0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XCL210B191GR-G

XCL210B191GR-G

  • 厂商:

    TOREX(特瑞仕)

  • 封装:

    CL-2025-02

  • 描述:

    50MA INDUCTOR BUILT-IN PFM STEP-

  • 详情介绍
  • 数据手册
  • 价格&库存
XCL210B191GR-G 数据手册
XCL210 Series ETR28009-005b 50mA/200mA Inductor Built-in Step-Down “micro DC/DC” Converters ☆Green Operation Compatible ■GENERAL DESCRIPTION The XCL210 series is a synchronous step-down micro DC/DC converter which integrates an inductor and a control IC in one tiny package (2.0mm×2.5mm, h=1.0mm). An internal coil simplifies the circuit and enables minimization of noise and other operational trouble due to the circuit wiring. A wide operating voltage range of 2.0V to 6.0V enables support for applications that require an internally fixed output voltage from 1.0V to 4.0V in increments of 0.05V. During stand-by, all circuits are shutdown to reduce current consumption to as low as 0.1μA or less. With the built-in UVLO (Under Voltage Lock Out) function, the internal P-channel MOS driver transistor is forced OFF when input voltage becomes UVLO detect Voltage or lower. The XCL210 integrate CL discharge function which enables the electric charge at the output capacitor CL to be discharged via the internal discharge switch located between the LX and VSS pins. When the devices enter stand-by mode, output voltage quickly returns to the VSS level as a result of this function. ■FEATURES ■APPLICATIONS ● Wearable Devices ● Smart meters ● Bluetooth units : 2.0V ~ 6.0V Output Voltage : 1.0V ~ 4.0V (±2.0%) Control Methods : PFM control Output Current : 200mA (Type A/C) Supply Current : 0.5μA High Efficiency : 93% (VIN=3.6V,VOUT=3.0V/100μA) Function : UVLO 50mA (Type B/D) ● Energy Harvest devices ● Backup power supply circuits ● Portable game consoles ● Input Voltage Devices with 1 Lithium cell Short Circuit Protection CL Discharge(Type C/D) Capacitor : Low ESR Ceramic Capacitor Operating Ambient Temperature : -40℃ ~ 85℃ Packages : CL-2025-02 Environmentally Friendly : EU RoHS Compliant, Pb Free ■TYPICAL APPLICATION CIRCUIT ■ TYPICAL PERFORMANCE CHARACTERISTICS XCL210B301GR-G (VOUT=3.0V) 100 7 VIN 6 2 GND NC 5 3 VOUT CE 4 8 VIN CIN 10μF 80 Efficiency : EFFI [%] CL 50mA 22μF 1 Lx 60 40 20 0 0.01 VIN=3.6V VIN=4.2V 0.1 1 10 Output Current : IOUT [mA] 100 1/25 XCL210 Series ■BLOCK DIAGRAM XCL210 Series, Type A/B L2 L1 Inductor VOUT Short Protection R1 CFB PFM Comparator VDD Current Sense R2 Vref PFM Controller CE CE Controller Logic Synch Buffer Drive Lx VDD UVLO VIN Start Up Controller VIN GND * XCL210A and B type do not have CL Discharge function. * Diodes inside the circuits are ESD protection diodes and parasitic diodes. XCL210 Series, Type C/D L2 L1 Inductor VOUT Short Protection R1 CFB PFM Comparator CL Discharge VDD Current Sense R2 Vref PFM Controller CE CE Controller Logic Synch Buffer Drive Lx VDD VIN UVLO VIN Start Up Controller * Diodes inside the circuits are ESD protection diodes and parasitic diodes. 2/25 GND XCL210 Series ■PRODUCT CLASSIFICATION ●Ordering information XCL210①②③④⑤⑥-⑦ PFM control DESIGNATOR (*1) ITEM SYMBOL ① Product Type A B C D ②③ Output Voltage 10 ~ 40 ④ Fixed number 1 ⑤⑥-⑦(*1) Package (Order Unit) GR-G DESCRIPTION IOUT=200mA , Without CL Auto Discharge IOUT=50mA Without CL Auto Discharge IOUT=200mA , With CL Auto Discharge IOUT=50mA, With CL Auto Discharge Output voltage options e.g.) 1.2V → ② = 1 ③ = 2 1.25V→ ② = 1 ③ = C 0.05V increments : 0.05=A, 0.15=B, 0.25=C, 0.35=D, 0.45=E, 0.55=F, 0.65=H, 0.75=K, 0.85=L, 0.95=M Fixed number CL-2025-02 (3,000pcs/Reel) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant. 3/25 XCL210 Series ■PIN CONFIGURATION L1 7 VIN 6 1 Lx NC 5 2 GN D CE 4 3 VOUT * The dissipation pad for the CL-2025-02 package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. The mount pattern should be connected to GND pin (No.2). 8 L2 (BOTTOM VIEW) ■PIN ASSIGNMENT PIN NUMBER PIN NAME FUNCTIONS 1 2 3 4 5 6 7 8 LX GND VOUT CE NC VIN L1 L2 Switching Ground Output Voltage Chip Enable No Connection Power Input Inductor Electrodes Inductor Electrodes ■CE PIN FUNCTION PIN NAME SIGNAL STATUS H Operation (All Types) L Stand-by (All Types) * Please do not leave the CE pin open. CE ■ABSOLUTE MAXIMUM RATINGS PARAMETER SYMBOL RATINGS UNITS VIN Pin Voltage LX Pin Voltage VIN VLX -0.3 ~ 7.0 -0.3 ~ VIN + 0.3 or 7.0 (*1) V V VOUT Pin Voltage CE Pin Voltage VOUT VCE -0.3 ~ VIN + 0.3 or 7.0 (*1) -0.3 ~ 7.0 V V LX Pin Current ILX 1000 mA Power Dissipation (Ta=25˚C) Pd 1000 (40mm x 40mm Standard Operating Ambient Temperature Topr -40 ~ 85 Storage Temperature Tstg -55 ~ 125 * All voltages are described based on the GND. (*1) The maximum value is the lower of either VIN + 0.3V or 7.0V. (*2) The power dissipation figure shown is PCB mounted and is for reference only. Please refer to PACKAGING INFORMATION for the mounting condition. 4/25 board) (*2) mW ˚C ˚C XCL210 Series ■ELECTRICAL CHARACTERISTICS Ta=25˚C ●XCL210Axx1GR-G, without CL discharge function PARAMETER SYMBOL Input Voltage VIN Output Voltage VOUT(E) (*2) UVLO Release Voltage VUVLO(E) CONDITIONS - MIN. TYP. MAX. UNITS CIRCUIT 2.0 - 6.0 V ① V ② Resistor connected with LX pin. Voltage which LX pin E1 changes “L” to “H” level while VOUT is decreasing. VCE=VIN, VOUT=0V. Resistor connected with LX pin. Voltage which LX pin changes “L” to “H” level while 1.65 1.80 1.95 V ② 0.11 0.15 0.24 V ② μA ③ VIN is increasing. UVLO Hysteresis Voltage VCE=VIN, VOUT=0V. Resistor connected with LX pin. VHYS(E) VUVLO(E) - Voltage which LX pin changes “H” to “L” level while VIN is decreasing. Supply Current Iq Standby Current ISTB VIN=VCE=VOUT(T)+0.5V (*1), VIN=2.0V, if VOUT(T)≦1.5V E2 , VOUT=VOUT(T)+0.5V (*1), LX=Open. (*1) VIN=5.0V, VCE=VOUT=0V, LX=Open. - 0.1 1.0 μA ③ ILEAKH VIN=5.0V, VCE=VOUT=0V, VLX=0V. - 0.1 1.0 μA ③ LX SW “L” Leak Current ILEAKL VIN=5.0V, VCE=VOUT=0V, VLX=5.0V. - 0.1 1.0 μA ③ PFM Switching Current IPFM 260 330 400 mA ① 100 - - % ② LX SW “H” Leak Current Maximum Duty Ratio (*3) MAXDTY VIN=VCE=VOUT(T)+2.0V , IOUT=10mA. (*1) VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V Resistor connected with LX pin. Efficiency (*4) EFFI VIN=VCE=5.0V, VOUT(T)=4.0V (*1), IOUT=30mA. - 93 - % ⑥ Efficiency (*4) EFFI VIN=VCE=3.6V, VOUT(T)=3.3V , IOUT=30mA. - 93 - % ⑥ Efficiency (*4) EFFI VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA. - 87 - % ⑥ RLXP VIN=VCE=5.0V, VOUT=0V, ILX=100mA. - 0.4 0.65 Ω ④ RLXN VIN=VCE=5.0V. - 0.4 (*6) - Ω - -40℃≦Topr≦85℃. - ±100 - ppm/℃ ② LX SW “Pch” ON Resistance (*5) LX SW “Nch” ON Resistance Output Voltage Temperature Characteristics ΔVOUT/ (VOUT・ΔTopr) (*1) VOUT=0V. Resistor connected with LX pin. CE “High” Voltage VCEH Voltage which LX pin changes “L” to “H” level while 1.2 - 6.0 V ⑤ GND - 0.3 V ⑤ VCE=0.2→1.5V. VOUT=0V. Resistor connected with LX pin. CE “Low” Voltage VCEL Voltage which LX pin changes “H” to “L” level while VCE=1.5→0.2V. CE “High” Current ICEH VIN=VCE=5.0V, VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ CE “Low” Current ICEL VIN=5.0V, VCE=VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ 0.4 0.5 0.6 V ② Short Protection Threshold Voltage Resistor connected with LX pin. VSHORT Voltage which LX pin changes “H” to “L” level while VOUT= VOUT(T)+0.1V→0V . (*1) Inductance Value L Inductor Rated Current IDC_L Test Frequency=1MHz - 8.0 - μH ΔT=+40℃ - 600 - mA Unless otherwise stated, VIN=VCE=5.0V (*1) VOUT(T)=Nominal Output Voltage (*2) VOUT(E)=Effective Output Voltage The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example. (*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range. (*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100 (*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA (*6) Designed value 5/25 XCL210 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XCL210Bxx1GR-G, without CL discharge function PARAMETER SYMBOL Input Voltage VIN Output Voltage VOUT(E) (*2) UVLO Release Voltage VUVLO(E) Ta=25˚C Ta=25˚C CONDITIONS - MIN. TYP. MAX. UNITS CIRCUIT 2.0 - 6.0 V ① V ② Resistor connected with LX pin.Voltage which LX pin E1 changes “L” to “H” level while VOUT is decreasing. VCE=VIN, VOUT=0V. Resistor connected with LX pin. Voltage which LX pin changes “L” to “H” level while 1.65 1.80 1.95 V ② 0.11 0.15 0.24 V ② μA ③ VIN is increasing. UVLO Hysteresis Voltage VCE=VIN, VOUT=0V. Resistor connected with LX pin. VHYS(E) VUVLO(E) - Voltage which LX pin changes “H” to “L” level while VIN is decreasing. Supply Current Iq Standby Current ISTB VIN=VCE=VOUT(T)+0.5V (*1),VIN=2.0V, if VOUT(T)≦1.5V E2 , VOUT=VOUT(T)+0.5V (*1), LX=Open. (*1) VIN=5.0V, VCE=VOUT=0V, LX=Open. - 0.1 1.0 μA ③ ILEAKH VIN=5.0V, VCE=VOUT=0V, VLX=0V. - 0.1 1.0 μA ③ LX SW “L” Leak Current ILEAKL VIN=5.0V, VCE=VOUT=0V, VLX=5.0V. - 0.1 1.0 μA ③ PFM Switching Current IPFM 115 180 250 mA ① 100 - - % ② LX SW “H” Leak Current Maximum Duty Ratio (*3) MAXDTY VIN=VCE=VOUT(T)+2.0V , IOUT=10mA. (*1) VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V Resistor connected with LX pin. Efficiency (*4) EFFI VIN=VCE=5.0V,VOUT(T)=4.0V (*1), IOUT=30mA. - 95 - % ⑥ Efficiency (*4) EFFI VIN=VCE=3.6V, VOUT(T)=3.3V , IOUT=30mA. - 95 - % ⑥ Efficiency (*4) EFFI VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA. - 89 - % ⑥ RLXP VIN=VCE=5.0V, VOUT=0V, ILX=100mA. - 0.4 0.65 Ω ④ RLXN VIN=VCE=5.0V. - 0.4 (*6) - Ω - -40℃≦Topr≦85℃. - ±100 - ppm/℃ ② 1.2 - 6.0 V ⑤ GND - 0.3 V ⑤ LX SW “Pch” ON Resistance (*5) LX SW “Nch” ON Resistance Output Voltage Temperature Characteristics ΔVOUT/ (VOUT・ΔTopr) (*1) VOUT=0V. Resistor connected with LX pin. CE “High” Voltage VCEH Voltage which LX pin changes “L” to “H” level while VCE=0.2→1.5V. VOUT=0V. Resistor connected with LX pin. CE “Low” Voltage VCEL Voltage which LX pin changes “H” to “L” level while VCE=1.5→0.2V. CE “High” Current ICEH VIN=VCE=5.0V, VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ CE “Low” Current ICEL VIN=5.0V, VCE=VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ 0.4 0.5 0.6 V ② Short Protection Threshold Voltage Resistor connected with LX pin. VSHORT Voltage which LX pin changes “H” to “L” level while VOUT=VOUT(T)+0.1V→0V Inductance Value L Inductor Rated Current IDC_L . (*1) Test Frequency=1MHz - 8.0 - μH ΔT=+40℃ - 600 - mA Unless otherwise stated, VIN=VCE=5.0V (*1) VOUT(T)=Nominal Output Voltage (*2) VOUT(E)=Effective Output Voltage The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example. (*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range. (*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100 (*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA (*6) Designed value 6/25 XCL210 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XCL210Cxx1GR-G, with CL Discharge Function PARAMETER SYMBOL Input Voltage VIN Output Voltage VOUT(E) (*2) UVLO Release Voltage VUVLO(E) Ta=25˚C CONDITIONS - MIN. TYP. MAX. UNITS CIRCUIT 2.0 - 6.0 V ① V ② Resistor connected with LX pin. Voltage which LX pin E1 changes “L” to “H” level while VOUT is decreasing. VCE=VIN, VOUT=0V. Resistor connected with LX pin. Voltage which LX pin changes “L” to “H” level while 1.65 1.80 1.95 V ② 0.11 0.15 0.24 V ② μA ③ VIN is increasing. UVLO Hysteresis Voltage VCE=VIN, VOUT=0V. Resistor connected with LX pin. VHYS(E) VUVLO(E) - Voltage which LX pin changes “H” to “L” level while VIN is decreasing. VIN=VCE=VOUT(T)+0.5V (*1),VIN=2.0V, if VOUT(T)≦1.5V Supply Current Iq , E2 (*1) VOUT=VOUT(T)+0.5V (*1), LX=Open. Standby Current VIN=5.0V, VCE=VOUT=0V, LX=Open. - 0.1 1.0 μA ③ ILEAKH VIN=5.0V, VCE=VOUT=0V, VLX=0V. - 0.1 1.0 μA ③ LX SW “L” Leak Current ILEAKL VIN=5.0V, VCE=VOUT=0V, VLX=5.0V. - 0.1 1.0 μA ③ PFM Switching Current IPFM 260 330 400 mA ① 100 - - % ② LX SW “H” Leak Current Maximum Duty Ratio (*3) ISTB MAXDTY VIN=VCE=VOUT(T)+2.0V , IOUT=10mA. (*1) VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V Resistor connected with LX pin. Efficiency (*4) EFFI VIN=VCE=5.0V, VOUT(T)=4.0V (*1), IOUT=30mA. - 93 - % ⑥ Efficiency (*4) EFFI VIN=VCE=3.6V, VOUT(T)=3.3V (*1), IOUT=30mA. - 93 - % ⑥ Efficiency (*4) EFFI VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA. - 87 - % ⑥ RLXP VIN=VCE=5.0V, VOUT=0V, ILX=100mA. - 0.4 0.65 Ω ④ RLXN VIN=VCE=5.0V. - 0.4 (*6) - Ω - -40℃≦Topr≦85℃. - ±100 - ppm/℃ ② 1.2 - 6.0 V ⑤ GND - 0.3 V ⑤ LX SW “Pch” ON Resistance (*5) LX SW “Nch” ON Resistance Output Voltage Temperature Characteristics ΔVOUT/ (VOUT・ΔTopr) VOUT=0V. Resistor connected with LX pin. CE “High” Voltage VCEH Voltage which LX pin changes “L” to “H” level while VCE=0.2→1.5V. VOUT=0V. Resistor connected with LX pin. CE “Low” Voltage VCEL Voltage which LX pin changes “H” to “L” level while VCE=1.5→0.2V. CE “High” Current ICEH VIN=VCE=5.0V, VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ CE “Low” Current ICEL VIN=5.0V, VCE=VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ 0.4 0.5 0.6 V ② 55 80 105 Ω ③ - 8.0 - μH Short Protection Threshold Voltage Resistor connected with LX pin. VSHORT Voltage which LX pin changes “H” to “L” level while VOUT= VOUT(T)+0.1V→0V . (*1) CL Discharge RDCHG Inductance Value L VIN=VOUT=5.0V, VCE=0V, LX=Open. Test Frequency=1MHz Inductor Rated Current IDC_L 600 mA ΔT=+40℃ Unless otherwise stated, VIN=VCE=5.0V (*1) VOUT(T)=Nominal Output Voltage (*2) VOUT(E)=Effective Output Voltage The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example. (*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range. (*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100 (*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA (*6) Designed value 7/25 XCL210 Series ■ELECTRICAL CHARACTERISTICS (Continued) Ta=25˚C ●XCL210Dxx1GR-G, with CL Discharge Function PARAMETER SYMBOL Input Voltage VIN CONDITIONS - MIN. TYP. MAX. UNITS CIRCUIT 2.0 - 6.0 V ① V ② Resistor connected with LX pin. Voltage which LX Output Voltage VOUT(E) (*2) pin changes “L” to “H” level while VOUT is E1 decreasing. UVLO Release Voltage VCE=VIN, VOUT=0V. Resistor connected with LX pin. VUVLO(E) Voltage which LX pin changes “L” to “H” level 1.65 1.80 1.95 V ② 0.11 0.15 0.24 V ② μA ③ while VIN is increasing. UVLO Hysteresis Voltage VCE=VIN, VOUT=0V. Resistor connected with LX pin. VHYS(E) VUVLO(E) - Voltage which LX pin changes “H” to “L” level while VIN is decreasing. VIN=VCE=VOUT(T)+0.5V (*1), Supply Current Iq E2 VIN=2.0V, if VOUT(T)≦1.5V (*1), VOUT=VOUT(T)+0.5V (*1), LX=Open. Standby Current LX SW “H” Leak Current LX SW “L” Leak Current PFM Switching Current Maximum Duty Ratio (*3) ISTB VIN=5.0V, VCE=VOUT=0V, LX=Open. - 0.1 1.0 μA ③ ILEAKH VIN=5.0V, VCE=VOUT=0V, VLX=0V. - 0.1 1.0 μA ③ ILEAKL VIN=5.0V, VCE=VOUT=0V, VLX=5.0V. - 0.1 1.0 μA ③ 115 180 250 mA ① 100 - - % ② IPFM MAXDTY VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA. VIN=VOUT=VOUT(T)×0.95V(*1), VCE=1.2V Resistor connected with LX pin. Efficiency (*4) EFFI VIN=VCE=5.0V,VOUT(T)=4.0V (*1), IOUT=30mA. - 95 - % ⑥ Efficiency (*4) EFFI VIN=VCE=3.6V, VOUT(T)=3.3V , IOUT=30mA. - 95 - % ⑥ Efficiency (*4) EFFI VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA. - 89 - % ⑥ RLXP VIN=VCE=5.0V, VOUT=0V, ILX=100mA. - 0.4 0.65 Ω ④ RLXN VIN=VCE=5.0V. - 0.4 (*6) - Ω - -40℃≦Topr≦85℃. - ±100 - ppm/℃ ② 1.2 - 6.0 V ⑤ GND - 0.3 V ⑤ LX SW “Pch” ON Resistance (*5) LX SW “Nch” ON Resistance Output Voltage Temperature Characteristics ΔVOUT/ (VOUT・ΔTopr) (*1) VOUT=0V. Resistor connected with LX pin. CE “High” Voltage VCEH Voltage which LX pin changes “L” to “H” level while VCE=0.2→1.5V. VOUT=0V. Resistor connected with LX pin. CE “Low” Voltage VCEL Voltage which LX pin changes “H” to “L” level while VCE=1.5→0.2V. CE “High” Current ICEH VIN=VCE=5.0V, VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ CE “Low” Current ICEL VIN=5.0V, VCE=VOUT=0V, LX=Open. -0.1 - 0.1 μA ⑤ 0.4 0.5 0.6 V ② 55 80 105 Ω ③ - 8.0 - μH Short Protection Threshold Voltage Resistor connected with LX pin. VSHORT Voltage which LX pin changes “H” to “L” level while VOUT= VOUT(T)+0.1V→0V . (*1) CL Discharge RDCHG Inductance Value L VIN=VOUT=5.0V, VCE=0V, LX=Open. Test Frequency=1MHz Inductor Rated Current IDC 600 mA ΔT=+40℃ Unless otherwise stated, VIN=VCE=5.0V (*1) VOUT(T)=Nominal Output Voltage (*2) VOUT(E)=Effective Output Voltage The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC. Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value. Please refer to the characteristic example. (*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range. (*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100 (*5) LX SW “Pch” ON resistance = (VIN – VLX pin measurement voltage) / 100mA (*6) Designed value 8/25 XCL210 Series ■ELECTRICAL CHARACTERISTICS (Continued) XCL210 Series voltage chart SYMBOL E1 E2 SYMBOL E1 E2 PARAMETER OUTPUT VOLTAGE SUPPLY CURRENT PARAMETER OUTPUT VOLTAGE SUPPLY CURRENT UNITS: V OUTPUT VOLTAGE 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 UNITS: V UNITS: μA UNITS: V OUTPUT VOLTAGE 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00 UNITS: V UNITS: μA MIN. MAX. 0.980 1.029 1.078 1.127 1.176 1.225 1.274 1.323 1.372 1.421 1.470 1.519 1.568 1.617 1.666 1.715 1.764 1.813 1.862 1.911 1.960 2.009 2.058 2.107 2.156 2.205 2.254 2.303 2.352 2.401 1.020 1.071 1.122 1.173 1.224 1.275 1.326 1.377 1.428 1.479 1.530 1.581 1.632 1.683 1.734 1.785 1.836 1.887 1.938 1.989 2.040 2.091 2.142 2.193 2.244 2.295 2.346 2.397 2.448 2.499 TYP. MAX. 0.500 0.800 0.500 0.900 0.600 1.100 MIN. MAX. 2.450 2.499 2.548 2.597 2.646 2.695 2.744 2.793 2.842 2.891 2.940 2.989 3.038 3.087 3.136 3.185 3.234 3.283 3.332 3.381 3.430 3.479 3.528 3.577 3.626 3.675 3.724 3.773 3.822 3.871 3.920 2.550 2.601 2.652 2.703 2.754 2.805 2.856 2.907 2.958 3.009 3.060 3.111 3.162 3.213 3.264 3.315 3.366 3.417 3.468 3.519 3.570 3.621 3.672 3.723 3.774 3.825 3.876 3.927 3.978 4.029 4.080 TYP. MAX. 0.700 1.500 0.800 2.100 1.500 3.000 9/25 XCL210 Series ■TEST CIRCUITS < Circuit No.① > < Circuit No.② > Wave Form Measure Point L Wave Form Measure Point RL V L2 L1 L2 L1 VOUT Lx VOUT Lx VIN CL CE GND A VIN CIN CE ※External Components  L:10μH(Selected goods)  CIN:10μF(Ceramic)   CL:22μF(Ceramic) < Circuit No.④ > L2 L1 L2 L1 VOUT Lx VOUT Lx A VIN VIN A CE GND V A CIN CE ※External Components  CIN:10μF(Ceramic) GND ILX CIN ※External Components  CIN:10μF(Ceramic) < Circuit No.⑤ > < Circuit No.⑥ > L2 L1 VOUT Lx Wave Form Measure Point VIN ICEH CE ICEL ※External Components  CIN:10μF(Ceramic)   RPULLDOWN:100Ω 10/25 RPulldown ※External Components  CIN:10μF(Ceramic)   RPULLDOWN:100Ω < Circuit No.③ > A GND V CIN GND V RL CIN L2 L1 VOUT Lx VIN CL A RPulldown CE A ※External Components  CIN:10μF(Ceramic)   CL:22μF(Ceramic) GND CIN XCL210 Series ■TYPICAL APPLICATION CIRCUIT 7 VOUT CL 1 Lx VIN 6 2 GND NC 5 3 VOUT CE 4 VIN CIN NOTE: The integrated Inductor can be used only for this DC/DC converter. Please do not use this inductor for other reasons. 8 Manufacturer Taiyo Yuden CIN TDK Taiyo Yuden CL TDK Part Number LMK107BBJ106MALT VALUE LMK212ABJ106MG 10μF/10V 10μF/10V C1608X5R1A106M C2012X5R1A106M LMK107BBJ226MA LMK212BBJ226MG C1608X5R1A226M C2012X5R1A226M 10μF/10V 10μF/10V 22μF/10V 22μF/10V 22μF/10V 22μF/10V * Take capacitance loss, withstand voltage, and other conditions into consideration when selecting components. 11/25 XCL210 Series ■ OPERATIONAL EXPLANATION The XCL210 series consists of a reference voltage supply, PFM comparator, Pch driver Tr, Nch synchronous rectification switch Tr, current sensing circuit, PFM control circuit, CE control circuit, and others. (Refer to the block diagram below.) L2 L1 Inductor VOUT Short Protection R1 CFB PFM Comparator L2 VOUT VDD Short Protection R1 Current Sense PFM Comparator VDD Current Sense R2 Vref Vref PFM Controller CE Controller Logic Synch Buffer Drive Lx PFM Controller CE VDD CE Controller Logic Synch Buffer Drive Lx VDD UVLO VIN Start Up Controller VIN CFB CL Discharge R2 CE L1 Inductor VIN GND UVLO VIN Start Up Controller GND An ultra-low quiescent current circuit and synchronous rectification enable a significant reduction of dissipation in the IC, and the IC operates with high efficiency at both light loads and heavy loads. Current limit PFM is used for the control method, and even when switching current superposition occurs, increases of output voltage ripple are suppressed, allowing use over a wide voltage and current range. The IC is compatible with low-capacitance ceramic capacitors, and a small, high-performance step-down DCDC converter can be created. The actual output voltage VOUT(E) in the electrical characteristics is the threshold voltage of the PFM comparator in the block diagram. Therefore the average output voltage of the step-down circuit, including peripheral components, depends on the ripple voltage. Before use, test fully using the actual device. VIN=VCE=3.6V、VOUT=1.8V、IOUT=5mA、L=8.0μH、CL=22uF、Ta=25℃ VIN=VCE=3.6V、VOUT=1.8V、IOUT=30mA、L=8.0μH、CL=22uF、Ta=25℃ VLX VLX VOUT VOUT VLX : 2[V/div] VOUT : 50[mV/div] VOUT(E) Voltage ILX ILX IPFM 10[μs/div] Reference voltage for stabilization of the output voltage of the IC. 12/25 ILX : 100[mA/div] 10[μs/div] XCL210 Series ■OPERATIONAL EXPLANATION (Continued) (1) The feedback voltage (FB voltage) is the voltage that results from dividing the output voltage with the IC internal dividing resistors RFB1 and RFB2. The PFM comparator compares this FB voltage to VREF. When the FB voltage is lower than VREF, the PFM comparator sends a signal to the buffer driver through the PFM control circuit to turn on the Pch driver Tr. When the FB voltage is higher than VREF, the PFM comparator sends a signal to prevent the Pch driver Tr from turning on. (2) When the Pch driver Tr is on, the current sense circuit monitors the current that flows through the Pch driver Tr connected to the Lx pin. When the current reaches the set PFM switching current (IPFM), the current sense circuit sends a signal to the buffer driver through the PFM control circuit. This signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr. (3) The on time (off time) of the Nch synchronous rectification switch Tr is dynamically optimized inside the IC. After the off time elapses and the PFM comparator detects that the VOUT voltage is higher than the set voltage, the PFM comparator sends a signal to the PFM control circuit that prevents the Pch driver Tr from turning on. However, if the VOUT voltage is lower than the set voltage, the PFM comparator starts Pch driver Tr on. By continuously adjusting the interval of the linked operation of (1), (2) and (3) above in response to the load current, the output voltage is stabilized with high efficiency from light loads to heavy loads. The PFM switching current monitors the current that flows through the Pch driver Tr, and is a value that limits the Pch driver Tr current. The Pch driver Tr remains on until the coil current reaches the PFM switching current (IPFM). An approximate value for this on-time tON can be calculated using the following equation: tON = L × IPFM / (VIN – VOUT) To avoid excessive ripple voltage in the event that the coil current does not reach the PFM switching current within a certain interval even though the Pch driver Tr has turned on and the FB voltage is above VREF, the Pch driver Tr can be turned off at any timing using the maximum on-time function of the PFM control circuit. If the Pch driver Tr turns off by the maximum on-time function instead of the current sense circuit, the Nch synchronous rectification switch Tr will not turn on and the coil current will flow to the VOUT pin by means of the parasite diode of the Nch synchronous rectification switch Tr. When the VIN voltage is lower than the output voltage, through mode automatically activates and the Pch driver Tr stays on continuously. (1) In through mode, when the load current is increased and the current that flows through the Pch driver Tr reaches a load current that is several tens of mA lower than the set PFM switching current (IPFM), the current sense circuit sends a signal through the PFM control circuit to the buffer driver. This signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr. (2) After the on-time (off-time) of the Nch synchronous rectification switch Tr, the Pch driver Tr turns on until the current reaches the set PFM switching current (IPFM) again. If the load current is large as described above, operations (1) and (2) above are repeated. If the load current is several tens of mA lower than the PFM switching current (IPFM), the Pch driver Tr stays on continuously. When the VIN voltage rises, VIN start mode stops the short-circuit protection function during the interval until the FB voltage approaches VREF. After the VIN voltage rises and the FB voltage approaches VREF by step-down operation, VIN start mode is released. In order to prevent an excessive rush current while VIN start mode is activated, the coil current flows to the VOUT pin by means of the parasitic diode of the Nch synchronous rectification Tr. In VIN start mode as well, the coil current is limited by the PFM switching current. 13/25 XCL210 Series ■OPERATIONAL EXPLANATION (Continued) The short-circuit protection function monitors the VOUT pin voltage, and if the VOUT pin voltage drops below the Short Protection Threshold Voltage (VSHORT) due to a short circuit or overcurrent, the short circuit protection function operates. When the short-circuit protection function is activated, the Pch driver Tr and Nch Synchronous Switch Tr are held off. If the VOUT pin voltage exceeds the Short Protection Threshold Voltage (VSHORT) after the short-circuit protection function is activated, normal operation resumes. To cancel the short-circuit protection function, it is necessary to start the IC after putting the IC in the standby state with the CE function, or to raise the input voltage after setting the input voltage below the UVLO detection voltage (VUVLO(E)-VHYS(E)). When the VIN pin voltage drops below the UVLO detection voltage, the IC stops switching operation at any selected timing, turns off the Pch driver Tr and Nch synchronous rectification switch Tr (UVLO mode). When the VIN pin voltage recovers and rises above the UVLO release voltage, the IC restarts operation. On the XCL210 series, a CL discharge function is available as an option (Type C/D). This function enables quick discharging of the CL load capacitance when “L” voltage is input into the CE pin by the Nch Tr connected between the VOUT-GND pins, or in UVLO mode. This prevents malfunctioning of the application in the event that a charge remains on CL when the IC is stopped. The discharge time is determined by CL and the CL discharge resistance RDCHG, including the Nch Tr (refer to the diagram below). Using this time constant τ= CL×RDCHG, the discharge time of the output voltage is calculated by means of the equation below. V = VOUT × e - t /τ, or in terms of t, t = τIn(VOUT / V) V VOUT t CL RDCHG τ : Output voltage after discharge : Set output voltage : Discharge time : Value of load capacitance (CL) : Value of CL discharge resistance Varies by power supply voltage. : CL × RDCHG VOUT R RDCHG = R + RON CE / UVLO Signal The CL discharge function is not available on the Type A/B 14/25 RON XCL210 Series ■NOTE ON USE 1. Be careful not to exceed the absolute maximum ratings for externally connected components and this IC. 2. The DC/DC converter characteristics greatly depend not only on the characteristics of this IC but also on those of externally connected components, so refer to the specifications of each component and be careful when selecting the components. Be especially careful of the characteristics of the capacitor used for the load capacity CL and use a capacitor with B characteristics (JIS Standard) or an X7R/X5R (EIA Standard) ceramic capacitor. 3. Use a ground wire of sufficient strength. Ground potential fluctuation caused by the ground current during switching could cause the IC operation to become unstable, so reinforce the area around the GND pin of the IC in particular. 4. Mount the externally connected components in the vicinity of the IC. Also use short, thick wires to reduce the wire impedance. 5. When the voltage difference between VIN and VOUT is small, switching energy increases and there is a possibility that the ripple voltage will be too large. Before use, test fully using the actual device. 6. The CE pin does not have an internal pull-up or pull-down, etc. Apply the prescribed voltage to the CE pin. 7. If other than the recommended inductance and capacitance values are used, excessive ripple voltage or a drop in efficiency may result. 8. If other than the recommended inductance and capacitance values are used, a drop in output voltage when the load is excessive may cause the short-circuit protection function to activate. Before use, test fully using the actual device. 9. At high temperature, excessive ripple voltage may occur and cause a drop in output voltage and efficiency. Before using at high temperature, test fully using the actual device 10. At light loads or when IC operation is stopped, leakage current from the Pch driver Tr may cause the output voltage to rise. 11. The average output voltage may vary due to the effects of output voltage ripple caused by the load current. Before use, test fully using the actual device. 12. If the CL capacitance or load current is large, the output voltage rise time will lengthen when the IC is started, and coil current overlay may occur during the interval until the output voltage reaches the set voltage (refer to the diagram below). XCL210A Series、VIN =VCE =0→6.0V、VOUT =1.0V、I IN=V CE=0→6.0V、V OUT=1.0V、I OUT=200mA、CL=22uF、Ta=25℃ XC9265Aシリーズ、V OUT =200mA、L=10μH、C L=22uF、Ta=25℃ VLX ILX VLX : 10[V/div ] IPFM I L : 200[mA/div ] VOUT : 1[V/div ] VOU T VIN : 5[V/div ] VIN Zoom 200[μs/div ] VLX VLX : 10[V/div ] I L : 200[mA/div ] ILX VOUT : 1[V/div ] VOU T VIN VIN : 5[V/div ] 5[μs/div ] 13. When the IC is started, the short-circuit protection function does not operate during the interval until the VOUT voltage reaches a value near the set voltage. 14. If the IC is started at a VIN voltage that activates through mode, it is possible that the short-circuit protection function will not operate. Before use, test fully using the actual device. 15. If the load current is excessively large when the IC is started, it is possible that the VOUT voltage will not rise to the set voltage. Before use, test fully using the actual device. 15/25 XCL210 Series ■NOTE ON USE (Continued) 16. In actual operation, the maximum on-time depends on the peripheral components, input voltage, and load current. Before use, test fully using the actual device. 17. When the VIN voltage is turned on and off continuously, excessive rush current may occur while the voltage is on. Before use, test fully using the actual device. 18. When the VIN voltage is high, the Pch driver may change from on to off before the coil current reaches the PFM switching current (IPFM), or before the maximum on-time elapses. Before use, test fully using the actual device. 19. When the IC change to the Through Mode at light load, the supply current of this IC can increase in some cases. 20. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded. 21. Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems. 22. The UVLO function can be activated when the UVLO hysteresis width gets to about 0mV and after several tens ms elapses at light loads. Before use, test fully using the actual device. 23. Please use within the power dissipation range below. Please also note that the power dissipation may change by test conditions, the power dissipation figure shown is PCB mounted. 24. The proper position of mounting is based on the coil terminal Pd vs Operating Temperature the power loss of micro DC/DC according to the following formula: power loss = VOUT×IOUT×((100/EFFI) – 1) (W) VOUT : Output Voltage (V) IOUT : Output Current (A) EFFI : Conversion Efficiency (%) 16/25 Package Body Temperature vs Operating Temperature XCL210 Series ■NOTE ON USE (Continued) ●Instructions of pattern layouts 1. To suppress fluctuations in the VIN potential, connect a bypass capacitor (CIN) in the shortest path between the VIN pin and ground pin. 2. Please mount each external component as close to the IC as possible. 3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance. 4. Make sure that the ground traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of switching may result in instability of the IC. 5. Internal driver transistors bring on heat because of the transistor current and ON resistance of the driver transistors. 6. As precautions on mounting, please set the mounting position accuracy within 0.05 mm ●Recommended Pattern Layout Top view Back side top view 17/25 XCL210 Series ■TYPICAL PERFORMANCE CHARACTERISTICS 1) Output Voltage vs. Output Current XCL210B121GR-G/XCL210D121GR-G XCL210A121GR-G/XCL210C121GR-G Vin=3.0V,CL=22uF Vin=3.0V,CL=22uF×2 Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 1.4 1.3 1.2 1.1 1.5 Output Voltage: VOUT [V] Output Voltage: VOUT [V] 1.5 1.0 0.01 0.1 1 Output Voltage: VOUT [V] 1.3 1.2 1.1 10 0.9 100 0.01 0.1 XCL210A181GR-G/XCL210C181GR-G XCL210B181GR-G/XCL210D181GR-G Vin=3.0V,CL=22uF Vin=3.0V,CL=22uF×2 Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 1.9 1.8 1.7 2.1 1.6 100 Vin=3.0V,CL=22uF Vin=3.0V,CL=22uF×2 Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 2.0 1.9 1.8 1.7 1.6 0.01 0.1 1 10 1.5 100 0.01 0.1 XCL210A331GR-G/XCL210C331GR-G Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 Vin=5.0V,CL=22uF Vin=5.0V,CL=22uF×2 3.5 10 100 XCL210B331GR-G/XCL210D331GR-G 3.4 3.3 3.2 3.6 Output Voltage: VOUT [V] 3.6 1 Output Current: IOUT [mA] Output Current: IOUT [mA] Output Voltage: VOUT [V] 10 Output Current: IOUT [mA] 2.0 Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 Vin=5.0V,CL=22uF Vin=5.0V,CL=22uF×2 3.5 3.4 3.3 3.2 3.1 3.1 3.0 1 Output Current: IOUT [mA] 2.1 1.5 1.4 1.0 Output Voltage: VOUT [V] 0.9 Vin=3.0V,CL=22uF Vin=3.0V,CL=22uF×2 Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 0.01 0.1 1 10 Output Current: IOUT [mA] 18/25 100 3.0 0.01 0.1 1 10 Output Current: IOUT [mA] 100 XCL210 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 2) Efficiency vs. Output Current XCL210B121GR-G/XCL210D121GR-G 100 100 80 80 Efficiency: EFFI [%] Efficiency: EFFI [%] XCL210A121GR-G/XCL210C121GR-G 60 40 Vin=3.0V,CL=22uF Vin=3.0V,CL=22uF×2 Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 20 0 0.01 0.1 1 10 60 40 20 0 0.01 100 Vin=3.0V,CL=22uF Vin=3.0V,CL=22uF×2 Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 0.1 Output Current: IOUT [mA] 80 80 60 40 0 0.01 1 10 Output Current: IOUT [mA] 40 0 0.01 100 80 80 60 40 0 0.01 Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 Vin=5.0V,CL=22uF Vin=5.0V,CL=22uF×2 0.1 1 10 Output Current: IOUT [mA] Vin=3.0V,CL=22uF Vin=3.0V,CL=22uF×2 Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 0.1 1 10 Output Current: IOUT [mA] 100 XCL210B331GR-G/XCL210D331GR-G 100 Efficiency: EFFI [%] Efficiency: EFFI [%] XCL210A331GR-G/XCL210C331GR-G 100 20 100 60 20 Vin=3.0V,CL=22uF Vin=3.0V,CL=22uF×2 Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 0.1 10 XCL210B181GR-G/XCL210D181GR-G 100 Efficiency: EFFI [%] Efficiency: EFFI [%] XCL210A181GR-G/XCL210C181GR-G 100 20 1 Output Current: IOUT [mA] 100 60 40 20 0 0.01 Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 Vin=5.0V,CL=22uF Vin=5.0V,CL=22uF×2 0.1 1 10 100 Output Current: IOUT [mA] 19/25 XCL210 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 3) Ripple Voltage vs. Output Current XCL210A121GR-G/XCL210C121GR-G Vin=3.0V,CL=22uF Vin=3.0V,CL=22uF×2 Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 150 100 50 0 0.01 0.1 1 10 200 Ripple Voltage: Vr [mV] Ripple Voltage: Vr [mV] 200 XCL210B121GR-G/XCL210D121GR-G Vin=3.0V,CL=22uF Vin=3.0V,CL=22uF×2 Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 150 100 50 0 0.01 100 0.1 Output Current: IOUT [mA] XCL210A181GR-G/XCL210C181GR-G Vin=3.0V,CL=22uF Vin=3.0V,CL=22uF×2 Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 150 100 50 0 0.01 0.1 1 10 Output Current: IOUT [mA] 200 100 50 0 0.01 100 50 0.1 1 10 Output Current: IOUT [mA] 20/25 100 200 Ripple Voltage: Vr [mV] Ripple Voltage: Vr [mV] 100 0 0.01 0.1 1 10 Output Current: IOUT [mA] 100 XCL210B331GR-G/XCL210D331GR-G Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 Vin=5.0V,CL=22uF Vin=5.0V,CL=22uF×2 150 100 Vin=3.0V,CL=22uF Vin=3.0V,CL=22uF×2 Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 150 XCL210A331GR-G/XCL210C331GR-G 200 10 XCL210B181GR-G/XCL210D181GR-G Ripple Voltage: Vr [mV] Ripple Voltage: Vr [mV] 200 1 Output Current: IOUT [mA] Vin=4.2V,CL=22uF Vin=4.2V,CL=22uF×2 Vin=5.0V,CL=22uF Vin=5.0V,CL=22uF×2 150 100 50 0 0.01 0.1 1 10 Output Current: IOUT [mA] 100 XCL210 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 4) Ambient Temperature vs. Output Voltage XCL210B121GR-G/XCL210D121GR-G XCL210A121GR-G/XCL210C121GR-G 1.4 1.4 VIN=3.6V Output Voltage: VOUT [V] Output Voltage: VOUT [V] VIN=3.6V 1.3 1.2 1.1 1.0 IOUT=0.1mA IOUT=1mA IOUT=10mA IOUT=100mA -40 -20 0 20 40 60 80 1.3 1.2 1.1 1.0 100 IOUT=0.1mA IOUT=1mA IOUT=10mA -40 -20 XCL210A181GR-G/XCL210C181GR-G 1.8 IOUT=0.1mA IOUT=1mA IOUT=10mA IOUT=100mA -40 -20 0 20 40 60 60 80 1.8 1.7 1.6 100 IOUT=0.1mA IOUT=1mA IOUT=10mA -40 -20 0 20 40 60 80 100 Ambient Temperature : Ta [℃] XCL210A331GR-G/XCL210C331GR-G XCL210B331GR-G/XCL210D331GR-G 3.5 3.5 VIN=5.0V VIN=5.0V Output Voltage: VOUT [V] Output Voltage: VOUT [V] 100 1.9 Ambient Temperature : Ta [℃] 3.4 3.3 3.2 3.1 80 VIN=3.6 1.9 1.6 40 2.0 VIN=3.6V 1.7 20 XCL210B181GR-G/XCL210D181GR-G Output Voltage: VOUT [V] Output Voltage: VOUT [V] 2.0 0 Ambient Temperature : Ta [℃] Ambient Temperature : Ta [℃] IOUT=0.1mA IOUT=1mA IOUT=10mA IOUT=100mA -40 -20 0 20 40 60 80 Ambient Temperature : Ta [℃] 100 3.4 3.3 3.2 3.1 IOUT=0.1mA IOUT=1mA IOUT=10mA -40 -20 0 20 40 60 80 100 Ambient Temperature : Ta [℃] 21/25 XCL210 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 5) Load Transient Response (1)XCL210B181GR-G, VIN=3.6V, VOUT=1.8V / IOUT=0.1mA ⇔30mA VOUT = 1.8V IOUT = 0.1mA ⇔ 30mA (2)XCL210B181GR-G, VIN=3.6V, VOUT=1.8V / IOUT=10mA ⇔30mA VOUT = 1.8V IOUT = 10mA ⇔ 30mA 22/25 XCL210 Series ■PACKAGING INFORMATION For the latest package information go to, www.torexsemi.com/technical-support/packages PACKAGE OUTLINE / LAND PATTERN THERMAL CHARACTERISTICS CL-2025-02 CL-2025-02 PKG CL-2025-02 Power Dissipation 23/25 XCL210 Series ■MARKING RULE ●CL-2025-02 ① 1 MARK PRODUCT SERIES 0 XCL210******-G ② represents integer of the output voltage MARK ① ② ③ ⑤ 3 ④ 2 6 represents products series 5 8 9 E F H K 4 OUTPUT VOLTAGE(V) PRODUCT SERIES 1.x 2.x 3.x 4.x 1.x 2.x XCL210A1****-G XCL210A2****-G XCL210A3****-G XCL210A4****-G XCL210B1****-G XCL210B2****-G 3.x 4.x 1.x 2.x 3.x 4.x 1.x 2.x 3.x 4.x XCL210B3****-G XCL210B4****-G XCL210C1****-G XCL210C2****-G XCL210C3****-G XCL210C4****-G XCL210D1****-G XCL210D2****-G XCL210D3****-G XCL210D4****-G A B L M N P R S T U V X ③ TYPE C D represents the decimal part of output voltage OUTPUT VOLTAGE(V) MARK PRODUCT SERIES X.0 X.05 X.1 X.15 X.2 X.25 X.3 X.35 X.4 X.45 X.5 X.55 X.6 X.65 X.7 X.75 X.8 X.85 X.9 X.95 0 A 1 B 2 C 3 D 4 E 5 F 6 H 7 K 8 L 9 M XCL210**0***-G XCL210**A***-G XCL210**1***-G XCL210**B***-G XCL210**2***-G XCL210**C***-G XCL210**3***-G XCL210**D***-G XCL210**4***-G XCL210**E***-G XCL210**5***-G XCL210**F***-G XCL210**6***-G XCL210**H***-G XCL210**7***-G XCL210**K***-G XCL210**8***-G XCL210**L***-G XCL210**9***-G XCL210**M***-G ④,⑤ represents production lot number 01~09、0A~0Z、11~9Z、A1~A9、AA~AZ、B1~ZZ in order. (G, I, J, O, Q, W excluded) Note: No character inversion used. 24/25 XCL210 Series 1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet. 3. Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported. 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance. 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features. 6. Our products are not designed to be Radiation-resistant. 7. Please use the product listed in this datasheet within the specified ranges. 8. We assume no responsibility for damage or loss due to abnormal use. 9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance. TOREX SEMICONDUCTOR LTD. 25/25
XCL210B191GR-G
物料型号:XCL210 Series

器件简介: XCL210系列是同步降压微DC/DC转换器,集成了电感和控制IC在一个小封装内(2.0mm×2.5mm, h=1.0mm)。内部线圈简化了电路设计,有助于降低噪声和其他由于电路布线引起的操作问题。它支持2.0V至6.0V的宽工作电压范围,并能提供1.0V至4.0V的固定输出电压,步进为0.05V。

引脚分配: - Lx:开关节点 - GND:地 - VOUT:输出电压 - CE:芯片使能 - NC:无连接 - VIN:电源输入 - L1和L2:电感电极

参数特性: - 工作电压范围:2.0V至6.0V - 输出电压:1.0V至4.0V(步进0.05V) - 输出电流:200mA(Type A/C)或50mA(Type B/D) - 待机电流:低至0.1μA - 效率:最高93%(VIN=3.6V, VOUT=3.0V/100μA) - 封装:CL-2025-02,符合欧盟RoHS标准,无铅

功能详解: - 内置UVLO(欠压锁定)功能,当输入电压低于检测电压时,内部P沟道MOS驱动晶体管关闭。 - 集成CL放电功能,通过内部放电开关,可以在待机模式下快速将输出电压降至地平。 - 应用范围包括可穿戴设备、智能电表、蓝牙单元、能量收集设备、备用电源电路、便携式游戏机等。

应用信息: XCL210系列适用于1锂电芯的设备,包括但不限于上述应用领域。

封装信息: - CL-2025-02封装,需要在推荐的安装模式下进行焊盘连接以增强安装强度和散热。
XCL210B191GR-G 价格&库存

很抱歉,暂时无法提供与“XCL210B191GR-G”相匹配的价格&库存,您可以联系我们找货

免费人工找货