Series
ETR02013-006
Voltage Detector with Separated Sense Pin & Delay Capacitor Pin
■GENERAL DESCRIPTION
The XC6118 series is a low power consumption voltage detector with high accuracy detection, manufactured using CMOS
process and laser trimming technologies.
Since the sense pin is separated from the power supply pin, it allows the IC to monitor the other power supply.
The XC6118 can maintain the state of detection even when voltage of the monitored power supply drops to 0V.
Moreover, a release delay time can be adjusted by the external capacitor connected to the Cd pin.
The VOUT pin is available in both CMOS and N-channel open drain output configurations.
■APPLICATIONS
■FEATURES
●Microprocessor reset circuitry
High Accuracy
:±2% (Detect Voltage≧1.5V)
±30mV(Detect Voltage<1.5V)
●Charge voltage monitors
Low Power Consumption
●Memory battery back-up switch circuits
: 0.4μA TYP. (Detect, VIN=1.0V)
0.8μA TYP. (Release, VIN=1.0V)
●Power failure detection circuits
Detect Voltage Range
: 0.8V ~ 5.0V (0.1V increments)
Operating Voltage Range
: 1.0V ~ 6.0V
Temperature Characteristics
: ±100ppm/℃ TYP.
Output Configuration
: CMOS, N-channel open drain
Pin Function
: Power supply separation
Release delay time adjustable
Operating Ambient Temperature : -40℃ ~ 85℃
■TYPICAL APPLICATION CIRCUIT
Packages
: USP-4, SOT-25
Environmentally Friendly
: EU RoHS Compliant, Pb Free
■TYPICAL PERFORMANCE
CHARACTERISTICS
●Output Voltage vs. Sense Voltage
VIN
VSEN
VOUT
(No Pull-Up resistor needed for
CMOS output product)
Cd
Cd
VSS
Output Voltage: VOUT (V)
VIN
Monitoring
Power
別電源
supply
XC6118C25AGR
R=100kΩ
Ta=25℃
7.0
6.0
VIN=6.0V
5.0
4.0
4.0V
3.0
2.0
1.0
1.0V
0.0
-1.0
0
1
2
3
4
5
6
Sense Voltage: VSEN (V)
1/21
XC6118 Series
■PIN CONFIGURATION
Cd/NC
Cd
VSEN
5
Cd/NC
2
VOUT 1
4
3 VSEN
5
VSS
4 VIN
1
2
3
VOUT VSS VIN
USP-4
(BOTTOM VIEW)
SOT-25
(TOP VIEW)
* In the XC6118xxxA/B series, the dissipation pad
should not be short-circuited with other pins.
* In the XC6118xxxC/D series, when the dissipation
pad is short-circuited with other pins, connect it to
the NC pin (No.2) pin before use.
■PIN ASSIGNMENT
PIN NUMBER
USP-4
SOT-25
1
2
2
3
4
5
1
5
5
4
3
2
PIN NAME
FUNCTION
VOUT
Cd
NC
VSEN
VIN
VSS
Output (Detect ”L”)
Delay Capacitance (*1)
No Connection
Sense
Input
Ground (*2)
NOTE:
*1: With the VSS pin of the USP-4 package, a tab on the backside is used as the pin No.5.
*2: In the case of selecting no built-in delay capacitance pin type, the delay capacitance (Cd) pin will
be used as the NC.
■PRODUCT CLASSIFICATION
●Ordering Information
XC6118①②③④⑤⑥-⑦(*1)
DESIGNATOR
ITEM
①
Output Configuration
②③
Detect Voltage
④
Options
SYMBOL
C
CMOS output
N
N-ch open drain output
08 ~ 50
Packages
(Order Unit)
e.g. 18 → 1.8V
A
Built-in delay capacitance pin, hysteresis 5% (TYP.) (Standard*)
B
Built-in delay capacitance pin, hysteresis less than 1%(Standard*)
C
D
⑤⑥-⑦
DESCRIPTION
No built-in delay capacitance pin, hysteresis 5% (TYP.)
(Semi-custom)
No built-in delay capacitance pin, hysteresis less than 1%
(Semi-custom)
GR-G
USP-4 (3,000pcs/Reel)
MR-G
SOT-25 (3,000pcs/Reel)
*When delay function isn’t used, open the delay capacitance pin before use.
(*1)
The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.
2/21
XC6118
Series
■BLOCK DIAGRAMS
(1) XC6118CxxA
VIN
M2
M4
VSEN
R SEN =R1+R2+R3
Rdelay
Comparator
Inverter
R1
VOUT
R2
M3
Vref
R3
M1
M5
VSS
Cd
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram
of XC6118CxxC (semi-custom).
(2) XC6118CxxB
VIN
M2
M4
VSEN
R SEN =R1+R2
Rdelay
Comparator
Inverter
R1
R2
VOUT
M3
Vref
M1
VSS
Cd
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram of
XC6118CxxD (semi-custom).
(3) XC6118NxxA
VIN
VSEN
M2
R SEN =R1+R2+R3
Rdelay
Comparator
Inverter
R1
VOUT
R2
M3
Vref
R3
M5
*The delay capacitance pin (Cd) is not
M1
VSS
Cd
connected to the circuit in the block diagram of
XC6118NxxC (semi-custom).
(4) XC6118NxxB
VIN
VSEN
M2
R SEN =R1+R2
Comparator
Rdelay
Inverter
R1
R2
VOUT
M3
Vref
M1
VSS
Cd
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram
of XC6118NxxD (semi-custom).
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.
3/21
XC6118 Series
■ABSOLUTE MAXIMUM RATINGS
●XC6118xxxA/B
PARAMETER
Input Voltage
Output Current
XC6118C (*1)
Output Voltage
XC6118N (*2)
Sense Pin Voltage
Delay Capacitance Pin Voltage
Delay Capacitance Pin Current
USP-4
Power Dissipation
SOT-25
Operating Ambient Temperature
Storage Temperature
Ta=25℃
SYMBOL
RATINGS
UNITS
VIN
IOUT
V
mA
Ta
Tstg
VSS-0.3 ~ 7.0
10
VSS-0.3 ~ VIN+0.3
VSS-0.3 ~ 7.0
VSS-0.3 ~ 7.0
VSS-0.3 ~ VIN+0.3
5.0
120
250
-40 ~ 85
-55 ~ 125
SYMBOL
RATINGS
UNITS
VIN
IOUT
VSS-0.3 ~ 7.0
10
VSS-0.3 ~ VIN+0.3
VSS-0.3 ~ 7.0
VSS-0.3 ~ 7.0
120
250
-40 ~ 85
-55 ~ 125
V
mA
VOUT
VSEN
VCD
ICD
Pd
●XC6118xxxC/D
PARAMETER
Input Voltage
Output Current
XC6118C (*1)
Output Voltage
XC6118N (*2)
Sense Pin Voltage
USP-4
Power Dissipation
SOT-25
Operating Ambient Temperature
Storage Temperature
NOTE:
*1: CMOS output
*2: N-ch open drain output
4/21
V
V
V
mA
mW
oC
oC
Ta=25℃
VOUT
VSEN
Pd
Ta
Tstg
V
V
mW
oC
oC
XC6118
Series
■ELECTRICAL CHARACTERISTICS
●XC6118xxxA
Ta=25℃
PARAMETER
SYMBOL
CONDITIONS
MIN.
Operating Voltage
VIN
VDF(T)=0.8 ~ 5.0V (*1)
1.0
V
-
Detect Voltage
VDF
VIN=1.0 ~ 6.0V
E-1
V
①
Hysteresis Width
VHYS
VIN=1.0 ~ 6.0V
E-2
V
①
Detect Voltage
Line Regulation
ΔVDF/
(ΔVIN・VDF)
VIN=1.0 ~ 6.0V
±0.1
%/V
①
Supply Current 1 (*2)
ISS1
VSEN=VDF×0.9
VIN=1.0V
VIN=6.0V
0.4
0.4
1.0
1.0
μA
②
Supply Current 2 (*2)
ISS2
VSEN=VDF×1.1
VIN=1.0V
VIN=6.0V
0.8
0.9
1.6
1.8
μA
②
IOUT1
VSEN=0V, VDS=0.5V(Nch)
VIN=1.0V
VIN=2.0V
VIN=3.0V
VIN=4.0V
VIN=5.0V
VIN=6.0V
mA
③
IOUT2
VSEN=6.0V,
VDS=0.5V(Pch)
VIN=1.0V
VIN=6.0V
mA
④
μA
③
Output Current (*3)
Leakage
Current
CMOS Output
(P-ch)
N-ch Open Drain
Output
ILEAK
Temperature Characteristics
ΔVDF/
(ΔTopr・
VDF)
Sense Resistance (*4)
Delay Resistance (*5)
Delay capacitance pin
Sink Current
Delay Capacitance Pin Threshold
Voltage
Undefined Operation (*6)
0.1
0.8
1.2
1.6
1.8
1.9
TYP.
UNITS
6.0
0.7
1.6
2.0
2.3
2.4
2.5
-0.30
-1.00
VIN=6.0V, VSEN=0V,
VOUT=0V, Cd: Open
MAX.
-0.08
-0.70
CIRCUITS
-0.20
VIN=6.0V, VSEN=6.0V,
VOUT=6.0V, Cd: Open
0.20
0.40
-40 oC≦Topr≦85 oC
±100
ppm/oC
①
RSEN
VSEN=5.0V, VIN=0V
E-4
MΩ
⑤
RDELAY
VSEN=6.0V, VIN=5.0V
Cd=0V
MΩ
⑥
ICD
Cd=0.5V, VIN=1.0V
μA
⑥
VTCD
VSEN=6.0V, VIN=1.0V
VSEN=6.0V, VIN=6.0V
1.6
2.0
2.4
200
0.4
2.9
0.5
3.0
0.6
3.1
V
⑦
VUNS
VIN=VSEN=0 ~ 1.0V
0.3
0.4
V
⑧
Detect Delay Time (*7)
tDF0
VIN=6.0V, VSEN=6.0V→0V
Cd: Open
30
230
μs
⑨
Release Delay Time (*8)
tDR0
VIN=6.0V, VSEN=0V→6.0V
Cd: Open
30
200
μs
⑨
NOTE:
*1: VDF (T): Nominal detect voltage
*2: Current to the sense resistor is not included.
*3: IOUT2 is applied only to the XC6118C series (CMOS output).
*4: It is calculated from the voltage value and the current value of the VSEN.
*5: It is calculated from the voltage value of the VIN and the current value of the Cd.
*6: Maximum VOUT voltage when VIN is changed from 0V to 1.0V under connecting the VIN pin to the VSEN pin.
This value is effective only to the XC6118C series (CMOS output).
*7: Delay time from the time of VSEN=VDF to the time of VOUT= 0.6V when the VSEN falls.
*8: Delay time from the time of VIN= VDF +VHYS to the time of VOUT = 5.4V when the VSEN rises.
5/21
XC6118 Series
■ELECTRICAL CHARACTERISTICS (Continued)
Ta=25℃
●XC6118xxxB
PARAMETER
SYMBOL
CONDITIONS
MIN.
Operating Voltage
VIN
VDF(T)=0.8 ~ 5.0V (*1)
1.0
Detect Voltage
VDF
VIN=1.0 ~ 6.0V
E-1
Hysteresis Width
VHYS
VIN=1.0 ~ 6.0V
Detect Voltage
Line Regulation
ΔVDF/
(ΔVIN・VDF)
Supply Current 1 (*2)
Supply Current 2 (*2)
Output Current
Leakage
Current
MAX.
UNITS
6.0
V
-
V
①
E-3
V
①
VIN=1.0~ 6.0V
±0.1
%/V
①
ISS1
VSEN=VDF×0.9
VIN=1.0V
VIN=6.0V
0.4
0.4
1.0
1.0
μA
②
ISS2
VSEN=VDF×1.1
VIN=1.0V
VIN=6.0V
0.8
0.9
1.6
1.8
μA
②
IOUT1
VSEN=0V VDS=0.5V(Nch)
VIN=1.0V
VIN=2.0V
VIN=3.0V
VIN=4.0V
VIN=5.0V
VIN=6.0V
mA
③
IOUT2
VSEN=6.0V VDS=0.5V(Pch)
VIN=1.0V
VIN=6.0V
mA
④
μA
③
ppm/oC
①
MΩ
⑤
MΩ
⑥
μA
⑥
(*3)
CMOS Output
(P-ch)
N-ch Open
Drain Output
Temperature Characteristics
ILEAK
ΔVDF/
(ΔTopr・
VDF)
RSEN
VSEN=5.0V, VIN=0V
VSEN=6.0V, VIN=5.0V Cd=0V
ICD
Cd=0.5V, VIN=1.0V
Delay Capacitance Pin
Threshold Voltage
VTCD
VSEN=6.0V, VIN=1.0V
VSEN=6.0V, VIN=6.0V
Undefined Operation (*6)
VUNS
Detect Delay Time (*7)
Release Delay Time (*8)
Sink Current
0.20
-40 oC≦Topr≦85 oC
RDELAY
-0.08
-0.70
0.40
±100
E-4
1.6
2.0
2.4
200
0.4
2.9
0.5
3.0
0.6
3.1
V
⑦
VIN=VSEN=0~1.0V
0.3
0.4
V
⑧
tDF0
VIN=6.0V, VSEN=6.0V→0V
Cd: Open
30
230
μs
⑨
tDR0
VIN=6.0V, VSEN=0V→6.0V
Cd: Open
30
200
μs
⑨
NOTE:
*1: VDF (T): Nominal detect voltage
*2: Current to the sense resistor is not included.
*3: IOUT2 is applied only to the XC6118C series (CMOS output).
*4: It is calculated from the voltage value and the current value of the VSEN.
*5: It is calculated from the voltage value of the VIN and the current value of the Cd.
*6: Maximum VOUT voltage when VIN is changed from 0V to 1.0V under connecting the VIN pin to the VSEN pin.
This value is effective only to the XC6118C series (CMOS output).
*7: Delay time from the time of VSEN=VDF to the time of VOUT= 0.6V when the VSEN falls.
*8: Delay time from the time of VIN= VDF +VHYS to the time of VOUT= 5.4V when the VSEN rises.
6/21
CIRCUITS
-0.20
VIN=6.0V, VSEN=6.0V,
VOUT=6.0V, Cd: Open
Delay Resistance (*5)
0.7
1.6
2.0
2.3
2.4
2.5
-0.30
-1.00
VIN=6.0V, VSEN=0V,
VOUT=0V, Cd: Open
Sense Resistance (*4)
Delay capacitance pin
0.1
0.8
1.2
1.6
1.8
1.9
TYP.
XC6118
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC6118xxxC
Ta=25℃
PARAMETER
SYMBOL
CONDITIONS
MIN.
Operating Voltage
VIN
VDF(T)=0.8 ~ 5.0V (*1)
1.0
Detect Voltage
VDF
VIN=1.0 ~ 6.0V
Hysteresis Width
TYP.
MAX.
UNITS
CIRCUITS
6.0
V
-
E-1
V
①
VHYS
VIN=1.0 ~ 6.0V
E-2
V
①
ΔVDF/
(ΔVIN・
VDF)
VIN=1.0 ~ 6.0V
±0.1
%/V
①
Supply Current 1 (*2)
ISS1
VSEN=VDF×0.9
VIN=1.0V
VIN=6.0V
0.4
0.4
1.0
1.0
μA
②
Supply Current 2 (*2)
ISS2
VSEN=VDF×1.1
VIN=1.0V
VIN=6.0V
0.8
0.9
1.6
1.8
μA
②
IOUT1
VSEN=0V, VDS=0.5V(Nch)
VIN=1.0V
VIN=2.0V
VIN=3.0V
VIN=4.0V
VIN=5.0V
VIN=6.0V
mA
③
IOUT2
VSEN=6.0V, VDS=0.5V(Pch)
VIN=1.0V
VIN=6.0V
mA
④
μA
③
ppm/oC
①
Detect Voltage
Line Regulation
Output Current (*3)
Leakage
Current
CMOS Output
(P-ch)
Nch Open Drain
Output
ILEAK
0.1
0.8
1.2
1.6
1.8
1.9
0.7
1.6
2.0
2.3
2.4
2.5
-0.30
-1.00
VIN=6.0V, VSEN=0V,
VOUT=0V
-0.20
VIN=6.0V, VSEN=6.0V,
VOUT=6.0V
0.20
-0.08
-0.70
0.40
Temperature Characteristics
ΔVDF/
(ΔTopr・
VDF)
-40 oC≦ Topr ≦85 oC
±100
Sense Resistance (*4)
RSEN
VSEN=5.0V VIN=0V
E-4
MΩ
⑤
Undefined Operation (*5)
VUNS
VIN=VSEN=0~1.0V
0.3
0.4
V
⑦
Detect Delay Time (*6)
tDF0
VIN=6.0V, VSEN=6.0→0V
30
230
μs
⑨
Release Delay Time (*7)
tDR0
VIN=6.0V, VSEN=0→6.0V
30
200
μs
⑨
NOTE:
*1: VDF (T): Nominal detect voltage
*2: Current to the sense resistor is not included.
*3: IOUT2 is applied only to the XC6118C series (CMOS output).
*4: It is calculated from the voltage value and the current value of the VSEN.
*5: Maximum VOUT voltage when VIN is changed from 0V to 1.0V under connecting the VIN pin to the VSEN pin.
This value is effective only to the XC6118C series (CMOS output).
*6: Delay time from the time of VSEN=VDF to the time of VOUT= 0.6V when the VSEN falls.
*7: Delay time from the time of VIN= VDF +VHYS to the time of VOUT= 5.4V when the VSEN rises.
7/21
XC6118 Series
■ELECTRICAL CHARACTERISTICS (Continued)
Ta=25℃
●XC6118xxxD
PARAMETER
Operating Voltage
SYMBOL
CONDITIONS
MIN.
(*1)
TYP.
UNITS
CIRCUITS
6.0
V
-
VIN
VDF(T)=0.8 ~ 5.0V
Detect Voltage
VDF
VIN=1.0 ~ 6.0V
E-1
V
①
Hysteresis Width
VHYS
VIN=1.0 ~ 6.0V
E-3
V
①
ΔVDF/
(ΔVIN・
VDF)
VIN=1.0~6.0V
±0.1
%/V
①
Supply Current 1 (*2)
ISS1
VSEN=VDF×0.9
VIN=1.0V
VIN=6.0V
0.4
0.4
1.0
1.0
μA
②
Supply Current 2 (*2)
ISS2
VSEN=VDF×1.1
VIN=1.0V
VIN=6.0V
0.8
0.9
1.6
1.8
μA
②
IOUT1
VSEN=0V VDS=0.5V(Nch)
VIN=1.0V
VIN=2.0V
VIN=3.0V
VIN=4.0V
VIN=5.0V
VIN=6.0V
mA
③
IOUT2
VSEN=6.0V, VDS=0.5V(Pch)
VIN=1.0V
VIN=6.0V
mA
④
μA
③
ppm/oC
①
Detect Voltage
Line Regulation
Output Current (*3)
Leakage
Current
CMOS Output
(P-ch)
Nch Open
Drain Output
ILEAK
1.0
MAX.
0.1
0.8
1.2
1.6
1.8
1.9
0.7
1.6
2.0
2.3
2.4
2.5
-0.30
-1.00
VIN=6.0V, VSEN=0V,
VOUT=0V
-0.20
VIN=6.0V, VSEN=6.0V,
VOUT=6.0V
0.20
-0.08
-0.70
0.40
Temperature Characteristics
ΔVDF/
(ΔTopr・
VDF)
-40 oC≦Topr≦85 oC
±100
Sense Resistance (*4)
RSEN
VSEN=5.0V, VIN=0V
E-4
MΩ
⑤
Undefined Operation (*5)
VUNS
VIN=VSEN=0~1.0V
0.3
0.4
V
⑦
Detect Delay Time (*6)
tDF0
VIN=6.0V VSEN=6.0→0V
30
230
μs
⑨
Release Delay Time (*7)
tDR0
VIN=6.0V VSEN=0→6.0V
30
200
μs
⑨
NOTE:
*1: VDF (T): Nominal detect voltage
*2: Current to the sense resistor is not included.
*3: IOUT2 is applied only to the XC6118C series (CMOS output).
*4: It is calculated from the voltage value and the current value of the VSEN.
*5: Maximum VOUT voltage when VIN is changed from 0V to 1.0V under connecting the VIN pin to the VSEN pin.
This value is effective only to the XC6118C series (CMOS output).
*6: Delay time from the time of VSEN=VDF to the time of VOUT= 0.6V when the VSEN falls.
*7: Delay time from the time of VIN= VDF +VHYS to the time of VOUT = 5.4V when the VSEN rises.
8/21
XC6118
Series
■VOLTAGE CHART
SYMBOL
PARAMETER
NOMINAL
VOLTAGE
VDF(T)
(V)
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
E-1
DETECT VOLTAGE
(V)
MIN.
0.770
0.870
0.970
1.070
1.170
1.270
1.370
1.470
1.568
1.666
1.764
1.862
1.960
2.058
2.156
2.254
2.352
2.450
2.548
2.646
2.744
2.842
2.940
3.038
3.136
3.234
3.332
3.430
3.528
3.626
3.724
3.822
3.920
4.018
4.116
4.214
4.312
4.410
4.508
4.606
4.704
4.802
4.900
VDF
(*1)
MAX.
0.830
0.930
1.030
1.130
1.230
1.330
1.430
1.530
1.632
1.734
1.836
1.938
2.040
2.142
2.244
2.346
2.448
2.550
2.652
2.754
2.856
2.958
3.060
3.162
3.264
3.366
3.468
3.570
3.672
3.774
3.876
3.978
4.080
4.182
4.284
4.386
4.488
4.590
4.692
4.794
4.896
4.998
5.100
E-2
E-3
E-4
HYSTERESIS RANGE
(V)
HYSTERESIS RANGE
(V)
SENSE RESISTANCE
(MΩ)
MIN.
0.015
0.017
0.019
0.021
0.023
0.025
0.027
0.029
0.031
0.033
0.035
0.037
0.039
0.041
0.043
0.045
0.047
0.049
0.051
0.053
0.055
0.057
0.059
0.061
0.063
0.065
0.067
0.069
0.071
0.073
0.074
0.076
0.078
0.080
0.082
0.084
0.086
0.088
0.090
0.092
0.094
0.096
0.098
VHYS
MAX.
0.066
0.074
0.082
0.090
0.098
0.106
0.114
0.122
0.131
0.085
0.147
0.155
0.163
0.171
0.180
0.188
0.196
0.204
0.212
0.220
0.228
0.237
0.245
0.253
0.261
0.269
0.277
0.286
0.294
0.302
0.310
0.318
0.326
0.335
0.343
0.351
0.359
0.367
0.375
0.384
0.392
0.400
0.408
MIN.
0
VHYS
MAX.
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020
0.021
0.022
0.023
0.024
0.026
0.027
0.028
0.029
0.030
0.031
0.032
0.033
0.034
0.035
0.036
0.037
0.038
0.039
0.040
0.041
0.042
0.043
0.044
0.045
0.046
0.047
0.048
0.049
0.050
0.051
MIN.
RSEN
TYP.
10
20
13
24
15
28
NOTE:
*1: When VDF(T)≦1.4V, the detection accuracy is ±30mV.
When VDF(T)≧1.5V, the detection accuracy is ±2%.
9/21
XC6118 Series
■TEST CIRCUITS
Circuit 2
Circuit 1
RPULL =100kΩ
(No resistor needed for
VIN
VSEN
CMOS output products)
VOUT
VIN
A
VSEN
XC6118 Series
VOUT
XC6118 Series
Cd
Cd
V
VSS
VSS
Circuit 4
Circuit 3
VIN
VIN
VSEN
VOUT
VSEN
VOUT
XC6118 Series
A
XC6118 Series
A
Cd
Cd
VSS
VSS
Circuit 5
Circuit 6
VIN
VSEN
A
VIN
VOUT
VSEN
XC6118 Series
VOUT
XC6118 Series
Cd
A
Cd
VSS
VSS
Circuit 8
Circuit 7
RPULL =100kΩ
VIN
VSEN
VIN
(No resistor needed for
VOUT
CMOS output products)
VSEN
XC6118 Series
Cd
V
VOUT
XC6118 Series
V
V
Cd
VSS
VSS
Circuit 9
RPULL =100kΩ
VIN
VSEN
(No resistor needed for CMOS output products)
VOUT
XC6118 Series
Waveform Measurement Point
Cd
VSS
10/21
*No delay capacitance pin available in the XC6118xxxC/D series.
XC6118
Series
■OPERATIONAL EXPLANATION
A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2.
VIN
*The XC6118N series (N-ch open
drain output) requires a pull-up
resistor for pulling up output.
M2
VSEN
M4
RSEN=R1+R2+R3
Rdelay
Comparator
Inverter
VOUT
R1
VIN
VSEN
R2
R3
M3
Vref
M5
M1
VSS
Cd
Cd
Figure 1: Typical application circuit example
Sense Pin Voltage: VSEN(MIN.:0V, MAX.:6.0V)
Release Voltage: VDF+VHYS
Detect Voltage: VDF
Delay Capacitance Pin Voltage: VCD(MIN.:VSS, MAX.:VIN)
Delay Capacitance Pin Threshold Voltage: VTCD
Output Voltage Pin Voltage: VOUT (MIN.:VSS
①
②
③
④ ⑤ ⑥
⑦
Figure 2: The timing chart of Figure 1
①
As an early state, the sense pin is applied sufficiently high voltage (6.0V MAX.) and the delay capacitance (Cd) is charged
to the power supply input voltage, (VIN: 1.0V MIN., 6.0V MAX.). While the sense pin voltage (VSEN) starts dropping to reach
the detect voltage (VDF) (VSEN>VDF), the output voltage (VOUT) keeps the “High” level (=VIN).
* If a pull-up resistor of the XC6118N series (N-ch open drain) is connected to added power supply different from the input
voltage pin, the “High” level will be a voltage value where the pull-up resistor is connected.
②
When the sense pin voltage keeps dropping and becomes equal to the detect voltage (VSEN =VDF), an N-ch transistor (M1)
for the delay capacitance (Cd) discharge is turned ON, and starts to discharge the delay capacitance (Cd). An inverter (Inv.1)
operates as a comparator of the reference voltage VIN, and the output voltage changes into the “Low” level (=VSS). The
detect delay time [tDF] is defined as time which ranges from VSEN=VDF to the VOUT of “Low” level (especially, when the Cd pin
is not connected: tDF0).
③
While the sense pin voltage keeps below the detect voltage, the delay capacitance (Cd) is discharged to the ground voltage
(=VSS) level. Then, the output voltage maintains the “Low” level while the sense pin voltage increases again to reach the
release voltage (VSEN< VDF +VHYS).
11/21
XC6118 Series
■OPERATIONAL EXPLANATION (Continued)
④
When the sense pin voltage continues to increase up to the release voltage level (VDF+VHYS), the N-ch transistor (M1) for
the delay capacitance (Cd) discharge will be turned OFF, and the delay capacitance (Cd) will start discharging via a delay
resistor (RDELAY). The inverter (Inv.1) will operate as a comparator (Rise Logic Threshold: VTLH=VTCD, Fall Logic Threshold:
VTHL=VSS) while the sense pin voltage keeps higher than the detect voltage (VSEN > VDF).
⑤
While the delay capacitance pin voltage (VCD) rises to reach the delay capacitance pin threshold voltage (VTCD) with the
sense pin voltage equal to the release voltage or higher, the sense pin will be charged by the time constant of the RC series
circuit. Assuming the time to the release delay time (tDR), it can be given by the formula (1).
tDR=-RDELAY×Cd×ln(1-VTCD/VIN) …(1)
The release delay time can also be briefly calculated with the formula (2) because the delay resistance is 2.0MΩ(TYP.) and
the delay capacitance pin threshold voltage is VIN /2 (TYP.)
tDR=RDELAY×Cd×0.69 …(2)
*:RDELAY is 2.0MΩ(TYP.)
As an example, presuming that the delay capacitance is 0.68μF, tDR is :
2.0×106×0.68×10-6×0.69=938(ms)
* Note that the release delay time may remarkably be short when the delay capacitance (Cd) is not discharged to the ground
(=VSS) level because time described in ③ is short.
⑥
When the delay capacitance pin voltage reaches to the delay capacitance pin threshold voltage (VCD=VTCD), the inverter
(Inv.1) will be inverted. As a result, the output voltage changes into the “High” (=VIN) level. tDR0 is defined as time which ranges
from VSEN=VDF+VHYS to the VOUT of “High” level without connecting to the Cd.
⑦
While the sense voltage is higher than the detect voltage (VSEN > VDF), the delay capacitance pin is charged until the delay
capacitance pin voltage becomes the input voltage level. Therefore, the output voltage maintains the “High”(=VIN) level.
●Function Chart
VSEN
Cd
L
H
L
H
L
H
L
H
L
TRANSITION OF VOUT CONDITION *1
①
②
L
⇒
L
L
⇒
L
H
⇒
H
⇒
H
●Example
ex. 1) VOUT ranges from ‘L’ to ‘H’ in case of VSEN = ‘H’ (VDR≧VSEN), Cd=’H’ (VTCD≧Cd) while VOUT is ‘L’.
ex. 2) VOUT maintains ‘H’ when Cd ranges from ‘H’ to ‘L’, VSEN=’H’ and Cd=’L’ when VOUT becomes ‘H’ in ex.1.
●Release Delay Time Chart
DELAY
CAPACITANCE [Cd]
(μF)
0.010
0.022
0.047
0.100
0.220
0.470
1.000
RELEASE DELAY TIME [tDR]
(TYP.)
(ms)
13.8
30.4
64.9
138
304
649
1380
* The release delay time values above are calculated by using the formula (2).
*2: The release delay time (tDR) is influenced by the delay capacitance Cd.
12/21
RELEASE DELAY TIME [tDR] *2
(MIN. ~ MAX.)
(ms)
11.0 ~ 16.6
24.3 ~ 36.4
51.9 ~ 77.8
110 ~ 166
243 ~ 364
519 ~ 778
1100 ~ 1660
XC6118
Series
■NOTES ON USE
1. Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon,
the IC is liable to malfunction should the ratings be exceeded.
2. The power supply input pin voltage drops by the resistance between power supply and the VIN pin, and by through current at
operation of the IC. At this time, the operation may be wrong if the power supply input pin voltage falls below the minimum
operating voltage range. In CMOS output, for output current, drops in the power supply input pin voltage similarly occur.
Moreover, in CMOS output, when the VIN pin and the sense pin are short-circuited and used, oscillation of the circuit may
occur if the drops in voltage, which caused by through current at operation of the IC, exceed the hysteresis voltage. Note it
especially when you use the IC with the VIN pin connected to a resistor.
3. When the setting voltage is less than 1.0V, be sure to separate the VIN pin and the sense pin, and to apply the voltage over
1.0V to the VIN pin.
4. Note that a rapid and high fluctuation of the power supply input pin voltage may cause a wrong operation.
5. Power supply noise may cause operational function errors, Care must be taken to put the capacitor between VIN-GND and test
on the board carefully.
6. If the VIN pin voltage drops sharply (example: 6.0V to 0V) during the release operation with a Cd (delay capacitance) connected
to the Cd pin, an overcurrent will flow through the diode between the Cd and VIN pin.
If the fluctuation range of the VIN pin during the release operation is less than 1.0V, no special measures are required,
but if the Cd is 0.1μF or more and the power supply voltage fluctuation is 0.01V/μs or more, please take either one of the
following measures.
・ To place a Schottky diode between the VIN pin and the Cd pin. (See Figure 3)
・ To place a resistance (RCd) of 500Ω to 1kΩ between the Cd and Cd pin. (See Figure 4)
*
Please note if the RCd is connected between the Cd and Cd pin, the Cd discharge time will be longer.
When connecting the RCd, please confirm in advance that there is no problem in actual operation.
VIN
VIN
Rpull
VSEN
VSEN
VOUT
VIN
Cd
VSEN
VOUT
VIN
VOUT
RCd
Figure 3: Circuit example with a Schottky diode
connected to the Cd pin
VOUT
Cd
VSS
Cd
Rpull
VSEN
VSS
Cd
Figure 4: Circuit example with a resistor
connected to the Cd pin
13/21
XC6118 Series
■NOTES ON USE
7. In N-channel open drain output, VOUT voltage at detect and release is determined by resistance of a pull up resistor connected
at the VOUT pin. Please choose proper resistance values with refer to Figure 5;
During detection: VOUT = VPULL / (1+RPULL / RON)
VPULL: Pull up voltage
RON(※1):On resistance of N channel driver M3 can be calculated as VDS / IOUT1 from electrical characteristics,
For example, when (※2) RON = 0.5 / 0.8×10-3 = 625Ω(MAX.)at VIN=2.0V, VPULL = 3.0V and VOUT ≦0.1V at detect,
RPULL= (VPULL /VOUT-1)×RON= (3 / 0.1-1)×625≒18kΩ
In this case, RPULL should be selected higher or equal to 18kΩ in order to keep the output voltage less than 0.1V during
detection.
(※1) RON is bigger when VIN is smaller, be noted.
(※2) For calculation, Minimum VIN should be chosen among the input voltage range.
During releasing:VOUT = VPULL / (1 + RPULL / ROFF)
VPULL:Pull up voltage
ROFF:On resistance of N channel driver M3 is 15MΩ(MIN.) when the driver is off (as to VOUT / ILEAK)
For example:when VPULL = 6.0V and VOUT ≧ 5.99V,
RPULL = (VPULL / VOUT-1)×ROFF = (6/5.99-1)×15×106 ≒25 kΩ
In this case, RPULL should be selected smaller or equal to 25 kΩ in order to obtain output voltage higher than 5.99V during
releasing.
VPULL
VIN
M2
VSEN
RSEN=R1+R2+R3
RPULL
RDELAY
Comparator
Inverter
ILEAK
R1
VIN
VSEN
VOUT
M3
R2
Vref
R3
M5
M1
VSS
Cd
Figure 5: Circuit example of XC6118N
8. Torex places an importance on improving our products and their reliability.
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their
systems.
14/21
XC6118
Series
■TYPICAL PERFORMANCE CHARACTERISTICS
(1) Supply Current vs. Sense Voltage
Supply Current: ISS (μA)
XC6118C25Ax
VIN=3.0V
2.0
Ta=85℃
1.5
25℃
1.0
0.5
-40℃
0.0
0
1
2
3
4
5
6
Sense Voltage: VSEN (V)
(2) Supply Current vs. Input Voltage
XC6118C25Ax
VSEN=2.25V
1.2
1.0
Ta=85℃
0.8
25℃
0.6
0.4
-40℃
0.2
0.0
0
2
1
3
4
Ta=85℃
1.0
0.8
0.6
25℃
0.4
-40℃
0.2
0.0
0
6
5
VSEN=2.75V
1.2
Supply Current: ISS (μA)
Supply Current: ISS (μA)
XC6118C25Ax
2
3
4
5
6
Input Voltage: VIN (V)
Input Voltage: VIN (V)
(3) Detect Voltage vs. Ambient Temperature
(4) Detect Voltage vs. Input Voltage
XC6118C25Ax
XC6118C25Ax
VIN=4.0V
2.55
Detect Voltage: VDF (V)
2.55
Detect Voltage: VDF (V)
1
2.50
2.45
Ta=25℃
85℃
2.50
-40℃
2.45
-50
-25
0
25
50
75
Ambient Temperature: Ta (℃)
100
1.0
2.0
3.0
4.0
5.0
6.0
Input Voltage: VIN (V)
15/21
XC6118 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(5) Hysteresis Voltage vs. Ambient Temperature
(6) CD Pin Sink Current vs. Input Voltage
XC6118C25Ax
VIN=4.0V
0.20
Cd PIN Current: ICD (mA)
Hysteresis Voltage: VHYS (V)
XC6118C25Ax
0.15
0.10
0.05
-50
-25
0
25
50
75
VSEN=0V VDS=0.5V
3.0
2.5
Ta=-40℃
2.0
25℃
1.5
1.0
85℃
0.5
0.0
0
100
1
6.0
Output Voltage: VOUT (V)
Output Voltage: VOUT (V)
Ta=25℃
7.0
VIN=6.0V
5.0
4.0
4.0V
3.0
2.0
1.0
1.0V
0.0
-1.0
3
5
6
XC6118N25Ax
XC6118C25Ax
2
4
(8) Output Voltage vs. Input Voltage
(7) Output Voltage vs. Sense Voltage
1
3
Input Voltage : VIN (V)
Ambient Temperature: Ta (℃)
0
2
4
5
VSEN=VIN Pull-up=VIN R=100kΩ
4.0
3.0
Ta=85℃
2.0
25℃
1.0
-40℃
0.0
-1.0
0
6
0.5
1
1.5
2
2.5
3
Input Voltage : VIN (V)
Sense Voltage: VSEN (V)
(9) Output Current vs. Input Voltage
XC6118C25Ax
VDS(Nch)=0.5V
4.0
3.5
Output Current: Iout (mA)
Output Current: Iout (mA)
XC6118C25Ax
Ta=-40℃
3.0
25℃
2.5
2.0
1.5
85℃
1.0
0.5
0.0
Ta=85℃
-0.5
-1.0
25℃
-1.5
-40℃
-2.0
0
1
2
3
4
5
Input Voltage : VIN (V)
16/21
VDS(Pch)=0.5V
0.0
6
0
1
2
3
4
5
Input Voltage : VIN (V)
6
XC6118
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(10) Delay Resistance vs. Ambient Temperature
(11) Release Delay Time vs. Delay Capacitance
XC6118C25Ax
VSEN=6.0V VCD=0.0V VIN=5.0V
4
3.5
3
2.5
2
1.5
1
-50
25
0
-25
50
Release Delay time: TDR (ms)
Delay Resistance: Rdelay (MΩ)
XC6118C25Ax
100
75
100
10
1
tDR=Cd×2.0×10 6 ×0.69
0.1
0.0001
0.001
Leak Current: ILEAK (μA)
VIN=6.0V
4.0V
3.0V
2.0V
1.0V
1
0.0001
0.001
0.01
1
XC6118N25Ax
Ta=25℃
10
0.1
(13) Leakage Current vs. Ambient Temperature
XC6118C25Ax
100
0.01
Delay Capacitor: Cd (μF)
(12) Detect Delay Time vs. Delay Capacitance
Detect Delay time: TDF (μs)
VIN=1.0V
3.0V
6.0V
1000
Ambient Temperature: Ta (℃)
1000
Ta=25℃
10000
0.1
1
Delay Capacitor: Cd (μF)
VIN=VSEN=6.0V VOUT=6.0V
0.25
0.20
0.15
0.10
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
(14) Leakage Current vs. Supply Voltage
Leak Current: ILEAK (μA)
XC6118N25Ax
VIN=VSEN=6.0V
0.25
0.20
0.15
0.10
0
1
2
3
4
5
6
Output Voltage: VOUT (V)
17/21
XC6118 Series
■PACKAGING INFORMATION
For the latest package information go to, www.torexsemi.com/technical-support/packages
PACKAGE
OUTLINE / LAND PATTERN
THERMAL CHARACTERISTICS
USP-4
USP-4 PKG
USP-4 Power Dissipation
SOT-25
SOT-25 PKG
SOT-25 Power Dissipation
18/21
XC6118
Series
■MARKING RULE
●SOT-25
① represents output configuration and integer number of detect voltage
CMOS Output (XC6118C Series)
N-ch Open Drain Output (XC6118N Series)
MARK
VOLTAGE (V)
MARK
VOLTAGE (V)
L
0.X
T
0.X
M
1.X
U
1.X
N
2.X
V
2.X
P
3.X
X
3.X
R
4.X
Y
4.X
S
5.X
Z
5.X
5
①
4
②
1
③
④
2
⑤
3
SOT-25
(TOP VIEW)
② represents decimal number of detect voltage
(ex.)
MARK
VOLTAGE (V)
PRODUCT SERIES
3
0
X.3
X.0
XC6118**3***
XC6118**0***
③ represents options
MARK
A
B
C
D
OPTIONS
Built-in delay capacitance pin with hysteresis 5% (TYP.)
(Standard)
Built-in delay capacitance pin with hysteresis less than 1%
(Standard)
No built-in delay capacitance pin with hysteresis 5% (TYP.)
(Semi-custom)
No built-in delay capacitance pin with hysteresis less than
1%
(Semi-custom)
PRODUCT SERIES
XC6118***A**
XC6118***B**
XC6118***C**
XC6118***D**
④⑤ represents production lot number
0 to 9 A to Z, or inverted characters of 0 to 9, A to Z repeated.
(G, I, J, O, Q, and W excluded)
*No character inversion used.
19/21
XC6118 Series
■MARKING RULE (Continued)
●USP-4
① represents output configuration and integer number of detect voltage
N-ch Open Drain Output (XC6118N Series)
VOLTAGE (V)
0.X
1.X
2.X
3.X
4.X
5.X
1
2
USP-4
(TOP VIEW)
② represents decimal number of detect voltage
(ex.)
MARK
3
0
VOLTAGE (V)
X.3
X.0
PRODUCT SERIES
XC6118**3***
XC6118**0***
③ represents options
MARK
OPTIONS
Built-in delay capacitance pin with hysteresis 5% (TYP.)
A
(Standard)
Built-in delay capacitance pin with hysteresis less than 1%
B
(Standard)
No built-in delay capacitance pin with hysteresis 5% (TYP.)
C
(Semi-custom)
No built-in delay capacitance pin with hysteresis less than
1%
D
(Semi-custom)
④⑤ represents production lot number
0 to 9, A to Z or inverted characters of 0 to 9, A to Z repeated.
(G, I, J, O, Q, and W excluded)
*No character inversion used.
20/21
① ② ③
MARK
T
U
V
X
Y
Z
④ ⑤
CMOS Output (XC6118C Series)
MARK
VOLTAGE (V)
L
0.X
M
1.X
N
2.X
P
3.X
R
4.X
S
5.X
PRODUCT SERIES
XC6118***A**
XC6118***B**
XC6118***C**
XC6118***D**
4
3
XC6118
Series
1.
The product and product specifications contained herein are subject to change without notice to
improve performance characteristics. Consult us, or our representatives before use, to confirm that
the information in this datasheet is up to date.
2.
The information in this datasheet is intended to illustrate the operation and characteristics of our
products. We neither make warranties or representations with respect to the accuracy or
completeness of the information contained in this datasheet nor grant any license to any intellectual
property rights of ours or any third party concerning with the information in this datasheet.
3.
Applicable export control laws and regulations should be complied and the procedures required by
such laws and regulations should also be followed, when the product or any information contained in
this datasheet is exported.
4.
The product is neither intended nor warranted for use in equipment of systems which require
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss
of human life, bodily injury, serious property damage including but not limited to devices or equipment
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and
other transportation industry and 5) safety devices and safety equipment to control combustions and
explosions. Do not use the product for the above use unless agreed by us in writing in advance.
5.
Although we make continuous efforts to improve the quality and reliability of our products;
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal
injury and/or property damage resulting from such failure, customers are required to incorporate
adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention
features.
6.
Our products are not designed to be Radiation-resistant.
7.
Please use the product listed in this datasheet within the specified ranges.
8.
We assume no responsibility for damage or loss due to abnormal use.
9.
All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex
Semiconductor Ltd in writing in advance.
TOREX SEMICONDUCTOR LTD.
21/21