0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XC9257B21EMR-G

XC9257B21EMR-G

  • 厂商:

    TOREX(特瑞仕)

  • 封装:

    SC74A

  • 描述:

    1A COT CONTROL SYNCHRONOUS STEP-

  • 详情介绍
  • 数据手册
  • 价格&库存
XC9257B21EMR-G 数据手册
XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ETR05040-003 COT Control, 1.0A Synchronous Step-Down DC/DC Converters ☆GreenOperation-compatible ■GENERAL DESCRIPTION The XC9257/XC9258 series is a group of synchronous-rectification type DC/DC converters with a built-in P-channel MOS driver transistor and N-channel MOS switching transistor, designed to allow the use of ceramic capacitors. Output voltage is internally set in a range from 0.8V to 3.6V (accuracy: ±2.0%) increments of 0.05V. The device provides a high efficiency, stable power supply with an output current of 1.0A to be configured using only a coil and two capacitors connected externally. Oscillation frequency is set to 1.2MHz or 6.0MHz can be selected for suiting to your particular application. As for operation mode HiSAT-COT (*) control excellent in transient response, the XC9257 series is PWM control, the XC9258 series is automatic PWM/PFM switching control, allowing fast response, low ripple and high efficiency over the full range of loads (from light load to heavy load). During stand-by, all circuits are shutdown to reduce current consumption to as low as 1.0μA or less. As for the soft-start function as fast as 0.3ms in typical for quick turn-on. With the built-in UVLO (Under Voltage Lock Out) function, the internal P-channel MOS driver transistor is forced OFF when input voltage becomes 2.00V or lower. The B types integrate CL High Speed discharge function which enables the electric charge at the output capacitor CL to be discharged via the internal discharge. Two types of package SOT-25, USP-6C are available. (*) HiSAT-COT is an original Torex term for High Speed Transient Response. ■FEATURES ■APPLICATIONS ●Smart phones / Mobile phones ●Bluetooth ●Portable game consoles ●Digital still cameras / Camcorders Input Voltage Range Output Voltage Range Oscillation Frequency Output Current Control Methods : : : : : Protection Circuits : Functions : Capacitor Operating Ambient Temperature Packages Environmentally Friendly : : : : ●Point-of-Load (POL) ●Wearable devices 2.5V~5.5V 0.8V~3.6V (±2.0%) 1.2MHz, 6.0MHz 1A HiSAT-COT Control 100% Duty Cycle PWM Control (XC9257) PWM/PFM Auto (XC9258) Thermal Shutdown Current Limit (Pendent character) Short Circuit Protection (Type B) Soft-Start UVLO CL High Speed Discharge (Type B) Ceramic Capacitor - 40℃ ~ + 105℃ SOT-25, USP-6C EU RoHS Compliant, Pb Free ■TYPICAL APPLICATION CIRCUIT ■TYPICAL PERFORMANCE CHARACTERISTICS XC9257B18C/XC9258B18C L =LTF5022T-4R7N2R0(4.7μH) CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) 100 L VIN CE CIN Lx 80 VOUT CE VSS VIN=3.7V 90 CL Efficiency: EFFI (%) VIN VOUT 1.0A 70 VIN=5.0V 60 50 VIN=3.7V 40 VIN=5.0V 30 20 XC9258 10 0 XC9257 0.1 1 10 100 1000 Output Current: IOUT (mA) 1/30 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ■ BLOCK DIAGRAM 1) XC9257/XC9258 Series Type A (SOT-25) R1 Phase Compensation CFB Error Amp. VOUT + VSS Q Logic R Synch. Buffer Driver Error Amp. + Lx + Vref with Soft Start S Q Logic R Minimum On Time Generator CE Control Logic, UVLO, Thermal Shutdown CE PWM/PFM Selector High Side Current Limit VIN Comparator - R2 VIN VOUT Short Protection Phase Compensation CFB VSS Minimum On Time Generator CE Control Logic, UVLO, Thermal Shutdown R1 VOUT S + Vref with Soft Start XC9257/XC9258 Series Type B (SOT-25) VIN Comparator - R2 CE High Side Current Limit 2) Synch. Buffer Driver Lx VIN VOUT PWM/PFM Selector (*) The XC9257 offers a fixed PWM control, a Control Logic of PWM/PFM Selector is fixed at “PWM” internally. The XC9258 control scheme is a fixed PWM/PFM automatic switching, a Control Logic of PWM/PFM Selector is fixed at “PWM/PFM automatic switching” internally. Diodes inside the circuit are an ESD protection diode and a parasitic diode. 3) XC9257/XC9258 Series Type A (USP-6C) R1 Phase Compensation CFB VOUT Error Amp. + - R2 Vref with Soft Start VSS CE (*) CE Control Logic, UVLO, Thermal Shutdown High Side Current Limit 4) VIN Comparator + S Q Logic R Minimum On Time Generator Synch. Buffer Driver PWM/PFM Selector R1 Phase Compensation CFB VOUT Error Amp. + Lx R2 VSS VIN VOUT XC9257/XC9258 Series Type B (USP-6C) Vref with Soft Start VSS CE CE Control Logic, UVLO, Thermal Shutdown Short Protection High Side Current Limit VIN Comparator + S Q Logic R Minimum On Time Generator Synch. Buffer Driver Lx VSS VIN VOUT PWM/PFM Selector The XC9257 offers a fixed PWM control, a Control Logic of PWM/PFM Selector is fixed at “PWM” internally. The XC9258 control scheme is a fixed PWM/PFM automatic switching, a Control Logic of PWM/PFM Selector is fixed at “PWM/PFM automatic switching” internally. Diodes inside the circuit are an ESD protection diode and a parasitic diode. 2/30 XC9257/XC9258 XC9257/XC9258 Series is Not Recommended for New Designs. Series ■PRODUCT CLASSIFICATION 1) Ordering Information XC9257①②③④⑤⑥-⑦ PWM Control XC9258①②③④⑤⑥-⑦ PWM/PFM Automatic switching control DESIGNATOR ITEM ① Type A Output Voltage ④ Oscillation Frequency 08~36 Packages (Order Unit) (*1) DESCRIPTION Refer to Selection Guide B ②③ ⑤⑥-⑦ (*1) SYMBOL Output voltage options e.g. 1.2V → ②=1, ③=2 1.25V → ②=1, ③=C 0.05V increments : 0.05=A, 0.15=B, 0.25=C, 0.35=D, 0.45=E, 0.55=F, 0.65=H, 0.75=K, 0.85=L, 0.95=M C 1.2MHz E 6.0MHz MR-G SOT-25 (3,000pcs/Reel) ER-G USP-6C (3,000pcs/Reel) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant. 2) Selection Guide TYPE OUTPUT VOLTAGE CL AUTO-DISCHARGE SHORT PROTECTION (LATCH) UVLO A Fixed No No Yes B Fixed Yes Yes Yes TYPE CHIP ENABLE CURRENT LIMIT SOFT-START TIME THERMAL SHUTDOWN A Yes Yes Fixed Yes B Yes Yes Fixed Yes 3/30 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ■PIN CONFIGURATION Lx VOUT 5 4 2 1 VIN VIN 6 1 Lx VSS 5 2 VSS CE 4 3 VOUT 3 USP-6C (BOTTOM VIEW) VSS CE SOT - 25 (TOP VIEW) * The dissipation pad for the USP-6C package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the GND (No. 2 and 5) pin. ■PIN ASSIGNMENT PIN NUMBER PIN NAME FUNCTIONS 6 VIN Power Input 2 2,5 VSS Ground 3 4 CE Chip Enable 4 3 VOUT Output Voltage Monitor 5 1 Lx Switching Output SOT-25 USP-6C 1 ■FUNCTION CE PIN Function PIN NAME CE SIGNAL STATUS L Stand-by H Active Please do not leave the CE pin open. 4/30 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ■ABSOLUTE MAXIMUM RATINGS Ta=25℃ PARAMETER SYMBOL RATINGS UNITS VIN Pin Voltage VIN -0.3~+6.2 V Lx Pin Voltage VLx -0.3~VIN+0.3 or +6.2(*1) V VOUT Pin Voltage VOUT -0.3~VIN+0.3 or +4.0(*2) V CE Pin Voltage VCE -0.3~+6.2 V Pd 250 600 (40mm x 40mm Standard board) (*3) 120 1000 (40mm x 40mm Standard board) (*3) 1250(JEDEC board) (*3) mW Operating Ambient Temperature Topr -40~+105 ℃ Storage Temperature Tstg -55~+125 ℃ SOT-25 Power Dissipation USP-6C * All voltages are described based on the GND (VSS) pin. (*1) The maximum value should be either VIN+0.3V or +6.2V in the lowest. (*2) The maximum value should be either VIN+0.3V or +4.0V in the lowest. (*3) The power dissipation figure shown is PCB mounted and is for reference only. Please see the power dissipation page for the mounting condition. 5/30 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ■ELECTRICAL CHARACTERISTICS XC9257/XC9258 Series PARAMETER SYMBOL Output Voltage VOUT Operating Voltage Range VIN CONDITIONS When connected to external components, IOUT=30mA - MIN. TYP. MAX. UNITS Ta=25℃ CIRCUIT V ① 2.5 - 5.5 V ① 1000 - - mA ① 1.35 2.0 2.48 V ③ fOSC=1.2MHz - 15.0 25.0 fOSC=6.0MHz - 40.0 70.0 μA ② fOSC=1.2MHz - 250 450 fOSC=6.0MHz - 400 825 μA ② - 0.0 1.0 μA ② ns ① Maximum Output Current IOUTMAX When connected to external components (*1), VIN = UVLO Voltage (*2) VUVLO VOUT=0.6V,Voltage which Lx pin holding “L” level(*6) Quiescent Current (XC9258) Iq VOUT =VOUT(T) × 1.1V Quiescent Current (XC9257) Iq VOUT =VOUT(T) × 1.1V Stand-by Current ISTB Minimum ON time tONmin When connected to external components, VIN = , IOUT = 1mA Thermal shutdown TTSD - - 150 - ℃ ① Thermal shutdown hysteresis THYS - - 30 - ℃ ① Lx SW ”H” ON Resistance RLXH VOUT=0.6V, ILX=100mA (*3) - 0.24 0.37 Ω ④ Lx SW ”L” ON Resistance (*4) RLXL VOUT=VOUT(T) V × 1.1, ILX=100mA (*3) - 0.16 0.30 Ω ④ Lx SW ”H” Leakage Current ILeakH VIN=5.5V, VCE=0V, VOUT=0V, VLX=5.5V - 0.0 30.0 μA ⑤ Lx SW ”L” Leakage Current IleakL VIN=5.5V, VCE=0V, VOUT=0V, VLX=0.0V - 0.0 1.0 μA ⑤ ILIMH VOUT=0.6V, ILx until Lx pin oscillates 1.3 1.5 2.5 A ⑥ - ±100 - ppm/℃ ① 1.40 - 5.5 V ③ VSS - 0.30 V ③ Current Limit (*5) VCE=0.0V Output Voltage Temperature Characteristics ΔVOUT/ (VOUT・ΔTopr) CE ”H” Voltage VCEH CE ”L” Voltage VCEL CE ”H” Current ICEH VIN=5.5V, VCE=5.5V, VOUT=0.0V -0.1 - 0.1 μA ⑤ CE ”L” Current ICEL VIN=5.5V, VCE=0.0V, VOUT=0.0V -0.1 - 0.1 μA ⑤ Soft-start Time tSS VCE=0.0V → 5.0V VOUT=VOUT(T)V × 0.9 After "H" is fed to CE, the time by when clocks are generated at Lx pin. 0.10 0.30 0.50 ms ③ Short Protection Threshold Voltage (Type B) VSHORT Sweeping VOUT, VOUT voltage which Lx becomes “L” level(*6) 0.17 0.27 0.37 V ③ CL Discharge (Type B) RDCHG VCE=0V, VOUT=4.0V 50 210 300 Ω ⑦ IOUT=30mA, -40℃≦Topr≦105℃ VOUT=0.6V, Applied voltage to VCE, Voltage changes Lx to “H” level (*6) VOUT=0.6V, Applied voltage to VCE, Voltage changes Lx to “L” level (*6) Unless otherwise stated, VIN=5V, VCE=5V, VOUT(T)=Nominal Value, NOTE: (*1) When the difference between the input and the output is small, 100% duty might come up and internal control circuits keep P-ch driver turning on even though the output current is not so large. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. (*2) Including UVLO detect voltage, hysteresis operating voltage range for UVLO release voltage. (*3) RLXH= (VIN - Lx pin measurement voltage) / 100mA, RLXL= Lx pin measurement voltage / 100mA (*4) Design value for the XC9258 series. (*5) Current limit denotes the level of detection at peak of coil current. (*6) "H"=VIN ~ VIN - 1.2V, "L"=- 0.1V ~ + 0.1V 6/30 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ■ELECTRICAL CHARACTERISTICS (Continued) SPEC Table NOMINAL tONmin VOUT OUTPUT fOSC = 1.2MHz fOSC = 6.0MHz VOLTAGE VOUT(T) MIN. TYP. MAX. VIN MIN. TYP. MAX. MIN. TYP. MAX. 0.80 0.784 0.800 0.816 2.70 173 247 321 16 53 91 0.85 0.833 0.850 0.867 2.70 184 262 341 18 57 95 0.90 0.882 0.900 0.918 2.70 194 278 361 21 60 99 0.95 0.931 0.950 0.969 2.70 205 293 381 23 63 104 1.00 0.980 1.000 1.020 2.70 216 309 401 26 67 108 1.05 1.029 1.050 1.071 2.70 227 324 421 29 70 112 1.10 1.078 1.100 1.122 2.70 238 340 441 31 73 115 1.15 1.127 1.150 1.173 2.70 248 355 461 35 77 119 1.20 1.176 1.200 1.224 2.70 259 370 481 38 80 122 1.25 1.225 1.250 1.275 2.70 270 386 502 41 83 126 1.30 1.274 1.300 1.326 2.70 281 401 522 45 87 129 1.35 1.323 1.350 1.377 2.70 292 417 542 48 90 132 1.40 1.372 1.400 1.428 2.70 302 432 562 52 93 135 1.45 1.421 1.450 1.479 2.70 313 448 582 56 97 137 1.50 1.470 1.500 1.530 2.70 324 463 602 60 100 140 1.55 1.519 1.550 1.581 2.70 335 478 622 60 100 140 1.60 1.568 1.600 1.632 2.70 346 494 642 60 100 140 1.65 1.617 1.650 1.683 2.75 350 500 650 60 100 140 1.70 1.666 1.700 1.734 2.83 350 500 650 60 100 140 1.75 1.715 1.750 1.785 2.92 350 500 650 60 100 140 1.80 1.764 1.800 1.836 3.00 350 500 650 60 100 140 1.85 1.813 1.850 1.887 3.08 350 500 650 60 100 140 1.90 1.862 1.900 1.938 3.17 350 500 650 60 100 140 1.95 1.911 1.950 1.989 3.25 350 500 650 60 100 140 2.00 1.960 2.000 2.040 3.33 350 500 650 60 100 140 2.05 2.009 2.050 2.091 3.42 350 500 650 60 100 140 2.10 2.058 2.100 2.142 3.50 350 500 650 60 100 140 2.15 2.107 2.150 2.193 3.58 350 500 650 60 100 140 2.20 2.156 2.200 2.244 3.67 350 500 650 60 100 140 2.25 2.205 2.250 2.295 3.75 350 500 650 60 100 140 2.30 2.254 2.300 2.346 3.83 350 500 650 60 100 140 2.35 2.303 2.350 2.397 3.92 350 500 650 60 100 140 2.40 2.352 2.400 2.448 4.00 350 500 650 60 100 140 2.45 2.401 2.450 2.499 4.08 350 500 650 60 100 140 2.50 2.450 2.500 2.550 4.17 350 500 650 60 100 140 2.55 2.499 2.550 2.601 4.25 350 500 650 60 100 140 2.60 2.548 2.600 2.652 4.33 350 500 650 60 100 140 2.65 2.597 2.650 2.703 4.42 350 500 650 60 100 140 2.70 2.646 2.700 2.754 4.50 350 500 650 60 100 140 7/30 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ■ELECTRICAL CHARACTERISTICS (Continued) SPEC Table NOMINAL tONmin VOUT OUTPUT fOSC=1.2MHz fOSC=6.0MHz VOLTAGE VOUT(T) MIN. TYP. MAX. VIN MIN. TYP. MAX. MIN. TYP. MAX. 2.75 2.695 2.750 2.805 4.58 350 500 650 60 100 140 2.80 2.744 2.800 2.856 4.67 350 500 650 60 100 140 2.85 2.793 2.850 2.907 4.75 350 500 650 60 100 140 2.90 2.842 2.900 2.958 4.83 350 500 650 60 100 140 2.95 2.891 2.950 3.009 4.92 350 500 650 60 100 140 3.00 2.940 3.000 3.060 5.00 350 500 650 60 100 140 3.05 2.989 3.050 3.111 5.08 350 500 650 60 100 140 3.10 3.038 3.100 3.162 5.17 350 500 650 60 100 140 3.15 3.087 3.150 3.213 5.25 350 500 650 60 100 140 3.20 3.136 3.200 3.264 5.33 350 500 650 60 100 140 3.25 3.185 3.250 3.315 5.42 350 500 650 60 100 140 3.30 3.234 3.300 3.366 5.50 350 500 650 60 100 140 3.35 3.283 3.350 3.417 5.50 355 508 660 61 102 142 3.40 3.332 3.400 3.468 5.50 361 515 670 62 103 144 3.45 3.381 3.450 3.519 5.50 366 523 680 63 105 146 3.50 3.430 3.500 3.570 5.50 371 530 689 64 106 148 3.55 3.479 3.550 3.621 5.50 377 538 699 65 108 151 3.60 3.528 3.600 3.672 5.50 382 545 709 65 109 153 8/30 XC9257/XC9258 XC9257/XC9258 Series is Not Recommended for New Designs. Series ■TEST CIRCUITS < Circuit No.① > < Circuit No.② > Wave Form Me asure Point L A VIN VOUT CE CIN A LX V CL VSS ※ External Components fOS C = 1.2MHz L : 4.7μH(LTF5022T-4R7N2R0-LC) CIN : 10μF(ceramic) CL : 10μF(ceramic) RL 1μF VIN LX VOUT CE VSS ※ External Components fOS C = 6.0MHz L : 0.47μH(LQM2MPNR47MGH) CIN : 2.2μF(ceramic) CL : 4.7μF(ceramic) < Circuit No.④ > < Circuit No.③ > Wave Form Me asure Point 1uF VIN LX CE VOUT VIN Rpulldow n 200Ω 1μF LX VOUT CE V ILX VSS VSS RLXH = (VIN -VLx)/ILX RLXL = VLx/ILX < Circuit No.⑤ > 1μF ILeak H VIN LX CE VOUT IC EH A < Circuit No.⑥ > A VIN LX CE VOUT ILIMH ILeak L 1μF VSS Wave Form Me asure Point V VSS IC EL < Circuit No.⑦ > B TYPE VIN LX 1μF VOUT CE A VSS 9/30 XC9257/XC9258 Series XC9257/XC9258 Series is Not Recommended for New Designs. ■TYPICAL APPLICATION CIRCUIT L VIN VIN VIN VOUT 1.0A LLx X CE VVOUT OUT CE CE VSS CL CIN 【Typical Examples】(*1)fOSC=1.2MHz MANUFACTURER L PRODUCT NUMBER VALUE murata LQH5BPN4R7NT0L 4.7μH TDK LTF5022T-4R7N2R0-LC 4.7μH Coilcraft XFL4020-472MEC 4.7μH MANUFACTURER PRODUCT NUMBER VALUE murata LQM2MPNR47MGH 0.47μH ALPS GLCLKR4701A 0.47μH TAIYO YUDEN MAKK2016TR47M 0.47μH TDK MLP2520HR47MT0S1 0.47μH 【Typical Examples】(*1)fOSC=6.0MHz L 【Typical Examples】(*1) fOSC=1.2MHz MANUFACTURER CIN CL 【Typical CIN CL (*1) PRODUCT NUMBER VALUE murata GRM155R61A106M 10μF/10V murata GRM21BR71A106KE51 10μF/10V TAIYO YUDEN LMK212AB7106MG 10μF/10V murata GRM155R61A106M 10μF/10V murata GRM21BR71A106KE51 10μF/10V TAIYO YUDEN LMK212AB7106MG 10μF/10V Examples】(*1) fOSC = 6.0MHz MANUFACTURER PRODUCT NUMBER VALUE murata GRM155R61A106M 10μF/10V murata GRM21BR71A106KE51 10μF/10V TAIYO YUDEN LMK212AB7106MG 10μF/10V murata GRM155R61A106M 10μF/10V 2parallel murata GRM21BR71A226KE51 22μF/10V TAIYO YUDEN LMK212AB7226MG 22μF/10V Select components appropriate to the usage conditions (ambient temperature, input & output voltage). 10/30 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ■OPERATIONAL EXPLANATION The XC9257/XC9258 series consists of a reference voltage source, error amplifier, comparator, phase compensation, minimum on time generation circuit, output voltage adjustment resistors, P-channel MOS driver transistor, N-channel MOS switching transistor for the synchronous switch, current limiter circuit, UVLO circuit, thermal shutdown circuit, short protection circuit, PWM/PFM selection circuit and others. (See the BLOCK DIAGRAM below.) R1 VOUT Error Amp. + - R2 Vref with Soft Start VSS CE CE Control Logic, UVLO, Thermal Shutdown High Side Current Limit Phase Compensation CFB VIN Comparator + S Q Logic R Minimum On Time Generator VIN VOUT Synch. Buffer Driver Lx Low Side Current Limit PWM/PFM Selector BLOCK DIAGRAM XC9257/XC9258 Series Type B (SOT-25) The method is HiSAT-COT (High Speed circuit Architecture for Transient with Constant On Time) control, which features on time control method and a fast transient response that also achieves low output voltage ripple. The on time (ton) is determined by the input voltage and output voltage, and turns on the Pch MOS driver Tr. for a fixed time. During the off time (toff), the voltage that is fed back through R1 and R2 is compared to the reference voltage by the error amp, and the error amp output is phase compensated and sent to the comparator. The comparator compares this signal to the reference voltage, and if the signal is lower than the reference voltage, sets the SR latch. On time then resumes. By doing this, PWM operation takes place with the off time controlled to the optimum duty ratio and the output voltage is stabilized. The phase compensation circuit optimizes the frequency characteristics of the error amp, and generates a ramp wave similar to the ripple voltage that occurs in the output to modulate the output signal of the error amp. This enables a stable feedback system to be obtained even when a low ESR capacitor such as a ceramic capacitor is used, and a fast transient response and stabilization of the output voltage are achieved. Generates an on time that depends on the input voltage and output voltage (ton). The on time is set as given by the equations below. fOSC≒1.2MHz type ton (μs) = VOUT/VIN×0.833 fOSC≒6.0MHz type ton (μs) = VOUT/VIN×0.167 The switching frequency can be obtained from the on time (ton), which is determined by the input voltage and output voltage, and the PWM controlled off time (toff) as given by the equation below. fOSC (MHz) = VOUT(V) / (VIN(V)×ton(μs)) When the load current is heavy and the voltage difference between input voltage and output voltage is small, 100% duty cycle mode is activated and it keeps the Pch MOS driver Tr. keep on. 100% duty cycle mode attains a high output voltage stability and a high-speed response under all load conditions, from light to heavy, even in conditions where the dropout voltage is low. The error amp monitors the output voltage. The voltage divided by the internal R1 and R2 resistors is a feedback voltage for Error Amp. and compared to the reference voltage. The output voltage of the error amp becomes higher when the feedback voltage is higher than the reference voltage. The frequency characteristics of the error amp are optimized internally. 11/30 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ■OPERATIONAL EXPLANATION (Continued) The reference voltage forms a reference that is used to stabilize the output voltage of the IC. After “H” level is fed to CE pin, the reference voltage connected to the error amp increases linearly during the soft start interval. This allows the voltage divided by the internal R1 and R2 resistors and the reference voltage to be controlled in a balanced manner, and the output voltage rises in proportion to the rise in the reference voltage. This operation prevents rush input current and enables the output voltage to rise smoothly. If the output voltage does not reach the set output voltage within the soft start time, such as when the load is heavy or a large capacity output capacitor is connected, the balancing of the voltage divided by the internal resistors R1 and R2 and the reference voltage is lost, however, the current restriction function activates to prevent an excessive increase of input current, enabling a smooth rise of the output voltage. Regarding XC9257 which has PWM control method, it works with a continuous conduction mode, and operates at a stable switching frequency by means of an on time (ton) that is determined by the input voltage and output voltage regardless of the load. Regarding XC9258 which has PWM/PFM auto switching control method, it works with a discontinuous conduction mode at light loads, and lowers the switching frequency to reduce switching loss and improve efficiency. Operation starts when “H” voltage is input into the CE pin. The IC can be put in the shutdown state by inputting “L” voltage into the CE pin. In the shutdown state, the supply current of the IC is 0μA (TYP.), and the Pch MOS driver Tr. and Nch MOS switch Tr. for synchronous rectification turn off. The CE pin is a CMOS input and the sink current is 0μA. When the VIN voltage becomes 2.00V (TYP.) or lower, the P-ch MOS driver transistor output driver transistor is forced OFF to prevent false pulse output caused by unstable operation of the internal circuitry. When the VIN pin voltage becomes 2.10V (TYP.) or higher, switching operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup operation. The UVLO circuit does not cause a complete shutdown of the IC,but causes pulse output to be suspended; therefore, the internal circuitry remains in operation. For protection against heat damage of the ICs, thermal shutdown function monitors chip temperature. The thermal shutdown circuit starts operating and the P-ch MOS driver and N-ch MOS driver transistor will be turned off when the chip’s temperature reaches 150℃. When the temperature drops to 120℃ or less after shutting of the current flow, the IC performs the soft-start function to initiate output startup operation. The B type short-circuit protection circuit protects the device that is connected to this product and to the input/output in situations such as when the output is accidentally shorted to GND. The short-circuit protection circuit monitors the output voltage, and when the output voltage falls below the short-circuit protection threshold voltage, it turns off the Pch MOS driver Tr and latches it. Once in the latched state, operation is resumed by turning off the IC from the CE pin and then restarting, or by re-input into the VIN pin. The B type can quickly discharge the electric charge at the output capacitor (CL) when a low signal to the CE pin which enables a whole IC circuit put into OFF state, is inputted via the N-ch MOS switch transistor located between the VOUT pin and the GND pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it may avoid application malfunction. Output Voltage Dischage characteristics R DCHG = 210Ω(TY P) C L=10μF 12/30 5.0 4.5 Output Voltage: VOUT(V) V=VOUT(T)×e – t /τ t=τln (VOUT(T) / V) V: Output voltage after discharge VOUT(T): Output voltage t: Discharge time τ: CL×RDCHG CL: Capacitance of Output capacitor RDCHG: CL auto-discharge resistance, but it depends on supply voltage. VOUT = -1.2V VOUT = 1.8V -VOUT = 3.3V --- 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 2 4 6 8 10 12 14 16 Discharge Time: t(ms) 18 20 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ■OPERATIONAL EXPLANATION (Continued) The current limiter circuit of the XC9257/XC9258 series monitors the current flowing through the P-channel MOS driver transistor connected to the Lx pin. When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx pin at any given timing. When the over current state is eliminated, the IC resumes its normal operation. ■NOTE ON USE 1. For the phenomenon of temporal and transitional voltage decrease or voltage increase, the IC may be damaged or deteriorated if IC is used beyond the absolute MAX. specifications. 2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by external component selection, such as the coil inductance, capacitance values, and board layout of external components. Once the design has been completed, verification with actual components should be done. 3. The DC/DC converter characteristics depend greatly on the externally connected components as well as on the characteristics of this IC, so refer to the specifications and standard circuit examples of each component when carefully considering which components to select. Be especially careful of the capacitor characteristics and use B characteristics (JIS standard) or X7R, X5R (EIA standard) ceramic capacitors. 4. Make sure that the PCB GND traces are as thick and wide as possible. The VSS pin fluctuation caused by high ground current at the time of switching may result in instability of the IC. Therefore, the GND traces close to the VSS pin is important. 5. Mount external components as close as possible to the IC. Keep the wiring short and thick to lower the wiring impedance. 6. A feature of HiSAT-COT control is that it controls the off time in order to control the duty, which varies due to the effects of power loss. In addition, changes in the on time due to 100% duty cycle mode are allowed. For this reason, caution must be exercised as the characteristics of the switching frequency will vary depending on the external component characteristics, board layout, input voltage, output voltage, load current and other parameters. 7. Due to propagation delay inside the product, the on time generated by the minimum on time generation circuit is not the same as the on time that is the ratio of the input voltage to the output voltage. 8. With regard to the current limiting value, the actual coil current may at times exceed the electrical characteristics due to propagation delay inside the product. 9. The CE pin is a CMOS input pin. Do not use with the pin open. If connecting to the input or ground, use the resistor not more than 1MΩ or less. To prevent malfunctioning of the device connected to this product or the input/output due to short circuiting between pins, it is recommended that a resistor be connected. 10. In the B type, if the output voltage drops below the short circuit protection threshold voltage at the end of the soft start interval, operation will stop. 11. Regarding XC9258 which has PWM/PFM auto switching control method, it works with a discontinuous conduction mode at light loads, and in this case where the voltage difference between input voltage and output voltage is low or the coil inductance is higher than the value indicated in the standard circuit example, the coil current may reverse when the load is light, and thus pulse skipping will not be possible and light load efficiency will worsen. 12. When the input voltage is close to the minimum input voltage, the current limit circuit might not be able to work. 13. When the voltage difference between input voltage and output voltage is low, the load stability feature may deteriorate. 13/30 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ■NOTE ON USE (Continued) 14. If the capacitance value is not sufficient by degrading CL due to the low temp. condition and DC bias feature, 100% duty cycle might come up for the load transient condition. Add capacitance value for CL if necessary. (Refer to Fig14-1, Fig14-2, Fig143, Fig.14-4) Ta=-40℃,VIN=3.6V,VOUT=1.5V fOSC=1.2MHz,IOUT=1000mA→10mA L : 4.7μH,CIN : 10μF (ceramic),CL : 10μF (ceramic) Ta=-40℃,VIN=3.6V,VOUT=1.5V fOSC=1.2MHz,IOUT=1000mA→10mA L : 4.7μH,CIN : 10μF (ceramic),CL : 20μF (ceramic) IOUT : 1A/div IOUT : 1A/div VOUT : 100mV/div VOUT : 100mV/div LX : 5V/div 5μsec/div Fig.14-1 Insufficient CL (Ta=-40℃,CL=10μF ) Ta=-40℃,VIN=3.6V,VOUT=1.5V fOSC=1.2MHz,IOUT=10mA→1000mA L : 4.7μH,CIN : 10μF (ceramic),CL : 10μF (ceramic) IOUT : 1A/div 5μsec/div Fig.14-2 Sufficient CL (Ta=-40℃,CL=20μF) Ta=-40℃,VIN=3.6V,VOUT=1.5V fOSC=1.2MHz,IOUT=10mA→1000mA L : 4.7μH,CIN : 10μF (ceramic),CL : 20μF (ceramic) IOUT : 1A/div VOUT : 100mV/div LX : 5V/div LX : 5V/div VOUT : 100mV/div 5μsec/div Fig.14-3 Insufficient CL (Ta=-40℃,CL=10μF ) LX : 5V/div 5μsec/div Fig.14-4 Sufficient CL (Ta=-40℃,CL=20μF) 15. If the capacitance value is not sufficient by degrading CL due to the low temp. condition and DC bias feature, the duty cycle might not be stable. Add capacitance value for CL if necessary. (Refer to Fig.15-1, Fig.15-2) Ta=25℃,VIN=2.5V,VOUT=0.8V fOSC=6.0MHz,IOUT=300mA L :0. 47μH,CIN : 10μF (ceramic),CL : 10μF (ceramic) VOUT : 20mV/div VOUT : 20mV/div LX : 5V/div Ta=25℃,VIN=2.5V,VOUT=0.8V fOSC=6.0MHz,IOUT=300mA L :0. 47μH,CIN : 10μF (ceramic),CL : 20μF (ceramic) 200nsec/div Fig.15-1 Insufficient CL (CL=10μF ) LX : 5V/div 200nsec/div Fig.15-2 Sufficient CL (CL=20μF) 16. Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems. 14/30 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ■NOTE ON USE (Continued) 17. Instructions of pattern layouts The operation may become unstable due to noise and/or phase lag from the output current when the wire impedance is high, please place the input capacitor(CIN) and the output capacitor (CL) as close to the IC as possible. (1) In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible to the VIN pin, VSS pin. (2) Please mount each external component as close to the IC as possible. (3) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance. (4) Make sure that the GND traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of switching may result in instability of the IC. (5) This series’ internal driver transistors bring on heat because of the output current and ON resistance of P-channel and Nchannel MOS driver transistors. Please consider the countermeasures against heat if necessary. SOT-25 PCB mounted USP-6C PCB mounted 1st Layer 1st Layer 2nd 2nd Layer Layer 15/30 XC9257/XC9258 Series XC9257/XC9258 Series is Not Recommended for New Designs. ■NOTE ON USE (Continued) < Estimation for the power consumption > The power loss of a total buck DC/DC system (P_all) is as follows. P_all (W) = VIN×IIN-VOUT×IOUT = VOUT×IOUT/EFFI-VOUT×IOUT =-VOUT×IOUT×(1-1/EFFI) VIN:Input voltage, VOUT:Output voltage, IIN:Input current, IOUT:Output current, EFFI:Efficiency The power loss at a coil (P_coil) is as follows. P_coil (W) = IOUT2×DCR DCR:The direct current resistance of a coil The power loss at IC (P_IC) can be calculated by subtracting the power loss at a coil from the one of a total buck DC/DC system. P_IC (W) = P_all – P_coil The temperature of IC (Tj) can be calculated by the function below. Tj = Ta + R×P_IC R:Thermal resistance The temperature resistance varies based on the power dissipation of a PC board and so on. Please note that Tj should be lower than 125℃ ・Calculation Example Conditions : VIN=2.5V, VOUT=1.8V, IOUT=800mA, EFFI=81.4% R=100℃/W DCR=0.06Ω The power loss of a total buck DC/DC system (P_all) =-VOUT×IOUT×(1-1/EFFI) =-1.8×0.8×(1-1/0.814) ≒0.329(W) The power loss at a coil (P_coil) = IOUT2×DCR = 0.82×0.06 ≒0.038 (W) The power loss at IC (P_IC) = P_all - P_coil = 0.329 -0.038 = 0.290 (W) The temperature of IC (Tj) = The ambient temperature so that Tj becomes125℃ (Ta) = Tj-R*P_IC = 125-100×0.290 = 96.0℃ In this case, under the condition above, the ambient temperature up to 96℃ is acceptable. ・Reference example Ta-IOUTMAX feature example with SOT-25 recommendation PCB pattern 1. Measurement Condition Maximum Output : IOUTMAX(mA) VOUT(T)=1.8V 1200 Condition: Mount on a board Ambient: Natural convection Soldering: 1000 Board: 800 Copper thickness: VIN=2.5V 400 Material: VIN=3.6V 200 Thickness: VIN=5.5V -50 -25 0 25 50 Through-hole 75 100 125 Ambient Temperatuer : Ta(℃) 16/30 Dimensions 40 x 40 mm (1600 mm2 in one side) (Reference pattern layout of SOT-25: Refer to page 15) 600 0 Lead (Pb) free 18μm(Cu)+20μm(plating)=38μm Glass Epoxy (FR-4) 0.8mm 8 x 0.3 Diameter 4 x 0.8 Diameter 14 x 1.0 Diameter XC9257/XC9258 XC9257/XC9258 Series is Not Recommended for New Designs. Series ■TYPICAL PERFORMANCE CHARACTERISTICS (1) Efficiency vs. Output Current XC9257B08C/XC9258B08C XC9257B08E/XC9258B08E L =GLCLKR4701A(0.47μH) CIN = 10μF(GRM155R61A106M) CL = 10μF×2(GRM155R61A106M) 100 100 90 90 80 60 50 VIN=5.0V 40 VIN=5.0V 30 VIN=3.7V 20 0 10 100 VIN=5.0V 60 50 40 XC9258 XC9257 0 1000 0.1 Output Current: IOUT (mA) 100 1000 L =LTF5022T-4R7N2R0(4.7μH) CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) 100 100 VIN=3.7V 90 VIN=3.7V 80 80 70 Efficiency: EFFI (%) Efficiency: EFFI (%) 10 XC9257B18C/XC9258B18C XC9257B18E/XC9258B18E VIN=5.0V 60 50 40 VIN=5.0V 30 VIN=3.7V 20 70 60 50 10 100 XC9258 1000 XC9257 0.1 10 100 1000 XC9257B33C/XC9258B33C XC9257B33E/XC9258B33E L = GLCLKR4701A(0.47μH) CIN = 10μF(GRM155R61A106M) CL = 10μF×2(GRM155R61A106M) L =LTF5022T-4R7N2R0(4.7μH) CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) 100 90 90 80 80 70 70 Efficiency: EFFI (%) 100 60 VIN=5.0V VIN=5.0V 40 1 Output Current: IOUT (mA) Output Current: IOUT (mA) 50 VIN=5.0V 30 0 0 1 VIN=3.7V 40 10 XC9257 0.1 VIN=5.0V 20 XC9258 10 Efficiency: EFFI (%) 1 Output Current: IOUT (mA) L = GLCLKR4701A(0.47μH) CIN = 10μF(GRM155R61A106M) CL = 10μF×2(GRM155R61A106M) 90 VIN=5.0V VIN=3.7V 30 10 XC9257 1 70 20 XC9258 10 0.1 VIN=3.7V 80 VIN=3.7V 70 Efficiency: EFFI (%) Efficiency: EFFI (%) L =LTF5022T-4R7N2R0(4.7μH) CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) 30 20 60 50 40 30 VIN=5.0V 20 XC9258 10 VIN=5.0V XC9258 10 XC9257 XC9257 0 0 0.1 1 10 Output Current: IOUT (mA) 100 1000 0.1 1 10 100 1000 Output Current: IOUT (mA) 17/30 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (2) Output Voltage vs. Output Current XC9257B18E/XC9258B18E XC9257B33E/XC9258B33E L = GLCLKR4701A(0.47μH) CIN = 10μF(GRM155R61A106M) CL = 10μF×2(GRM155R61A106M) L = GLCLKR4701A(0.47μH) CIN = 10μF(GRM155R61A106M) CL = 10μF×2(GRM155R61A106M) 3.6 2.0 Output Voltage: VOUT (V) Output Voltage: VOUT (V) XC9257 1.8 VIN = 3.7V 1.7 1.6 0.1 1 XC9258 3.5 XC9258 1.9 10 100 XC9257 3.4 3.3 3.2 3 1000 VIN = 5.0V 3.1 0.1 Output Current: IOUT (mA) 1 10 100 1000 Output Current: IOUT (mA) (3) Ripple Voltage vs. Output Current XC9257B33E/XC9258B33E XC9257B18E/XC9258B18E L = GLCLKR4701A(0.47μH) CIN = 10μF(GRM155R61A106M) CL = 10μF×2(GRM155R61A106M) L = GLCLKR4701A(0.47μH) CIN = 10μF(GRM155R61A106M) CL = 10μF×2(GRM155R61A106M) 100 100 80 XC9258 90 XC9258 XC9257 80 XC9257 Ripple Voltage: Vr(mV) Ripple Voltage: Vr(mV) 90 70 60 50 40 30 VIN = 3.7V 20 60 50 40 30 VIN = 5.0V 20 10 10 0 70 0.1 1 10 100 0 1000 0.1 1000 L =LTF5022T-4R7N2R0(4.7μH) CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) L =LTF5022T-4R7N2R0(4.7μH) CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) 100 100 90 XC9258 90 XC9258 80 XC9257 80 XC9257 Ripple Voltage: Vr(mV) Ripple Voltage: Vr(mV) 100 XC9257B33C/XC9258B33C XC9257B18C/XC9258B18C 70 60 50 40 VIN = 3.7V 30 20 70 60 50 VIN = 5.0V 40 30 20 10 10 0 10 Output Current: IOUT (mA) Output Current: IOUT (mA) 0.1 1 10 Output Current: IOUT (mA) 18/30 1 100 1000 0 0.1 1 10 Output Current: IOUT (mA) 100 1000 XC9257/XC9258 XC9257/XC9258 Series is Not Recommended for New Designs. Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (4) Output Voltage vs. Ambient Temperature (5) UVLO Voltage vs. Ambient Temperature XC9257B08E 2.00 3.0 1.95 2.8 1.90 UVLO Voltage: UVLO (V) Output Voltage:VOUT (V) XC9257B18E VIN = 3.7V 1.85 1.80 1.75 1.70 1.65 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.60 1.0 -50 -25 0 25 50 75 100 125 -50 -25 Ambient Temperature: Ta (℃) 0 25 50 75 100 125 100 125 100 125 Ambient Temperature: Ta (℃) (6) Quiescent Current vs. Ambient Temperature XC9258B08E XC9258B08C 100 90 80 Quiescent Current: Iq (μA) Quiescent Current: Iq (μA) 100 VIN = 5.0V, 3.7V, 2.5V 70 60 50 40 30 20 80 70 60 50 VIN = 5.0V, 3.7V, 2.5V 40 30 20 10 10 0 90 -50 -25 0 25 50 75 100 0 125 -50 -25 0 XC9257B08E 75 XC9257B08C 1000 1000 900 Quiescent Current: Iq (μA) Quiescent Current: Iq (μA) 50 Ambient Temperature: Ta (℃) Ambient Temperature: Ta (℃) VIN = 5.0V VIN = 3.7V VIN = 2.5V 800 700 600 500 400 300 200 900 800 VIN = 5.0V VIN = 3.7V VIN = 2.5V 700 600 500 400 300 200 100 100 0 25 -50 -25 0 25 50 75 Ambient Temperature: Ta (℃) 100 125 0 -50 -25 0 25 50 75 Ambient Temperature: Ta (℃) 19/30 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (7) Stand-by Current vs. Ambient Temperature (8) Oscillation Frequency vs. Output Current XC9257B08E XC9257B08E L = GLCLKR4701A(0.47μH) CIN = 10μF(GRM155R61A106M) CL = 10μF×2(GRM155R61A106M) 8.0 Oscillation Freqency: fOSC (MHz) Standby Current: ISTB (μA) 5.0 4.0 3.0 VIN = 5.0V 2.0 VIN = 3.7V, 2.5V 1.0 0.0 -50 -25 0 25 50 75 100 7.5 6.0 5.5 5.0 VIN = 5.0V 4.5 0 200 600 800 1000 XC9257B33E L = GLCLKR4701A (0.47μH) CIN = 10μF(GRM155R61A106M) CL = 10μF×2(GRM155R61A106M) L = GLCLKR4701A (0.47μH) CIN = 10μF(GRM155R61A106M) CL = 10μF×2(GRM155R61A106M) 8.0 8.0 VIN = 3.6V VIN = 3.0V 7.5 Oscillation Freqency: fOSC (MHz) Oscillation Freqency: fOSC (MHz) XC9257B18E 7.0 6.5 6.0 VIN = 5.0V 5.5 5.0 4.5 4.0 0 200 400 600 800 7.5 6.5 6.0 5.5 VIN = 4.2V 5.0 4.5 4.0 1000 VIN = 5.0V,5.5V 7.0 0 200 Output Current: IOUT (mA) Oscillation Freqency: fOSC (MHz) VIN = 3.0V 2.0 1.5 VIN = 3.6V VIN = 5.0V 0.5 0.0 0 200 400 800 1000 L = LTF5022T-4R7N2R0-LC(4.7μH) CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) 3.0 1.0 600 XC9257A18C L = LTF5022T-4R7N2R0-LC(4.7μH) CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) 2.5 400 Output Current: IOUT (mA) XC9257A08C Oscillation Freqency: fOSC (MHz) 400 Output Current: IOUT (mA) Ambient Temperature: Ta (℃) 600 Output Current: IOUT (mA) 20/30 VIN = 3.6V 6.5 4.0 125 VIN = 3.0V 7.0 800 1000 3.0 2.5 VIN = 3.0V,3.6V,5.0V 2.0 1.5 1.0 0.5 0.0 0 200 400 600 Output Current: IOUT (mA) 800 1000 XC9257/XC9258 XC9257/XC9258 Series is Not Recommended for New Designs. Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (8) Oscillation Frequency vs. Output Current (Continued) (9) Pch Driver ON Resistance vs. Ambient Temperature XC9257A08E XC9257A33C Lx SW Pch ON Resistance: RLxH (mΩ) L = LTF5022T-4R7N2R0-LC(4.7μH) CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) Oscillation Freqency: fOSC (MHz) 3.0 2.5 VIN = 5.0V,5.5V 2.0 1.5 1.0 VIN = 4.2V 0.5 0.0 0 200 400 600 800 500 450 400 350 300 250 VIN = 5.0V VIN = 3.7V VIN = 2.5V 200 150 100 1000 -50 -25 Output Current: IOUT (mA) 0 100 125 XC9257A08E 400 10.0 LxSW”L” Leakage Current: ILxL (μA) Lx SW Nch ON Resistance: RLxL (mΩ) 75 (11) LxSW ”L” Leakage Current vs. Ambient Temperature XC9257A08E VIN = 5.0V VIN = 3.7V VIN = 2.5V 350 300 250 200 150 -50 -25 0 25 50 75 100 125 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 VIN = 5.5V 1.0 0.0 -50 -25 Ambient Temperature: Ta (℃) 25 50 75 100 125 (13) CE ”H” Voltage vs. Ambient Temperature XC9257A08E XC9257B08E 1.4 10.0 CE”H” Voltage VCEH (V) 9.0 8.0 7.0 6.0 5.0 4.0 VIN = 5.5V 3.0 2.0 1.2 1.0 0.8 0.6 VIN = 5.0V VIN = 3.7V VIN = 2.5V 0.4 0.2 1.0 0.0 0 Ambient Temperature : Ta (℃) (12) LxSW ”H” Leakage Current vs. Ambient Temperature LxSW”H” Leakage Current: ILxH (μA) 50 Ambient Temperature: Ta (℃) (10) Nch Driver ON Resistance vs. Ambient Temperature 100 25 -50 -25 0 25 50 75 100 Ambient Temperature : Ta (℃) 125 0.0 -50 -25 0 25 50 75 100 125 Ambient Temperature: Ta (℃) 21/30 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (14) CE”L” Voltage vs. Ambient Temperature (15) Soft-Start Time vs. Ambient Temperature XC9257B08E XC9257B08E 500 Soft-Start Time: tSS (μs) CE”L” Voltage VCEL (V) 1.4 VIN = 5.0V 1.2 1.0 0.8 0.6 VIN = 3.7V VIN = 2.5V 0.4 400 350 VIN = 5.0V 300 250 200 150 100 0.2 0.0 450 50 -50 -25 0 25 50 75 100 0 125 -50 -25 Ambient Temperature: Ta (℃) CL Discharge Resistance: RDCHG (Ω) Current Limit: ILIM (mA) 2250 VIN = 5.0V VIN = 3.0V VIN = 3.7V 1750 1500 1250 1000 0 25 50 75 100 125 Ambient Temperature : Ta (℃) Short Protection Threshold VSHORT (mV) XC9257B08E 500 400 300 200 100 VIN = 5.0V, 3.7V, 2.5V 0 -25 0 25 50 75 100 Ambient Temperature: Ta (℃) 22/30 100 125 300 250 200 VIN = 5.0V 150 100 50 0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta (℃) (18) Short Protection Threshold vs. Ambient Temperature -50 75 XC9257B08E 2500 -25 50 (17) CL Discharge Resistance vs. Ambient Temperature XC9257B08E -50 25 Ambient Temperature: Ta (℃) (16) Current Limit vs. Ambient Temperature 2000 0 125 125 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (19) Load Transient Response XC9257A12E VIN = 5.0V VOUT = 1.2V fOSC = 6.0MHz IOUT = 10mA ⇒ 600mA L = GLCLKR4701A(0.47μH)CIN = 10μF(GRM155R61A106M) CL = 10μF×2(GRM155R61A106M) XC9258A12E VIN = 5.0V VOUT = 1.2V fOSC = 6.0MHz IOUT = 10mA ⇒ 600mA L = GLCLKR4701A(0.47μH)CIN = 10μF(GRM155R61A106M) CL = 10μF×2(GRM155R61A106M) IOUT : 600mA IOUT : 600mA IOUT : 10mA IOUT : 10mA VOUT : 50mV/div VOUT : 50mV/div 20μs/div XC9257A18E VIN = 5.0V VOUT = 1.8V fOSC = 6.0MHz IOUT = 10mA ⇒ 600mA L = GLCLKR4701A(0.47μH)CIN = 10μF(GRM155R61A106M) CL = 10μF×2(GRM155R61A106M) 20μs/div XC9258A18E VIN = 5.0V VOUT = 1.8V fOSC = 6.0MHz IOUT = 10mA ⇒ 600mA L = GLCLKR4701A(0.47μH))CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) IOUT : 600mA IOUT : 600mA IOUT : 10mA IOUT : 10mA VOUT : 50mV/div VOUT : 50mV/div 50μs/div XC9257A33E VIN = 5.0V VOUT = 3.3V fOSC = 6.0MHz IOUT = 10mA ⇒ 600mA L = GLCLKR4701A(0.47μH)CIN = 10μF(GRM155R61A106M) CL = 10μF×2(GRM155R61A106M) IOUT : 10mA 50μs/div XC9258A33E VIN = 5.0V VOUT = 3.3V fOSC = 6.0MHz IOUT = 10mA ⇒ 600mA L = GLCLKR4701A(0.47μH)CIN = 10μF(GRM155R61A106M) CL = 10μF×2(GRM155R61A106M) IOUT : 600mA IOUT : 600mA IOUT : 10mA VOUT : 50mV/div VOUT : 50mV/div 50μs/div 50μs/div 23/30 XC9257/XC9258 Series XC9257/XC9258 Series is Not Recommended for New Designs. ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (19) Load Transient Response XC9257A12C VIN = 5.0V VOUT = 1.2V fOSC = 1.2MHz IOUT = 10mA ⇒ 600mA L = LTF5022T-4R7N2R0-LC(4.7μH)CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) XC9258A12C VIN = 5.0V VOUT = 1.2V fOSC = 1.2MHz IOUT = 10mA ⇒ 600mA L = LTF5022T-4R7N2R0-LC(4.7μH)CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) IOUT : 600mA IOUT : 600mA IOUT : 10mA IOUT : 10mA VOUT : 100mV/div VOUT : 100mV/div 50μs/div 50μs/div XC9257A18C VIN = 5.0V VOUT = 1.8V fOSC = 1.2MHz IOUT = 10mA ⇒ 600mA L = LTF5022T-4R7N2R0-LC(4.7μH)CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) IOUT : 10mA XC9258A18C VIN = 5.0V VOUT = 1.8V fOSC = 1.2MHz IOUT = 10mA ⇒ 600mA L = LTF5022T-4R7N2R0-LC(4.7μH)CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) IOUT : 600mA IOUT : 600mA IOUT : 10mA VOUT : 100mV/div VOUT : 100mV/div 50μs/div 50μs/div XC9257A33C VIN = 5.0V VOUT = 3.3V fOSC = 1.2MHz IOUT = 10mA ⇒ 600mA L = LTF5022T-4R7N2R0-LC(4.7μH)CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) XC9258A33C VIN = 5.0V VOUT = 3.3V fOSC = 1.2MHz IOUT = 10mA ⇒ 600mA L = LTF5022T-4R7N2R0-LC(4.7μH)CIN = 10μF(GRM155R61A106M) CL = 10μF(GRM155R61A106M) IOUT : 600mA IOUT : 600mA IOUT : 10mA IOUT : 10mA VOUT : 200mV/div VOUT : 200mV/div 50μs/div 24/30 50μs/div XC9257/XC9258 XC9257/XC9258 Series is Not Recommended for New Designs. Series ■PACKAGING INFORMATION ●SOT-25 (unit: mm) ●USP-6C (unit: mm) 2.9±0.2 1.8±0.05 +0.1 0.4 -0.05 2.0±0.05 4 1pin INDENT 3 0.6MAX +0.1 0.15 -0.05 (0.95) 1.9±0.2 0.30±0.05 1.3MAX (0.1) 1.0±0.05 0.20±0.05 (0.50) 0.10±0.05 Reference Pattern Layout (unit: mm) ●USP-6C Reference Metal Mask Design (unit: mm) (unit: mm) 2.4 2.3 2 5 0.25 4 0.25 0.5 6 0.6 4 0.225 0.25 3 1 0.5 5 0.35 0.5 0.25 2 1.8 6 1.6 1 0.25 0.35 3 0.15 0.05 0.05 1.4 0.45 0.5 0.225 0.45 1.2 ●USP-6C 1.4±0.05 0.25 1.1±0.1 0.05 0.25±0.05 2 1 0.2MIN 1.6 +0.2 -0.1 2.8±0.2 0~0.1 0.70±0.05 5 0.15 0.8 1.0 25/30 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ●SOT-25 Power Dissipation (40mm x 40mm Standard board) Power dissipation data for the SOT-25 is shown in this page. The value of power dissipation varies with the mount board conditions. Please use this data as the reference data taken in the following condition. 1. Measurement Condition 40.0 Condition: Mount on a board 28.9 Ambient: Natural convection Soldering: Lead (Pb) free Board: Dimensions 40 x 40 mm Copper (Cu) traces occupy 50% of the board 40.0 28.9 (1600 mm2 in one side) area In top and back faces Package heat-sink is tied to the copper traces (Board of SOT-26 is used.) Material: Glass Epoxy (FR-4) Through-hole: 4 x 0.8 Diameter 2.54 2.5 Thickness: 1.6mm 1.4 Evaluation Board (Unit:mm) 2.Power Dissipation vs. Ambient Temperature Board Mount (Tj max = 125℃) Ambient Temperature(℃) Power Dissipation Pd(mW) Thermal Resistance (℃/W) 25 105 600 120 166.67 Pd vs. Ta Power Dissipation Pd (mW) 700 600 500 400 300 200 100 0 26/30 25 45 65 85 105 Ambient Temperature Ta (℃) 125 XC9257/XC9258 XC9257/XC9258 Series is Not Recommended for New Designs. Series ●USP-6C Power Dissipation (40mm x 40mm Standard board) Power dissipation data for the USP-6C is shown in this page. The value of power dissipation varies with the mount board conditions. Please use this data as the reference data taken in the following condition. 1. Measurement Condition 40.0 28.9 Condition: Mount on a board Ambient: Natural convection Soldering: Lead (Pb) free Board: Dimensions 40 x 40 mm Copper (Cu) traces occupy 50% of the board 40.0 28.9 (1600 mm2 in one side) area In top and back faces Package heat-sink is tied to the copper traces Material: Glass Epoxy (FR-4) 2.54 1.4 2.5 Thickness: 1.6mm Through-hole: 4 x 0.8 Diameter Evaluation Board (Unit:mm) 2.Power Dissipation vs. Ambient Temperature Board Mount (Tj max = 125℃) Ambient Temperature(℃) Power Dissipation Pd(mW) Thermal Resistance (℃/W) 25 105 1000 200 100.00 Pd vs Ta Power Dissipation Pd (mW) 1200 1000 800 600 400 200 0 25 45 65 85 105 125 Ambient Temperature Ta (℃) 27/30 XC9257/XC9258 Series is Not Recommended for New Designs. XC9257/XC9258 Series ●USP-6C Power Dissipation (JEDEC board) Power dissipation data for the USP-6C is shown in this page. The value of power dissipation varies with the mount board conditions. Please use this data as one of reference data taken in the described condition. 76.2 1. Measurement Condition (Reference data) Condition : Mount on a board Ambient : Natural convection Soldering : Lead (Pb) free Board : The board using 4 copper layer. (76.2mm×114.3mm・・・Area: about 8700mm2) 1st layer : No copper foil (Signal layer) 2nd layer : 70mm×70mm_Connected to heat-sink. 3rd layer : 70mm×70mm_Connected to heat-sink. 114.3 4th layer : No copper foil (Signal layer) Material : Glass Epoxy(FR-4) Thickness : 1.6mm 8.74 Through-hole : φ0.2mm x 60pcs Evaluation Board (Unit:mm) 2.Power Dissipation vs. Ambient temperature Board Mount(Tjmax = 125℃) AmbientTemperature(℃) PowerDissipation Pd(mW) 25 105 1250 250 θja(℃/W) 80.00 Power DissipationPd(mW) Pd-Ta 1400 1200 1000 800 600 400 200 0 25 45 65 85 Ta(℃) 28/30 105 125 XC9257/XC9258 Series is Not Recommended for New Designs. ■MARKING RULE XC9257/XC9258 Series SOT-25(Under dot) ●SOT-25(Under dot)/USP-6C 4 ② ③ 1 2 ④ ⑤ 3 ③ 3 ② ② represents integer and oscillation frequency of the output voltage Type MARK TYPE OUTPUT VOLTAGE (V) OSCILLATION FREQUENCY (MHz) 8 0.x 9 1.x 1.2 E 2.x F 3.x A H 0.x K 1.x 6.0 L 2.x M 3.x N 0.x P 1.x 1.2 R 2.x S 3.x B T 0.x U 1.x 6.0 V 2.x X 3.x 2 ⑤ Magnified 拡大 1 ① ① USP-6C ④ ① represents products series MARK PRODUCT SERIES 7 XC9257******-G 8 XC9258******-G 5 6 5 4 PRODUCT SERIES XC9257A0*C**-G / XC9258A0*C**-G XC9257A1*C**-G / XC9258A1*C**-G XC9257A2*C**-G / XC9258A2*C**-G XC9257A3*C**-G / XC9258A3*C**-G XC9257A0*E**-G / XC9258A0*E**-G XC9257A1*E**-G / XC9258A1*E**-G XC9257A2*E**-G / XC9258A2*E**-G XC9257A3*E**-G / XC9258A3*E**-G XC9257B0*C**-G / XC9258B0*C**-G XC9257B1*C**-G / XC9258B1*C**-G XC9257B2*C**-G / XC9258B2*C**-G XC9257B3*C**-G / XC9258B3*C**-G XC9257B0*E**-G / XC9258B0*E**-G XC9257B1*E**-G / XC9258B1*E**-G XC9257B2*E**-G / XC9258B2*E**-G XC9257B3*E**-G / XC9258B3*E**-G ③ represents decimal number of the output voltage OUTPUT VOLTAGE (V) MARK PRODUCT SERIES X.0 0 XC9257**0***-G / XC9258**0***-G X.05 A XC9257**A***-G / XC9258**A***-G X.1 1 XC9257**1***-G / XC9258**1***-G X.15 B XC9257**B***-G / XC9258**B***-G X.2 2 XC9257**2***-G / XC9258**2***-G X.25 C XC9257**C***-G / XC9258**C***-G X.3 3 XC9257**3***-G / XC9258**3***-G X.35 D XC9257**D***-G / XC9258**D***-G X.4 4 XC9257**4***-G / XC9258**4***-G X.45 E XC9257**E***-G / XC9258**E***-G X.5 5 XC9257**5***-G / XC9258**5***-G X.55 F XC9257**F***-G / XC9258**F***-G X.6 6 XC9257**6***-G / XC9258**6***-G X.65 H XC9257**H***-G / XC9258**H***-G X.7 7 XC9257**7***-G / XC9258**7***-G X.75 K XC9257**K***-G / XC9258**K***-G X.8 8 XC9257**8***-G / XC9258**8***-G X.85 L XC9257**L***-G / XC9258**L***-G X.9 9 XC9257**9***-G / XC9258**9***-G X.95 M XC9257**M***-G / XC9258**M***-G ④⑤ represents production lot number 01~09, 0A~0Z, 11~9Z, A1~A9, AA~AZ, B1~ZZ in order. (G, I, J, O, Q, W excluded) * No character inversion used. 29/30 XC9257/XC9258 Series XC9257/XC9258 Series is Not Recommended for New Designs. 1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet. 3. Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported. 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance. 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features. 6. Our products are not designed to be Radiation-resistant. 7. Please use the product listed in this datasheet within the specified ranges. 8. We assume no responsibility for damage or loss due to abnormal use. 9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance. TOREX SEMICONDUCTOR LTD. 30/30
XC9257B21EMR-G
物料型号: - XC9257/XC9258系列

器件简介: - 这些系列是同步整流型DC/DC转换器,内置P沟道MOS驱动晶体管和N沟道MOS开关晶体管,设计用于允许使用陶瓷电容器。输出电压在内部设置为0.8V至3.6V(精度:±2.0%)的范围内,以0.05V的增量进行调整。该设备提供高达1.0A的输出电流,具有高效率和稳定的电源供应,只需外部连接一个线圈和两个电容器即可配置。振荡频率设置为1.2MHz或6.0MHz,可根据特定应用进行选择。

引脚分配: - 引脚分配包括电源输入(VIN)、地(VSS)、芯片使能(CE)、输出电压监控(VOUT)和开关输出(Lx)。

参数特性: - 输入电压范围:2.5V至5.5V - 输出电压范围:0.8V至3.6V(±2.0%) - 振荡频率:1.2MHz或6.0MHz - 输出电流:1A - 控制方法:HiSAT-COT控制、100%占空比PWM控制(XC9257)、PWM/PFM自动控制(XC9258) - 保护电路:热关断、电流限制(XC9258类型B)、短路保护(XC9258类型B)、软启动、UVLO(欠压锁定)、CL高速放电(XC9258类型B)

功能详解: - 器件采用HiSAT-COT控制,具有出色的瞬态响应,提供快速响应、低纹波和高效率。 - 待机时,所有电路关闭以降低电流消耗至1.0μA或更低。 - 软启动功能可在典型情况下在0.3ms内快速启动。 - 内置UVLO功能,当输入电压降至2.00V或更低时,内部P沟道MOS驱动晶体管将被强制关闭。 - B类型集成了CL高速放电功能,可通过内部放电。

应用信息: - 适用于智能手机、移动电话、蓝牙设备、便携式游戏机、数字相机、摄像机、穿戴设备等。

封装信息: - 提供SOT-25和USP-6C两种封装类型。
XC9257B21EMR-G 价格&库存

很抱歉,暂时无法提供与“XC9257B21EMR-G”相匹配的价格&库存,您可以联系我们找货

免费人工找货