XC6604 Series
ETR03071-002
0.5V Low Input, 1A High Speed LDO Regulator with Adjustable Current Limit
■GENERAL DESCRIPTION
The XC6604 series is a low voltage input (0.5V) operation and provides high accuracy ±15mV / ±20mV and can supply large
current efficiently due to its ultra low on-resistance even at low output voltages.
The series is ideally suited to the applications which require high current in low input/output voltages and consists of a N-ch
driver transistor, a voltage reference, an error amplifier, a current limiter, a fold-back circuit, a thermal shutdown (TSD) circuit, an
under voltage lock out (UVLO) circuit, a soft-start circuit and a phase compensation circuit.
Output voltage is selectable in 0.1V increments within a range of 0.5V to 1.8V using laser trimming technology and ceramic
capacitors can be used for the output stabilization capacitor (CL). When the output current reaches the current limit, the output
voltage drops as well as the output current is decreased as a function of the foldback circuit. The current limit can be
adjustable with connecting a resistor to the ILIM pin.
The CE function enables the output to be turned off and the series to be put in stand-by mode resulting in greatly reduced
power consumption. At the time of entering the stand-by mode, the series enables the electric charge at the output capacitor
(CL) to be discharged via the internal switch. As a result the VOUT pin quickly returns to the VSS level.
The CE pull-down function keeps the IC to be in stand-by mode even if the CE pin is left open.
■APPLICATIONS
●
Smart phones / Mobile phones
●
Digital still cameras / Camcorders
●
Note PCs / Tablet PCs
●
E-book Readers / Electronic dictionaries
●
Wireless LAN
■FEATURES
Maximum Output Current
:
ON Resistance
:
1A (1.3A Limit)
0.15Ω@VBIAS=3.6V, VOUT=1.2V
Bias Voltage Range
:
2.5V~6.0V
Input Voltage Range
:
0.5V~3.0V
Output Voltage Range
:
0.5V~1.8V (0.1V increments)
Output Voltage Accuracy
:
±0.015V@VOUT<1.2V
Ripple Rejection
:
±0.020V@VOUT≧1.2V
60dB@f=1kHz (VBIAS_PSRR)
75dB@f=1kHz (VIN_PSRR)
Low Power Consumption
:
100μA (VBIAS), 6.5μA (VIN)@VOUT=1.2V
Stand-by Current
:
0.01μA (VBIAS), 0.01μA (VIN)
Under-voltage Lockout
:
1.8V (VBIAS), 0.4V (VIN)
Thermal Shutdown
:
150℃@detect, 125℃@release
Protection Circuit
:
Foldback Current Limit, TSD, UVLO
Function
:
Soft-start
CE Pull-Down (Active High)
CL High Speed Discharge
:
-40℃~+85℃
Output Capacitor
:
Ceramic Capacitor Compatible (2.2μF)
Packages
:
USP-6C, SOT-26W
Environmentally Friendly
:
EU RoHS Compliant, Pb Free
■TYPICAL PERFORMANCE
CHARACTERISTICS
XC6604x121MR-G
VBIAS=VCE=3.6V, VIN=1.5V
CBIAS=CIN=1.0μF, CL =2.2μF, Ta=25℃
1.4
Output Voltage: VOUT(V)
■TYPICAL APPLICATION CIRCUIT
Operating Ambient Temperature
1.2
1
0.8
0.6
RLIM2=0kΩ
RLIM2=22kΩ
RLIM2=56kΩ
RLIM2=120kΩ
0.4
0.2
0
0.0
0.5
1.0
1.5
Output Current: I OUT(A)
1/30
XC6604 Series
■BLOCK DIAGRAMS
Type A
Type B
■PRODUCT CLASSIFICATION
●Ordering Information
XC6604①②③④⑤⑥-⑦
DESIGNATOR
ITEM
SYMBOL
①
Type
A
B
Refer to Selection Guide
②③
Output Voltage
05~18
e.g. 1.2V → ②=1, ③=2
④
Output Voltage Accuracy
1
⑤⑥-⑦
(*1)
(*1)
Packages (Order Unit)
DESCRIPTION
±0.015V (VOUT<1.2V), ±0.020V (VOUT≧1.2V)
ER-G
USP-6C (3,000/Reel)
MR-G
SOT-26W (3,000/Reel)
The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.
●Selection Guide
TYPE
SOFT-START
CURRENT
LIMITTER
THERMAL
SHUTDOWN
UVLO
CE PULL-DOWN
RESISTOR
CL AUTO DISCHARGE
A
Yes
Adjustable
Yes
Yes
Yes
Yes
B
No
Adjustable
Yes
Yes
Yes
Yes
2/30
XC6604
Series
■PIN CONFIGURATION
*The dissipation pad for the USP-6C package should be solder-plated in recommended mount pattern and metal masking so as to enhance
mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the VSS (No. 2) pin.
■PIN ASSIGNMENT
PIN NUMBER
PIN NAME
FUNCTIONS
USP-6C
SOT-26W
1
6
VBIAS
2
5
VSS
Ground
3
4
VIN
Driver Transistor Input
4
3
VOUT
5
2
ILIM
Current Limit Resistance Connection
6
1
CE
ON/OFF Control
Power Supply Input
Output
■FUNCTION CHART
PIN NAME
CE
SIGNAL
STATUS
L
Stand-by
H
Active
OPEN
Stand-by
3/30
XC6604 Series
■ABSOLUTE MAXIMUM RATINGS
Ta=25℃
PARAMETER
SYMBOL
RATINGS
UNITS
Bias Voltage
VBIAS
-0.3~+6.5
V
Input Voltage
VIN
-0.3~+6.5
V
(*1)
Output Current
IOUT
Output Voltage (*2)
VOUT
CE Input Voltage
VCE
-0.3~+6.5
V
ILIM
-0.3~VIN+0.3 or +6.5
V
Pd
120
1000 (PCB mounted) (*4)
250
600 (PCB mounted) (*4)
mW
ILIM Pin Voltage
(*3)
USP-6C
Power Dissipation
SOT-26W
1.65
-0.3~VBIAS+0.3 or +6.5
-0.3~VIN+0.3 or +6.5
A
V
Operating Ambient Temperature
Topr
-40~+85
℃
Storage Temperature
Tstg
-55~+125
℃
* All voltages are described based on the VSS pin.
(*1)
IOUT≦Pd/(VIN-VOUT)
(*2)
The maximum value should be either VBIAS+0.3, VIN+0.3 or +6.5 in the lowest.
(*3)
The maximum value should be either VIN+0.3 or +6.5 in the lowest.
(*4)
The power dissipation measured with the test board condition is listed as reference data.
Please refer to page 26~27 for details.
4/30
XC6604
Series
■ELECTRICAL CHARACTERISTICS
Ta=25℃
PARAMETER
SYMBOL
Bias Voltage
Input Voltage
VBIAS
VIN
Output Voltage
Maximum Output Current
VOUT(E)
(*3)
(*1)
IOUTMAX
Load Regulation
Dropout Voltage
(*6)
Supply Current 1
ΔVOUT
(*4)
Vdif
IBIAS
Supply Current 2
IIN
Stand-by Current 1
Stand-by Current 2
IBIAS_STB
IIN_STB
Bias Line Regulation
ΔVOUT/
(ΔVBIAS・VOUT)
Input Line Regulation
ΔVOUT/
(ΔVIN・VOUT)
Bias UVLO Voltage
Bias UVLO Release Voltage
Input UVLO Voltage
Input UVLO Release Voltage
Output Voltage
Temperature Characteristics
VBIAS_UVLOD
VBIAS_UVLOR
VIN_UVLOD
VIN_UVLOR
ΔVOUT/
(ΔTopr・VOUT)
Bias Ripple Rejection Ratio
VBIAS_PSRR
Input Ripple Rejection Ratio
VIN_PSRR
(*3)
Current Limit
Adjustable Current
(*8)
Limit Accuracy
Short - Circuit Current
Thermal Shutdown
Detect Temperature
Thermal Shutdown
Release Temperature
Thermal Shutdown
Hysteresis Width
CL Auto-Discharge Resistance
CE "H" Level Voltage
CE "L" Level Voltage
CE "H" Level Current
CE "L" Level Current
(*7)
Soft-Start Time (Type A)
Output Rise Time
(*7)
(Type B)
B
B
ILIM
CONDITIONS
VOUT(T)<1.2V
VOUT(T)≧1.2V
VOUT(T)<1.2V, VBIAS=VCE=2.5V
VOUT(T)≧1.2V, VBIAS=VCE=VOUT(T)+1.3V
1mA≦IOUT≦1A
IOUT=1A
IOUT=0A
VOUT(T)<1.2V
IOUT=0A
VOUT(T)≧1.2V
VBIAS=6.0V, VIN=3.0V, VCE=VSS
VBIAS=6.0V, VIN=3.0V, VCE=VSS
IOUT=100mA
VOUT(T)<1.2V, VCE=VBIAS, 2.5V≦VBIAS≦6.0V
VOUT(T)≧1.2V, VCE=VBIAS, VOUT(T)+1.3V≦VBIAS≦6.0V
VOUT(T)+0.1V≦VIN≦3.0V
IOUT=100mA
-40℃≦Topr≦85℃
VBIAS=VCE=3.6VDC+0.2Vp-pAC
IOUT=100mA, f=1kHz, CBIAS=OPEN
VIN=VOUT(T)+0.3VDC+0.2Vp-pAC
IOUT=100mA, f=1kHz, CIN=OPEN
VOUT={VOUT@IOUT=1A}×0.95
TYP.
MAX.
UNITS
CIRCUIT
2.5
0.5
-0.015
-0.020
-
6.0
3.0
+0.015
+0.020
V
V
①
①
V
①
-
A
①
68
mV
mV
μA
①
①
②
μA
②
μA
μA
②
②
VOUT(T)
1.0
-
76
0.1
3.9
-
37
(*2)
E-1
100
0.01
0.01
(*5)
143
8.7
14.2
0.10
0.15
-
0.01
0.10
%/V
①
-
0.01
0.10
%/V
①
VSS
2.5
VSS
0.5
-
1.28
6.0
0.23
3.0
V
V
V
V
①
①
①
①
-
±30
-
ppm/℃
①
-
60
-
dB
③
-
75
-
dB
③
1.0
1.3
-
A
①
(-35)
-
(35)
%
①
ILIM_ADJ
-
ISHORT
VOUT=VSS
-
90
-
mA
①
TTSD
Junction Temperature
-
150
-
℃
①
TTSR
Junction Temperature
-
125
-
℃
①
TTSD-TTSR
Junction Temperature
-
25
-
℃
①
RDCHG
VCEH
VCEL
ICEH
ICEL
tSS
VCE=VSS, VOUT=VOUT(T)
130
0.65
VSS
3.2
-0.1
225
190
6.0
430
255
6.00
0.41
10.6
0.1
600
Ω
V
V
μA
μA
μs
①
④
④
④
④
⑤
tON
VCE=0V→3.6V, tr=5μs
μs
⑤
mA
⑤
VBIAS=VCE=6.0V
VBIAS=6.0V, VCE=VSS
VCE=0V→3.6V, tr=5μs
CL=2.2μF
Inrush Current (Type A)
MIN.
IRUSH
CL=10μF
-
-
110
VOUT(T)≦1.2V
-
-
70
VOUT(T)>1.2V
-
-
85
VOUT(T)≦1.2V
-
-
155
VOUT(T)>1.2V
-
-
215
NOTE:
Unless otherwise stated, VBIAS=VCE=3.6V, VIN=VOUT(T)+0.3V, IOUT=1mA , CBIAS=CIN=1.0μF, CL=2.2μF, ILIM Pin=VSS
(*1)
VOUT(E) = Effective output voltage
(*2)
VOUT(T) = Nominal output voltage
(*3)
Mount conditions affect heat dissipation. Maximum output current is not guaranteed when TSD starts to operate earlier.
(*4)
Vdif={VIN1-VOUT1}
VIN1 is an input voltage when VOUT1 appears at the output during decreasing input voltage gradually.
VOUT1 is a voltage equal to 98% of the output voltage where VBIAS=VCE=3.6 and VIN=VOUT(T)+0.3V at IOUT=1A is input to the VIN pin.
(*5)
Please refer to the table E-1 named DROPOUT VOLTAGE CHART
(*6)
Supply current 1 (IBIAS) may be fluctuated because that some bias current flows into the output.
(*7)
A time between the CE input goes over the CE H threshold and the output reaches VOUT(E)x0.9V.
(*8)
Design value
5/30
XC6604 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●Dropout Voltage Chart
E-1
NOMINAL
DROPOUT VOLTAGE (mV)
OUTPUT
VBIAS=3.0V
VOLTAGE
VGS
VBIAS=3.3V
Vdif(mV)
VGS
VOUT(T)
(V)
TYP.
MAX.
(V)
0.5
2.5
152
218
2.8
0.6
2.4
155
223
0.7
2.3
0.8
2.2
2.7
VBIAS=3.6V
Vdif(mV)
TYP.
146
MAX.
213
2.6
158
228
2.5
VGS
(V)
218
155
223
TYP.
MAX.
VGS
(V)
VBIAS=5.0V
Vdif(mV)
TYP.
MAX.
VGS
(V)
3.1
3.7
4.5
3.0
3.6
4.4
2.9
152
VBIAS=4.2V
Vdif(mV)
146
213
3.5
140
208
3.4
4.2
2.7
3.3
4.1
2.6
3.2
4.0
3.1
3.9
3.0
3.8
0.9
2.1
162
233
2.4
1.0
2.0
165
238
2.3
1.1
1.9
167
243
2.2
158
228
2.5
1.2
1.8
169
253
2.1
162
233
2.4
1.3
1.7
179
268
2.0
165
238
2.3
1.4
1.6
189
283
1.9
167
243
2.2
158
228
2.8
3.6
1.5
1.5
202
303
1.8
169
253
2.1
162
233
2.7
3.5
1.6
1.4
213
328
1.7
179
268
2.0
165
238
2.6
3.4
1.7
1.3
225
373
1.6
189
283
1.9
167
243
2.5
152
218
3.3
1.8
1.2
255
423
1.5
202
303
1.8
169
253
2.4
155
223
3.2
218
155
223
2.9
* Dropout voltage is defined as the VGS(=VBIAS–VOUT(E)) of the driver transistor.
6/30
146
213
TYP.
MAX.
137
206
140
208
146
213
4.3
2.8
152
Vdif(mV)
3.7
XC6604
Series
■TEST CIRCUITS
CIRCUIT①
CIRCUIT②
CIRCUIT③
CIRCUIT④
7/30
XC6604 Series
■TEST CIRCUITS (Continued)
CIRCUIT⑤
XC6604 Series, Type A
XC6604 Series, Type B
8/30
XC6604
Series
■OPERATIONAL DESCRIPTION
The voltage divided by resistors R1 and R2 is compared with the internal reference voltage by the error amplifier.
by the subsequent output signal.
The VOUT pin is then driven
The output voltage at the VOUT pin is controlled and stabilized by a system of negative feedback.
VBIAS pin is power supply pin for output voltage control circuit, protection circuit and CE circuit.
Also, the VBIAS pin supplies some current as
output current. VIN pin is connected to a driver transistor and provides output current.
In order to obtain high efficient output current through low on-resistance, please take enough VGS (=VBIAS – VOUT(E)) of the driver transistor.
Figure1: XC6604 Series, Type A
The XC6604 series includes a combination of a fixed current limiter circuit and a foldback short-circuit protection. When the output current
reaches the current limit, the output voltage drops and this operation makes the output current foldback to be decreased.
The current limit can be set freely with connecting a resistor to the ILIM pin.
Please note about the foldback circuit characteristics below;
●Output voltage may not rise when the output voltage is lower than 0V at the IC operation start.
●Current over the foldback current limit will not flow at the IC operation start.
●Please use type A (with soft-start time) to prevent from inrush current, because the circuit may not response to a drastic current change such
as the inrush current.
When the ILIM pin is left open, driver transistor will be forced off.
Current Limit is calculated by the following formulas.
ILIM = VOUT(T) / ( RLIM1 + RLIM2 ) × 79645.7 [A]
-6
RLIM1 = VOUT(T) / ( 16.3 × 10 ) [Ω]
ILIM: Current Limit
VOUT(T): Nominal Output Voltage
RLIM1: Internal Current Limit Resistance
RLIM2: External Current Limit Resistance
Figure 2: XC6604 Series, Range of adjustable current limit
OUTPUT VOLTAGE RANGE
ADJUSTABLE CURRENT LIMIT
VOUT(T)
ILIM
0.5V~1.8V
0.5A~1.3A
XC6604 Series, RLIM2 Connecting
9/30
XC6604 Series
■OPERATIONAL DESCRIPTION (Continued)
With the XC6604 (Type A), the inrush current (IRUSH) from VIN to VOUT for charging CL at start-up can be reduced and makes the VIN stable.
As for the XC6604, the soft-start time in the type A is optimized internally. On the other hand, the type B of the XC6604 does not have the
soft-start time function.
When the junction temperature of the built-in driver transistor reaches the temperature limit, the thermal shutdown circuit operates and the
driver transistor will be set to OFF. The IC resumes its operation when the thermal shutdown function is released and the IC’s operation is
automatically restored because the junction temperature drops to the level of the thermal shutdown release temperature.
When the VBIAS pin and VIN pin voltage drops, the output driver transistor is set to OFF by UVLO function to prevent false output caused by
unstable operation of the internal circuitry. When the VBIAS pin voltage and the VIN pin voltage rises at release voltage, the UVLO function is
released. The driver transistor is turned ON and start to operate voltage regulation.
The XC6604 internal circuitry can be shutdown via the signal to the CE pin. In shutdown mode with CE low level voltage, the VOUT pin will be
pulled down to the VSS level via CL discharge resistance (RDCHG) placed in parallel to R1 and R2.
The CE pin has pull-down circuitry so that CE input current flows during IC operation. If the CE pin voltage is taken from VBIAS pin or VSS pin
then logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal
circuitry when medium voltage is input.
XC6604 series can quickly discharge the electric charge at the output capacitor (CL) via the internal transistor located between the VOUT pin
and the VSS pin when a low signal to the CE pin which enables a whole IC circuit put into OFF state. When the IC is disabled, electric charge at
the output capacitor (CL) is quickly discharged so that it could avoids malfunction. Discharge time of the output capacitor (CL) is set by the CL
auto-discharge resistance (RDCHG) and the output capacitor (CL). By setting time constant of a CL auto-discharge resistance value (RDCHG) and
an output capacitor value (CL) as τ(τ= CL x RDCHG), the output voltage after discharge via the internal transistor is calculated by the following
formula. Please also note RDCHG is depended on VBIAS. When VBIAS is larger, RDCHG is smaller.
-t/τ
V = VOUT(E)×e
or t=τln(VOUT(E) / V)
V: Output voltage during discharge
VOUT(E): Initial Output voltage
t: Discharge time
τ: CL×RDCHG
With the XC6604 series, a stable output voltage is achievable even if used with low ESR capacitors, as a phase compensation circuit is built-in.
The output capacitor (CL) should be connected as close to VOUT pin and VSS pin to obtain stable phase compensation. Values required for the
phase compensation are as the table below.
For a stable power input, please connect a bias capacitor (CBIAS) between the VBIAS pin and the VSS pin. Also, please connect an input capacitor
(CIN) between the VIN pin and the VSS pin. In order to ensure the stable phase compensation while avoiding run-out of values, please use the
capacitor (CBIAS, CIN and CL) which does not depend on bias or temperature too much. The table below (Figure 3) shows recommended values
of CBIAS, CIN and CL.
Figure 3: Recommended Values of CBIAS, CIN and CL (MIN.)
OUTPUT VOLTAGE
OUTPUT
BIAS CAPACITOR
INPUT CAPACITOR
VOUT(T)
CBIAS
CIN
CL
0.5V~1.8V
1.0μF
1.0μF
2.2μF
RANGE
10/30
CAPACITOR
XC6604
Series
■NOTES ON USE
1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please keep
the resistance low for the VBIAS, VIN and VSS wiring in particular.
3. Please wire the CBIAS, CIN and CL as close to the IC as possible.
4. Capacitances of these capacitors (CBIAS, CIN, CL) are decreased by the influences of bias voltage and ambient temperature. Care shall be
taken for capacitor selection to ensure stability of phase compensation from the point of ESR influence.
5. When it is used in a quite small input / output dropout voltage, output may go into unstable operation.
it in production.
Please test it thoroughly before using
6. Torex places an importance on improving our products and their reliability.
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.
11/30
XC6604 Series
■TYPICAL PERFORMANCE CHARACTERISTICS
* Unless otherwise stated, VBIAS=VCE=3.6V, VIN=VOUT(T)+0.3V, IOUT=1mA , ILIM Pin= VSS, CBIAS=CIN=1.0μF, CL=2.2μF, Ta=25℃
(1) Output Voltage vs. Output Current
XC6604x051MR-G
XC6604x051MR-G
0.1
Output Voltage: VOUT(V)
Output Voltage: VOUT(V)
0.6
0.5
0.4
0.3
0.2
RLIM2=0kΩ
RLIM2=9.1kΩ
RLIM2=22kΩ
RLIM2=47kΩ
0.1
0
0.08
0.06
0.04
RLIM2=0kΩ
RLIM2=9.1kΩ
RLIM2=22kΩ
RLIM2=47kΩ
0.02
0
0
0.5
1
1.5
2
0
0.1
Output Current: I OUT(A)
XC6604x121MR-G
Output Voltage: VOUT(V)
Output Voltage: VOUT(V)
0.4
0.5
0.3
1.2
1
0.8
0.6
RLIM2=0kΩ
RLIM2=22kΩ
RLIM2=56kΩ
RLIM2=120kΩ
0.4
0.2
0
0.25
0.2
0.15
RLIM2=0kΩ
0.1
RLIM2=22kΩ
RLIM2=56kΩ
RLIM2=120kΩ
0.05
0
0
0.5
1
1.5
2
0
0.1
Output Current: I OUT(A)
0.2
0.3
0.4
0.5
Output Current: I OUT(A)
XC6604x181MR-G
XC6604x181MR-G
2
0.5
Output Voltage: VOUT(V)
Output Voltage: VOUT(V)
0.3
XC6604x121MR-G
1.4
1.5
1
RLIM2=0kΩ
RLIM2=33kΩ
0.5
RLIM2=82kΩ
RLIM2=180kΩ
0
0.4
0.3
0.2
RLIM2=0kΩ
RLIM2=33kΩ
0.1
RLIM2=82kΩ
RLIM2=180kΩ
0
0
0.5
1
1.5
2
Output Current: I OUT(A)
* Mount conditions affect heat dissipation.
Thermal shutdown
may start to operate before reaching the current limit.
12/30
0.2
Output Current: I OUT(A)
0
0.1
0.2
0.3
0.4
0.5
Output Current: I OUT(A)
* If start-up current is required over the current limit, IC operation will not start.
Please use the current within the range of use.
XC6604
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, VBIAS=VCE=3.6V, VIN=VOUT(T)+0.3V, IOUT=1mA, ILIM Pin= VSS, CBIAS=CIN=1.0μF, CL=2.2μF, Ta=25℃
(2) Limit Current vs. Adjustable Resistance
(3) Output Voltage vs. Bias Voltage
XC6604xxx1xR-G
XC6604x051xR-G
1.2
VOUT(T)=0.5V
1
VOUT(T)=1.8V
0.6
Output Voltage: VOUT(V)
VOUT(T)=1.2V
0.8
0.6
0.4
0.2
0
50
100
150
0.5
0.4
IOUT=0mA
IOUT=1mA
0.3
IOUT=100mA
0.2
0.1
0.0
200
0
Adjustable Resistance: RLIM2 (kΩ)
2
4
6
Bias Voltage: VBIAS(V)
XC6604x121xR-G
1.4
Output Voltage: VOUT(V)
0
1.2
1.0
IOUT=0mA
IOUT=1mA
0.8
IOUT=100mA
0.6
0.4
0.2
0.0
0
2
4
Bias Voltage: VBIAS(V)
6
XC6604x181xR-G
2.0
Output Voltage: VOUT(V)
Limit Current: I LIM(A)
1.4
1.5
IOUT=0mA
IOUT=1mA
1.0
IOUT=100mA
0.5
0.0
0
2
4
Bias Voltage: VBIAS(V)
6
13/30
XC6604 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, VBIAS=VCE=3.6V, VIN=VOUT(T)+0.3V, IOUT=1mA, ILIM Pin=VSS, CBIAS=CIN=1.0μF, CL=2.2μF, Ta=25℃
(4) Output Voltage vs. Input Voltage
(5) Dropout Voltage vs. Output Current
XC6604x051xR-G
XC6604x121MR-G
250
Dropout Voltage: Vdif(mV)
Output Voltage: VOUT(V)
0.6
0.5
0.4
IOUT=0mA
IOUT=1mA
0.3
IOUT=100mA
0.2
0.1
0.0
0
1
2
VBIAS=3.0V
200
VBIAS=3.3V
VBIAS=3.6V
VBIAS=4.2V
150
VBIAS=5.0V
100
50
3
0
0
Input Voltage: VIN(V)
200
400
600
800
1000
Output Current: I OUT(mA)
XC6604x121xR-G
XC6604xxx1MR-G
IOUT=1A
1.2
350
1.0
0.8
IOUT=0mA
IOUT=1mA
0.6
IOUT=100mA
0.4
0.2
0.0
0
1
2
3
Dropout Voltage: Vdif(mV)
Output Voltage: VOUT(V)
1.4
Ta=25℃
250
Ta=85℃
200
150
100
50
0
Input Voltage: VIN(V)
1
2
3
4
5
6
VGS(*1)(V)
XC6604x181xR-G
(*1)
2.0
Output Voltage: VOUT(V)
Ta=-40℃
300
VGS is a Gate –Source voltage of the driver transistor that is defined as
the value of VBIAS - VOUT(E).
A value of the dropout voltage is determined by the value of the VGS.
1.5
1.0
IOUT=0mA
IOUT=1mA
0.5
IOUT=100mA
0.0
0
1
2
Input Voltage: VIN(V)
14/30
3
XC6604
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, VBIAS=VCE=3.6V, VIN=VOUT(T)+0.3V, IOUT=1mA, ILIM Pin=VSS, CBIAS=CIN=1.0μF, CL=2.2μF, Ta=25℃
(6) Supply Bias Current vs. Bias Voltage
(7) Supply Input Current vs. Input Voltage
XC6604x051xR-G
CIN=CBIAS=CL =OPEN
CIN=CBIAS=CL =OPEN
VCE=VBIAS, IOUT=0mA
IO UT=0mA
160
Supply Input Current: I IN(μA)
Supply Bias Current: I BIAS(μA)
XC6604x051xR-G
140
120
100
80
60
Ta=-40℃
40
20
Ta=25℃
Ta=85℃
0
0
1
2
3
4
5
20
Ta=-40℃
Ta=25℃
15
Ta=85℃
10
5
0
0
6
0.5
1
1.5
2
XC6604x121xR-G
140
120
100
80
60
Ta=-40℃
40
20
Ta=25℃
Ta=85℃
0
2
3
4
5
CIN=CBIAS=CL =OPEN
IO UT=0mA
Supply Input Current: I IN(μA)
Supply Bias Current: I BIAS(μA)
160
1
20
Ta=-40℃
Ta=25℃
15
Ta=85℃
10
5
0
0
6
0.5
2.5
3
CIN=CBIAS=CL =OPEN
CIN=CBIAS=CL =OPEN
IO UT=0mA
140
120
100
80
60
Ta=-40℃
40
20
Ta=25℃
Ta=85℃
0
3
2
VCE=VBIAS, IOUT=0mA,
160
2
1.5
XC6604x181xR-G
Supply Input Current: I IN(μA)
Supply Bias Current: I BIAS(μA)
XC6604x181xR-G
1
1
Input Voltage: VIN(V)
Bias Voltage: VBIAS(V)
0
3
XC6604x121xR-G
CIN=CBIAS=CL =OPEN
VCE=VBIAS, IOUT=0mA
0
2.5
Input Voltage: VIN(V)
Bias Voltage: VBIAS(V)
4
Bias Voltage: VBIAS(V)
5
6
20
15
10
Ta=-40℃
5
Ta=25℃
Ta=85℃
0
0
0.5
1
1.5
2
2.5
3
Input Voltage: VIN(V)
15/30
XC6604 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, VBIAS=VCE=3.6V, VIN=VOUT(T)+0.3V, IOUT=1mA, ILIM Pin=VSS, CBIAS=CIN=1.0μF, CL=2.2μF, Ta=25℃
(8) Output Voltage vs. Ambient Temperature
(9) Supply Bias Current vs. Ambient Temperature
XC6604x051xR-G
XC6604x051xR-G
CIN=CBIAS=CL =OPEN
IO UT=0mA
Supply Bias Current: I BIAs(μA)
Output Voltage: VOUT(V)
0.52
IOUT=1mA
0.51
IOUT=100mA
0.5
0.49
0.48
-50
0
50
100
160
140
120
100
80
60
40
-50
0
50
100
Ambient Temperature: Ta(℃)
Ambient Temperature: Ta(℃)
XC6604x121xR-G
XC6604x121xR-G
CIN=CBIAS=CL =OPEN
IO UT=0mA
Supply Bias Current: I BIAs(μA)
Output Voltage: VOUT(V)
1.22
IOUT=1mA
1.21
IOUT=100mA
1.2
1.19
1.18
-50
0
50
100
160
140
120
100
80
60
40
-50
0
50
100
Ambient Temperature: Ta(℃)
Ambient Temperature: Ta(℃)
XC6604x181xR-G
XC6604x181xR-G
CIN=CBIAS= CL =OPEN
IO UT=0mA
Supply Bias Current: I BIAs(μA)
Output Voltage: VOUT(V)
1.82
IOUT=1mA
1.81
IOUT=100mA
1.8
1.79
1.78
-50
0
50
Ambient Temperature: Ta(℃)
16/30
100
160
140
120
100
80
60
40
-50
0
50
Ambient Temperature: Ta(℃)
100
XC6604
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, VBIAS=VCE=3.6V, VIN=VOUT(T)+0.3V, IOUT=1mA, ILIM Pin=VSS, CBIAS=CIN=1.0μF, CL=2.2μF, Ta=25℃
(10) Supply Input Current vs. Ambient Temperature
XC6604x051xR-G
Supply Input Current: I IN(μA)
CIN=CBIAS=CL =OPEN
IOUT=0mA
3
2
1
0
-50
0
50
100
Ambient Temperature: Ta(℃)
XC6604x121xR-G
Supply Input Current: I IN(μA)
CIN=CBIAS=CL =OPEN
IOUT=0mA
12
10
8
6
4
2
0
-50
0
50
100
Ambient Temperature: Ta(℃)
XC6604x181xR-G
Supply Input Current: I IN(μA)
CIN=CBIAS=CL =OPEN
IOUT=0mA
16
14
12
10
8
6
4
-50
0
50
100
Ambient Temperature: Ta(℃)
17/30
XC6604 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, VBIAS=VCE=3.6V, VIN=VOUT(T)+0.3V, IOUT=1mA, ILIM Pin=VSS, CBIAS=CIN=1.0μF, CL=2.2μF, Ta=25℃
(11) Bias Transient Response
(12) Input Transient Response
XC6604x051xR-G
XC6604x051xR-G
CBIAS=OPEN
VBIAS=3.0V→4.0V(tr=tf=5μs), IOUT=100mA
3
0.52
2
1
0.5
Output Voltage
0
0.48
Input Voltage
0.56
2
0.54
1
Output Voltage
0.5
-1
0.48
-2
Time (200μs/div)
Time (200μs/div)
XC6604x121xR-G
XC6604x121xR-G
CBIAS=OPEN
CIN=OPEN
VBIAS=3.0V→4.0V(tr=tf=5μs) IO UT=100mA
VIN=1.5V→2.5V(tr=tf=5μs), IO UT=100mA
1.26
4
1.24
3
1.22
2
1
Output Voltage
1.18
0
1.26
2.5
1.24
1.5
1.22
1.18
-1.5
Time (200μs/div)
XC6604x181xR-G
5
1.86
4
3
2
1
Output Voltage
1.78
0
Time (200μs/div)
18/30
1.88
Output Voltage: VOUT(V)
1.88
CIN=OPEN
VIN=2.1V→3.1V(tr=tf=5μs), IO UT=100mA
Bias Voltage: VBIAS(V)
Output Voltage: VOUT(V)
CBIAS=OPEN
VBIAS=3.6V→4.6V(tr=tf=5μs) IOUT=100mA
1.8
0.5
-0.5
XC6604x181xR-G
1.82
Output Voltage
1.2
Time (200μs/div)
Bias Voltage
3.5
Input Voltage
Input Voltage
4
1.86
3
1.84
2
1.82
Output Voltage
1
1.8
0
1.78
-1
Time (200μs/div)
Input Voltage: VIN(V)
1.2
Output Voltage: VOUT(V)
1.28
Input Voltage: VIN(V)
5
Bias Voltage
Bias Voltage: VBIAS(V)
Output Voltage: VOUT(V)
1.28
1.84
0
0.52
Input Voltage: VIN(V)
0.54
Output Voltage: VOUT(V)
4
Bias Voltage: VBIAS(V)
Bias Voltage
0.56
3
0.58
5
0.58
Output Voltage: VOUT(V)
CIN=OPEN
VIN=0.8V→1.8V(tr=tf=5μs), IO UT=100mA
XC6604
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, VBIAS=VCE=3.6V, VIN=VOUT(T)+0.3V, IOUT=1mA, ILIM Pin=VSS, CBIAS=CIN=1.0μF, CL=2.2μF, Ta=25℃
(13) Load Transient Response
XC6604x051xR-G
IOUT=1mA⇔100mA(tr=tf=5μs)
Output Current
0.2
0.62
0.1
0.58
0
0.54
-0.1
0.5
Output Voltage
-0.2
Outpur Current: I OUT(A)
Output Voltage: VOUT(V)
0.66
-0.3
0.46
Time (200μs/div)
XC6604x121xR-G
IOUT=1mA⇔100mA(tr=tf=5μs)
Output Voltage: VOUT(V)
Output Current
1.32
0.1
1.28
0
1.24
-0.1
1.2
Output Voltage
-0.2
Outpur Current: I OUT(A)
0.2
1.36
-0.3
1.16
Time (200μs/div)
XC6604x181xR-G
IOUT=1mA⇔100mA(tr=tf=5μs)
0.2
Output Current
1.92
0.1
1.88
0
1.84
-0.1
1.8
Output Voltage
1.76
-0.2
Outpur Current: I OUT(A)
Output Voltage: VOUT(V)
1.96
-0.3
Time (200μs/div)
19/30
XC6604 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, VBIAS=VCE=3.6V, VIN=VOUT(T)+0.3V, IOUT=1mA, ILIM Pin= VSS, CBIAS=CIN=1.0μF, CL=2.2μF, Ta=25℃
(14) CE Input Response
XC6604A051xR-G
XC6604A051xR-G
VCE=0V→3.6V(tr=5μs)
IOUT=100mA
150
0
100
50
-4
0
-6
-50
100
0
Rush Current
50
-2
-4
Input Current
Time (50μs/div)
XC6604A121xR-G
XC6604A121xR-G
VCE=0V→3.6V(tr=5μs)
IOUT=100mA
200
150
100
Input Current
50
-4
0
-6
-50
200
4
CE Input Voltage: VCE(V)
CE Input Voltage
0
-2
VCE=0V→3.6V(tr=5μs)
IOUT=100mA
Input Current: I IN (mA)
CE Input Voltage: VCE(V)
2
2
CE Input Voltage
Rush Current
50
-2
-4
Input Current
Time (50μs/div)
XC6604A181xR-G
XC6604A181xR-G
0
-50
-6
Time (200μs/div)
CE Input Voltage: VCE(V)
50
200
4
Input Current: I IN (mA)
CE Input Voltage: VCE(V)
Input Current
-4
20/30
150
100
0
-2
VCE=0V→3.6V(tr=5μs)
IOUT=100mA
200
CE Input Voltage
0
-50
-6
VCE=0V→3.6V(tr=5μs)
IOUT=100mA
2
150
100
0
Time (200μs/div)
4
0
-50
-6
Time (200μs/div)
4
150
Input Current: I IN (mA)
Input Current
2
CE Input Voltage
CE Input Voltage
150
2
0
Rush Current
50
-2
-4
100
Input Current
0
-50
-6
Time (50μs/div)
Input Current: I IN (mA)
-2
CE Input Voltage: VCE(V)
2
200
4
Input Current: I IN (mA)
200
CE Input Voltage
Input Current: I IN (mA)
CE Input Voltage: VCE(V)
4
VCE=0V→3.6V(tr=5μs)
IOUT=100mA
XC6604
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, VBIAS=VCE=3.6V, VIN=VOUT(T)+0.3V, IOUT=1mA, ILIM Pin=VSS, CBIAS=CIN=1.0μF, CL=2.2μF, Ta=25℃
(14) CE Input Response (Continued)
CL =10μF
VCE=0V→3.6V(tr=5μs), IOUT=100mA
VCE=0V→3.6V(tr=5μs), IOUT=100mA
0
200
-4
100
Input Current
-6
0
-100
2
Rush Current
-4
-100
-6
Time (50μs/div)
XC6604A121xR-G
CL =10μF
VCE=0V→3.6V(tr=5μs), IOUT=100mA
400
300
200
0
100
-2
Input Current
0
400
4
CE Input Voltage: VCE(V)
CE Input Voltage
Input Current: I IN (mA)
CE Input Voltage: VCE(V)
0
VCE=0V→3.6V(tr=5μs), IOUT=100mA
-100
-6
2
0
CE Input Voltage
Rush Current
-4
300
200
100
-2
Input Current
0
-100
-6
Time (200μs/div)
Time (50μs/div)
XC6604A181xR-G
XC6604A181xR-G
CL =10μF
CL =10μF
VCE=0V→3.6V(tr=5μs), IOUT=100mA
VCE=0V→3.6V(tr=5μs), IOUT=100mA
400
300
200
0
100
-2
Input Current
0
-4
-100
-6
Time (200μs/div)
CE Input Voltage: VCE(V)
CE Input Voltage
4
Input Current: IIN (mA)
4
CE Input Voltage: VCE(V)
Input Current
CL =10μF
4
2
100
-2
XC6604A121xR-G
-4
300
200
0
Time (200μs/div)
2
CE Input Voltage
Input Current: I IN (mA)
-2
CE Input Voltage: VCE(V)
300
Input Current: I IN (mA)
2
400
4
400
CE Input Voltage
2
0
400
CE Input Voltage
Rush Current
-2
-4
300
200
100
Input Current
-6
0
Input Current: I IN (mA)
4
CE Input Voltage: VCE(V)
XC6604A051xR-G
CL =10μF
Input Current: I IN (mA)
XC6604A051xR-G
-100
Time (50μs/div)
21/30
XC6604 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, VBIAS=VCE=3.6V, VIN=VOUT(T)+0.3V, IOUT=1mA, ILIM Pin=VSS, CBIAS=CIN=1.0μF, CL=2.2μF, Ta=25℃
(15) CE Rising Response Time
XC6604B051xR-G
VCE=0V→3.6V(tr=5μs)
VCE=0V→3.6V(tr=5μs)
IO UT=100mA
IOUT=100mA
-2
0.4
Output Voltage
-4
0
-6
-0.4
-6
-0.4
VCE=0V→3.6V(tr=5μs)
IOUT=100mA
4
CE Input Voltage
1.5
1
Output Voltage
0.5
-0.5
CE Input Voltage: VCE(V)
2
2
0
2
CE Input Voltage
Output Voltage
1.5
1
-2
0.5
-4
0
-6
-0.5
Time (200μs/div)
Time (40μs/div)
XC6604A181xR-G
XC6604B181xR-G
VCE=0V→3.6V(tr=5μs)
VCE=0V→3.6V(tr=5μs)
IOUT=100mA
IOUT=100mA
CE Input Voltage
0
3
2
Output Voltage
1
-4
0
-6
-1
Time (200μs/div)
4
4
4
CE Input Voltage: VCE(V)
CE Input Voltage: VCE(V)
0
IO UT=100mA
4
CE Input Voltage: VCE(V)
-4
XC6604B121xR-G
-6
22/30
0.4
VCE=0V→3.6V(tr=5μs)
0
-2
Output Voltage
XC6604A121xR-G
-4
2
-2
1.2
0.8
Time (40μs/div)
0
-2
0
Time (200μs/div)
4
2
CE Input Voltage
2
CE Input Voltage
3
2
0
-2
Output Voltage: VOUT (V)
0.8
2
1.6
Output Voltage: VOUT (V)
0
CE Input Voltage: VCE(V)
1.2
Output Voltage: VOUT (V)
CE Input Voltage
Output Voltage: VOUT (V)
2
4
1.6
Output Voltage: VOUT (V)
CE Input Voltage: VCE(V)
4
Output Voltage
1
-4
0
-6
-1
Time (40μs/div)
Output Voltage: VOUT (V)
XC6604A051xR-G
XC6604
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, VBIAS=VCE=3.6V, VIN=VOUT(T)+0.3V, IOUT=1mA , ILIM Pin=VSS, CBIAS=CIN=1.0μF, CL=2.2μF, Ta=25℃
(16) Rising Response Time
XC6604A051xR-G
CIN=OPEN
VIN=0V→0.8V(tr=5μs), IOUT=100mA
Input Voltage: VIN(V)
0.5
Input Voltage
1.2
0.8
0
0.4
-0.5
Output Voltage
0
-1
Output Voltage: VOUT (V)
1.6
1
-0.4
-1.5
Time (200μs/div)
XC6604A121xR-G
CIN=OPEN
VIN=0V→1.5V(tr=5μ), IOUT=100mA
Input Voltage: VIN(V)
1
Input Voltage
1
0
-1
1.5
Output Voltage
0.5
-2
0
-3
-0.5
Output Voltage: VOUT (V)
2
2
Time (200μs/div)
XC6604A181xR-G
CIN=OPEN
VIN=0V→2.1V(tr=5μs), IOUT=100mA
3
Input Voltage: VIN(V)
2
3
1
2
0
Output Voltage
1
-1
0
-2
-1
Output Voltage: VOUT (V)
4
Input Voltage
Time (200μs/div)
23/30
XC6604 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, VBIAS=VCE=3.6V, VIN=VOUT(T)+0.3V, IOUT=1mA , ILIM Pin=VSS, CBIAS=CIN=1.0μF, CL=2.2μF, Ta=25℃
(17) Bias Voltage Ripple Rejection Rate
(18) Input Voltage Ripple Rejection Rate
XC6604x051xR-G
XC6604x051xR-G
100
90
80
70
60
50
40
30
20
10
0
CIN=OPEN
VIN=0.8VDC+0.2Vp-pAC, IOUT=100mA
VIN_PSRR (dB)
VBIAS_PSRR (dB)
CBIAS=OPEN
VBIAS=3.6VDC+0.2Vp-pAC, IOUT=100mA
0.01
0.1
1
10
100
1000 10000
100
90
80
70
60
50
40
30
20
10
0
0.01
0.1
Frequency (kHz)
1
XC6604x121xR-G
1
10
CIN=OPEN
100
100
90
80
70
60
50
40
30
20
10
0
0.01
1000 10000
0.1
1000 10000
CBIAS=OPEN
CIN=OPEN
VIN=2.1VDC+0.2Vp-pAC, IO UT=100mA
10
100
Frequency (kHz)
24/30
100
VBIAS=3.6VDC+0.2Vp-pAC, IOUT=100mA
100
90
80
70
60
50
40
30
20
10
0
1
10
XC6604x181xR-G
VIN_PSRR (dB)
VBIAS_PSRR (dB)
XC6604x181xR-G
0.1
1
Frequency (kHz)
Frequency (kHz)
0.01
1000 10000
VIN=1.5VDC+0.2Vp-pAC, IO UT=100mA
VIN_PSRR (dB)
VBIAS_PSRR (dB)
100
90
80
70
60
50
40
30
20
10
0
0.1
100
XC6604x121xR-G
CBIAS=OPEN
VBIAS=3.6VDC+0.2Vp-pAC, IOUT=100mA
0.01
10
Frequency (kHz)
1000 10000
100
90
80
70
60
50
40
30
20
10
0
0.01
0.1
1
10
100
Frequency (kHz)
1000 10000
XC6604
Series
■PACKAGING INFORMATION
SOT-26W
(unit : mm)
2.9±0.2
+0.1
0.4 -0.05
2.0±0.05
6
5
4
0~0.1
2
0.6MAX
1
(0.95)
3
0.15
+0.1
-0.05
1.0±0.1
0.70±0.05
0.25±0.05
1.9±0.2
●USP-6C Reference Pattern Layout (unit: mm)
●USP-6C Reference Metal Mask Design (unit: mm)
25/30
XC6604 Series
■PACKAGING INFORMATION (Continued)
● USP-6C Power Dissipation
Power dissipation data for the USP-6C is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as one of reference data taken in the described condition.
1.
Measurement Condition (Reference data)
Condition:
Mount on a board
Ambient:
Natural convection
Soldering:
Lead (Pb) free
Board:
Dimensions 40 x 40 mm (1600 mm in one side)
て
2
Copper (Cu) traces occupy 50% of the board area
In top and back faces
Package heat-sink is tied to the copper traces
Material:
Glass Epoxy (FR-4)
Thickness:
1.6 mm
Through-hole: 4 x 0.8 Diameter
Evaluation Board (Unit: mm)
2. Power Dissipation vs. Ambient temperature
Board Mount (Tj max = 125℃)
Ambient Temperature (℃)
Power Dissipation Pd (mW)
25
1000
85
400
Thermal Resistance (℃/W)
100.00
許容損失Pd(mW)
Power Dissipation: Pd (mW)
Pd-Ta特性グラフ
Pd vs. Ta
1200
1000
800
600
400
200
0
25
45
65
85
Ambient周辺温度Ta(℃)
Temperature: Ta (℃)
26/30
105
125
XC6604
Series
■PACKAGING INFORMATION (Continued)
●
SOT-26W Power Dissipation
Power dissipation data for the SOT-26W is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as one of reference data taken in the described condition.
1.
Measurement Condition (Reference data)
Condition:
Mount on a board
Ambient:
Natural convection
Soldering:
Lead (Pb) free
Board:
Dimensions 40 x 40 mm (1600 mm in one side)
2
Copper (Cu) traces occupy 50% of the board area
In top and back faces
Package heat-sink is tied to the copper traces
(Board of SOT-26 is used.)
Material:
Glass Epoxy (FR-4)
Thickness:
1.6 mm
Through-hole:
4 x 0.8 Diameter
評価基板レイアウト(単位:mm)
Evaluation Board (Unit: mm)
2. Power Dissipation vs. Ambient temperature
Board Mount (Tj max = 125℃)
Ambient Temperature (℃)
Power Dissipation Pd (mW)
25
600
85
240
Thermal Resistance (℃/W)
166.67
Power
Dissipation: Pd (mW)
許容損失Pd(mW)
Pd-Ta特性グラフ
Pd vs. Ta
700
600
500
400
300
200
100
0
25
45
65
85
Ambient
Temperature: Ta (℃)
周辺温度Ta(℃)
105
125
27/30
XC6604 Series
■MARKING RULE
① represents product series
MARK
PRODUCT SERIES
T
XC6604A*****-G
U
XC6604B*****-G
② represents output voltage
6
①
MARK
OUTPUT VOLTAGE (V)
MARK
OUTPUT VOLTAGE (V)
A
B
C
D
E
F
H
0.5
0.6
0.7
0.8
0.9
1.0
1.1
K
L
M
N
P
R
S
1.2
1.3
1.4
1.5
1.6
1.7
1.8
③④ represents production lot number
01 to 09, 0A to 0Z, 11 to 9Z, A1 to A9, AA to Z9, B1 to ZZ in order.
(G, I, J, O, Q, W excluded)
*No character inversion used.
28/30
SOT-26W
1
5
②
4
③ ④
2
3
XC6604
Series
■MARKING RULE (Continued)
① represents product series
MARK
PRODUCT SERIES
U
XC6604******-G
USP-6C
XC6604A*****-G
B
XC6604B*****-G
③
A
3
6
②
PRODUCT SERIES
⑤
MARK
④
2
①
1
② represents regulator type
5
4
③ represents output voltage
MARK
OUTPUT VOLTAGE (V)
MARK
OUTPUT VOLTAGE (V)
A
B
C
D
E
F
H
0.5
0.6
0.7
0.8
0.9
1.0
1.1
K
L
M
N
P
R
S
1.2
1.3
1.4
1.5
1.6
1.7
1.8
④⑤ represents production lot number
01 to 09, 0A to 0Z, 11 to 9Z, A1 to A9, AA to Z9, B1 to ZZ in order.
(G, I, J, O, Q, W excluded)
*No character inversion used.
29/30
XC6604 Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics.
Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
30/30