TLP781/TLP781F
TOSHIBA Photocoupler IRED & Photo−Transistor
TLP781, TLP781F
TLP781
Office Equipment
Home Electric Appliances
Solid-State Relays
Switching Power Supplies
Contactless Controller Outputs
Simplex/Multiplex Data Transmission
Unit: mm
The TOSHIBA TLP781 consists of a silicone photo−transistor optically
coupled to an infrared emitting diode in a four lead plastic DIP (DIP4)
with having high isolation voltage
(AC: 5000 Vrms (min)).
TLP781
TLP781F : 10.16mm pitch type DIP4
Collector-emitter voltage: 80 V (min)
Current transfer ratio: 50 % (min)
TOSHIBA
: 7.62mm pitch type DIP4
―
Weight: 0.25g (typ.)
Unit: mm
TLP781F
Rank GB: 100 % (min)
Isolation voltage: 5000 Vrms (min)
UL recognized: UL 1577, File No.E67349
cUL-recognized: CSA Component Acceptance Service No.5A
File No.E67349
VDE-approved : EN 60747-5-5 (Note 1)
Note 1 : When a VDE approved type is needed,
please designate the Option (D4).
TOSHIBA
Construction mechanical rating
7.62mm Pitch
Standard Type
10.16mm Pitch
TLPxxxF Type
Creepage distance
6.5mm (min)
8.0mm (min)
Clearance
6.5mm (min)
8.0mm (min)
Insulation thickness
0.4mm (min)
0.4mm (min)
―
Weight: 0.25g (typ.)
Pin Configurations
(top view)
1
4
2
3
1 : Anode
2 : Cathode
3 : Emitter
4 : Collector
Start of commercial production
© 2019
Toshiba Electronic Devices & Storage Corporation
1
2007-07
2019-03-11
TLP781/TLP781F
Current Transfer Ratio
Type
TLP781
Classification
(Note 1)
Current Transfer Ratio (%)
(IC / IF)
IF = 5mA, VCE = 5V, Ta = 25°C
Min
Max
Marking Of Classification
(None)
50
600
Blank, Y+, YE, G, G+, GR, B, BL,GB
Rank Y
50
150
YE
Rank GR
100
300
GR
Rank BL
200
600
BL
Rank GB
100
600
GB
Rank YH
75
150
Y+
Rank GRL
100
200
G
Rank GRH
150
300
G+
Rank BLL
200
400
B
(Note 1): e.g. rank GB: TLP781 (GB)
(Note 2): Application type name for certification test, please use standard product type name, e.g.
TLP781 (GB): TLP781
Absolute Maximum Ratings (Ta = 25°C)
Characteristics
Forward current
Forward current derating (Ta ≥ 39°C)
LED
Pulse forward current
(Note 3)
Power dissipation
Power dissipation derating (Ta ≥ 39°C)
Reverse voltage
Rating
Unit
IF
60
mA
ΔIF / °C
0.7
mA / °C
IFP
1
A
PD
100
mW
ΔPD / °C
1.0
mW / °C
VR
5
V
Tj
125
°C
Collectoremitter voltage
VCEO
80
V
Emittercollector voltage
VECO
7
V
Collector current
IC
50
mA
Power dissipation
PC
150
mW
ΔPC / °C
1.5
mW / °C
Tj
125
°C
Operating temperature range
Topr
55 to 110
°C
Storage temperature range
Tstg
55 to 125
°C
Lead soldering temperature (10s)
Tsol
260
°C
Total package power dissipation
PT
250
mW
ΔPT / °C
2.5
mW / °C
BVS
5000
Vrms
Detector
Junction temperature
Symbol
Power dissipation derating (Ta ≥ 25°C)
Junction temperature
Total package power dissipation derating
(Ta ≥ 25°C)
Isolation voltage
(Note 4)
(Note): Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant
change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating
conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook
(“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test report
and estimated failure rate, etc.).
(Note 3): Pulse width:100 μs or less, 100 Hz frequency
(Note 4): AC, 60 s, R.H.≤ 60 %. Apply voltage to LED pin and detector pin together.
© 2019
Toshiba Electronic Devices & Storage Corporation
2
2019-03-11
TLP781/TLP781F
Recommended Operating Conditions
Characteristics
Symbol
Min
Typ.
Max
Unit
Supply voltage
VCC
―
5
24
V
Forward current
IF
―
16
25
mA
Collector current
IC
―
1
10
mA
Topr
25
―
85
°C
Operating temperature
(Note): Recommended operating conditions are given as a design guideline to obtain
expected performance of the device.
Additionally, each item is an independent guideline respectively.
In developing designs using this product, please confirm specified characteristics
shown in this document.
Individual Electrical Characteristics (Ta = 25°C)
Detector
LED
Characteristics
Symbol
Test Condition
Min
Typ.
Max
Unit
Forward voltage
VF
IF = 10 mA
1.0
1.15
1.3
V
Reverse current
IR
VR = 5 V
―
―
10
μA
Capacitance
CT
V = 0 V, f = 1 MHz
―
30
―
pF
Collectoremitter
breakdown voltage
V(BR) CEO
IC = 0.5 mA
80
―
―
V
Emittercollector
breakdown voltage
V(BR) ECO
IE = 0.1 mA
7
―
―
V
VCE = 24 V
―
0.01
0.1
μA
VCE = 24 V, Ta = 85 °C
―
0.6
50
μA
V = 0 V, f = 1 MHz
―
10
―
pF
Min
Typ.
Max
Unit
50
―
600
100
―
600
―
60
―
30
―
―
IC = 2.4 mA, IF = 8 mA
―
―
0.4
IC = 0.2 mA, IF = 1 mA
―
0.2
―
―
―
0.4
Min
Typ.
Max
Unit
―
0.8
―
pF
1×1012
1014
―
Ω
5000
―
―
Vrms
Collector dark current
Capacitance (collector to emitter)
ID(ICEO)
CCE
Coupled Electrical Characteristics (Ta = 25°C)
Characteristics
Current transfer ratio
Saturated CTR
Collectoremitter saturation voltage
Symbol
IC / IF
IC / IF (sat)
VCE (sat)
Test Condition
IF = 5 mA, VCE = 5 V
Rank GB
IF = 1 mA, VCE = 0.4 V
Rank GB
Rank GB
%
%
V
Isolation Characteristics (Ta = 25°C)
Characteristics
Symbol
Test Condition
Capacitance
(input to output)
CS
VS = 0 V, f = 1 MHz
Isolation resistance
RS
VS = 500 V, R.H. ≤ 60 %
Isolation voltage
BVS
© 2019
Toshiba Electronic Devices & Storage Corporation
AC, 60 s
3
2019-03-11
TLP781/TLP781F
Switching Characteristics (Ta = 25°C)
Characteristics
Symbol
Rise time
tr
Fall time
tf
Turnon time
ton
Turnoff time
toff
Turnon time
tON
Storage time
ts
Turnoff time
tOFF
Test Condition
VCC = 10 V, IC = 2 mA
RL = 100Ω
RL = 1.9 kΩ
VCC = 5 V, IF = 16 mA
(Note 5)
Min
Typ.
Max
―
2
―
―
3
―
―
3
―
―
3
―
―
2
―
―
25
―
―
50
―
Unit
μs
μs
IF
IF
VCC
RL
VCE
ts
VCC
4.5V
VCE
0.5V
tON
tOFF
(Note 5): Switching time test circuit
Surface-Mount Lead Form Options
TLP781(LF6)
―
TOSHIBA
Weight:
TLP781F(LF7)
Unit: mm
0.24g (typ.)
© 2019
Toshiba Electronic Devices & Storage Corporation
TOSHIBA
Weight:
4
Unit: mm
―
0.24g (typ.)
2019-03-11
TLP781/TLP781F
Specifications for Embossed-Tape Packing: (TP6), (TP7)
1. Applicable Package
Package Name
Product Type
DIP4LF6
TLP781
DIP4LF7
TLP781F
2. Product Naming System
Type of package used for shipment is denoted by a symbol suffix after a product number. The method of
classification is as below.
(Example 1)
TLP781(BL-TP6)
Tape type
CTR rank
Device name
(Example 2)
TLP781F(BL-TP7)
Tape type
CTR rank
Device name
3. Tape Dimensions
3.1 Orientation of Device in Relation to Direction of Tape Movement
Device orientation in the recesses is as shown in Figure 1.
Tape feed
Figure1 Device Orientation
3.2 Tape Packing Quantity: 2000 devices per reel
3.3 Empty Device Recesses Are as Shown in Table 1.
Table1 Empty Device Recesses
Occurrences of 2 or more
successive empty device
recesses
Single empty
recesses
device
Standard
Remarks
0 device
Within any given 40mm section of
tape, not including leader and trailer
6 devices (max.) per reel
Not including leader and trailer
3.4 Start and End of Tape
The start of the tape has 30 or more empty holes. The end of the tape has 50 or more empty holes.
© 2019
Toshiba Electronic Devices & Storage Corporation
5
2019-03-11
TLP781/TLP781F
3.5 Tape Specification
[1] TLP781 (TP6)
(1)Tape material: Synthetic Resin
(2)Dimensions: The tape dimensions are as shown in Figure 2.
+0.2
16.0 -0.1
7.5±0.1
4.0±0.1
8.0±0.1
10.6±0.1
φ1.5 +0.1
-0
1.75±0.1
2.0±0.1
0.33±0.02
φ1.5 +0.2
-0
4.2±0.1
4.45±0.1
Figure 2 Tape Forms
Unit: mm
[2] TLP781F (TP7)
(1)Tape material: Synthetic Resin
(2)Dimensions: The tape dimensions are as shown in Figure 3.
4.4±0.1
φ1.5 +0.25
-0
+0.3
24.0 -0.1
4.0±0.1
8.0±0.1
11.5±0.1
φ1.5 +0.1
-0
12.35±0.1
0.33±0.02
1.75±0.1
2.0±0.1
5.05±0.1
Unit: mm
Figure 3 Tape Forms
© 2019
Toshiba Electronic Devices & Storage Corporation
6
2019-03-11
TLP781/TLP781F
3.6 Reel Specification
[1] TLP781 (TP6)
(1)Material: Synthetic Resin
(2)Dimensions: The reel dimensions are as shown in Figure 4.
3.6±0.8
+2.0
1.5±0.5
23max
φ332 max
φ102±1.5
φ13.0±0.5
16.4 -0
Unit: mm
Figure 4 Reel Forms
[2] TLP781F (TP7)
(1)Material: Synthetic Resin
(2)Dimensions: The reel dimensions are as shown in Figure 5.
+2.0
φ100±1.5
φ13.0±0.5
1.9±0.5
31max
φ330 max
24.4 -0
4.0±0.3
Unit: mm
Figure 5 Reel Forms
4. Packing
One reel of photocouplers is packed in a shipping carton.
5. Label Indication
The carton bears a label indicating the product number, the symbol representing classification of standard, the
quantity, the lot number and the Toshiba company name.
6. Ordering Information
When placing an order, please specify the product number, the CTR rank, the tape type and the quantity as shown
in the following example.
(Example)
TLP781(BL-TP6)2000Pcs.
Quantity (must be a multiple of 2000)
Tape type
CTR rank
Device name
(Note): The order code may be suffixed with a letter or a digit.
Please contact your nearest Toshiba sales representative for more details.
© 2019
Toshiba Electronic Devices & Storage Corporation
7
2019-03-11
TLP781/TLP781F
Soldering and Storage
1. Soldering
1.1 Soldering
When using a soldering iron or medium infrared ray/hot air reflow, avoid a rise in device temperature as
much as possible by observing the following conditions.
1) Using solder reflow
∙Temperature profile example of lead (Pb) solder
(°C)
This profile is based on the device’s
maximum heat resistance guaranteed
value.
Set the preheat temperature/heating
temperature to the optimum temperature
corresponding to the solder paste type
used by the customer within the
described profile.
Package surface temperature
240
210
160
140
less than 30s
60 to 120s
Time
(s)
∙Temperature profile example of using lead (Pb)-free solder
(°C)
This profile is based on the device’s
maximum heat resistance guaranteed
value.
Set the preheat temperature/heating
temperature to the optimum temperature
corresponding to the solder paste type
used by the customer within the
described profile.
Package surface temperature
260
230
190
180
60 to 120s
30 to 50s
Time
(s)
2) Using solder flow (for lead (Pb) solder, or lead (Pb)-free solder)
・Please preheat it at 150°C between 60 and 120 seconds.
・Complete soldering within 10 seconds below 260°C. Each pin may be heated at most once.
3) Using a soldering iron
Complete soldering within 10 seconds below 260°C, or within 3 seconds at 350°C. Each pin may be heated at
most once.
© 2019
Toshiba Electronic Devices & Storage Corporation
8
2019-03-11
TLP781/TLP781F
2. Storage
1) Avoid storage locations where devices may be exposed to moisture or direct sunlight.
2) Follow the precautions printed on the packing label of the device for transportation and storage.
3) Keep the storage location temperature and humidity within a range of 5°C to 35°C and 45% to 75%, respectively.
4) Do not store the products in locations with poisonous gases (especially corrosive gases) or in dusty conditions.
5) Store the products in locations with minimal temperature fluctuations. Rapid temperature changes during storage can
cause condensation, resulting in lead oxidation or corrosion, which will deteriorate the solderability of the leads.
6) When restoring devices after removal from their packing, use anti-static containers.
7) Do not allow loads to be applied directly to devices while they are in storage.
8) If devices have been stored for more than two years under normal storage conditions, it is recommended that you check
the leads for ease of soldering prior to use.
© 2019
Toshiba Electronic Devices & Storage Corporation
9
2019-03-11
TLP781/TLP781F
EN 60747-5-5 ‘Option: (D4)’
Types: TLP781, TLP781F
Type designations for ‘option: (D4) ’, which are tested under EN 60747 requirements.
e.g.: TLP781 (D4-GR-LF6,F
D4: EN 60747 option
GR: CTR rank name
LF6: standard lead bend name
F: [[G]]/RoHS COMPATIBLE (Note 1)
Note: Use TOSHIBA standard type number for safety standard application.
e.g. TLP781 (D4-GR-LF6) → TLP781
Note 1: Please contact your Toshiba sales representative for details on environmental information such as the product's
RoHS compatibility.
RoHS is the Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the
restriction of the use of certain hazardous substances in electrical and electronics equipment.
EN 60747 Isolation Characteristics
Description
Symbol
Rating
Unit
Application classification
for rated mains voltage ≤ 300 Vrms
for rated mains voltage ≤ 600 Vrms
―
IIV
IIII
55 / 115 / 21
―
2
―
VIORM
890
Vpk
Input to output test voltage,
Vpr = 1.6×VIORM, type and sample test
tp = 10s, partial discharge < 5pC
Vpr
1424
Vpk
Input to output test voltage,
Vpr = 1.875×VIORM, 100% production test
tp = 1s, partial discharge < 5pC
Vpr
1670
Vpk
Highest permissible overvoltage
(transient overvoltage, tpr = 60s)
VTR
6000
Vpk
Safety limiting values (max. permissible ratings in case of fault)
current (input current IF, Psi = 0)
power (output or total power dissipation)
temperature
Isi
Psi
Tsi
300
500
150
mA
mW
C
Insulation resistance, VIO = 500V, Ta=25℃
Rsi
1012
Ω
Climatic classification
Pollution degree
Maximum operating insulation voltage
© 2019
Toshiba Electronic Devices & Storage Corporation
10
2019-03-11
TLP781/TLP781F
Insulation Related Specifications
7.62mm pitch
TLPxxx type
10.16mm pitch
TLPxxxF type
Minimum creepage distance
Cr
6.5mm
8.0mm
Minimum clearance
Cl
6.5mm
8.0mm
Minimum insulation thickness
ti
0.4 mm
CTI
175
Comparative tracking index
(1)
If a printed circuit is incorporated, the creepage distance and clearance may be reduced below this value.
(e.g. at a standard distance between soldering eye centres of 7.5mm). If this is not permissible, the user
shall take suitable measures.
(2)
This photocoupler is suitable for ‘safe electrical isolation’ only within the safety limit data.
Maintenance of the safety data shall be ensured by means of protective circuits.
VDE test sign: Marking on product
for EN 60747
4
Marking on packing
for EN 60747
Marking Example : TLP781, TLP781F
Lot No.
Part No. (or abbreviation code)
CTR Rank Marking
P
4: Mark for option (D4)
1pin indication
© 2019
Toshiba Electronic Devices & Storage Corporation
11
2019-03-11
TLP781/TLP781F
IF – Ta
100
PC – Ta
200
Allowable collector power
dissipation PC (mW)
Allowable forward current
IF (mA)
80
60
40
20
160
120
80
40
0
20
0
-20
0
20
40
60
80
100
120
0
Ambient temperature Ta (℃)
ΔVF / ΔTa
40
60
100
80
120
Ambient temperature Ta (℃)
– IF
IF – VF
100.0
(mA)
-2.6
-2.2
Forward current IF
Forward voltage temperature
coefficient ΔVF / ΔTa (mV / ℃)
-3.0
20
-1.8
-1.4
10.0
1.0
-1.0
-0.6
0
0.1
1
Forward current
10
0.1
100
0.40
0.60
IF (mA)
0.80
1.00
Forward voltage
1.20
VF
1.40
1.60
(V)
IFP – VFP
1000
Pulse width ≤ 10μs
Pulse forward current
IFP
(mA)
Repetitive
frequency=100Hz
Ta = 25℃
100
10
1
0.00
0.40
0.80
1.20
1.60
2.00
2.40
Pulse forward voltage VFP (V)
NOTE: The above characteristics curves are presented for reference only and not guaranteed by production test,
unless otherwise noted.
© 2019
Toshiba Electronic Devices & Storage Corporation
12
2019-03-11
TLP781/TLP781F
ID – Ta
60
IC
(mA)
1
0.1
Collector current
(μA)
Collector dark current ID
IC – VCE
80
10
0.01
50
40
30
20
15
10
20
5
0.001
IF= 2 mA
0
0.0001
0
20
40
60
Ambient temperature Ta
0
100
2
4
6
8
Collector-emitter voltage
(℃)
IC – VCE
30
VCE
10
(V)
IC – IF
100.00
50
30
20
15
10.00
(mA)
IC
20
Collector current
IC
10
10
5
Collector current
(mA)
80
IF= 2 mA
0
0.0
0.2
0.4
0.6
0.8
Collector-emitter voltage
VCE
1.0
1.2
1.00
(V)
0.10
IC /IF – IF
1000
Current transfer ratio
IC / IF
(%)
Ta = 25°C
VCE = 5V
VCE = 0.4V
0.01
0.1
100
1
Forward current
10
10
IF
100
(mA)
Ta = 25°C
VCE = 5V
VCE = 0.4V
1
0.1
1
Forward current
10
IF
100
(mA)
NOTE: The above characteristics curves are presented for reference only and not guaranteed by production test,
unless otherwise noted.
© 2019
Toshiba Electronic Devices & Storage Corporation
13
2019-03-11
TLP781/TLP781F
IC – Ta
100
IC = 1 mA
10mA
Collector-emitter saturation
voltage VCE(sat) (V)
IC (mA)
Collector current
IF = 5 mA
VCE = 5V
20mA
5mA
10
VCE(sat) – Ta
0.20
1mA
1
IF= 0.5 mA
0.1
0
0.16
0.12
0.08
0.04
0.00
-40
-20
0
20
40
Ambient temperature Ta
60
80
-40
100
-20
0
20
40
Ambient temperature Ta
(℃)
60
80
100
(℃)
Switching Time – RL
1000
Ta = 25°C
IF = 16mA
VCC = 5V
tOFF
Switching time
(μs)
100
tS
10
tON
1
1
10
100
Load resistance RL (kΩ)
NOTE: The above characteristics curves are presented for reference only and not guaranteed by production test,
unless otherwise noted.
© 2019
Toshiba Electronic Devices & Storage Corporation
14
2019-03-11
TLP781/TLP781F
RESTRICTIONS ON PRODUCT USE
Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as “TOSHIBA”.
Hardware, software and systems described in this document are collectively referred to as “Product”.
TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's
written permission, reproduction is permissible only if reproduction is without alteration/omission.
Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are
responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and
systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury
or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or
incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant
TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product
and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the
application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or
applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b)
evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms,
sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and
applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY
CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, lifesaving and/or life supporting medical
equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control
combustions or explosions, safety devices, elevators and escalators, and devices related to power plant. IF YOU USE PRODUCT FOR
UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales
representative or contact us via our website.
Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
applicable laws or regulations.
The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any
infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any
intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER,
INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING
WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND
(2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT,
OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
GaAs (Gallium Arsenide) is used in Product. GaAs is harmful to humans if consumed or absorbed, whether in the form of dust or vapor.
Handle with care and do not break, cut, crush, grind, dissolve chemically or otherwise expose GaAs in Product.
Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation,
for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products
(mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and
regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration
Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all
applicable export laws and regulations.
Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances,
including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING
AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.
https://toshiba.semicon-storage.com/
© 2019
Toshiba Electronic Devices & Storage Corporation
15
2019-03-11