XC6129 Series
ETR0222-005
Voltage Detector with Delay Time Adjustable
■GENERAL DESCRIPTION
XC6129 series is an ultra small highly accurate voltage detector with external capacitor type delay function.
The device includes a highly accurate reference voltage source, manufactured using CMOS process and laser trimming
technology, it maintains low power consumption and high accuracy. The device includes the built-in delay circuit. A release delay
time or detect delay time can be set freely by connecting an external delay capacitor to Cd pin.
There are two kinds of the output configuration for the XC6129 such as CMOS or N-channel open drain. The series has a
function to prevent an indefinite operation. Therefore, when the input pin voltage is under minimum operating voltage,
the function controls an output pin voltage in the indefinite operation less than 0.4V (MAX.). Also, the series allows a choice of
an output logic when detection; therefore, it is suitable for various electric devices using Microcontrollers.
Ultra small package USPN-4,USPQ-4B05 and SSOT-24 (standard) are ideally suited for small design of portable devices and
high densely mounting applications.
■FEATURES
■APPLICATIONS
● Microprocessor
High Accuracy
:
±0.8% (Ta=25℃)
● Logic circuit reset circuitry
Temperature Characteristic
:
±50ppm/℃ (TYP.)
● Battery check
Hysteresis Width
:
VDFx5% (TYP.)
Low Power Consumption
:
0.42μA TYP. (at Detect, VDF=2.7V)
● Charge voltage monitors
0.58μA TYP. (at Release, VDF=2.7V)
● Memory battery back-up switch circuits
Detect Voltage Options
:
1.5V ~ 5.5V (0.1V increments)
● System power on reset
Operating Voltage Range
:
1.3V ~ 6.0V
● Power failure detection circuits
Output Configuration
:
CMOS or N-channel Open Drain
● Delay circuit
Output Logic
:
Active High or Active Low
Release Delay Time
:
13.9ms (Cd=0.01μF, RP=2MΩ)
Detect Delay Time
:
17.9ms (Cd=0.01μF, Rn=2MΩ)
Manual Reset Input
:
When Cd pin is “L” level, detect state
Operating Ambient Temperature
:
-40℃ ~ 85℃
Packages
:
USPN-4, SSOT-24, USPQ-4B05
Environmentally Friendly
:
EU RoHS Compliant, Pb Free
●
■TYPICAL APPLICATION CIRCUIT
■ TYPICAL PERFORMANCE
CHARACTERISTICS
μP
VCC
RESETB/RESET
INPUT
Cd/MRB
VSS
Cd
VSS
μP
VPULL
XC6129N Series
RESETB
RESET
VIN
VCC
RPULL
RESETB/RESET
INPUT
200
Release Delay Time : DR
t (ms)
RESETB
RESET
VIN
180
160
140
120
100
-50
Cd/MRB
Cd
VSS
VIN=VDF×0.9V→ VDF×1.1V
Cd=0.1 μ F (tDR=139ms)
XC6129
XC6129C Series
-25
0
25
50
75
100
Ambient Temperature : Ta (℃)
VSS
1/27
XC6129 Series
■BLOCK DIAGRAM
1) XC6129C Series (Type A/B/C/D/E/F)
VIN
M2
R1
Comparator
M4
Rp
DELAY/MR
CONTROL
BLOCK
R2
Rn
Vre f
RESETB
M3
M1
VSS
Cd/ MRB
2) XC6129C Series (Type G/J/L)
VIN
M2
R1
Comparator
M4
Rp
DELAY/MR
CONTROL
BLOCK
R2
Rn
Vre f
RESET
M3
M1
VSS
Cd/ MRB
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.
2/27
XC6129
Series
■BLOCK DIAGRAM
3) XC6129N Series (Type A/C/E)
VIN
M2
R1
Comparator
Rp
DELAY/MR
CONTROL
BLOCK
R2
Rn
Vre f
RESETB
M3
M1
VSS
Cd/ MRB
4) XC6129N Series (Type G/J/L)
VIN
M2
R1
Comparator
Rp
DELAY/MR
CONTROL
BLOCK
R2
Rn
Vre f
RESET
M3
M1
VSS
Cd/ MRB
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.
3/27
XC6129 Series
■PRODUCT CLASSIFICATION
●Ordering Information
XC6129①②③④⑤⑥-⑦(*1)
DESIGNATOR
ITEM
SYMBOL
①
Output Configuration
②③
Detect Voltage
DESCRIPTION
C
CMOS output
N
Nch open drain output
15~55
e.g. 1.8V → ②=1, ③=8
A
B
C
D
④
Type
E
Refer to Selection Guide
F
⑤⑥-⑦ (*1)
(*1)
Packages (Order Unit)
G
J
L
NR-G
SSOT-24 (3,000pcs/Reel)
7R-G
USPN-4 (5,000pcs/Reel)
9R-G
USPQ-4B05 (5,000pcs/Reel)
The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.
●Selection Guide
TYPE
RESETB/RESET
OUTPUT
HYSTERESIS
WIDTH
A
B
C
D
Reset Active Low
E
5% (TYP.)
F
G
J
Reset Active High
L
(*2)
Only supported with CMOS output.
4/27
RELEASE
DELAY
DETECT
DELAY
Yes
No
No
Yes
Yes
Yes
Yes
No
No
Yes
Yes
Yes
Undefined Operation
Protect
No
Yes (*2)
No
Yes (*2)
No
Yes (*2)
No
XC6129
Series
■PIN CONFIGURATION
RESETB
Cd/MRB
RESET
4
3
1
2
VIN
VSS
VIN 4
RESETB
1 RESET
VSS 3
2 Cd/MRB
VSS
3
VIN
4
2
1
Cd/MRB RESETB
RESET
USPN-4
(BOTTOM VIEW)
SSOT-24
(TOP VIEW)
USPQ-4B05
(BOTTOM VIEW)
*The dissipation pad for the USPQ-4B05 packages should be solder-plated in reference mount pattern and metal masking so as to enhance
mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the V SS (No. 3) pin.
■PIN ASSIGNMENT
PIN NUMBER
(*1)
(*2)
PIN NAME
FUNCTIONS
4
VIN
Power Input
3
3
VSS
Ground
3
2
2
Cd/MRB
Adjustable Pin for DelayTime
/Manual Reset
4
1
1
RESETB
Reset Output (Active Low) (*1)
RESET
Reset Output (Active High) (*2)
SSOT-24
USPN-4
USPQ-4B05
1
4
2
Type A ~ F (Refer to the ④ in Ordering Information table)
Type G ~ M (Refer to the ④ in Ordering Information table)
5/27
XC6129 Series
■FUNCTION
PIN NAME
SIGNAL
STATUS
L
Forced Reset
H
Release
OPEN
Normal Operation
Cd/MRB
Refer to the table below.
1) Output Logic: Active Low
●Function
VIN
VIN≧VDF+VHYS
VIN≦VDF
VCd//MRB
Transition of VRESETB Condition
VCd/MRB≦VMRL
Reset (Low Level) (*1)
VCd/MRB≧VMRH
Release (High Level) (*2)
VCd/MRB≦VMRL
Reset (Low Level) (*1)
VCd/MRB≧VMRH
Undefined (*3)
VCd/MRB
Transition of VRESET Condition
VCd/MRB≦VMRL
Reset (High Level) (*2)
VCd/MRB≧VMRH
Release (Low Level) (*1)
VCd/MRB≦VMRL
VCd/MRB≧VMRH
Reset (High Level) (*2)
Undefined (*3)
2) Output Logic: Active High
●Function
VIN
VIN≧VDF+VHYS
VIN≦VDF
(* 1)
CMOS output: VIN × 0.1 or less, N-ch open drain output, pull-up voltage × 0.1 or less.
(* 2)
CMOS output: VIN × 0.9 or higher, N-ch open drain output, pull-up voltage × 0.9 or higher.
(* 3)
Refer to the OPERATING DESCRIPTION below.
6/27
XC6129
Series
■ABSOLUTE MAXIMUM RATINGS
Ta=25℃
PARAMETER
SYMBOL
RATINGS
UNITS
Input Voltage
VIN
-0.3 ~ 6.5
V
IRBOUT
IROUT
±50
VRESETB
VRESET
VSS - 0.3 ~ VIN + 0.3 or 6.5 (*3)
Cd/MRB Pin Voltage
VCd/MRB
VSS - 0.3 ~ VIN + 0.3
V
Cd/MRB Pin Current
ICd/MRB
±5
mA
Output Current
Output Voltage
XC6129C (*1)
XC6129N (*2)
XC6129C (*1)
XC6129N (*2)
50
SSOT-24
Power Dissipation
USPN-4
VSS - 0.3 ~ 6.5
mA
V
150
Pd
USPQ-4B05
100
mW
550
Operating Ambient Temperature
Topr
-40 ~ 85
℃
Storage Temperature
Tstg
-55 ~ 125
℃
* All voltages are described based on the VSS.
(*1)
CMOS Output
(*2)
N-ch Open Drain Output
(*3)
The maximum value should be either VIN+0.3V or 6.5V in the lowest.
7/27
XC6129 Series
■ELECTRICAL CHARACTERISTICS
●XC6129xxxA~XC6129xxxF Series (Output Logic: Active Low)
PARAMETER
SYMBOL
Detect Voltage
VDF
VDF(T) (*1)=1.5V~5.5V
Temperature
Characteristics
ΔVDF/
(ΔTopr・VDF)
-40℃≦Topr≦85℃
Hysteresis Width
VHYS
-
Supply Current 1
ISS1
VIN= VDF×0.9 (Detect)
E-2 (*2)
Supply Current 2
ISS2
VIN=VDF×1.1
E-3 (*2)
Operating Voltage
VIN
IRBOUT1
Output Current
IRBOUT2 (*7)
CONDITIONS
Leakage
Current
N-ch Open
Drain Output
VDF(T)×0.992
TYP.
MAX.
VDF(T)
VDF(T)×1.008
E-1(*2)
①
VDF×0.03
VDF×0.05
VDF×0.07
V
①
μA
②
V
-
mA
③
μA
③
(Type:A,C,E)
E-31
(*2)
-
6.0
3.0
-
VIN=2.0V(*3), VRESETB=0.5V (N-ch)
5.2
6.7
-
, VRESETB=0.5V (N-ch)
8.6
10.2
-
VIN=4.0V(*5), VRESETB=0.5V (N-ch)
10.6
12.3
-
VIN=5.0V(*6), VRESETB=0.5V (N-ch)
11.7
13.5
-
VIN=2.0V(*8), VRESETB=VIN-0.5V (P-ch)
-
-1.9
-0.9
VIN=3.0V(*9), VRESETB=VIN-0.5V (P-ch)
-
-3.1
-2.1
VIN=4.0V(*10), VRESETB=VIN-0.5V (P-ch)
-
-4.0
-3.0
, VRESETB=VIN-0.5V (P-ch)
-
-4.7
-3.7
VIN=6.0V, VRESETB=VIN-0.5V (P-ch)
-
-5.2
-4.2
VIN=VDF×0.9, VRESETB=0V
-
-0.01
-
VIN=6.0V, VRESETB=6.0V
-
0.01
0.1
1.8
2.0
2.15
MΩ
④
ILEAK
Rp
Delay Resistance (*12)
Rn
T
①
ppm/℃
1.7
(*11)
V
-
VIN=1.3V, VRESETB=0.5V (N-ch)
VIN=3.0V
Ta=25℃
CIRCUIT
±50
1.3
(*4)
UNITS
-
(Type:B,D,F)
(Release)
-
VIN=5.0V
CMOS Output
(P-ch)
MIN.
VIN=6.0V, VCd/MRB =0V
(Type: A, B, E, F)
VIN=VCd/MRB=VDF×0.9
(Type: C, D, E, F)
Undefined Operation (*13)
VUNS
VINVDF), the output pin
voltage VRESETB is at High level.
(2) The power input pin voltage continues to drop, and when it reaches the detect voltage (VIN=VDF), the Nch transistor for delay
capacitance discharge turns ON and discharge of the delay capacitance starts.
When the delay capacitance pin drops below the delay capacitance pin threshold voltage, VRESETB changes to Low level.
The time from VIN=VDF until VRESETB changes to Low level is the detect delay tDF (the detect time when the delay capacitance
pin is open is tDF0).
13/27
XC6129 Series
■OPERATIONAL DESCRIPTION (Continued)
(3) The power input pin voltage drops further, and during the interval when it is below the detect voltage V DF and higher than 1.3V,
the delay capacitance pin is discharged to ground level and the output pin voltage V RESETB maintains Low level.
(4) During the interval in which the power input pin voltage drops below 1.3V and then rises back to 1.3V or higher, the output pin
voltage VRESETB may not be able to maintain Low level. Operation during this interval is called “unstable operation”, and the
voltage that appears in VRESETB is called the “unstable operation voltage VUNS”.
(5) The power input pin voltage rises, and during the interval that it is higher than 1.3V until it reaches the release voltage
(1.3V≤VINVDF), the output pin voltage VRESETB
maintains High level.
The above operational explanation is for detection using Active Low products.
For Active High products, reverse the logic of VRESETB.
14/27
XC6129
Series
■OPERATIONAL DESCRIPTION (Continued)
The release delay time and detect delay time are determined by the delay resistance (Rp and Rn) and the delay capacitance (Cd).
The delay resistance is set to 2MΩ (TYP.) internally in the circuit, and thus the delay time can be changed using the delay
capacitance.
You can select a product type that has or does not have the release delay time function and the detect delay time function. (Refer
to the Selection Guide.)
The release delay tDR is calculated using equation (1).
tDR=Rp×Cd×{-ln(1-VTCD/VIN)}+tDR0 …(1)
* ln is the natural logarithm.
Rn : Delay resistance 2.0MΩ (TYP.)
VTCD : Delay capacitance pin threshold voltage VIN/2 (TYP.)
When tDR0 can be neglected, this can be calculated in a simple manner using equation (2).
tDR=Rp×Cd×[-ln{1-(VIN/2)/VIN}]=Rp×Cd×0.693 …(2)
Example: When the delay capacitance Cd is 0.68μF, the release delay time t DR is 2.0×106×0.68×10-6×0.693=942(ms).
The detect delay tDF is calculated using equation (3).
tDF=Rn×Cd×{-ln(VTCD/VIN1)}+tDF0 …(3)
* ln is the natural logarithm.
Rn: Delay resistance 2.0MΩ (TYP.)
VTCD: Delay capacitance pin threshold voltage VIN2/2 (TYP.) *VIN2 is the power input pin voltage at detection.
VIN1: Power input pin voltage at release
When VIN=VDF×1.1→VDF×0.9 and tDF0 can be neglected, this can be calculated in a simple manner using equation (4).
tDF=Rn×Cd×{-ln(VIN2/2)/VIN1}=Rn×Cd×[-ln{(VDF×0.9×0.5)/(VDF×1.1)}]=Rn×Cd×0.894 …(4)
For details of the detect delay time of equation (4), refer to Fig. 3.
Example: When the delay capacitance Cd is 0.68μF at VIN=VDF×1.1→VDF×0.9, the detect delay time tDF is 2.0×106×0.68×10-6×0.894=1216(ms).
VIN=VDF x 1.1V
Power input pin voltage: VIN
VIN2=VDF x 0.9V
Release state (VIN1)
Detect delay time: tDF
Output pin voltage: VRESETB
Detect state (VSS)
Release state (VIN1)
VIN1=VDF x 1.1V
Delay capacitance pin threshold voltage
Delay capacitance pin voltage: VCd/MRB
VTCD=VIN2/2=0.9x0.5
Fig. 3: Detect delay time of equation (4) (timing chart)
Delay time table
Delay capacitance Cd
(μF)
Release delay time tDR (ms) (*1)
TYP.
MIN.to MAX.
(*2)
Detect delay time tDF (ms) (*1)
TYP.
MIN.to MAX. (*2)
12.7 to 22.0
0.01
13.9
10.4 to 17.7
17.9
0.022
30.5
22.9 to 38.9
39.3
28.0 to 48.4
0.047
65.1
48.9 to 83.0
84.0
59.8 to 103.3
127 to 220
0.1
139
104 to 177
179
0.22
305
229 to 389
393
280 to 484
0.47
651
489 to 830
840
598 to 1033
1
1386
1042 to 1766
1788
1274 to 2198
The release delay time values are the values calculated from equation (2).
The detect delay time values are the values calculated from equation (4).
(*1)
Note that the delay time will vary depending on the actual capacitance value of the delay capacitance Cd.
(*2)
The values are calculated with consideration given to deviations in the delay resistance and delay capacitance pin threshold voltage.
15/27
XC6129 Series
■OPERATIONAL DESCRIPTION (Continued)
The reset output pin signal can be forced into the detect state by inputting a voltage into the delay capacitance pin when in the
release state.
When the delay capacitance pin voltage input reaches an H→L level signal, the reset output pin outputs an H→L level signal.
(RESETB:Active Low type)
When the delay capacitance pin voltage input reaches an H→L level signal, the reset output pin outputs an L→H level signal.
(RESET:Active High type)
* During manual reset, there is no delay time even when a delay capacitance is connected.
* When the delay capacitance pin voltage input reaches an L→H level signal in the detection state, the reset output pin outputs
an L→H level signal.
(RESETB:Active Low type)
* When the delay capacitance pin voltage input reaches an L→H level signal in the detection state, the reset output pin outputs
an H→L level signal.
(RESET:Active High type)
Under the detect condition, the condition will be kept even if the RESET switch turns on and off.
In the case that either H level or L level is fed to the Cd/MRB pin without the RESET switch, the behavior of the XC6129 follows
the timing chart in Fig. 4.
L level is fed to the MRB pin under the detect condition, the RESET switch will be kept.
H level is fed to the MRB pin under the detect condition, the RESET switch will be undefined.
Even though the voltage at the VSEN pin changes from a higher voltage than the detect voltage to a lower voltage, as long as H
level is fed to the MRB pin, the release condition is kept.
If H level or L level is fed to the Cd/MRB pin forcibly, then even though Cd is connected to the pin, the XC6129 can’t have any
delay time.
Release voltage:VDF+VHYS
Detect voltage:VDF
Input Voltage:VIN(MIN.:0V,MAX.:6.0V)
MRB High level voltage:VMRH
Cd pin threshold voltage:VTCd
MRB Low level voltage:VMRL
Cd/MRB pin voltage:VCd/MRB (MIN.:VSS,MAX.:VIN)
Release voltage:VDF+VHYS
Detect voltage:VDF
Undefined
Output voltage:VRESETB
(MIN.:VSS,MAX.:VIN(CMOS),Vpull(Nch open drain))
Fig. 4: Manual reset operation by the delay capacitance pin (Active Low product)
Types B/D/F of the XC6129C series include an unstable operation prevention function.
When the power input pin voltage is less than the minimum operation voltage, the output pin voltage due to unstable operation
is limited to 0.4V (MAX.) or less.
* Types A/C/E of the XC6129C series and each of the XC6129N series do not have an unstable operation prevention function.
16/27
XC6129
Series
■NOTE ON USE
1) Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is
liable to malfunction should the ratings be exceeded.
2) The power input pin voltage may fall due to the flow through current during IC operation and the resistance component between
the power supply and the power input pin.
In the case of CMOS output, a drop in the power input pin voltage may occur in the same way due to the output current. When
this happens, if the power input pin voltage drops below the minimum operating voltage, malfunctioning may occur.
In addition, when the power input pin voltage is below the detect voltage, the output pin voltage may oscillate. Exercise caution
in particular if a resistor is connected to the power input pin.
3) Note that large, sharp changes of the power input pin voltage may cause malfunctioning.
4) Power supply noise is sometimes a cause of malfunctioning. Sufficiently test using the actual device, such as inserting a
capacitor between VIN and GND.
5) When an N-ch open drain output is used, the VRESETB voltage at detection and release is determined by the pull-up resistance
connected to the output pin. Refer to the following when selecting the resistance value.
At detection:
VRESETB=Vpull/(1+Rpull/RON)
Vpull : Voltage after pull-up
RON(*1): ON resistance of N-ch driver M3 (calculated from VRESETB/IRBOUT1 based on electrical characteristics)
Example: When VIN=2.0V(*2), RON=0.5/5.2×10-3=96Ω (MAX.). If it is desired to make VRESETB at detection 0.1V or less when Vpull is 3.0V,
Rpull=(Vpull/VRESETB-1)×RON=(3/0.1-1)×96≒2.8kΩ
Therefore, to make the output voltage at detection 0.1V or less under the above conditions, the pull-up resistance must be 2.8kΩ or higher.
(*1)
Note that RON becomes larger as VIN becomes smaller.
(*2)
For VIN in the calculation, use the lowest value of the input voltage range you will use.
At release:
VRESETB=Vpull/(1+Rpull/Roff)
Vpull: Voltage after pull-up
Roff: Resistance when N-ch driver M3 is OFF (calculated from VRESETB/ILEAK based on electrical characteristics)
Example: When Vpull is 6.0V, Roff=6/(0.1×10-6)=60MΩ (MIN.). If it is desired to make VRESETB 5.99V or higher,
Rpull=(Vpull/VRESETB-1)×Roff=(6/5.99-1)×60×106≒100kΩ
Therefore, to make the output voltage at release 5.99V or higher under the above conditions, the pull-up resistance must be
100kΩ or less.
17/27
XC6129 Series
■NOTE ON USE (Continued)
6) If the discharge time of the delay capacitance Cd at detection is short and the delay capacitance Cd cannot be discharged to
ground level, charging will take place at the next release operation with electric charge remaining in the delay capacitance Cd,
and this may cause the release delay time to become noticeably short.
7) If the charging time of the delay capacitance Cd at release is short and the delay capacitance Cd cannot be charged to the V IN
level, the delay capacitance Cd will discharge from less than the V IN level at the next detection operation, and this may cause
the detect delay time to become noticeably short.
8) Even with a non-delay type, a delay time is added when a delay capacitance Cd is connected.
9) For a manual reset function, in case when the function is activated by feeding either MRB H level or MRB L level to Cd/MRB
pin instead of using a reset switch, please note these phenomena below;
・The RESET output signal will be undefined when MRB H is fed to Cd/MRB pin under the detect condition.
・The RESET output signal will be undefined based on the voltage relationship between VSEN pin and Cd/MRB pin.
10) Torex places an importance on improving our products and their reliability.
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.
18/27
XC6129
Series
■TYPICAL PERFORMANCE CHARACTERISTICS
(1) Detect, Release Voltage vs. Ambient Temperature
XC6129 (V DF(T)=1.5V)
XC6129 (V DF(T)=2.7V)
2.90
Detect, Release Voltage : VDFL, V DR (V)
Detect, Release Voltage : VDFL, V DR (V)
1.600
1.575
VDR
1.550
1.525
1.500
VDF
1.475
VDR
2.85
2.80
2.75
2.70
VDF
1.450
2.65
-50
-25
0
25
50
75
100
-50
-25
Ambient Temperature : Ta (℃)
0
25
50
75
100
Ambient Temperature : Ta (℃)
(2) Detect, Release Voltage vs. Input Voltage
XC6129 (V DF(T)=5.5V)
XC6129C (V DF(T)=1.5V)
Type : A/C/E
No Pull-up
6
5.80
OutPut Voltage : VRESETB (V)
Detect, Release Voltage : VDFL, V DR (V)
5.85
5.75
VDR
5.70
5.65
5.60
5.55
5.50
↓ : V DF側
↑ : V DR側
5
4
Ta=-40℃
3
Ta=25℃
Ta=85℃
2
1
5.45
VDF
0
5.40
-50
-25
0
25
50
75
0
100
1
2
3
4
5
XC6129C (V DF(T)=2.7V)
XC6129C (V DF(T)=5.5V)
Type : A/C/E
No Pull-up
Type : A/C/E
No Pull-up
6
6
↓ : V DF側
↑ : V DR側
5
Output Voltage : V RESETB (V)
Output Voltage : V RESETB (V)
6
Input Voltage : V IN (V)
Ambient Temperature : Ta (℃)
4
Ta=-40℃
3
Ta=25℃
2
Ta=85℃
1
↓ : V DF側
↑ : V DR側
5
4
3
Ta=-40℃
2
Ta=25℃
Ta=85℃
1
0
0
0
1
2
3
Input Voltage : V IN (V)
4
5
6
0
1
2
3
4
5
6
Input Voltage : V IN (V)
19/27
XC6129 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2) Detect, Release Voltage vs. Input Voltage (Continued)
(3) Supply Current vs. Input Voltage
XC6129 (V DF(T)=1.5V)
1.50
1.35
Ta=-40℃
Supply Current : ISS ( μ A)
1.20
Ta=25℃
1.05
Ta=85℃
0.90
0.75
0.60
0.45
0.30
0.15
0.00
0
1
2
3
4
5
6
4
5
6
Input Voltage: V IN (V)
XC6129 (V DF(T)=2.7V)
XC6129 (V DF(T)=5.5V)
1.50
1.50
1.35
1.35
Ta=-40℃
Ta=25℃
1.05
Ta=85℃
0.90
0.75
0.60
0.45
Ta=85℃
0.90
0.75
0.60
0.45
0.30
0.15
0.15
0.00
Ta=25℃
1.05
0.30
0.00
0
1
2
3
Input Voltage: V IN (V)
20/27
Ta=-40℃
1.20
Supply Current : ISS ( μ A)
Supply Current : ISS ( μ A)
1.20
4
5
6
0
1
2
3
Input Voltage: V IN (V)
XC6129
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) Supply Current vs. Ambient Temperature
XC6129 (V DF(T)=1.5V)
XC6129 (V DF(T)=2.7V)
V IN=V DF×0.9V (Detect)
V IN=V DF×1.1V (Release)
V IN=V DF×0.9V (Detect)
V IN=V DF×1.1V (Release)
1.50
1.50
1.35
1.20
Detect
1.05
Release
Supply Current : ISS (μ A)
Supply Current : ISS (μ A)
1.35
0.90
0.75
0.60
0.45
1.20
Detect
1.05
Release
0.90
0.75
0.60
0.45
0.30
0.30
0.15
0.15
0.00
0.00
-50
-25
0
25
50
75
100
-50
-25
0
Ambient Temperature : Ta (℃)
25
50
75
100
Ambient Temperature : Ta (℃)
(5) Output Current vs. Input Voltage
XC6129x55A
XC6129 (V DF(T)=5.5V)
V IN=V DF×0.9V (Detect)
V IN=V DF×1.1V (Release)
V RESETB =0.5V (Nch)
25
1.50
Detect
1.05
Release
Output Current : IRBOUT (mA)
1.20
0.90
0.75
0.60
0.45
20
Ta=-40℃
Ta=25℃
Ta=85℃
15
10
5
0.30
0.15
0
0.00
-50
-25
0
25
50
75
0.0
100
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Input Voltage : VIN (V)
Ambient Temperature : Ta (℃)
XC6129C15A
V RESETB =V IN-0.5V (Pch)
0
-1
Output Current : IRBOUT (mA)
Supply Current : ISS (μ A)
1.35
-2
-3
-4
-5
-6
Ta=-40℃
-7
Ta=25℃
-8
Ta=85℃
-9
-10
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Input Voltage : VIN (V)
21/27
XC6129 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(5) Output Current vs. Input Voltage (Continued)
(6) Delay Resistance vs. Ambient Temperature
XC6129x
V IN=6.0V , V CD/MRB =0V
(Type : A,B,E,F)
2.5
Delay Resistance : Rp (MΩ)
2.4
2.3
2.2
2.1
2.0
1.9
1.8
1.7
1.6
1.5
-50
-25
0
25
50
75
100
Ambient Temperature : Ta (℃)
(7) Release Delay Time vs. Ambient Temperature
XC6129x
XC6129
20
2.4
19
Release Delay Time : DR
t (ms)
Delay Resistance : Rn (MΩ)
V IN=V DF×0.9V , V CD/MRB =6.0V
(Type : C,D,E,F)
2.5
2.3
2.2
2.1
2.0
1.9
1.8
1.7
1.6
V IN=V DF×0.9V → V DF×1.1V
Cd=0.01μ F (tDR=13.9ms)
18
17
16
15
14
13
12
11
1.5
10
-50
-25
0
25
50
75
100
-50
-25
Ambient Temperature : Ta (℃)
0
25
50
75
100
Ambient Temperature : Ta (℃)
(8) Detect Delay Time vs. Ambient Temperature
XC6129
XC6129
V IN=V DF×0.9V → V DF×1.1V
Cd=0.1μ F (tDR=139ms)
190
19
180
18
Detect Delay Time : DF
t (ms)
Release Delay Time : DR
t (ms)
200
170
160
150
140
130
120
V IN=V DF×1.1V → V DF×0.9V
Cd=0.01μ F (tDR=17.9ms)
20
17
16
15
14
13
12
11
110
10
100
-50
-25
0
25
50
Ambient Temperature : Ta (℃)
22/27
75
100
-50
-25
0
25
50
Ambient Temperature : Ta (℃)
75
100
XC6129
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(8) Detect Delay Time vs. Ambient Temperature (Continued)
(9) Cd pin MRB High Level Voltage vs. Ambient Temperature
XC6129x
XC6129
Detect Delay Time : DF
t (ms)
190
180
170
160
150
140
130
120
110
MRB HighLevel Threshold Voltage : VMRH (V)
V IN=V DF×1.1V → V DF×0.9V
Cd=0.1μ F (tDR=179ms)
200
4.0
100
V IN=6.0V
3.0
2.0
V IN=4.0V
1.0
V IN=2.0V
0.0
-50
-25
0
25
50
75
100
-50
-25
Ambient Temperature : Ta (℃)
0
(10) Cd pin MRB High Level Voltage vs. Input Voltage
50
75
100
(11) Cd pin MRB Low Level Voltage vs. Ambient Temperature
XC6129x
XC6129
1.5
3.5
MRB LowLevel Threshold Voltage : V MRL (V)
4.0
MRB HighLevel Threshold Voltage : VMRH (V)
25
Ambient Temperature : Ta (℃)
Ta=-40℃
Ta=25℃
3.0
Ta=85℃
2.5
2.0
1.5
1.0
0.5
0.0
V IN=6.0V
1.2
0.9
V IN=4.0V
0.6
0.3
V IN=2.0V
0.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Input Voltage : V IN (V)
-50
-25
0
25
50
75
100
Ambient Temperature : Ta (℃)
(12) Cd pin MRB Low Level Voltage vs. Input Voltage
XC6129
MRB HighLevel Threshold Voltage : VMRH (V)
1.50
1.35
Ta=-40℃
1.20
Ta=25℃
1.05
Ta=85℃
0.90
0.75
0.60
0.45
0.30
0.15
0.00
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Input Voltage : V IN (V)
23/27
XC6129 Series
■PACKAGING INFORMATION
For the latest package information go to, www.torexsemi.com/technical-support/packages
PACKAGE
OUTLINE / LAND PATTERN
THERMAL CHARACTERISTICS
SSOT-24
SSOT-24 PKG
SSOT-24 Power Dissipation
USPN-4
USPN-4 PKG
USPN-4 Power Dissipation
USPQ-4B05
USPQ-4B05 PKG
USPQ-4B05 Power Dissipation
24/27
XC6129
Series
■MARKING RULE
●SSOT-24
(with underline mark)
Indicates mark (1) product series. Indicates the detect voltage range and output type.
Mark (1)-1 (XC6129C*****-G is underline mark specification.)
MARK
OUTPUT
DETECT VOLTAGE
TYPE
PRODUCT SERIES
A
B
C
D
E
F
G
J
L
A
B
C
D
E
F
G
J
L
XC6129C15A**-G to XC6129C55A**-G
XC6129C15B**-G to XC6129C55B**-G
XC6129C15C**-G to XC6129C55C**-G
XC6129C15D**-G to XC6129C55D**-G
XC6129C15E**-G to XC6129C55E**-G
XC6129C15F**-G to XC6129C55F**-G
XC6129C15G**-G to XC6129C55G**-G
XC6129C15J**-G to XC6129C55J**-G
XC6129C15L**-G to XC6129C55L**-G
XC6129C16A**-G to XC6129C54A**-G
XC6129C16B**-G to XC6129C54B**-G
XC6129C16C**-G to XC6129C54C**-G
XC6129C16D**-G to XC6129C54D**-G
XC6129C16E**-G to XC6129C54E**-G
XC6129C16F**-G to XC6129C54F**-G
XC6129C16G**-G to XC6129C54G**-G
XC6129C16J**-G to XC6129C54J**-G
XC6129C16L**-G to XC6129C54L**-G
RANGE (V)
●USPQ-4B05
(with underline mark)
0
1
2
3
4
5
6
8
A
C
D
E
F
H
K
L
N
R
Mark (1)-2
●SSOT-24
(with overline mark)
MARK
Odd number
CMOS
Even number
(XC6129N*****-G is overline mark specification.)
OUTPUT
DETECT VOLTAGE
TYPE
PRODUCT SERIES
0
A
XC6129N15A**-G ~ XC6129N55A**-G
2
C
XC6129N15C**-G ~ XC6129N55C**-G
4
E
XC6129N15E**-G ~ XC6129N55E**-G
G
XC6129N15G**-G ~ XC6129N55G**-G
J
XC6129N15J**-G ~ XC6129N55J**-G
RANGE (V)
Odd number
6
8
L
XC6129N15L**-G ~ XC6129N55L**-G
C
A
XC6129N16A**-G ~ XC6129N54A**-G
E
C
XC6129N16C**-G ~ XC6129N54C**-G
E
XC6129N16E**-G ~ XC6129N54E**-G
A
●USPQ-4B05
(with overline mark)
N-ch
H
Even number
L
G
XC6129N16G**-G ~ XC6129N54G**-G
N
J
XC6129N16J**-G ~ XC6129N54J**-G
R
L
XC6129N16L**-G ~ XC6129N54L**-G
② represents detect voltage
MARK
DETECT VOLTEGE(V)
MARK
DETECT VOLTEGE(V)
MARK
DETECT VOLTEGE(V)
A
1.5
1.6
K
2.9
3.0
T
4.3
4.4
B
1.7
1.8
L
3.1
3.2
U
4.5
4.6
C
1.9
2.0
M
3.3
3.4
V
4.7
4.8
D
2.1
2.2
N
3.5
3.6
X
4.9
5.0
E
2.3
2.4
P
3.7
3.8
Y
5.1
5.2
F
2.5
2.6
R
3.9
4.0
Z
5.3
5.4
H
2.7
2.8
S
4.1
4.2
0
5.5
-
③,④ represents production lot number
01~09, 0A~0Z, 11~9Z, A1~A9, AA~AZ, B1~ZZ repeated.
(G,I,J,O,Q,W excluded)
* No character inversion used.
25/27
XC6129 Series
■MARKING RULE (Continued)
●USPN-4
① represents detect voltage
MARK
OUTPUT
K
CMOS
L
N-ch
PRODUCT SERIES
XC6129C15A**-G
~ XC6129C55A**XC6129C*****-G
G
XC6129N*****-G
② represents detect voltage range and product series
MARK
DETECT VOLTAGE
RANGE (V)
TYPE
PRODUCT SERIES
0
1
A
XC6129*15A**-G ~ XC6129*55A**-G
B(*)
XC6129*15B**-G ~ XC6129*55B**-G
2
C
XC6129*15C**-G ~ XC6129*55C**-G
3
4
Odd number
XC6129*15D**-G ~ XC6129*55D**-G
E
XC6129*15E**-G ~ XC6129*55E**-G
(*)
5
F
6
G
XC6129*15F**-G ~ XC6129*55F**-G
XC6129*15G**-G ~ XC6129*55G**-G
8
J
XC6129*15J**-G ~ XC6129*55J**-G
A
L
XC6129*15L**-G ~ XC6129*55L**-G
C
A
XC6129*16A**-G ~ XC6129*54A**-G
D
B(*)
XC6129*16B**-G ~ XC6129*54B**-G
E
C
XC6129*16C**-G ~ XC6129*54C**-G
D
XC6129*16D**-G ~ XC6129*54D**-G
E
XC6129*16E**-G ~ XC6129*54E**-G
(*)
F
H
(*)
D
(*)
Even number
(*)
K
F
L
G
XC6129*16F**-G ~ XC6129*54F**-G
XC6129*16G**-G ~ XC6129*54G**-G
N
J
XC6129*16J**-G ~ XC6129*54J**-G
R
L
XC6129*16L**-G ~ XC6129*54L**-G
Only supported with CMOS output.
③ represents detect voltage
MARK
DETECT
VOLTEGE(V)
MARK
DETECT
VOLTEGE(V)
MARK
A
1.5
1.6
K
2.9
3.0
T
4.3
4.4
B
1.7
1.8
L
3.1
3.2
U
4.5
4.6
C
1.9
2.0
M
3.3
3.4
V
4.7
4.8
D
2.1
2.2
N
3.5
3.6
X
4.9
5.0
E
2.3
2.4
P
3.7
3.8
Y
5.1
5.2
F
2.5
2.6
R
3.9
4.0
Z
5.3
5.4
H
2.7
2.8
S
4.1
4.2
0
5.5
-
④,⑤ represents production lot number
01~09, 0A~0Z, 11~9Z, A1~A9, AA~AZ, B1~ZZ repeated.
(G,I,J,O,Q,W excluded)
* No character inversion used.
26/27
DETECT
VOLTEGE(V)
XC6129
Series
1.
The product and product specifications contained herein are subject to change without notice to
improve performance characteristics. Consult us, or our representatives before use, to confirm that
the information in this datasheet is up to date.
2.
The information in this datasheet is intended to illustrate the operation and characteristics of our
products. We neither make warranties or representations with respect to the accuracy or
completeness of the information contained in this datasheet nor grant any license to any intellectual
property rights of ours or any third party concerning with the information in this datasheet.
3.
Applicable export control laws and regulations should be complied and the procedures required by
such laws and regulations should also be followed, when the product or any information contained in
this datasheet is exported.
4.
The product is neither intended nor warranted for use in equipment of systems which require
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss
of human life, bodily injury, serious property damage including but not limited to devices or equipment
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and
other transportation industry and 5) safety devices and safety equipment to control combustions and
explosions. Do not use the product for the above use unless agreed by us in writing in advance.
5.
Although we make continuous efforts to improve the quality and reliability of our products;
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal
injury and/or property damage resulting from such failure, customers are required to incorporate
adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention
features.
6.
Our products are not designed to be Radiation-resistant.
7.
Please use the product listed in this datasheet within the specified ranges.
8.
We assume no responsibility for damage or loss due to abnormal use.
9.
All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex
Semiconductor Ltd in writing in advance.
TOREX SEMICONDUCTOR LTD.
27/27