0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XC9265D1514R-G

XC9265D1514R-G

  • 厂商:

    TOREX(特瑞仕)

  • 封装:

    USP-6EL-1.8X2MM

  • 描述:

    0.5UA ULTRA LOW QUIESCENT CURREN

  • 详情介绍
  • 数据手册
  • 价格&库存
XC9265D1514R-G 数据手册
XC9265 Series ETR05053-007b Ultra Low Power Synchronous Step-Down PFM DC/DC Converter ☆Green Operation Compatible ■GENERAL DESCRIPTION XC9265 series are Ultra Low Power synchronous-rectification type PFM step down DC/DC converters with a built-in 0.4Ω (TYP.) Pch driver and 0.4Ω (TYP.) Nch synchronous switching transistor, designed to allow the use of ceramic capacitor. PFM control enables a low quiescent current, making these products ideal for battery operated devices that require high efficiency and long battery life. Only inductor, CIN and CL capacitors are needed as external parts to make a step down DC/DC circuit. Operation voltage range is from 2.0V to 6.0V. This product has fixed output voltage from 1.0V to 4.0V(accuracy: ±2.0%) in increments of 0.05V. During stand-by, all circuits are shutdown to reduce consumption to as low as 0.1μA(TYP.) or less. With the built-in UVLO (Under Voltage Lock Out) function, the internal P-channel MOS driver transistor is forced OFF when input voltage gets lower than UVLO detection voltage. Besides, XC9265 series has UVLO release voltage of 1.8V (Typ.). The product with CL discharge function can discharge CL capacitor during stand-by mode due to the internal resistance by turning on the internal switch between VOUT -GND. This enables output voltage restored to GND level fast. ■FEATURES ■APPLICATIONS Input Voltage Range : 2.0V ~ 6.0V Output Voltage Setting : 1.0V ~ 4.0V (±2.0%, 0.05V increments) Output Current : 200mA (XC9265A/C) 50mA (XC9265B/D) Driver Transistor : 0.4Ω (Pch Driver Tr) Supply Current : 0.50μA @ VOUT(T)=1.8V (TYP.) Portable game consoles Control Method : PFM control Devices with 1 Lithium cell High Speed Transient PFM Switching Current : : 50mV (VIN=3.6V, VOUT=1.8V, IOUT=10μA→50mA) 330mA (XC9265A/C), 180mA (XC9265B/D) Function : Short Protection ● Wearable Devices ● Smart meters ● Bluetooth units ● Energy Harvest devices ● Backup power supply circuits ● ● 0.4Ω (Nch Synchronous rectifier Switch Tr) CL Discharge (XC9265C/ D) UVLO Ceramic Capacitor Compatible Operation Ambient Temperature : -40 ~ 85℃ Package : SOT-25, USP-6EL Environmentally Friendly : EU RoHS compliant, Pb Free ■TYPICAL APPLICATION CIRCUIT ■ TYPICAL PERFORMANCE CHARACTERISTICS ●Efficiency vs. Output Current CIN (Ceramic) L VIN LX CE VOUT GND VOUT CL (Ceramic) 100 Efficiency : EFFI (%) VIN XC9265B181xR-G(VOUT=1.8V) L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), C L=22μF(JMK107BJ226MA) 80 VIN =4.2V 60 40 VIN =3.6V VIN =2.7V 20 0 0.01 0.1 1 10 100 Output Current : I OUT (mA) 1/33 XC9265 Series ■BLOCK DIAGRAM XC9265A / XC9265B Type PFM Comparator Unit VOUT CFB RFB1 Short protection RFB2 Current Sense PFM Comparator FB PFM Controller + CE CE Controller Logic Synch Buffer Driver VREF LX VDD GND UVLO VIN start up Controller VIN * Diodes inside the circuit are an ESD protection diode and a parasitic diode. XC9265C / XC9265D Type PFM Comparator Unit VOUT CFB CL Discharge RFB1 Short protection RFB2 Current Sense PFM Comparator FB + CE CE Controller Logic VREF PFM Controller Synch Buffer Driver LX VDD VIN UVLO VIN start up Controller * Diodes inside the circuit are an ESD protection diode and a parasitic diode. 2/33 GND XC9265 Series ■PRODUCT CLASSIFICATION ●Ordering information XC9265①②③④⑤⑥-⑦ DESIGNATOR ① (*1) ITEM Product Type ②③ Output Voltage ④ Output Voltage Type ⑤⑥-⑦(*1) Packages (Order Unit) SYMBOL DESCRIPTION A IOUT=200mA Without CL Discharge B IOUT=50mA Without CL Discharge C IOUT=200mA With CL Discharge D IOUT=50mA With CL Discharge 10 ~ 40 Output Voltage : e.g. VOUT=1.80V⇒②=1, ③=8 Output Voltage Range: 1.0V~4.0V (0.05V increments) 1 B 4R-G Output Voltage {x.x0V} (the 2nd decimal place is “0”) Output Voltage {x.x5V} (the 2nd decimal place is “5”) USP-6EL (3,000pcs/Reel) MR-G SOT-25 (3,000pcs/Reel) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant. 3/33 XC9265 Series ■PIN CONFIGURATION LX VOUT 5 4 1 2 3 VIN GND CE VIN 6 1 LX NC 5 2 GND CE 4 3 VOUT USP-6EL (BOTTOM VIEW) SOT-25 (TOP VIEW) * The dissipation pad for the USP-6EL package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. The mount pattern should be connected to GND pin (No.2). ■PIN ASSIGNMENT PIN NUMBER USP-6EL SOT-25 1 2 3 4 5 6 PIN NAME FUNCTIONS LX GND VOUT CE NC VIN Switching Ground Output Voltage Chip Enable No Connection Power Input 5 2 4 3 1 ■ PIN FUNCTION ASSIGNMENT PIN NAME SIGNAL STATUS CE H L Operation (All Series) Standby (All Series) * Please do not leave the CE pin open. ■ABSOLUTE MAXIMUM RATINGS Ta=25˚C PARAMETER SYMBOL RATINGS UNITS VIN Pin Voltage LX Pin Voltage VIN VLX -0.3 ~ 7.0 -0.3 ~ VIN + 0.3 or 7.0 (*1) V V VOUT Pin Voltage CE Pin Voltage VOUT VCE -0.3 ~ VIN + 0.3 or 7.0 (*1) -0.3 ~ 7.0 V V LX Pin Current ILX 1000 mA SOT-25 Power Dissipation USP-6EL (DAF) Operating Ambient Temperature Storage Temperature Pd Topr Tstg 250 (IC only) 600 (40mm x 40mm Standard board) (*2) 760 (JESD51-7 Board) 120 (IC only) 750 (40mm x 40mm Standard board) (*2) -40 ~ 85 -55 ~ 125 * All voltages are described based on the GND. (*1) (*2) The maximum value is the lower of either VIN + 0.3V or 7.0V. The power dissipation figure shown is PCB mounted and is for reference only. Please refer to PACKAGING INFORMATION for the mounting condition. 4/33 mW ˚C ˚C XC9265 Series ■ELECTRICAL CHARACTERISTICS ●XC9265Axxx Type, without CL discharge function PARAMETER SYMBOL Input Voltage VIN Output Voltage VOUT(E) (*2) Ta=25˚C CONDITIONS - MIN. TYP. MAX. UNITS CIRCUIT 2.0 - 6.0 V ① V ② Resistor connected with LX pin. Voltage which LX pin changes “L” to “H” level E1 while VOUT is decreasing. VCE=VIN, VOUT=0V. Resistor connected with LX pin. UVLO Release Voltage VUVLO(E) Voltage which LX pin changes “L” to “H” level 1.65 1.8 1.95 V ② 0.11 0.15 0.24 V ② μA ③ while VIN is increasing. UVLO Hysteresis Voltage VCE=VIN, VOUT=0V. Resistor connected with LX pin. VHYS(E) VUVLO(E) - Voltage which LX pin changes “H” to “L” level while VIN is decreasing. VIN=VCE=VOUT(T)+0.5V (*1), Supply Current Iq VIN=2.0V, if VOUT(T)≦1.5V (*1), VOUT=VOUT(T)+0.5V Standby Current ISTB LX SW “H” Leak Current LX SW “L” Leak Current - 0.1 1.0 μA ③ VIN=5.0V, VCE=VOUT=0V, VLX=0V. - 0.1 1.0 μA ③ ILEAKL VIN=5.0V, VCE=VOUT=0V, VLX=5.0V. - 0.1 1.0 μA ③ 260 330 400 mA ① 100 - - % ② - 93 - % ① - 93 - % ① - 87 - % ① IPFM MAXDTY Efficiency (*4) EFFI Efficiency (*4) EFFI Efficiency (*4) EFFI LX SW “Pch” ON Resistance (*5) LX SW “Nch” ON Resistance Characteristics , LX=Open. ILEAKH Maximum Duty Ratio (*3) Temperature E2 VIN=5.0V, VCE=VOUT=0V, LX=Open. PFM Switching Current Output Voltage (*1) VIN=VCE=VOUT(T)+2.0V (*1) , IOUT=10mA. VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V Resistor connected with LX pin. VIN=VCE=5.0V, VOUT(T)=4.0V (*1), IOUT=30mA. VIN=VCE=3.6V, VOUT(T)=3.3V (*1), IOUT=30mA. VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA. RLXP VIN=VCE=5.0V, VOUT=0V, ILX=100mA. - 0.4 0.65 Ω ④ RLXN VIN=VCE=5.0V. - 0.4 (*6) - Ω - -40℃≦Topr≦85℃. - ±100 - ppm/℃ ② 1.2 - 6.0 V ⑤ GND - 0.3 V ⑤ ΔVOUT/ (VOUT・ΔTopr) VOUT=0V. Resistor connected with LX pin. CE “High” Voltage VCEH Voltage which LX pin changes “L” to “H” level while VCE=0.2→1.5V. VOUT=0V. Resistor connected with LX pin. CE “Low” Voltage VCEL Voltage which LX pin changes “H” to “L” level CE “High” Current ICEH VIN=VCE=5.0V, VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ CE “Low” Current ICEL VIN=5.0V, VCE=VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ 0.4 0.5 0.6 V ② while VCE=1.5→0.2V. Short Protection Threshold Voltage Resistor connected with LX pin. VSHORT Voltage which LX pin changes “H” to “L” level while VOUT= VOUT(T)+0.1V→0V(*1). Unless otherwise stated, VIN=VCE=5.0V (*1) VOUT(T)=Nominal Output Voltage (*2) VOUT(E)=Effective Output Voltage The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example. (*3) (*4) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range. EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100 (*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA (*6) Designed value 5/33 XC9265 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XC9265Bxxx Type, without CL discharge function PARAMETER SYMBOL Input Voltage VIN Ta=25˚C CONDITIONS - MIN. TYP. MAX. UNITS CIRCUIT 2.0 - 6.0 V ① V ② Resistor connected with LX pin. Output Voltage VOUT(E) (*2) Voltage which LX pin changes “L” to “H” level E1 while VOUT is decreasing. VCE=VIN, VOUT=0V. Resistor connected with LX pin. UVLO Release Voltage VUVLO(E) Voltage which LX pin changes “L” to “H” level 1.65 1.8 1.95 V ② 0.11 0.15 0.24 V ② μA ③ while VIN is increasing. VCE=VIN, VOUT=0V. Resistor connected with LX pin. UVLO Hysteresis Voltage VHYS(E) VUVLO(E) - Voltage which LX pin changes “H” to “L” level while VIN is decreasing. VIN=VCE=VOUT(T)+0.5V (*1), Supply Current Iq VIN=2.0V, if VOUT(T)≦1.5V (*1), E2 VOUT=VOUT(T)+0.5V (*1), LX=Open. Standby Current ISTB VIN=5.0V, VCE=VOUT=0V, LX=Open. - 0.1 1.0 μA ③ LX SW “H” Leak Current ILEAKH VIN=5.0V, VCE=VOUT=0V, VLX=0V. - 0.1 1.0 μA ③ LX SW “L” Leak Current ILEAKL VIN=5.0V, VCE=VOUT=0V, VLX=5.0V. - 0.1 1.0 μA ③ 115 180 250 mA ① 100 - - % ② - 95 - % ① - 95 - % ① - 89 - % ① PFM Switching Current IPFM Maximum Duty Ratio (*3) MAXDTY Efficiency (*4) EFFI Efficiency (*4) EFFI Efficiency (*4) EFFI LX SW “Pch” ON Resistance (*5) LX SW “Nch” ON Resistance Output Voltage Temperature Characteristics VIN=VCE=VOUT(T)+2.0V (*1) , IOUT=10mA. VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V Resistor connected with LX pin. VIN=VCE=5.0V, VOUT(T)=4.0V (*1), IOUT=30mA. VIN=VCE=3.6V, VOUT(T)=3.3V (*1), IOUT=30mA. VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA. RLXP VIN=VCE=5.0V, VOUT=0V, ILX=100mA. - 0.4 0.65 Ω ④ RLXN VIN=VCE=5.0V. - 0.4 (*6) - Ω - -40℃≦Topr≦85℃. - ±100 - ppm/℃ ② 1.2 - 6.0 V ⑤ GND - 0.3 V ⑤ ΔVOUT/ (VOUT・ΔTopr) VOUT=0V. Resistor connected with LX pin. CE “High” Voltage VCEH Voltage which LX pin changes “L” to “H” level while VCE=0.2→1.5V. VOUT=0V. Resistor connected with LX pin. CE “Low” Voltage VCEL Voltage which LX pin changes “H” to “L” level while VCE=1.5→0.2V. CE “High” Current ICEH VIN=VCE=5.0V, VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ CE “Low” Current ICEL VIN=5.0V, VCE=VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ 0.4 0.5 0.6 V ② Short Protection Threshold Voltage Resistor connected with LX pin. VSHORT Voltage which LX pin changes “H” to “L” level while VOUT= VOUT(T)+0.1V→0V(*1). Unless otherwise stated, VIN=VCE=5.0V (*1) VOUT(T)=Nominal Output Voltage (*2) VOUT(E)=Effective Output Voltage The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example. (*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range. (*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100 (*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA (*6) Designed value 6/33 XC9265 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XC9265CxxxType、with CL Discharge Function PARAMETER SYMBOL Input Voltage VIN Ta=25˚C CONDITIONS - MIN. TYP. MAX. UNITS CIRCUIT 2.0 - 6.0 V ① V ② Resistor connected with LX pin. Output Voltage VOUT(E) (*2) Voltage which LX pin changes “L” to “H” level E1 while VOUT is decreasing. VCE=VIN, VOUT=0V. Resistor connected with LX pin. UVLO Release Voltage VUVLO(E) Voltage which LX pin changes “L” to “H” level 1.65 1.8 1.95 V ② 0.11 0.15 0.24 V ② μA ③ while VIN is increasing. VCE=VIN, VOUT=0V. Resistor connected with LX pin. UVLO Hysteresis Voltage VHYS(E) VUVLO(E) - Voltage which LX pin changes “H” to “L” level while VIN is decreasing. VIN=VCE=VOUT(T)+0.5V (*1), Supply Current Iq VIN=2.0V, if VOUT(T)≦1.5V (*1), E2 VOUT=VOUT(T)+0.5V (*1), LX=Open. Standby Current ISTB VIN=5.0V, VCE=VOUT=0V, LX=Open. - 0.1 1.0 μA ③ LX SW “H” Leak Current ILEAKH VIN=5.0V, VCE=VOUT=0V, VLX=0V. - 0.1 1.0 μA ③ LX SW “L” Leak Current ILEAKL VIN=5.0V, VCE=VOUT=0V, VLX=5.0V. - 0.1 1.0 μA ③ 260 330 400 mA ① 100 - - % ② - 93 - % ① - 93 - % ① - 87 - % ① PFM Switching Current IPFM Maximum Duty Ratio (*3) MAXDTY Efficiency (*4) EFFI Efficiency (*4) EFFI Efficiency (*4) EFFI LX SW “Pch” ON Resistance (*5) LX SW “Nch” ON Resistance Output Voltage Temperature Characteristics VIN=VCE=VOUT(T)+2.0V (*1) , IOUT=10mA. VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V Resistor connected with LX pin. VIN=VCE=5.0V, VOUT(T)=4.0V (*1), IOUT=30mA. VIN=VCE=3.6V, VOUT(T)=3.3V (*1), IOUT=30mA. VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA. RLXP VIN=VCE=5.0V, VOUT=0V, ILX=100mA. - 0.4 0.65 Ω ④ RLXN VIN=VCE=5.0V. - 0.4 (*6) - Ω - -40℃≦Topr≦85℃. - ±100 - ppm/℃ ② 1.2 - 6.0 V ⑤ GND - 0.3 V ⑤ ΔVOUT/ (VOUT・ΔTopr) VOUT=0V. Resistor connected with LX pin. CE “High” Voltage VCEH Voltage which LX pin changes “L” to “H” level while VCE=0.2→1.5V. VOUT=0V. Resistor connected with LX pin. CE “Low” Voltage VCEL Voltage which LX pin changes “H” to “L” level while VCE=1.5→0.2V. CE “High” Current ICEH VIN=VCE=5.0V, VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ CE “Low” Current ICEL VIN=5.0V, VCE=VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ 0.4 0.5 0.6 V ② Ω ③ Short Protection Threshold Voltage Resistor connected with LX pin. VSHORT Voltage which LX pin changes “H” to “L” level while VOUT= VOUT(T)+0.1V→0V(*1). CL Discharge RDCHG VIN=VOUT=5.0V, VCE=0V, LX=Open. 55 80 105 Unless otherwise stated, VIN=VCE=5.0V (*1) VOUT(T)=Nominal Output Voltage (*2) VOUT(E)=Effective Output Voltage The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example. (*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range. (*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100 (*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA (*6) Designed value 7/33 XC9265 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XC9265Dxxx Type, with CL Discharge function PARAMETER SYMBOL Input Voltage VIN Ta=25˚C CONDITIONS - MIN. TYP. MAX. UNITS CIRCUIT 2.0 - 6.0 V ① V ② Resistor connected with LX pin. Output Voltage VOUT(E) (*2) Voltage which LX pin changes “L” to “H” level E1 while VOUT is decreasing. VCE=VIN, VOUT=0V. Resistor connected with LX pin. UVLO Release Voltage VUVLO(E) Voltage which LX pin changes “L” to “H” level 1.65 1.8 1.95 V ② 0.11 0.15 0.24 V ② μA ③ while VIN is increasing. VCE=VIN, VOUT=0V. Resistor connected with LX pin. UVLO Hysteresis Voltage VHYS(E) VUVLO(E) - Voltage which LX pin changes “H” to “L” level while VIN is decreasing. VIN=VCE=VOUT(T)+0.5V (*1), Supply Current Iq VIN=2.0V, if VOUT(T)≦1.5V (*1), E2 VOUT=VOUT(T)+0.5V (*1), LX=Open. Standby Current ISTB VIN=5.0V, VCE=VOUT=0V, LX=Open. - 0.1 1.0 μA ③ LX SW “H” Leak Current ILEAKH VIN=5.0V, VCE=VOUT=0V, VLX=0V. - 0.1 1.0 μA ③ LX SW “L” Leak Current ILEAKL VIN=5.0V, VCE=VOUT=0V, VLX=5.0V. - 0.1 1.0 μA ③ 115 180 250 mA ① 100 - - % ② - 95 - % ① - 95 - % ① - 89 - % ① PFM Switching Current IPFM Maximum Duty Ratio (*3) MAXDTY Efficiency (*4) EFFI Efficiency (*4) EFFI Efficiency (*4) EFFI LX SW “Pch” ON Resistance (*5) LX SW “Nch” ON Resistance Output Voltage Temperature Characteristics VIN=VCE=VOUT(T)+2.0V (*1) , IOUT=10mA. VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V Resistor connected with LX pin. VIN=VCE=5.0V, VOUT(T)=4.0V (*1), IOUT=30mA. VIN=VCE=3.6V, VOUT(T)=3.3V (*1), IOUT=30mA. VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA. RLXP VIN=VCE=5.0V, VOUT=0V, ILX=100mA. - 0.4 0.65 Ω ④ RLXN VIN=VCE=5.0V. - 0.4 (*6) - Ω - -40℃≦Topr≦85℃. - ±100 - ppm/℃ ② 1.2 - 6.0 V ⑤ GND - 0.3 V ⑤ ΔVOUT/ (VOUT・ΔTopr) VOUT=0V. Resistor connected with LX pin. CE “High” Voltage VCEH Voltage which LX pin changes “L” to “H” level while VCE=0.2→1.5V. VOUT=0V. Resistor connected with LX pin. CE “Low” Voltage VCEL Voltage which LX pin changes “H” to “L” level while VCE=1.5→0.2V. CE “High” Current ICEH VIN=VCE=5.0V, VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ CE “Low” Current ICEL VIN=5.0V, VCE=VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ 0.4 0.5 0.6 V ② Ω ③ Short Protection Threshold Voltage Resistor connected with LX pin. VSHORT Voltage which LX pin changes “H” to “L” level while VOUT= VOUT(T)+0.1V→0V(*1). CL Discharge RDCHG VIN=VOUT=5.0V, VCE=0V, LX=Open. 55 80 105 Unless otherwise stated, VIN=VCE=5.0V (*1) VOUT(T)=Nominal Output Voltage (*2) VOUT(E)=Effective Output Voltage The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example. (*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range. (*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100 (*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA (*6) Designed value 8/33 XC9265 Series ■ELECTRICAL CHARACTERISTICS (Continued) XC9265 series voltage chart SYMBOL E1 E2 PARAMETER Output Voltage Supply Current UNITS: V UNITS: V UNITS: μA OUTPUT VOLTAGE MIN. MAX. 1.00 0.980 1.020 1.05 1.029 1.071 1.10 1.078 1.122 1.15 1.127 1.173 1.20 1.176 1.224 1.25 1.225 1.275 1.30 1.274 1.326 1.35 1.323 1.377 1.40 1.372 1.428 1.45 1.421 1.479 1.50 1.470 1.530 1.55 1.519 1.581 1.60 1.568 1.632 1.65 1.617 1.683 1.70 1.666 1.734 1.75 1.715 1.785 1.80 1.764 1.836 1.85 1.813 1.887 1.90 1.862 1.938 1.95 1.911 1.989 2.00 1.960 2.040 2.05 2.009 2.091 2.10 2.058 2.142 2.15 2.107 2.193 2.20 2.156 2.244 2.25 2.205 2.295 2.30 2.254 2.346 2.35 2.303 2.397 2.40 2.352 2.448 2.45 2.401 2.499 2.50 2.450 2.550 2.55 2.499 2.601 2.60 2.548 2.652 2.65 2.597 2.703 2.70 2.646 2.754 2.75 2.695 2.805 2.80 2.744 2.856 2.85 2.793 2.907 TYP. MAX. 0.5 0.8 0.5 0.9 0.6 1.1 0.7 1.5 9/33 XC9265 Series ■ELECTRICAL CHARACTERISTICS (Continued) XC9265 series voltage chart SYMBOL E1 E2 PARAMETER Output Voltage Supply Current UNITS: V UNITS: V UNITS: μA OUTPUT VOLTAGE MIN. MAX. 2.90 2.842 2.958 2.95 2.891 3.009 3.00 2.940 3.060 3.05 2.989 3.111 3.10 3.038 3.162 3.15 3.087 3.213 3.20 3.136 3.264 3.25 3.185 3.315 3.30 3.234 3.366 3.35 3.283 3.417 3.40 3.332 3.468 3.45 3.381 3.519 3.50 3.430 3.570 3.55 3.479 3.621 3.60 3.528 3.672 3.65 3.577 3.723 3.70 3.626 3.774 3.75 3.675 3.825 3.80 3.724 3.876 3.85 3.773 3.927 3.90 3.822 3.978 3.95 3.871 4.029 4.00 3.920 4.080 10/33 TYP. MAX. 0.7 1.5 0.8 2.1 1.5 3.0 XC9265 Series ■TEST CIRCUITS < Test Circuit No.1 > < Test Circuit No.2 > Wave Form Measure Point Wave Form Measure Point IOUT L A CIN VIN LX CE VOUT CIN VIN LX CE VOUT Rpulldown CL GND V GND V ※ External Components ※ External Components    L : 10uH    CIN : 10uF (ceramic)    CL : 22uF (ceramic)   R < Test Circuit No.3 > < Test Circuit No.4 > VIN A CIN : 100Ω CE LX GND VOUT CIN A A VIN CE ※ External Components ※ External Components   CIN : 10uF   CIN : 10uF LX GND VOUT V IS < Test Circuit No.5 > Wave Form Measure Point CIN VIN LX ICEH A ICEL CE GND VOUT Rpulldown ※ External Components   CIN : 10uF   R : 100Ω 11/33 XC9265 Series ■TYPICAL APPLICATION CIRCUIT L VIN CIN (Ceramic) VIN LX CE VOUT VOUT CL (Ceramic) GND 【Typical Examples】 MANUFACTURE PRODUCT NUMBER VALUE TDK VLF302512M-100M 10μH Coilcraft LPS3015-103MRB 10μH Murata 1239AS-H-100M 10μH CIN TAIYO YUDEN LMK107BJ106MA 10μF/10V CL TAIYO YUDEN JMK107BJ226MA 22μF/6.3V L * Take capacitance loss, withstand voltage, and other conditions into consideration when selecting components. * Characteristics are dependent on deviations in the coil inductance value. Test fully using the actual device. * A value of 10μH is recommended for the coil inductance. * If a tantalum or electrolytic capacitor is used for the load capacitance CL, ripple voltage will increase, and there is a possibility that operation will become unstable. Test fully using the actual device. 12/33 XC9265 Series ■ OPERATIONAL EXPLANATION The XC9265 series consists of a reference voltage supply, PFM comparator, Pch driver Tr, Nch synchronous rectification switch Tr, current sensing circuit, PFM control circuit, CE control circuit, and others. (Refer to the block diagram below.) PFM Comparator Unit PFM Comparator Unit VOUT VOUT CFB CFB RFB1 Short protection RFB2 Current Sense CL Discharge PFM Comparator CE CE Controller Logic Short protection RFB2 Current Sense PFM Comparator FB - FB + RFB1 + PFM Controller Synch Buffer Driver VREF LX CE CE Controller Logic PFM Controller VREF Synch Buffer Driver LX VDD VDD GND UVLO VIN start up Controller VIN VIN XC9265Axxx/XC9265Bxxx GND UVLO VIN start up Controller XC9265Cxxx/XC9265xxx An ultra-low quiescent current circuit and synchronous rectification enable a significant reduction of dissipation in the IC, and the IC operates with high efficiency at both light loads and heavy loads. Current limit PFM is used for the control method, and even when switching current superposition occurs, increases of output voltage ripple are suppressed, allowing use over a wide voltage and current range. The IC is compatible with low-capacitance ceramic capacitors, and a small, high-performance step-down DCDC converter can be created. The actual output voltage VOUT(E) in the electrical characteristics is the threshold voltage of the PFM comparator in the block diagram. Therefore the average output voltage of the step-down circuit, including peripheral components, depends on the ripple voltage. Before use, test fully using the actual device. VIN =VCE=3.6V、VOUT=1.8V、IOUT=5mA、L=10μH、CL=22uF、Ta=25℃ VIN =VCE=3.6V、VOUT=1.8V、IOUT=30mA、L=10μH、CL=22uF、Ta=25℃ VLX VLX VOUT VOUT VLX : 2[V/div] VOUT : 50[mV/div] VOUT(E) Voltage ILX ILX IPFM 10[μs/div ] ILX : 100[mA/div] 10[μs/div ] Reference voltage for stabilization of the output voltage of the IC. (1) The feedback voltage (FB voltage) is the voltage that results from dividing the output voltage with the IC internal dividing resistors RFB1 and RFB2. The PFM comparator compares this FB voltage to VREF. When the FB voltage is lower than VREF, the PFM comparator sends a signal to the buffer driver through the PFM control circuit to turn on the Pch driver Tr. When the FB voltage is higher than VREF, the PFM comparator sends a signal to prevent the Pch driver Tr from turning on. (2) When the Pch driver Tr is on, the current sense circuit monitors the current that flows through the Pch driver Tr connected to the Lx pin. When the current reaches the set PFM switching current (IPFM), the current sense circuit sends a signal to the buffer driver through the PFM control circuit. This signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr. (3) The on time (off time) of the Nch synchronous rectification switch Tr is dynamically optimized inside the IC. After the off time elapses and the PFM comparator detects that the VOUT voltage is higher than the set voltage, the PFM comparator sends a signal to the PFM control circuit that prevents the Pch driver Tr from turning on. However, if the VOUT voltage is lower than the set voltage, the PFM comparator starts Pch driver Tr on. By continuously adjusting the interval of the linked operation of (1), (2) and (3) above in response to the load current, the output voltage is stabilized with high efficiency from light loads to heavy loads 13/33 XC9265 Series ■OPERATIONAL EXPLANATION (Continued) . The PFM switching current monitors the current that flows through the Pch driver Tr, and is a value that limits the Pch driver Tr current. The Pch driver Tr remains on until the coil current reaches the PFM switching current (IPFM). An approximate value for this ontime tON can be calculated using the following equation: tON = L × IPFM / (VIN – VOUT) To avoid excessive ripple voltage in the event that the coil current does not reach the PFM switching current within a certain interval even though the Pch driver Tr has turned on and the FB voltage is above VREF, the Pch driver Tr can be turned off at any timing using the maximum on-time function of the PFM control circuit. If the Pch driver Tr turns off by the maximum on-time function instead of the current sense circuit, the Nch synchronous rectification switch Tr will not turn on and the coil current will flow to the VOUT pin by means of the parasite diode of the Nch synchronous rectification switch Tr. When the VIN voltage is lower than the output voltage, through mode automatically activates and the Pch driver Tr stays on continuously. (1) In through mode, when the load current is increased and the current that flows through the Pch driver Tr reaches a load current that is several tens of mA lower than the set PFM switching current (IPFM), the current sense circuit sends a signal through the PFM control circuit to the buffer driver. This signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr. (2) After the on-time (off-time) of the Nch synchronous rectification switch Tr, the Pch driver Tr turns on until the current reaches the set PFM switching current (IPFM) again. If the load current is large as described above, operations (1) and (2) above are repeated. If the load current is several tens of mA lower than the PFM switching current (IPFM), the Pch driver Tr stays on continuously. When the VIN voltage rises, VIN start mode stops the short-circuit protection function during the interval until the FB voltage approaches VREF. After the VIN voltage rises and the FB voltage approaches VREF by step-down operation, VIN start mode is released. In order to prevent an excessive rush current while VIN start mode is activated, the coil current flows to the VOUT pin by means of the parasitic diode of the Nch synchronous rectification Tr. In VIN start mode as well, the coil current is limited by the PFM switching current. The short-circuit protection function monitors the VOUT pin voltage, and if the VOUT pin voltage drops below the Short Protection Threshold Voltage (VSHORT) due to a short circuit or overcurrent, the short circuit protection function operates. When the short-circuit protection function is activated, the Pch driver Tr and Nch Synchronous Switch Tr are held off. If the VOUT pin voltage exceeds the Short Protection Threshold Voltage (VSHORT) after the short-circuit protection function is activated, normal operation resumes. To cancel the short-circuit protection function, it is necessary to start the IC after putting the IC in the standby state with the CE function, or to raise the input voltage after setting the input voltage below the UVLO detection voltage (VUVLO(E)-VHYS(E)). 14/33 XC9265 Series ■OPERATIONAL EXPLANATION (Continued) When the VIN pin voltage drops below the UVLO detection voltage, the IC stops switching operation at any selected timing, turns off the Pch driver Tr and Nch synchronous rectification switch Tr (UVLO mode). When the VIN pin voltage recovers and rises above the UVLO release voltage, the IC restarts operation. On the XC9265 series, a CL discharge function is available as an option (XC9265C/XC9265D types). This function enables quick discharging of the CL load capacitance when “L” voltage is input into the CE pin by the Nch Tr connected between the VOUT-GND pins, or in UVLO mode. This prevents malfunctioning of the application in the event that a charge remains on CL when the IC is stopped. The discharge time is determined by CL and the CL discharge resistance RDCHG, including the Nch Tr (refer to the diagram below). Using this time constant τ= CL×RDCHG, the discharge time of the output voltage is calculated by means of the equation below. V = VOUT × e - t /τ, or in terms of t, t = τIn(VOUT / V) V VOUT t CL RDCHG τ : Output voltage after discharge : Set output voltage : Discharge time : Value of load capacitance (CL) : Value of CL discharge resistance Varies by power supply voltage. : CL × RDCHG VOUT R RDCHG = R + RON CE / UVLO Signal RON The CL discharge function is not available on the XC9265A/XC9265B types. 15/33 XC9265 Series ■NOTE ON USE 1. Be careful not to exceed the absolute maximum ratings for externally connected components and this IC. 2. The DC/DC converter characteristics greatly depend not only on the characteristics of this IC but also on those of externally connected components, so refer to the specifications of each component and be careful when selecting the components. Be especially careful of the characteristics of the capacitor used for the load capacity CL and use a capacitor with B characteristics (JIS Standard) or an X7R/X5R (EIA Standard) ceramic capacitor. 3. Use a ground wire of sufficient strength. Ground potential fluctuation caused by the ground current during switching could cause the IC operation to become unstable, so reinforce the area around the GND pin of the IC in particular. 4. Mount the externally connected components in the vicinity of the IC. Also use short, thick wires to reduce the wire impedance. 5. When the voltage difference between VIN and VOUT is small, switching energy increases and there is a possibility that the ripple voltage will be too large. Before use, test fully using the actual device. 6. The CE pin does not have an internal pull-up or pull-down, etc. Apply the prescribed voltage to the CE pin. 7. If other than the recommended inductance and capacitance values are used, excessive ripple voltage or a drop in efficiency may result. 8. If other than the recommended inductance and capacitance values are used, a drop in output voltage when the load is excessive may cause the short-circuit protection function to activate. Before use, test fully using the actual device. 9. At high temperature, excessive ripple voltage may occur and cause a drop in output voltage and efficiency. Before using at high temperature, test fully using the actual device 10. At light loads or when IC operation is stopped, leakage current from the Pch driver Tr may cause the output voltage to rise. 11. The average output voltage may vary due to the effects of output voltage ripple caused by the load current. Before use, test fully using the actual device. 12. If the CL capacitance or load current is large, the output voltage rise time will lengthen when the IC is started, and coil current overlay may occur during the interval until the output voltage reaches the set voltage (refer to the diagram below). XC9265Aシリーズ、V IN=VCE=0→6.0V、VOUT =1.0V、I OUT =200mA、L=10μH、C L=22uF、Ta=25℃ XC9265A series VLX ILX VLX : 10[V/div ] IPFM I L : 200[mA/div ] VOUT VOUT : 1[V/div ] VIN VIN : 5[V/div ] Zoom 200[μs/div ] VLX VLX : 10[V/div ] ILX I L : 200[mA/div ] VOUT VIN VOUT : 1[V/div ] VIN : 5[V/div ] 5[μs/div ] 13. When the IC is started, the short-circuit protection function does not operate during the interval until the VOUT voltage reaches a value near the set voltage. 14. If the IC is started at a VIN voltage that activates through mode, it is possible that the short-circuit protection function will not operate. Before use, test fully using the actual device. 15. If the load current is excessively large when the IC is started, it is possible that the VOUT voltage will not rise to the set voltage. Before use, test fully using the actual device. 16/33 XC9265 Series ■NOTE ON USE (Continued) 16. In actual operation, the maximum on-time depends on the peripheral components, input voltage, and load current. Before use, test fully using the actual device. 17. When the VIN voltage is turned on and off continuously, excessive rush current may occur while the voltage is on. Before use, test fully using the actual device. 18. When the VIN voltage is high, the Pch driver may change from on to off before the coil current reaches the PFM switching current (IPFM), or before the maximum on-time elapses. Before use, test fully using the actual device. 19. When the IC change to the Through Mode at light load, the supply current of this IC can increase in some cases. 20. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded. 21. Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems. 22. The UVLO function can be activated when the UVLO hysteresis width gets to about 0mV and after several tens ms elapses at light loads. Before use, test fully using the actual device. 17/33 XC9265 Series ■NOTE ON USE (Continued) ●Instructions of pattern layouts 1. To suppress fluctuations in the VIN potential, connect a bypass capacitor (CIN) in the shortest path between the VIN pin and ground pin. 2. Please mount each external component as close to the IC as possible. 3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance. 4. Make sure that the ground traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of switching may result in instability of the IC. 5. Internal driver transistors bring on heat because of the transistor current and ON resistance of the driver transistors. ●Recommended Pattern Layout (USP-6EL) Layer 1 Layer 3 18/33 Layer 2 Layer 4 XC9265 Series ●Recommended Pattern Layout (SOT-25) Layer 1 Layer 3 Layer 2 Layer 4 19/33 XC9265 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (1) Efficiency vs. Output Current XC9265A181 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), C L=44μF(JMK107BJ226MA×2) 100 80 40 VIN =2.7V VIN =4.2V 60 Efficiency : EFFI (%) Efficiency : EFFI (%) 100 XC9265A181 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) VIN =3.6V 80 VIN =2.7V 60 VIN =4.2V VIN =3.6V 40 20 20 0 0 0.01 0.1 1 10 100 0.01 1000 0.1 XC9265B181 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), C L=44μF(JMK107BJ226MA×2) Efficiency : EFFI (%) Efficiency : EFFI (%) VIN =3.6V VIN =2.7V 20 80 VIN =4.2V 60 VIN =3.6V VIN =2.7V 40 20 0 0 0.01 0.1 1 10 100 0.01 0.1 1 Output Current : I OUT (mA) 100 XC9265A301 XC9265A301 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), C L=44μF(JMK107BJ226MA×2) 100 100 80 80 VIN =4.2V VIN =3.6V 40 20 VIN =4.2V 60 VIN =3.6V 40 20 0 0 0.1 1 10 Output Current : I OUT (mA) 20/33 10 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) Efficiency : EFFI (%) Efficiency : EFFI (%) Output Current : I OUT (mA) 0.01 1000 100 VIN =4.2V 60 100 XC9265B181 80 40 10 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) 100 60 1 Output Current : I OUT (mA) Output Current : I OUT (mA) 100 1000 0.01 0.1 1 10 Output Current : I OUT (mA) 100 1000 XC9265 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (1) Efficiency vs. Output Current XC9265B301 XC9265B301 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), C L=44μF(JMK107BJ226MA×2) 100 80 Efficiency : EFFI (%) Efficiency : EFFI (%) 100 VIN =4.2V 60 VIN =3.6V 40 20 80 VIN =4.2V 60 VIN =3.6V 40 20 0 0 0.01 0.1 1 10 100 0.01 0.1 Output Current : I OUT (mA) 1 10 100 Output Current : I OUT (mA) (2) Output Voltage vs. Output Current XC9265A181 XC9265A181 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=44μF(JMK107BJ226MA×2) L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) 2.2 VIN =2.7V,3.6V,4.2V VIN =2.7V,3.6V,4.2V Output Voltage : VOUT (V) Output Voltage : VOUT (V) 2.2 2.0 1.8 1.6 2.0 1.8 1.6 1.4 1.4 1.2 1.2 0.01 0.1 1 10 100 0.01 1000 Output Current : I OUT (mA) 1 10 100 1000 Output Current : I OUT (mA) XC9265B181 XC9265B181 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=44μF(JMK107BJ226MA×2) 2.2 Output Voltage : VOUT (V) 2.2 Output Voltage : VOUT (V) 0.1 VIN =2.7V,3.6V,4.2V 2.0 1.8 1.6 1.4 VIN =2.7V,3.6V,4.2V 2.0 1.8 1.6 1.4 1.2 1.2 0.01 0.1 1 Output Current : I OUT (mA) 10 100 0.01 0.1 1 10 100 Output Current : I OUT (mA) 21/33 XC9265 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (2) Output Voltage vs. Output Current XC9265A301 XC9265A301 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), C L=44μF(JMK107BJ226MA×2) 3.4 3.4 VIN =3.6V,4.2V Output Voltage : VOUT (V) Output Voltage : VOUT (V) VIN =3.6V,4.2V 3.2 3.0 2.8 3.2 3.0 2.8 2.6 2.6 2.4 2.4 0.01 0.1 1 10 100 0.01 1000 0.1 Output Current : I OUT (mA) XC9265B301 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), C L=44μF(JMK107BJ226MA×2) 1000 3.4 VIN =3.6V,4.2V VIN =3.6V,4.2V Output Voltage : VOUT (V) Output Voltage : VOUT (V) 100 XC9265B301 3.2 3.0 2.8 2.6 3.2 3.0 2.8 2.6 2.4 2.4 0.01 0.1 1 10 100 0.01 0.1 Output Current : I OUT (mA) 10 100 XC9265A181 XC9265A181 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=44μF(JMK107BJ226MA×2) 300 300 250 250 VIN =2.7V 200 VIN =3.6V 150 VIN =4.2V 100 VIN =4.2V 200 VIN =3.6V 150 VIN =2.7V 100 50 50 0 0 0.01 1 Output Current : I OUT (mA) Ripple Voltage : Vr (mV) Ripple Voltage : Vr (mV) 10 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) 3.4 0.1 1 10 Output Current : I OUT (mA) 22/33 1 Output Current : I OUT (mA) 100 1000 0.01 0.1 1 10 Output Current : I OUT (mA) 100 1000 XC9265 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (3) Ripple Voltage vs. Output Current XC9265B181 XC9265B181 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), C L=44μF(JMK107BJ226MA×2) L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) 300 Ripple Voltage : Vr (mV) Ripple Voltage : Vr (mV) 300 250 200 150 VIN =4.2V VIN =3.6V 100 VIN =2.7V,3.6V,4.2V 250 200 150 100 VIN =2.7V 50 50 0 0 0.01 0.1 1 10 100 0.01 0.1 Output Current : I OUT (mA) XC9265A301 250 250 200 Ripple Voltage : Vr (mV) Ripple Voltage : Vr (mV) 300 VIN =4.2V VIN =3.6V 100 50 200 VIN =4.2V 150 VIN =3.6V 100 50 0 0 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000 Output Current : I OUT (mA) XC9265B301 XC9265B301 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), C L=44μF(JMK107BJ226MA×2) 300 300 250 250 Ripple Voltage : Vr (mV) Ripple Voltage : Vr (mV) Output Current : I OUT (mA) 200 VIN =3.6V VIN =4.2V 150 100 200 150 VIN =4.2V VIN =3.6V 100 50 50 0 0.01 100 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), C L=44μF(JMK107BJ226MA×2) 300 0.01 10 XC9265A301 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) 150 1 Output Current : I OUT (mA) 0 0.1 1 Output Current : I OUT (mA) 10 100 0.01 0.1 1 10 100 Output Current : I OUT (mA) 23/33 XC9265 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (4) Output Voltage Vs. Ambient Temperature XC9265x301 XC9265x181 3.3 VIN =5.0V VIN =5.0V 2.0 Output Voltage : VOUT (V) Output Voltage : VOUT (V) 2.1 1.9 1.8 1.7 3.2 3.1 3.0 2.9 2.8 1.6 2.7 1.5 -50 -25 0 25 50 75 -50 100 -25 Ambient Temperature: Ta(℃) 0 25 50 75 100 Ambient Temperature: Ta(℃) (5) Supply Current vs. Ambient Temperature XC9265x301 XC9265x181 3.0 3.0 VIN =2.3V VIN =3.5V 2.5 Supply Current : Iq ( μA) Supply Current : Iq ( μA) 2.5 2.0 1.5 1.0 2.0 1.5 1.0 0.5 0.5 0.0 0.0 -50 -25 0 25 50 75 -50 100 -25 Ambient Temperature: Ta(℃) 0 25 50 75 100 Ambient Temperature: Ta(℃) (6) Stand-by Current vs. Ambient Temperature XC9265x301 XC9265x181 3.0 3.0 Standby Current: I STB (μA) Standby Current: I STB (μA) VIN=5.0V,3.6V,2.3V 2.5 2.0 1.5 1.0 2.0 1.5 1.0 0.5 0.5 0.0 0.0 -50 -25 0 25 50 Ambient Temperature: Ta(℃) 24/33 VIN=5.0V,3.6V 2.5 75 100 -50 -25 0 25 50 Ambient Temperature: Ta(℃) 75 100 XC9265 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (7) UVLO Release Voltage vs. Ambient Temperature XC9265x181 XC9265x301 2.00 UVLO Release Voltage: VRELEASE (V) UVLO Release Voltage: VRELEASE (V) 2.00 VRELEASE (T) =1.8V 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 VRELEASE (T) =1.8V 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 -50 -25 0 25 50 75 100 -50 -25 0 25 50 75 100 Ambient Temperature: Ta(℃) XC9265A181 XC9265A301 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), C L=22μF(JMK107BJ226MA) 600 600 VIN =5.0V,3.6V 500 PFM Switching Current: IPFM (mA) PFM Switching Current: IPFM (mA) Ambient Temperature: Ta(℃) VIN =2.3V 400 300 200 100 0 VIN =5.0V,3.6V 500 400 300 200 100 0 -50 -25 0 25 50 75 100 -50 -25 Ambient Temperature: Ta (℃) 0 25 50 75 100 Ambient Temperature: Ta (℃) XC9265B181 XC9265B301 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) 500 500 400 PFM Switching Current: IPFM (mA) PFM Switching Current: IPFM (mA) (8) PFM Switching Current vs. Ambient Temperature VIN =5.0V VIN =3.6V VIN =2.3V 300 200 100 0 400 VIN =5.0V 300 VIN =3.6V 200 100 0 -50 -25 0 25 50 Ambient Temperature: Ta (℃) 75 100 -50 -25 0 25 50 75 100 Ambient Temperature: Ta (℃) 25/33 XC9265 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (9) Maximum Frequency vs. Ambient Temperature XC9265A101 XC9265A251 L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA), CL=22μF(JMK107BJ226MA) L=10μH(VLF302512M-100M),CIN=10μF(LMK107BBJ106MA), CL=22μF(JMK107BJ226MA) 3,000 3,000 Maximum Frequency (kHz) Maximum Frequency (kHz) VIN =5.0V 2,500 VIN =5.0V VIN =3.6V 2,000 VIN =2.7V 1,500 VIN =2.0V 1,000 500 VIN =4.2V 2,500 VIN =3.6V 2,000 1,500 1,000 500 0 0 -50 -25 0 25 50 75 100 -50 -25 Ambient Temperature: Ta(℃) 0 25 50 XC9265A401 XC9265B101 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA), CL=22μF(JMK107BJ226MA) L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA), CL=22μF(JMK107BJ226MA) 3,000 VIN =5.0V 2,500 VIN =5.5V Maximum Frequency (kHz) Maximum Frequency (kHz) 2,500 VIN =5.0V 2,000 1,500 1,000 500 VIN =3.6V 2,000 VIN =2.7V VIN =2.0V 1,500 1,000 500 0 0 -50 -25 0 25 50 75 -50 100 -25 50 75 100 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA), CL=22μF(JMK107BJ226MA) VIN =4.2V 3,000 VIN =6.0V VIN =5.0V Maximum Frequency (kHz) VIN =3.6V 2,500 25 XC9265B401 XC9265B251 L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA), CL=22μF(JMK107BJ226MA) 3,000 0 Ambient Temperature: Ta(℃) Ambient Temperature: Ta(℃) Maximum Frequency (kHz) 100 3,000 VIN =6.0V 2,000 1,500 1,000 500 0 VIN =5.5V 2,500 VIN =5.0V 2,000 1,500 1,000 500 0 -50 -25 0 25 50 Ambient Temperature: Ta(℃) 26/33 75 Ambient Temperature: Ta(℃) 75 100 -50 -25 0 25 50 Ambient Temperature: Ta(℃) 75 100 XC9265 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (10) Pch Driver ON Resistance vs. Ambient Temperature (11) Nch Driver ON Resistance vs. Ambient Temperature XC9265 VIN =VCE,VOUT=0V,ILX=100mA 1.2 1.0 Topr=85℃ Topr=25℃ 0.8 Topr=-40℃ 0.6 0.4 0.2 LX SW “Nch” ON Resistance: RLXN (Ω) LX SW “Pch” ON Resistance: RLXP (Ω) XC9265 0.0 VIN =VCE 1.2 1.0 Topr=85℃ Topr=25℃ 0.8 Topr=-40℃ 0.6 0.4 0.2 0.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.5 2.0 (12) Lx SW "H" Leakage Current vs. Ambient Temperature XC9265 3.0 4.0 4.5 5.0 XC9265 VOUT=VCE=0V,VLX=0V VOUT=VCE=0V,VLX=5.0V LX Leak Current : ILXL (μA) 3.0 VIN =5.0V 2.5 2.0 1.5 1.0 0.5 VIN =5.0V 2.5 2.0 1.5 1.0 0.5 0.0 0.0 -50 -25 0 25 50 75 100 -50 -25 0 25 50 75 100 Ambient Temperature: Ta (℃) Ambient Temperature: Ta (℃) (14) CE "High" Voltage vs. Ambient Temperature (15) CE "Low" Voltage vs. Ambient Temperature XC9265 XC9265 1.0 CE “Low” Voltage: VCEL (V) 1.0 CE “High” Voltage: VCEH (V) 3.5 (13) Lx SW "L" Leakage Current vs. Ambient Temperature 3.0 LX Leak Current : ILXL (μA) 2.5 Input Voltage : VIN (V) Input Voltage : VIN (V) 0.8 0.6 VIN =5.0V VIN =3.6V 0.4 VIN =2.0V 0.2 0.0 0.8 0.6 VIN =5.0V VIN =3.6V 0.4 VIN =2.0V 0.2 0.0 -50 -25 0 25 50 Ambient Temperature: Ta (℃) 75 100 -50 -25 0 25 50 75 100 Ambient Temperature: Ta (℃) 27/33 XC9265 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (16) CL Discharge vs. Ambient Temperature (17) Short Protection Threshold vs. Ambient Temperature XC9265C/D XC9265 VIN =VOUT,VCE=0V VIN =VCE 1.0 Short Protection Thrreshold Volage(V) CL Discharge Resistance: (Ω) 600 500 400 VIN =6.0V 300 VIN =4.0V VIN =2.0V 200 100 0 VIN =5.0V,3.6V,2.0V 0.8 0.6 0.4 0.2 0.0 -50 -25 0 25 50 Ambient Temperature: Ta (℃) 75 100 -50 -25 0 25 50 Ambient Temperature: Ta (℃) 75 100 (18) Rising Output Voltage XC9265A181 XC9265A181 VIN =VCE=0→3.6V,IOUT=10uA VIN =VCE=0→3.6V,IOUT=100mA VOUT VOUT VIN VIN VLX VLX ILx ILx VOUT:1V/div,VIN :5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA), CL=22μF(JMK107BJ226MA) VOUT:1V/div,VIN :5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA), CL=22μF(JMK107BJ226MA) XC9265B181 XC9265B181x XC9265B181 VIN =VCE=0→3.6V,IOUT=10uA VIN =VCE=0→3.6V,IOUT=50mA VOUT VIN VIN VLX VLX ILx ILx VOUT:1V/div,VIN :5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA), CL=22μF(JMK107BJ226MA) 28/33 VOUT VOUT:1V/div,VIN :5V/div,VLX:2V/div,ILX:500mA/div,Time:100μs/div L=10μH(VLF302512M-100M),C IN =10μF(LMK107BBJ106MA), CL=22μF(JMK107BJ226MA) XC9265 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (19) Load Transient Response XC9625A301 XC9265A301 VIN =3.6V, IOUT=10uA→100mA VIN =3.6V IOUT=10uA→100mA VOUT VOUT VLX VLX ILx ILx Iout Iout VOUT:200mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) VOUT:200mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), C L=44μF(JMK107BJ226MA×2) XC9265B301 XC9265B301 VIN =3.6V, IOUT=10uA→50mA VIN =3.6V, IOUT=10uA→50mA VOUT VOUT VLX VLX ILx ILx Iout Iout VOUT:200mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) VOUT:200mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=44μF(JMK107BJ226MA×2) XC9265A181 XC9265A181 VIN =3.6V, IOUT=10uA→100mA VIN =3.6V IOUT=10uA→100mA VOUT VOUT VLX VLX ILx ILx Iout Iout VOUT:100mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) VOUT:100mV/div,IOUT:100mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=44μF(JMK107BJ226MA×2) 29/33 XC9265 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (19) Load Transient Response XC9265B181 XC9265B181 VIN =3.6V IOUT=10uA→50mA VIN =3.6V IOUT=10uA→50mA VOUT VOUT VLX VLX ILx ILx Iout Iout VOUT:100mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=22μF(JMK107BJ226MA) 30/33 VOUT:100mV/div,IOUT:50mA/div,VLX:5V/div,ILX:200mA/div,Time:100μs/div L=10μH(VLF302512M-100M),C IN =10μF(LMK107BJ106MA), CL=44μF(JMK107BJ226MA×2) XC9265 Series ■PACKAGING INFORMATION For the latest package information go to, www.torexsemi.com/technical-support/packages PACKAGE OUTLINE / LAND PATTERN THERMAL CHARACTERISTICS SOT-25 SOT-25 PKG SOT-25 Power Dissipiation USP-6EL(DAF) USP-6EL PKG USP-6EL Power Dissipation 31/33 XC9265 Series ■MARKING RULE SOT-25(Under ●SOT-25(Underdot仕様) dot) 5 4 ① ② ③ ④ MARK① represents product series MARK PRODUCT SERIES C XC9265A/B/C/D*****-G ※SOT-25 Under dot ⑤ MARK② represents output voltage 1 2 MARK 3 拡大 Zoom USP-6EL ●USP-6EL ③ ⑤ 3 ② ④ 2 ① 1 6 5 4 PRODUCT SERIES OUTPUT VOLTAGE 0 1 1.0 1.9 2.0 2.9 3.0 3.9 4.0 1.05 1.95 2.05 2.95 3.05 3.95 - 2 1.1 2.1 3.1 - 1.15 2.15 3.15 - 3 1.2 2.2 3.2 - 1.25 2.25 3.25 - 4 1.3 2.3 3.3 - 1.35 2.35 3.35 - 5 1.4 2.4 3.4 - 1.45 2.45 3.45 - 6 1.5 2.5 3.5 - 1.55 2.55 3.55 - 7 1.6 2.6 3.6 - 1.65 2.65 3.65 - 8 1.7 2.7 3.7 - 1.75 2.75 3.75 - 9 1.8 3.8 - 1.85 2.85 3.85 - A - 2.8 1.9 2.9 3.9 - 1.95 2.95 3.95 B 1.0 2.0 3.0 4.0 1.05 2.05 3.05 - C 1.1 2.1 3.1 - 1.15 2.15 3.15 - D 1.2 2.2 3.2 - 1.25 2.25 3.25 - E 1.3 2.3 3.3 - 1.35 2.35 3.35 - F 1.4 2.4 3.4 - 1.45 2.45 3.45 - H 1.5 2.5 3.5 - 1.55 2.55 3.55 - K 1.6 2.6 3.6 - 1.65 2.65 3.65 - L 1.7 2.7 3.7 - 1.75 2.75 3.75 - M 1.8 2.8 3.8 - 1.85 2.85 3.85 - MARK③ represents output voltage range MARK OUTPUT VOLTAGE A 1.0~1.8V B 1.9~2.8V C 2.9~3.8V D 3.9~4.0V E 1.0~1.8V F 1.9~2.8V H 2.9~3.8V K 3.9~4.0V P 1.05~1.85V R 1.95~2.85V S 2.95~3.85V T 3.95V U 1.05~1.85V V 1.95~2.85V X 2.95~3.85V Y 3.95V PRODUCT SERIES XC9265A/C**1**-G XC9265B/D**1**-G XC9265A/C**B**-G XC9265B/D**B**-G MARK④⑤ represents production lot number 01~09、0A~0Z、11~9Z、A1~A9、AA~AZ、B1~ZZ (G, I, J, O, Q, W excluded and no character inversion used) 32/33 XC9265A/B*****-G XC9265C/D*****-G XC9265 Series 1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet. 3. Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported. 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance. 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features. 6. Our products are not designed to be Radiation-resistant. 7. Please use the product listed in this datasheet within the specified ranges. 8. We assume no responsibility for damage or loss due to abnormal use. 9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance. TOREX SEMICONDUCTOR LTD. 33/33
XC9265D1514R-G
物料型号:XC9265系列 器件简介:XC9265系列是超低功耗同步整流型PFM步降DC/DC转换器,内置0.4Ω(典型值)Pch驱动器和0.4Ω(典型值)Nch同步开关晶体管,设计允许使用陶瓷电容器。PFM控制实现了低静态电流,适用于需要高效率和长电池寿命的电池供电设备。

引脚分配: - VOUT:输出电压 - LX:开关节点 - CE:芯片使能 - GND:地 - VIN:输入电压

参数特性: - 输入电压范围:2.0V至6.0V - 固定输出电压:1.0V至4.0V(精度±2.0%),步进0.05V - 输出电流:200mA(XC9265A/C)、50mA(XC9265B/D) - 工作环境温度:-40℃至85℃

功能详解: - PFM控制方法,实现了高效率和低静态电流 - 内置UVLO(欠压锁定)功能,当输入电压低于UVLO检测电压时,内部P通道MOS驱动晶体管关闭 - XC9265C/D型号具备CL放电功能,在待机模式下可通过内部电阻放电CL电容器

应用信息: - 适用于可穿戴设备、智能电表、蓝牙设备、能量收集设备、备用电源电路、便携式游戏机等

封装信息: - SOT-25、USP-6EL
XC9265D1514R-G 价格&库存

很抱歉,暂时无法提供与“XC9265D1514R-G”相匹配的价格&库存,您可以联系我们找货

免费人工找货