0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BF964S

BF964S

  • 厂商:

    VISHAY

  • 封装:

  • 描述:

    BF964S - N-Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode - Vishay Siliconix

  • 数据手册
  • 价格&库存
BF964S 数据手册
BF964S Vishay Telefunken N–Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode Electrostatic sensitive device. Observe precautions for handling. Applications Input- and mixer stages especially VHF TV-tuners. Features D Integrated gate protection diodes D High cross modulation performance D Low noise figure 3 4 2 94 9307 96 12647 D High AGC-range D Low feedback capacitance D Low input capacitance G2 G1 D 1 BF964S Marking: BF964S Plastic case (TO 50) 1=Drain, 2=Source, 3=Gate 1, 4=Gate 2 12623 S Absolute Maximum Ratings Tamb = 25_C, unless otherwise specified Parameter Drain - source voltage Drain current Gate 1/Gate 2 - source peak current Total power dissipation Channel temperature Storage temperature range Test Conditions Type Symbol Value VDS 20 ID 30 ±IG1/G2SM 10 Ptot 200 TCh 150 Tstg –55 to +150 Unit V mA mA mW °C °C Tamb ≤ 60 °C Maximum Thermal Resistance Tamb = 25_C, unless otherwise specified Parameter Test Conditions Channel ambient on glass fibre printed board (40 x 25 x 1.5) mm3 plated with 35mm Cu Symbol RthChA Value 450 Unit K/W Document Number 85003 Rev. 3, 20-Jan-99 www.vishay.de • FaxBack +1-408-970-5600 1 (8) BF964S Vishay Telefunken Electrical DC Characteristics Tamb = 25_C, unless otherwise specified Parameter Drain - source breakdown voltage Gate 1 - source breakdown voltage Gate 2 - source breakdown voltage Gate 1 - source leakage current Gate 2 - source leakage current Drain current Test Conditions ID = 10 mA, –VG1S = –VG2S = 4 V ±IG1S = 10 mA, VG2S = VDS = 0 ±IG2S = 10 mA, VG1S = VDS = 0 ±VG1S = 5 V, VG2S = VDS = 0 ±VG2S = 5 V, VG1S = VDS = 0 VDS = 15 V, VG1S = 0, VG2S = 4 V BF964S BF964SA BF964SB Type Symbol V(BR)DS ±V(BR)G1SS ±V(BR)G2SS ±IG1SS ±IG2SS IDSS IDSS IDSS –VG1S(OFF) –VG2S(OFF) 4 4 9.5 Min 20 8 8 Typ Max Unit V V V nA nA mA mA mA V V 14 14 50 50 18 10.5 18 2.5 2.0 Gate 1 - source cut-off voltage Gate 2 - source cut-off voltage VDS = 15 V, VG2S = 4 V, ID = 20 mA VDS = 15 V, VG1S = 0, ID = 20 mA Electrical AC Characteristics VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz , Tamb = 25_C, unless otherwise specified Parameter Forward transadmittance Gate 1 input capacitance Gate 2 input capacitance Feedback capacitance Output capacitance Power gain AGC range Noise figure Test Conditions Symbol y21s Cissg1 Cissg2 Crss Coss Gps DGps F Min 15 Typ 18.5 2.5 1.2 25 1.0 25 1.0 Max 3.0 35 1.3 Unit mS pF pF fF pF dB dB dB VG1S = 0, VG2S = 4 V GS = 2 mS, GL = 0.5 mS, f = 200 MHz VG2S = 4 to –2 V, f = 200 MHz GS = 2 mS, GL = 0.5 mS, f = 200 MHz 50 www.vishay.de • FaxBack +1-408-970-5600 2 (8) Document Number 85003 Rev. 3, 20-Jan-99 BF964S Vishay Telefunken Typical Characteristics (Tamb = 25_C unless otherwise specified) 300 P tot – Total Power Dissipation ( mW ) 250 ID – Drain Current ( mA ) 200 150 100 50 0 0 96 12159 80 70 60 50 40 30 20 10 0 20 40 60 80 100 120 140 160 12764 VDS= 15V VG1S= 4V 3V 2V 1V 0V –1V –1 0 1 2 3 4 5 Tamb – Ambient Temperature ( °C ) VG2S – Gate 2 Source Voltage ( V ) Figure 1. Total Power Dissipation vs. Ambient Temperature 36 32 ID – Drain Current ( mA ) 28 24 20 16 12 8 4 0 0 12762 Figure 4. Drain Current vs. Gate 2 Source Voltage 4.0 1.5V 1V C issg1 – Gate 1 Input Capacitance ( pF ) VG1S= 2V 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 0 VG2S= 4V 0.5V VDS=15V VG2S=4V f=1MHz 0V –0.5V –1V 2 4 6 8 10 12 14 16 3 6 9 12 15 18 21 24 27 30 VDS – Drain Source Voltage ( V ) 12765 ID – Drain Current ( mA ) Figure 2. Drain Current vs. Drain Source Voltage 100 Figure 5. Gate 1 Input Capacitance vs. Drain Current 2.00 C oss – Output Capacitance ( pF ) 90 ID – Drain Current ( mA ) 80 70 60 50 40 30 20 10 0 –1 12763 VDS= 15V VG2S= 6V 5V 4V 3V 2V 1V 0V –1V 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0 0 VG2S=4V ID=10mA f=1MHz 0 1 2 3 4 5 12766 2 4 6 8 10 12 14 16 18 20 VG1S – Gate 1 Source Voltage ( V ) VDS – Drain Source Voltage ( V ) Figure 3. Drain Current vs. Gate 1 Source Voltage Figure 6. Output Capacitance vs. Drain Source Voltage Document Number 85003 Rev. 3, 20-Jan-99 www.vishay.de • FaxBack +1-408-970-5600 3 (8) BF964S Vishay Telefunken 4.0 C issg2 – Gate 2 Input Capacitance ( pF ) 3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0 –3 12767 20 VDS=15V VG1S=0 f=1MHz Im ( y ) ( mS ) 11 18 16 14 12 10 8 6 4 2 0 –2 –1 0 1 2 3 4 5 6 12770 f=1300MHz ID=5mA ID=10mA 1000MHz 700MHz 400MHz VDS=15V VG2S=4V f=100...1300MHz ID=20mA 100MHz 0 2 4 6 8 10 12 14 16 18 20 VG2S – Gate 2 Source Voltage ( V ) Re (y11) ( mS ) Figure 7. Gate 2 Input Capacitance vs. Gate 2 Source Voltage 10 – Transducer Gain ( dB ) 0 –10 –20 –30 –40 –50 –60 –70 –5 12768 Figure 10. Short Circuit Input Admittance 0.3 f=1300MHz 0.2 ID=5mA Im ( y ) ( mS ) 12 0.1 10mA 20mA 1000MHz 0.0 700MHz VDS=15V VG2S=4V f=100...1300MHz 0.3 0.4 0.5 f= 200MHz 4V 3V 2V 1V 0V –0.5V –1V S 21 2 VG2S=–2...–3V –4 –3 –2 –1 0 1 2 3 12772 –0.1 0 0.1 0.2 Re (y12) ( mS ) VG1S – Gate 1 Source Voltage ( V ) Figure 8. Transducer Gain vs. Gate 1 Source Voltage 24 22 20 18 16 14 12 10 8 6 4 2 0 0 12769 Figure 11. Short Circuit Reverse Transfer Admittance 5 VDS=15V VG2S=4V f=100...1300MHz ID=5mA 10mA 20mA Y21S – Forward Transadmittance ( mS ) VDS=15V f=1MHz VG2S=4V 0 –5 f=100MHz 3V Im ( y ) ( mS ) 21 –10 –15 –20 –25 –30 400MHz 700MHz 1000MHz 2V 0V 5 10 15 1V 0.5V 20 25 30 –35 –40 –8 12771 1300MHz –4 0 4 8 12 16 20 24 ID – Drain Current ( mA ) Re (y21) ( mS ) Figure 9. Forward Transadmittance vs. Drain Current Figure 12. Short Circuit Forward Transfer Admittance www.vishay.de • FaxBack +1-408-970-5600 4 (8) Document Number 85003 Rev. 3, 20-Jan-99 BF964S Vishay Telefunken 8 f=1300MHz 7 6 Im ( y ) ( mS ) 22 5 4 3 2 1 0 0 12773 ID=10mA ID=5mA 20mA 1000MHz 700MHz 400MHz VDS=15V VG2S=4V f=100...1300MHz 1.0 1.5 2.0 2.5 100MHz 0.5 Re (y22) ( mS ) Figure 13. Short Circuit Output Admittance Document Number 85003 Rev. 3, 20-Jan-99 www.vishay.de • FaxBack +1-408-970-5600 5 (8) BF964S Vishay Telefunken VDS = 15 V, ID = 5 to 20 mA, VG2S = 4 V , Z0 = 50 W S11 j 120° j0.5 j2 150° j0.2 j5 30° 1000 0 0.2 0.5 1 2 5 400 100 0.008 0.016 0° S12 90° 60° 1300MHz 100 1 –j0.2 12 924 S21 120° 400 150° 90° 700 1000 30° 60° 100 180° 0.8 –150° ID= 20mA 10mA –30° –30° 5mA –j0.2 –j0.5 –120° 12 926 –90° –60° 12 927 Figure 15. Forward transmission coefficient Figure 17. Output reflection coefficient www.vishay.de • FaxBack +1-408-970-5600 6 (8) ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁ 1300MHz 400 1000 700 –j0.5 –j –j2 180° –j5 –150° ID= 20mA 10mA –30° 5mA –120° 12 925 –90° –60° Figure 14. Input reflection coefficient Figure 16. Reverse transmission coefficient S22 j j0.5 j2 j0.2 1300MHz 1.6 0° 0 0.2 0.5 1 2 5 100 j5 1 700 –j5 1300MHz –j2 –j Document Number 85003 Rev. 3, 20-Jan-99 BF964S Vishay Telefunken Dimensions in mm 96 12242 Document Number 85003 Rev. 3, 20-Jan-99 www.vishay.de • FaxBack +1-408-970-5600 7 (8) BF964S Vishay Telefunken Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs ). The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA ) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423 www.vishay.de • FaxBack +1-408-970-5600 8 (8) Document Number 85003 Rev. 3, 20-Jan-99
BF964S 价格&库存

很抱歉,暂时无法提供与“BF964S”相匹配的价格&库存,您可以联系我们找货

免费人工找货