XCL210 Series
ETR28009-005b
50mA/200mA Inductor Built-in Step-Down “micro DC/DC” Converters
☆Green Operation Compatible
■GENERAL DESCRIPTION
The XCL210 series is a synchronous step-down micro DC/DC converter which integrates an inductor and a control IC in one
tiny package (2.0mm×2.5mm, h=1.0mm). An internal coil simplifies the circuit and enables minimization of noise and other
operational trouble due to the circuit wiring. A wide operating voltage range of 2.0V to 6.0V enables support for applications that
require an internally fixed output voltage from 1.0V to 4.0V in increments of 0.05V.
During stand-by, all circuits are shutdown to reduce current consumption to as low as 0.1μA or less.
With the built-in UVLO (Under Voltage Lock Out) function, the internal P-channel MOS driver transistor is forced OFF when
input voltage becomes UVLO detect Voltage or lower.
The XCL210 integrate CL discharge function which enables the electric charge at the output capacitor CL to be discharged via
the internal discharge switch located between the LX and VSS pins. When the devices enter stand-by mode, output voltage
quickly returns to the VSS level as a result of this function.
■FEATURES
■APPLICATIONS
● Wearable Devices
● Smart meters
● Bluetooth units
:
2.0V ~ 6.0V
Output Voltage
:
1.0V ~ 4.0V (±2.0%)
Control Methods
:
PFM control
Output Current
:
200mA (Type A/C)
Supply Current
:
0.5μA
High Efficiency
:
93% (VIN=3.6V,VOUT=3.0V/100μA)
Function
:
UVLO
50mA (Type B/D)
● Energy Harvest devices
● Backup power supply circuits
● Portable game consoles
●
Input Voltage
Devices with 1 Lithium cell
Short Circuit Protection
CL Discharge(Type C/D)
Capacitor
:
Low ESR Ceramic Capacitor
Operating Ambient Temperature
:
-40℃ ~ 85℃
Packages
:
CL-2025-02
Environmentally Friendly
:
EU RoHS Compliant, Pb Free
■TYPICAL APPLICATION CIRCUIT
■ TYPICAL PERFORMANCE
CHARACTERISTICS
XCL210B301GR-G (VOUT=3.0V)
100
7
VIN 6
2 GND
NC 5
3 VOUT
CE 4
8
VIN
CIN
10μF
80
Efficiency : EFFI [%]
CL
50mA 22μF
1 Lx
60
40
20
0
0.01
VIN=3.6V
VIN=4.2V
0.1
1
10
Output Current : IOUT [mA]
100
1/25
XCL210 Series
■BLOCK DIAGRAM
XCL210 Series, Type A/B
L2
L1
Inductor
VOUT
Short
Protection
R1
CFB
PFM
Comparator
VDD
Current
Sense
R2
Vref
PFM
Controller
CE
CE Controller Logic
Synch
Buffer
Drive
Lx
VDD
UVLO
VIN Start Up
Controller
VIN
GND
* XCL210A and B type do not have CL Discharge function.
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.
XCL210 Series, Type C/D
L2
L1
Inductor
VOUT
Short
Protection
R1
CFB
PFM
Comparator
CL
Discharge
VDD
Current
Sense
R2
Vref
PFM
Controller
CE
CE Controller Logic
Synch
Buffer
Drive
Lx
VDD
VIN
UVLO
VIN Start Up
Controller
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.
2/25
GND
XCL210
Series
■PRODUCT CLASSIFICATION
●Ordering information
XCL210①②③④⑤⑥-⑦ PFM control
DESIGNATOR
(*1)
ITEM
SYMBOL
①
Product Type
A
B
C
D
②③
Output Voltage
10 ~ 40
④
Fixed number
1
⑤⑥-⑦(*1)
Package (Order Unit)
GR-G
DESCRIPTION
IOUT=200mA , Without CL Auto Discharge
IOUT=50mA Without CL Auto Discharge
IOUT=200mA , With CL Auto Discharge
IOUT=50mA, With CL Auto Discharge
Output voltage options
e.g.) 1.2V → ② = 1 ③ = 2
1.25V→ ② = 1 ③ = C
0.05V increments :
0.05=A, 0.15=B, 0.25=C, 0.35=D, 0.45=E,
0.55=F, 0.65=H, 0.75=K, 0.85=L, 0.95=M
Fixed number
CL-2025-02 (3,000pcs/Reel)
The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.
3/25
XCL210 Series
■PIN CONFIGURATION
L1
7
VIN
6
1
Lx
NC
5
2
GN D
CE
4
3
VOUT
* The dissipation pad for the CL-2025-02 package should be solder-plated in
recommended mount pattern and metal masking so as to enhance mounting
strength and heat release.
The mount pattern should be connected to GND pin (No.2).
8
L2
(BOTTOM VIEW)
■PIN ASSIGNMENT
PIN NUMBER
PIN NAME
FUNCTIONS
1
2
3
4
5
6
7
8
LX
GND
VOUT
CE
NC
VIN
L1
L2
Switching
Ground
Output Voltage
Chip Enable
No Connection
Power Input
Inductor Electrodes
Inductor Electrodes
■CE PIN FUNCTION
PIN NAME
SIGNAL
STATUS
H
Operation (All Types)
L
Stand-by (All Types)
* Please do not leave the CE pin open.
CE
■ABSOLUTE MAXIMUM RATINGS
PARAMETER
SYMBOL
RATINGS
UNITS
VIN Pin Voltage
LX Pin Voltage
VIN
VLX
-0.3 ~ 7.0
-0.3 ~ VIN + 0.3 or 7.0 (*1)
V
V
VOUT Pin Voltage
CE Pin Voltage
VOUT
VCE
-0.3 ~ VIN + 0.3 or 7.0 (*1)
-0.3 ~ 7.0
V
V
LX Pin Current
ILX
1000
mA
Power Dissipation (Ta=25˚C)
Pd
1000 (40mm x 40mm Standard
Operating Ambient Temperature
Topr
-40 ~ 85
Storage Temperature
Tstg
-55 ~ 125
* All voltages are described based on the GND.
(*1) The maximum value is the lower of either VIN + 0.3V or 7.0V.
(*2) The power dissipation figure shown is PCB mounted and is for reference only.
Please refer to PACKAGING INFORMATION for the mounting condition.
4/25
board) (*2)
mW
˚C
˚C
XCL210
Series
■ELECTRICAL CHARACTERISTICS
Ta=25˚C
●XCL210Axx1GR-G, without CL discharge function
PARAMETER
SYMBOL
Input Voltage
VIN
Output Voltage
VOUT(E) (*2)
UVLO Release Voltage
VUVLO(E)
CONDITIONS
-
MIN.
TYP.
MAX.
UNITS
CIRCUIT
2.0
-
6.0
V
①
V
②
Resistor connected with LX pin. Voltage which LX pin
E1
changes “L” to “H” level while VOUT is decreasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
Voltage which LX pin changes “L” to “H” level while
1.65
1.80
1.95
V
②
0.11
0.15
0.24
V
②
μA
③
VIN is increasing.
UVLO Hysteresis
Voltage
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
VHYS(E)
VUVLO(E) - Voltage which LX pin changes “H” to “L”
level while VIN is decreasing.
Supply Current
Iq
Standby Current
ISTB
VIN=VCE=VOUT(T)+0.5V (*1), VIN=2.0V, if VOUT(T)≦1.5V
E2
, VOUT=VOUT(T)+0.5V (*1), LX=Open.
(*1)
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-
0.1
1.0
μA
③
ILEAKH
VIN=5.0V, VCE=VOUT=0V, VLX=0V.
-
0.1
1.0
μA
③
LX SW “L” Leak Current
ILEAKL
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.
-
0.1
1.0
μA
③
PFM Switching Current
IPFM
260
330
400
mA
①
100
-
-
%
②
LX SW “H” Leak
Current
Maximum
Duty Ratio (*3)
MAXDTY
VIN=VCE=VOUT(T)+2.0V
, IOUT=10mA.
(*1)
VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V
Resistor connected with LX pin.
Efficiency (*4)
EFFI
VIN=VCE=5.0V, VOUT(T)=4.0V (*1), IOUT=30mA.
-
93
-
%
⑥
Efficiency
(*4)
EFFI
VIN=VCE=3.6V, VOUT(T)=3.3V
, IOUT=30mA.
-
93
-
%
⑥
Efficiency (*4)
EFFI
VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA.
-
87
-
%
⑥
RLXP
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.
-
0.4
0.65
Ω
④
RLXN
VIN=VCE=5.0V.
-
0.4 (*6)
-
Ω
-
-40℃≦Topr≦85℃.
-
±100
-
ppm/℃
②
LX SW “Pch”
ON Resistance (*5)
LX SW “Nch”
ON Resistance
Output Voltage
Temperature
Characteristics
ΔVOUT/
(VOUT・ΔTopr)
(*1)
VOUT=0V. Resistor connected with LX pin.
CE “High” Voltage
VCEH
Voltage which LX pin changes “L” to “H” level while
1.2
-
6.0
V
⑤
GND
-
0.3
V
⑤
VCE=0.2→1.5V.
VOUT=0V. Resistor connected with LX pin.
CE “Low” Voltage
VCEL
Voltage which LX pin changes “H” to “L” level while
VCE=1.5→0.2V.
CE “High” Current
ICEH
VIN=VCE=5.0V, VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
CE “Low” Current
ICEL
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
0.4
0.5
0.6
V
②
Short Protection
Threshold Voltage
Resistor connected with LX pin.
VSHORT
Voltage which LX pin changes “H” to “L” level while
VOUT= VOUT(T)+0.1V→0V .
(*1)
Inductance Value
L
Inductor Rated Current
IDC_L
Test Frequency=1MHz
-
8.0
-
μH
ΔT=+40℃
-
600
-
mA
Unless otherwise stated, VIN=VCE=5.0V
(*1) VOUT(T)=Nominal Output Voltage
(*2) VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*5)
LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6)
Designed value
5/25
XCL210 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XCL210Bxx1GR-G, without CL discharge function
PARAMETER
SYMBOL
Input Voltage
VIN
Output Voltage
VOUT(E) (*2)
UVLO Release Voltage
VUVLO(E)
Ta=25˚C
Ta=25˚C
CONDITIONS
-
MIN.
TYP.
MAX.
UNITS
CIRCUIT
2.0
-
6.0
V
①
V
②
Resistor connected with LX pin.Voltage which LX pin
E1
changes “L” to “H” level while VOUT is decreasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
Voltage which LX pin changes “L” to “H” level while
1.65
1.80
1.95
V
②
0.11
0.15
0.24
V
②
μA
③
VIN is increasing.
UVLO Hysteresis
Voltage
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
VHYS(E)
VUVLO(E) - Voltage which LX pin changes “H” to “L”
level while VIN is decreasing.
Supply Current
Iq
Standby Current
ISTB
VIN=VCE=VOUT(T)+0.5V (*1),VIN=2.0V, if VOUT(T)≦1.5V
E2
, VOUT=VOUT(T)+0.5V (*1), LX=Open.
(*1)
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-
0.1
1.0
μA
③
ILEAKH
VIN=5.0V, VCE=VOUT=0V, VLX=0V.
-
0.1
1.0
μA
③
LX SW “L” Leak Current
ILEAKL
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.
-
0.1
1.0
μA
③
PFM Switching Current
IPFM
115
180
250
mA
①
100
-
-
%
②
LX SW “H” Leak
Current
Maximum
Duty Ratio (*3)
MAXDTY
VIN=VCE=VOUT(T)+2.0V
, IOUT=10mA.
(*1)
VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V
Resistor connected with LX pin.
Efficiency (*4)
EFFI
VIN=VCE=5.0V,VOUT(T)=4.0V (*1), IOUT=30mA.
-
95
-
%
⑥
Efficiency
(*4)
EFFI
VIN=VCE=3.6V, VOUT(T)=3.3V
, IOUT=30mA.
-
95
-
%
⑥
Efficiency (*4)
EFFI
VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA.
-
89
-
%
⑥
RLXP
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.
-
0.4
0.65
Ω
④
RLXN
VIN=VCE=5.0V.
-
0.4 (*6)
-
Ω
-
-40℃≦Topr≦85℃.
-
±100
-
ppm/℃
②
1.2
-
6.0
V
⑤
GND
-
0.3
V
⑤
LX SW “Pch”
ON Resistance (*5)
LX SW “Nch”
ON Resistance
Output Voltage
Temperature
Characteristics
ΔVOUT/
(VOUT・ΔTopr)
(*1)
VOUT=0V. Resistor connected with LX pin.
CE “High” Voltage
VCEH
Voltage which LX pin changes “L” to “H” level while
VCE=0.2→1.5V.
VOUT=0V. Resistor connected with LX pin.
CE “Low” Voltage
VCEL
Voltage which LX pin changes “H” to “L” level while
VCE=1.5→0.2V.
CE “High” Current
ICEH
VIN=VCE=5.0V, VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
CE “Low” Current
ICEL
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
0.4
0.5
0.6
V
②
Short Protection
Threshold Voltage
Resistor connected with LX pin.
VSHORT
Voltage which LX pin changes “H” to “L” level while
VOUT=VOUT(T)+0.1V→0V
Inductance Value
L
Inductor Rated Current
IDC_L
.
(*1)
Test Frequency=1MHz
-
8.0
-
μH
ΔT=+40℃
-
600
-
mA
Unless otherwise stated, VIN=VCE=5.0V
(*1) VOUT(T)=Nominal Output Voltage
(*2) VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*5)
LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6)
Designed value
6/25
XCL210
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XCL210Cxx1GR-G, with CL Discharge Function
PARAMETER
SYMBOL
Input Voltage
VIN
Output Voltage
VOUT(E) (*2)
UVLO Release Voltage
VUVLO(E)
Ta=25˚C
CONDITIONS
-
MIN.
TYP.
MAX.
UNITS
CIRCUIT
2.0
-
6.0
V
①
V
②
Resistor connected with LX pin. Voltage which LX pin
E1
changes “L” to “H” level while VOUT is decreasing.
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
Voltage which LX pin changes “L” to “H” level while
1.65
1.80
1.95
V
②
0.11
0.15
0.24
V
②
μA
③
VIN is increasing.
UVLO Hysteresis
Voltage
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
VHYS(E)
VUVLO(E) - Voltage which LX pin changes “H” to “L”
level while VIN is decreasing.
VIN=VCE=VOUT(T)+0.5V (*1),VIN=2.0V, if VOUT(T)≦1.5V
Supply Current
Iq
,
E2
(*1)
VOUT=VOUT(T)+0.5V (*1), LX=Open.
Standby Current
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-
0.1
1.0
μA
③
ILEAKH
VIN=5.0V, VCE=VOUT=0V, VLX=0V.
-
0.1
1.0
μA
③
LX SW “L” Leak Current
ILEAKL
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.
-
0.1
1.0
μA
③
PFM Switching Current
IPFM
260
330
400
mA
①
100
-
-
%
②
LX SW “H” Leak
Current
Maximum
Duty Ratio (*3)
ISTB
MAXDTY
VIN=VCE=VOUT(T)+2.0V
, IOUT=10mA.
(*1)
VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V
Resistor connected with LX pin.
Efficiency (*4)
EFFI
VIN=VCE=5.0V, VOUT(T)=4.0V (*1), IOUT=30mA.
-
93
-
%
⑥
Efficiency
(*4)
EFFI
VIN=VCE=3.6V, VOUT(T)=3.3V (*1), IOUT=30mA.
-
93
-
%
⑥
Efficiency (*4)
EFFI
VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA.
-
87
-
%
⑥
RLXP
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.
-
0.4
0.65
Ω
④
RLXN
VIN=VCE=5.0V.
-
0.4 (*6)
-
Ω
-
-40℃≦Topr≦85℃.
-
±100
-
ppm/℃
②
1.2
-
6.0
V
⑤
GND
-
0.3
V
⑤
LX SW “Pch”
ON Resistance (*5)
LX SW “Nch”
ON Resistance
Output Voltage
Temperature
Characteristics
ΔVOUT/
(VOUT・ΔTopr)
VOUT=0V. Resistor connected with LX pin.
CE “High” Voltage
VCEH
Voltage which LX pin changes “L” to “H” level while
VCE=0.2→1.5V.
VOUT=0V. Resistor connected with LX pin.
CE “Low” Voltage
VCEL
Voltage which LX pin changes “H” to “L” level while
VCE=1.5→0.2V.
CE “High” Current
ICEH
VIN=VCE=5.0V, VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
CE “Low” Current
ICEL
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
0.4
0.5
0.6
V
②
55
80
105
Ω
③
-
8.0
-
μH
Short Protection
Threshold Voltage
Resistor connected with LX pin.
VSHORT
Voltage which LX pin changes “H” to “L” level while
VOUT= VOUT(T)+0.1V→0V .
(*1)
CL Discharge
RDCHG
Inductance Value
L
VIN=VOUT=5.0V, VCE=0V, LX=Open.
Test Frequency=1MHz
Inductor Rated Current
IDC_L
600
mA
ΔT=+40℃
Unless otherwise stated, VIN=VCE=5.0V
(*1) VOUT(T)=Nominal Output Voltage
(*2) VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.
(*4)
EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6)
Designed value
7/25
XCL210 Series
■ELECTRICAL CHARACTERISTICS (Continued)
Ta=25˚C
●XCL210Dxx1GR-G, with CL Discharge Function
PARAMETER
SYMBOL
Input Voltage
VIN
CONDITIONS
-
MIN.
TYP.
MAX.
UNITS
CIRCUIT
2.0
-
6.0
V
①
V
②
Resistor connected with LX pin. Voltage which LX
Output Voltage
VOUT(E) (*2)
pin changes “L” to “H” level while VOUT is
E1
decreasing.
UVLO Release
Voltage
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
VUVLO(E)
Voltage which LX pin changes “L” to “H” level
1.65
1.80
1.95
V
②
0.11
0.15
0.24
V
②
μA
③
while VIN is increasing.
UVLO Hysteresis
Voltage
VCE=VIN, VOUT=0V. Resistor connected with LX pin.
VHYS(E)
VUVLO(E) - Voltage which LX pin changes “H” to “L”
level while VIN is decreasing.
VIN=VCE=VOUT(T)+0.5V (*1),
Supply Current
Iq
E2
VIN=2.0V, if VOUT(T)≦1.5V (*1),
VOUT=VOUT(T)+0.5V (*1), LX=Open.
Standby Current
LX SW “H” Leak
Current
LX SW “L” Leak
Current
PFM Switching Current
Maximum
Duty Ratio (*3)
ISTB
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-
0.1
1.0
μA
③
ILEAKH
VIN=5.0V, VCE=VOUT=0V, VLX=0V.
-
0.1
1.0
μA
③
ILEAKL
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.
-
0.1
1.0
μA
③
115
180
250
mA
①
100
-
-
%
②
IPFM
MAXDTY
VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA.
VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V
Resistor connected with LX pin.
Efficiency (*4)
EFFI
VIN=VCE=5.0V,VOUT(T)=4.0V (*1), IOUT=30mA.
-
95
-
%
⑥
Efficiency
(*4)
EFFI
VIN=VCE=3.6V, VOUT(T)=3.3V
, IOUT=30mA.
-
95
-
%
⑥
Efficiency (*4)
EFFI
VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA.
-
89
-
%
⑥
RLXP
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.
-
0.4
0.65
Ω
④
RLXN
VIN=VCE=5.0V.
-
0.4 (*6)
-
Ω
-
-40℃≦Topr≦85℃.
-
±100
-
ppm/℃
②
1.2
-
6.0
V
⑤
GND
-
0.3
V
⑤
LX SW “Pch”
ON Resistance (*5)
LX SW “Nch”
ON Resistance
Output Voltage
Temperature
Characteristics
ΔVOUT/
(VOUT・ΔTopr)
(*1)
VOUT=0V. Resistor connected with LX pin.
CE “High” Voltage
VCEH
Voltage which LX pin changes “L” to “H” level while
VCE=0.2→1.5V.
VOUT=0V. Resistor connected with LX pin.
CE “Low” Voltage
VCEL
Voltage which LX pin changes “H” to “L” level while
VCE=1.5→0.2V.
CE “High” Current
ICEH
VIN=VCE=5.0V, VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
CE “Low” Current
ICEL
VIN=5.0V, VCE=VOUT=0V, LX=Open.
-0.1
-
0.1
μA
⑤
0.4
0.5
0.6
V
②
55
80
105
Ω
③
-
8.0
-
μH
Short Protection
Threshold Voltage
Resistor connected with LX pin.
VSHORT
Voltage which LX pin changes “H” to “L” level while
VOUT= VOUT(T)+0.1V→0V .
(*1)
CL Discharge
RDCHG
Inductance Value
L
VIN=VOUT=5.0V, VCE=0V, LX=Open.
Test Frequency=1MHz
Inductor Rated Current
IDC
600
mA
ΔT=+40℃
Unless otherwise stated, VIN=VCE=5.0V
(*1) VOUT(T)=Nominal Output Voltage
(*2) VOUT(E)=Effective Output Voltage
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.
Please refer to the characteristic example.
(*3)
Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.
(*4)
EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100
(*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA
(*6)
Designed value
8/25
XCL210
Series
■ELECTRICAL CHARACTERISTICS (Continued)
XCL210 Series voltage chart
SYMBOL
E1
E2
SYMBOL
E1
E2
PARAMETER
OUTPUT VOLTAGE
SUPPLY CURRENT
PARAMETER
OUTPUT VOLTAGE
SUPPLY CURRENT
UNITS: V
OUTPUT
VOLTAGE
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40
2.45
UNITS: V
UNITS: μA
UNITS: V
OUTPUT
VOLTAGE
2.50
2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35
3.40
3.45
3.50
3.55
3.60
3.65
3.70
3.75
3.80
3.85
3.90
3.95
4.00
UNITS: V
UNITS: μA
MIN.
MAX.
0.980
1.029
1.078
1.127
1.176
1.225
1.274
1.323
1.372
1.421
1.470
1.519
1.568
1.617
1.666
1.715
1.764
1.813
1.862
1.911
1.960
2.009
2.058
2.107
2.156
2.205
2.254
2.303
2.352
2.401
1.020
1.071
1.122
1.173
1.224
1.275
1.326
1.377
1.428
1.479
1.530
1.581
1.632
1.683
1.734
1.785
1.836
1.887
1.938
1.989
2.040
2.091
2.142
2.193
2.244
2.295
2.346
2.397
2.448
2.499
TYP.
MAX.
0.500
0.800
0.500
0.900
0.600
1.100
MIN.
MAX.
2.450
2.499
2.548
2.597
2.646
2.695
2.744
2.793
2.842
2.891
2.940
2.989
3.038
3.087
3.136
3.185
3.234
3.283
3.332
3.381
3.430
3.479
3.528
3.577
3.626
3.675
3.724
3.773
3.822
3.871
3.920
2.550
2.601
2.652
2.703
2.754
2.805
2.856
2.907
2.958
3.009
3.060
3.111
3.162
3.213
3.264
3.315
3.366
3.417
3.468
3.519
3.570
3.621
3.672
3.723
3.774
3.825
3.876
3.927
3.978
4.029
4.080
TYP.
MAX.
0.700
1.500
0.800
2.100
1.500
3.000
9/25
XCL210 Series
■TEST CIRCUITS
< Circuit No.① >
< Circuit No.② >
Wave Form Measure Point
L
Wave Form Measure Point
RL
V
L2
L1
L2
L1
VOUT
Lx
VOUT
Lx
VIN
CL
CE
GND
A
VIN
CIN
CE
※External Components
L:10μH(Selected goods)
CIN:10μF(Ceramic)
CL:22μF(Ceramic)
< Circuit No.④ >
L2
L1
L2
L1
VOUT
Lx
VOUT
Lx
A
VIN
VIN
A
CE
GND
V
A
CIN
CE
※External Components
CIN:10μF(Ceramic)
GND
ILX
CIN
※External Components
CIN:10μF(Ceramic)
< Circuit No.⑤ >
< Circuit No.⑥ >
L2
L1
VOUT
Lx
Wave Form Measure Point
VIN
ICEH
CE
ICEL
※External Components
CIN:10μF(Ceramic)
RPULLDOWN:100Ω
10/25
RPulldown
※External Components
CIN:10μF(Ceramic)
RPULLDOWN:100Ω
< Circuit No.③ >
A
GND
V
CIN
GND
V
RL
CIN
L2
L1
VOUT
Lx
VIN
CL
A
RPulldown
CE
A
※External Components
CIN:10μF(Ceramic)
CL:22μF(Ceramic)
GND
CIN
XCL210
Series
■TYPICAL APPLICATION CIRCUIT
7
VOUT
CL
1 Lx
VIN 6
2 GND
NC 5
3 VOUT
CE 4
VIN
CIN
NOTE:
The integrated Inductor can be used only for this DC/DC converter.
Please do not use this inductor for other reasons.
8
Manufacturer
Taiyo Yuden
CIN
TDK
Taiyo Yuden
CL
TDK
Part Number
LMK107BBJ106MALT
VALUE
LMK212ABJ106MG
10μF/10V
10μF/10V
C1608X5R1A106M
C2012X5R1A106M
LMK107BBJ226MA
LMK212BBJ226MG
C1608X5R1A226M
C2012X5R1A226M
10μF/10V
10μF/10V
22μF/10V
22μF/10V
22μF/10V
22μF/10V
* Take capacitance loss, withstand voltage, and other conditions into consideration when selecting components.
11/25
XCL210 Series
■ OPERATIONAL EXPLANATION
The XCL210 series consists of a reference voltage supply, PFM comparator, Pch driver Tr, Nch synchronous rectification switch
Tr, current sensing circuit, PFM control circuit, CE control circuit, and others. (Refer to the block diagram below.)
L2
L1
Inductor
VOUT
Short
Protection
R1
CFB
PFM
Comparator
L2
VOUT
VDD
Short
Protection
R1
Current
Sense
PFM
Comparator
VDD
Current
Sense
R2
Vref
Vref
PFM
Controller
CE Controller Logic
Synch
Buffer
Drive
Lx
PFM
Controller
CE
VDD
CE Controller Logic
Synch
Buffer
Drive
Lx
VDD
UVLO
VIN Start Up
Controller
VIN
CFB
CL
Discharge
R2
CE
L1
Inductor
VIN
GND
UVLO
VIN Start Up
Controller
GND
An ultra-low quiescent current circuit and synchronous rectification enable a significant reduction of dissipation in the IC, and the
IC operates with high efficiency at both light loads and heavy loads. Current limit PFM is used for the control method, and even
when switching current superposition occurs, increases of output voltage ripple are suppressed, allowing use over a wide voltage
and current range. The IC is compatible with low-capacitance ceramic capacitors, and a small, high-performance step-down DCDC converter can be created.
The actual output voltage VOUT(E) in the electrical characteristics is the threshold voltage of the PFM comparator in the block
diagram. Therefore the average output voltage of the step-down circuit, including peripheral components, depends on the ripple
voltage. Before use, test fully using the actual device.
VIN=VCE=3.6V、VOUT=1.8V、IOUT=5mA、L=8.0μH、CL=22uF、Ta=25℃
VIN=VCE=3.6V、VOUT=1.8V、IOUT=30mA、L=8.0μH、CL=22uF、Ta=25℃
VLX
VLX
VOUT
VOUT
VLX : 2[V/div]
VOUT : 50[mV/div]
VOUT(E)
Voltage
ILX
ILX
IPFM
10[μs/div]
Reference voltage for stabilization of the output voltage of the IC.
12/25
ILX : 100[mA/div]
10[μs/div]
XCL210
Series
■OPERATIONAL EXPLANATION (Continued)
(1) The feedback voltage (FB voltage) is the voltage that results from dividing the output voltage with the IC internal dividing
resistors RFB1 and RFB2. The PFM comparator compares this FB voltage to VREF. When the FB voltage is lower than VREF, the PFM
comparator sends a signal to the buffer driver through the PFM control circuit to turn on the Pch driver Tr. When the FB voltage is
higher than VREF, the PFM comparator sends a signal to prevent the Pch driver Tr from turning on.
(2) When the Pch driver Tr is on, the current sense circuit monitors the current that flows through the Pch driver Tr connected to the
Lx pin. When the current reaches the set PFM switching current (IPFM), the current sense circuit sends a signal to the buffer driver
through the PFM control circuit. This signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr.
(3) The on time (off time) of the Nch synchronous rectification switch Tr is dynamically optimized inside the IC. After the off time
elapses and the PFM comparator detects that the VOUT voltage is higher than the set voltage, the PFM comparator sends a signal
to the PFM control circuit that prevents the Pch driver Tr from turning on. However, if the VOUT voltage is lower than the set voltage,
the PFM comparator starts Pch driver Tr on.
By continuously adjusting the interval of the linked operation of (1), (2) and (3) above in response to the load current, the output
voltage is stabilized with high efficiency from light loads to heavy loads.
The PFM switching current monitors the current that flows through the Pch driver Tr, and is a value that limits the Pch driver Tr
current. The Pch driver Tr remains on until the coil current reaches the PFM switching current (IPFM). An approximate value for this
on-time tON can be calculated using the following equation:
tON = L × IPFM / (VIN – VOUT)
To avoid excessive ripple voltage in the event that the coil current does not reach the PFM switching current within a certain
interval even though the Pch driver Tr has turned on and the FB voltage is above VREF, the Pch driver Tr can be turned off at any
timing using the maximum on-time function of the PFM control circuit. If the Pch driver Tr turns off by the maximum on-time function
instead of the current sense circuit, the Nch synchronous rectification switch Tr will not turn on and the coil current will flow to the
VOUT pin by means of the parasite diode of the Nch synchronous rectification switch Tr.
When the VIN voltage is lower than the output voltage, through mode automatically activates and the Pch driver Tr stays on
continuously.
(1) In through mode, when the load current is increased and the current that flows through the Pch driver Tr reaches a load current
that is several tens of mA lower than the set PFM switching current (IPFM), the current sense circuit sends a signal through the PFM
control circuit to the buffer driver. This signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr.
(2) After the on-time (off-time) of the Nch synchronous rectification switch Tr, the Pch driver Tr turns on until the current reaches
the set PFM switching current (IPFM) again.
If the load current is large as described above, operations (1) and (2) above are repeated. If the load current is several tens of
mA lower than the PFM switching current (IPFM), the Pch driver Tr stays on continuously.
When the VIN voltage rises, VIN start mode stops the short-circuit protection function during the interval until the FB voltage
approaches VREF. After the VIN voltage rises and the FB voltage approaches VREF by step-down operation, VIN start mode is
released. In order to prevent an excessive rush current while VIN start mode is activated, the coil current flows to the VOUT pin by
means of the parasitic diode of the Nch synchronous rectification Tr. In VIN start mode as well, the coil current is limited by the
PFM switching current.
13/25
XCL210 Series
■OPERATIONAL EXPLANATION (Continued)
The short-circuit protection function monitors the VOUT pin voltage, and if the VOUT pin voltage drops below the Short Protection
Threshold Voltage (VSHORT) due to a short circuit or overcurrent, the short circuit protection function operates.
When the short-circuit protection function is activated, the Pch driver Tr and Nch Synchronous Switch Tr are held off. If the VOUT
pin voltage exceeds the Short Protection Threshold Voltage (VSHORT) after the short-circuit protection function is activated, normal
operation resumes.
To cancel the short-circuit protection function, it is necessary to start the IC after putting the IC in the standby state with the CE
function, or to raise the input voltage after setting the input voltage below the UVLO detection voltage (VUVLO(E)-VHYS(E)).
When the VIN pin voltage drops below the UVLO detection voltage, the IC stops switching operation at any selected timing, turns
off the Pch driver Tr and Nch synchronous rectification switch Tr (UVLO mode). When the VIN pin voltage recovers and rises above
the UVLO release voltage, the IC restarts operation.
On the XCL210 series, a CL discharge function is available as an option (Type C/D). This function enables quick discharging of
the CL load capacitance when “L” voltage is input into the CE pin by the Nch Tr connected between the VOUT-GND pins, or in
UVLO mode. This prevents malfunctioning of the application in the event that a charge remains on CL when the IC is stopped.
The discharge time is determined by CL and the CL discharge resistance RDCHG, including the Nch Tr (refer to the diagram below).
Using this time constant τ= CL×RDCHG, the discharge time of the output voltage is calculated by means of the equation below.
V = VOUT × e - t /τ, or in terms of t, t = τIn(VOUT / V)
V
VOUT
t
CL
RDCHG
τ
: Output voltage after discharge
: Set output voltage
: Discharge time
: Value of load capacitance (CL)
: Value of CL discharge resistance Varies by power supply voltage.
: CL × RDCHG
VOUT
R
RDCHG = R + RON
CE / UVLO
Signal
The CL discharge function is not available on the Type A/B
14/25
RON
XCL210
Series
■NOTE ON USE
1. Be careful not to exceed the absolute maximum ratings for externally connected components and this IC.
2. The DC/DC converter characteristics greatly depend not only on the characteristics of this IC but also on those of externally
connected components, so refer to the specifications of each component and be careful when selecting the components. Be
especially careful of the characteristics of the capacitor used for the load capacity CL and use a capacitor with B characteristics
(JIS Standard) or an X7R/X5R (EIA Standard) ceramic capacitor.
3. Use a ground wire of sufficient strength. Ground potential fluctuation caused by the ground current during switching could cause
the IC operation to become unstable, so reinforce the area around the GND pin of the IC in particular.
4. Mount the externally connected components in the vicinity of the IC. Also use short, thick wires to reduce the wire impedance.
5. When the voltage difference between VIN and VOUT is small, switching energy increases and there is a possibility that the ripple
voltage will be too large. Before use, test fully using the actual device.
6. The CE pin does not have an internal pull-up or pull-down, etc. Apply the prescribed voltage to the CE pin.
7. If other than the recommended inductance and capacitance values are used, excessive ripple voltage or a drop in efficiency
may result.
8. If other than the recommended inductance and capacitance values are used, a drop in output voltage when the load is excessive
may cause the short-circuit protection function to activate. Before use, test fully using the actual device.
9. At high temperature, excessive ripple voltage may occur and cause a drop in output voltage and efficiency. Before using at high
temperature, test fully using the actual device
10. At light loads or when IC operation is stopped, leakage current from the Pch driver Tr may cause the output voltage to rise.
11. The average output voltage may vary due to the effects of output voltage ripple caused by the load current. Before use, test
fully using the actual device.
12. If the CL capacitance or load current is large, the output voltage rise time will lengthen when the IC is started, and coil current
overlay may occur during the interval until the output voltage reaches the set voltage (refer to the diagram below).
XCL210A Series、VIN
=VCE
=0→6.0V、VOUT
=1.0V、I
IN=V
CE=0→6.0V、V
OUT=1.0V、I
OUT=200mA、CL=22uF、Ta=25℃
XC9265Aシリーズ、V
OUT =200mA、L=10μH、C L=22uF、Ta=25℃
VLX
ILX
VLX : 10[V/div ]
IPFM
I L : 200[mA/div ]
VOUT : 1[V/div ]
VOU T
VIN : 5[V/div ]
VIN
Zoom
200[μs/div ]
VLX
VLX : 10[V/div ]
I L : 200[mA/div ]
ILX
VOUT : 1[V/div ]
VOU T
VIN
VIN : 5[V/div ]
5[μs/div ]
13. When the IC is started, the short-circuit protection function does not operate during the interval until the VOUT voltage reaches
a value near the set voltage.
14. If the IC is started at a VIN voltage that activates through mode, it is possible that the short-circuit protection function will not
operate. Before use, test fully using the actual device.
15. If the load current is excessively large when the IC is started, it is possible that the VOUT voltage will not rise to the set voltage.
Before use, test fully using the actual device.
15/25
XCL210 Series
■NOTE ON USE (Continued)
16. In actual operation, the maximum on-time depends on the peripheral components, input voltage, and load current. Before use,
test fully using the actual device.
17. When the VIN voltage is turned on and off continuously, excessive rush current may occur while the voltage is on. Before use,
test fully using the actual device.
18. When the VIN voltage is high, the Pch driver may change from on to off before the coil current reaches the PFM switching
current (IPFM), or before the maximum on-time elapses. Before use, test fully using the actual device.
19. When the IC change to the Through Mode at light load, the supply current of this IC can increase in some cases.
20. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be
exceeded.
21. Torex places an importance on improving our products and their reliability.
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their
systems.
22. The UVLO function can be activated when the UVLO hysteresis width gets to about 0mV and after several tens ms elapses
at light loads.
Before use, test fully using the actual device.
23. Please use within the power dissipation range below. Please also note that the power dissipation may change by test
conditions, the power dissipation figure shown is PCB mounted.
24. The proper position of mounting is based on the coil terminal
Pd vs Operating Temperature
the power loss of micro DC/DC according to the following formula:
power loss = VOUT×IOUT×((100/EFFI) – 1) (W)
VOUT : Output Voltage (V)
IOUT : Output Current (A)
EFFI : Conversion Efficiency (%)
16/25
Package Body Temperature vs Operating Temperature
XCL210
Series
■NOTE ON USE (Continued)
●Instructions of pattern layouts
1. To suppress fluctuations in the VIN potential, connect a bypass capacitor (CIN) in the shortest path between the VIN pin and
ground pin.
2. Please mount each external component as close to the IC as possible.
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.
4. Make sure that the ground traces are as thick as possible, as variations in ground potential caused by high ground currents at
the time of switching may result in instability of the IC.
5. Internal driver transistors bring on heat because of the transistor current and ON resistance of the driver transistors.
6. As precautions on mounting, please set the mounting position accuracy within 0.05 mm
●Recommended Pattern Layout
Top view
Back side top view
17/25
XCL210 Series
■TYPICAL PERFORMANCE CHARACTERISTICS
1) Output Voltage vs. Output Current
XCL210B121GR-G/XCL210D121GR-G
XCL210A121GR-G/XCL210C121GR-G
Vin=3.0V,CL=22uF
Vin=3.0V,CL=22uF×2
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
1.4
1.3
1.2
1.1
1.5
Output Voltage: VOUT [V]
Output Voltage: VOUT [V]
1.5
1.0
0.01
0.1
1
Output Voltage: VOUT [V]
1.3
1.2
1.1
10
0.9
100
0.01
0.1
XCL210A181GR-G/XCL210C181GR-G
XCL210B181GR-G/XCL210D181GR-G
Vin=3.0V,CL=22uF
Vin=3.0V,CL=22uF×2
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
1.9
1.8
1.7
2.1
1.6
100
Vin=3.0V,CL=22uF
Vin=3.0V,CL=22uF×2
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
2.0
1.9
1.8
1.7
1.6
0.01
0.1
1
10
1.5
100
0.01
0.1
XCL210A331GR-G/XCL210C331GR-G
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
Vin=5.0V,CL=22uF
Vin=5.0V,CL=22uF×2
3.5
10
100
XCL210B331GR-G/XCL210D331GR-G
3.4
3.3
3.2
3.6
Output Voltage: VOUT [V]
3.6
1
Output Current: IOUT [mA]
Output Current: IOUT [mA]
Output Voltage: VOUT [V]
10
Output Current: IOUT [mA]
2.0
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
Vin=5.0V,CL=22uF
Vin=5.0V,CL=22uF×2
3.5
3.4
3.3
3.2
3.1
3.1
3.0
1
Output Current: IOUT [mA]
2.1
1.5
1.4
1.0
Output Voltage: VOUT [V]
0.9
Vin=3.0V,CL=22uF
Vin=3.0V,CL=22uF×2
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
0.01
0.1
1
10
Output Current: IOUT [mA]
18/25
100
3.0
0.01
0.1
1
10
Output Current: IOUT [mA]
100
XCL210
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
2) Efficiency vs. Output Current
XCL210B121GR-G/XCL210D121GR-G
100
100
80
80
Efficiency: EFFI [%]
Efficiency: EFFI [%]
XCL210A121GR-G/XCL210C121GR-G
60
40
Vin=3.0V,CL=22uF
Vin=3.0V,CL=22uF×2
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
20
0
0.01
0.1
1
10
60
40
20
0
0.01
100
Vin=3.0V,CL=22uF
Vin=3.0V,CL=22uF×2
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
0.1
Output Current: IOUT [mA]
80
80
60
40
0
0.01
1
10
Output Current: IOUT [mA]
40
0
0.01
100
80
80
60
40
0
0.01
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
Vin=5.0V,CL=22uF
Vin=5.0V,CL=22uF×2
0.1
1
10
Output Current: IOUT [mA]
Vin=3.0V,CL=22uF
Vin=3.0V,CL=22uF×2
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
0.1
1
10
Output Current: IOUT [mA]
100
XCL210B331GR-G/XCL210D331GR-G
100
Efficiency: EFFI [%]
Efficiency: EFFI [%]
XCL210A331GR-G/XCL210C331GR-G
100
20
100
60
20
Vin=3.0V,CL=22uF
Vin=3.0V,CL=22uF×2
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
0.1
10
XCL210B181GR-G/XCL210D181GR-G
100
Efficiency: EFFI [%]
Efficiency: EFFI [%]
XCL210A181GR-G/XCL210C181GR-G
100
20
1
Output Current: IOUT [mA]
100
60
40
20
0
0.01
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
Vin=5.0V,CL=22uF
Vin=5.0V,CL=22uF×2
0.1
1
10
100
Output Current: IOUT [mA]
19/25
XCL210 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
3) Ripple Voltage vs. Output Current
XCL210A121GR-G/XCL210C121GR-G
Vin=3.0V,CL=22uF
Vin=3.0V,CL=22uF×2
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
150
100
50
0
0.01
0.1
1
10
200
Ripple Voltage: Vr [mV]
Ripple Voltage: Vr [mV]
200
XCL210B121GR-G/XCL210D121GR-G
Vin=3.0V,CL=22uF
Vin=3.0V,CL=22uF×2
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
150
100
50
0
0.01
100
0.1
Output Current: IOUT [mA]
XCL210A181GR-G/XCL210C181GR-G
Vin=3.0V,CL=22uF
Vin=3.0V,CL=22uF×2
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
150
100
50
0
0.01
0.1
1
10
Output Current: IOUT [mA]
200
100
50
0
0.01
100
50
0.1
1
10
Output Current: IOUT [mA]
20/25
100
200
Ripple Voltage: Vr [mV]
Ripple Voltage: Vr [mV]
100
0
0.01
0.1
1
10
Output Current: IOUT [mA]
100
XCL210B331GR-G/XCL210D331GR-G
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
Vin=5.0V,CL=22uF
Vin=5.0V,CL=22uF×2
150
100
Vin=3.0V,CL=22uF
Vin=3.0V,CL=22uF×2
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
150
XCL210A331GR-G/XCL210C331GR-G
200
10
XCL210B181GR-G/XCL210D181GR-G
Ripple Voltage: Vr [mV]
Ripple Voltage: Vr [mV]
200
1
Output Current: IOUT [mA]
Vin=4.2V,CL=22uF
Vin=4.2V,CL=22uF×2
Vin=5.0V,CL=22uF
Vin=5.0V,CL=22uF×2
150
100
50
0
0.01
0.1
1
10
Output Current: IOUT [mA]
100
XCL210
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
4) Ambient Temperature vs. Output Voltage
XCL210B121GR-G/XCL210D121GR-G
XCL210A121GR-G/XCL210C121GR-G
1.4
1.4
VIN=3.6V
Output Voltage: VOUT [V]
Output Voltage: VOUT [V]
VIN=3.6V
1.3
1.2
1.1
1.0
IOUT=0.1mA
IOUT=1mA
IOUT=10mA
IOUT=100mA
-40
-20
0
20
40
60
80
1.3
1.2
1.1
1.0
100
IOUT=0.1mA
IOUT=1mA
IOUT=10mA
-40
-20
XCL210A181GR-G/XCL210C181GR-G
1.8
IOUT=0.1mA
IOUT=1mA
IOUT=10mA
IOUT=100mA
-40
-20
0
20
40
60
60
80
1.8
1.7
1.6
100
IOUT=0.1mA
IOUT=1mA
IOUT=10mA
-40
-20
0
20
40
60
80
100
Ambient Temperature : Ta [℃]
XCL210A331GR-G/XCL210C331GR-G
XCL210B331GR-G/XCL210D331GR-G
3.5
3.5
VIN=5.0V
VIN=5.0V
Output Voltage: VOUT [V]
Output Voltage: VOUT [V]
100
1.9
Ambient Temperature : Ta [℃]
3.4
3.3
3.2
3.1
80
VIN=3.6
1.9
1.6
40
2.0
VIN=3.6V
1.7
20
XCL210B181GR-G/XCL210D181GR-G
Output Voltage: VOUT [V]
Output Voltage: VOUT [V]
2.0
0
Ambient Temperature : Ta [℃]
Ambient Temperature : Ta [℃]
IOUT=0.1mA
IOUT=1mA
IOUT=10mA
IOUT=100mA
-40
-20
0
20
40
60
80
Ambient Temperature : Ta [℃]
100
3.4
3.3
3.2
3.1
IOUT=0.1mA
IOUT=1mA
IOUT=10mA
-40
-20
0
20
40
60
80
100
Ambient Temperature : Ta [℃]
21/25
XCL210 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
5) Load Transient Response
(1)XCL210B181GR-G, VIN=3.6V, VOUT=1.8V / IOUT=0.1mA ⇔30mA
VOUT = 1.8V
IOUT = 0.1mA ⇔ 30mA
(2)XCL210B181GR-G, VIN=3.6V, VOUT=1.8V / IOUT=10mA ⇔30mA
VOUT = 1.8V
IOUT = 10mA ⇔ 30mA
22/25
XCL210
Series
■PACKAGING INFORMATION
For the latest package information go to, www.torexsemi.com/technical-support/packages
PACKAGE
OUTLINE / LAND PATTERN
THERMAL CHARACTERISTICS
CL-2025-02
CL-2025-02 PKG
CL-2025-02 Power Dissipation
23/25
XCL210 Series
■MARKING RULE
●CL-2025-02
①
1
MARK
PRODUCT SERIES
0
XCL210******-G
② represents integer of the output voltage
MARK
①
②
③
⑤
3
④
2
6
represents products series
5
8
9
E
F
H
K
4
OUTPUT
VOLTAGE(V)
PRODUCT SERIES
1.x
2.x
3.x
4.x
1.x
2.x
XCL210A1****-G
XCL210A2****-G
XCL210A3****-G
XCL210A4****-G
XCL210B1****-G
XCL210B2****-G
3.x
4.x
1.x
2.x
3.x
4.x
1.x
2.x
3.x
4.x
XCL210B3****-G
XCL210B4****-G
XCL210C1****-G
XCL210C2****-G
XCL210C3****-G
XCL210C4****-G
XCL210D1****-G
XCL210D2****-G
XCL210D3****-G
XCL210D4****-G
A
B
L
M
N
P
R
S
T
U
V
X
③
TYPE
C
D
represents the decimal part of output voltage
OUTPUT
VOLTAGE(V)
MARK
PRODUCT SERIES
X.0
X.05
X.1
X.15
X.2
X.25
X.3
X.35
X.4
X.45
X.5
X.55
X.6
X.65
X.7
X.75
X.8
X.85
X.9
X.95
0
A
1
B
2
C
3
D
4
E
5
F
6
H
7
K
8
L
9
M
XCL210**0***-G
XCL210**A***-G
XCL210**1***-G
XCL210**B***-G
XCL210**2***-G
XCL210**C***-G
XCL210**3***-G
XCL210**D***-G
XCL210**4***-G
XCL210**E***-G
XCL210**5***-G
XCL210**F***-G
XCL210**6***-G
XCL210**H***-G
XCL210**7***-G
XCL210**K***-G
XCL210**8***-G
XCL210**L***-G
XCL210**9***-G
XCL210**M***-G
④,⑤ represents production lot number
01~09、0A~0Z、11~9Z、A1~A9、AA~AZ、B1~ZZ in order.
(G, I, J, O, Q, W excluded)
Note: No character inversion used.
24/25
XCL210
Series
1.
The product and product specifications contained herein are subject to change without notice to
improve performance characteristics. Consult us, or our representatives before use, to confirm that
the information in this datasheet is up to date.
2.
The information in this datasheet is intended to illustrate the operation and characteristics of our
products. We neither make warranties or representations with respect to the accuracy or completeness
of the information contained in this datasheet nor grant any license to any intellectual property rights
of ours or any third party concerning with the information in this datasheet.
3.
Applicable export control laws and regulations should be complied and the procedures required by
such laws and regulations should also be followed, when the product or any information contained in
this datasheet is exported.
4.
The product is neither intended nor warranted for use in equipment of systems which require extremely
high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human
life, bodily injury, serious property damage including but not limited to devices or equipment used in 1)
nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other
transportation industry and 5) safety devices and safety equipment to control combustions and
explosions. Do not use the product for the above use unless agreed by us in writing in advance.
5.
Although we make continuous efforts to improve the quality and reliability of our products; nevertheless
Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or
property damage resulting from such failure, customers are required to incorporate adequate safety
measures in their designs, such as system fail safes, redundancy and fire prevention features.
6.
Our products are not designed to be Radiation-resistant.
7.
Please use the product listed in this datasheet within the specified ranges.
8.
We assume no responsibility for damage or loss due to abnormal use.
9.
All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex
Semiconductor Ltd in writing in advance.
TOREX SEMICONDUCTOR LTD.
25/25