Not for new design, this product will be obsoleted soon
BF998/BF998R/BF998RW
Vishay Semiconductors
N-Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode
2 1
Features
• • • • • • • • • Integrated gate protection diodes Low noise figure e3 Low feedback capacitance High cross modulation performance Low input capacitance High AGC-range High gain Lead (Pb)-free component Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC
SOT143
3 1
4 2
SOT143R
4 1
3 2
SOT343R
Applications
• Input and mixer stages in UHF tuners
4
3
Electrostatic sensitive device. Observe precautions for handling.
19216
Mechanical Data
Typ: BF998 Case: SOT143 Plastic case Weight: approx. 8.0 mg Marking: MO Pinning: 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1 Typ: BF998R Case: SOT143R Plastic case Weight: approx. 8.0 mg Marking: MOR Pinning: 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1 Typ: BF998RW Case: SOT343R Plastic case Weight: approx. 6.0 mg Marking: WMO Pinning: 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1
Parts Table
Part BF998 BF998A BF998R BF998RA BF998RW BF998RAW BF998RBW Ordering code BF998A-GS08 BF998A-GS08 BF998RA-GS08 BF998RA-GS08 BF998RAW-GS08 or BF998RBW-GS08 BF998RAW-GS08 BF998RBW-GS08 Type Marking MO MO MOR MOR WMO WMO WMO Remarks SOT143 SOT143 SOT143R SOT143R SOT343R SOT343R SOT343R
Document Number 85011 Rev. 1.8, 05-Sep-08
www.vishay.com 1
BF998/BF998R/BF998RW
Vishay Semiconductors Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Parameter Drain - source voltage Drain current Gate 1/Gate 2 - source peak current Gate 1/Gate 2 - source voltage Total power dissipation Channel temperature Storage temperature range Tamb ≤ 60 °C Test condition Symbol VDS ID ± IG1/G2SM ± VG1S/G2S Ptot TCh Tstg Value 12 30 10 7 200 150 - 65 to + 150 Unit V mA mA V mW °C °C
Thermal Characteristics
Parameter Channel ambient
1)
Test condition
1)
Symbol RthChA
Value 450
Unit K/W
on glass fibre printed board (25 x 20 x 1.5) mm3 plated with 35 µm Cu
Electrical DC Characteristics
Tamb = 25 °C, unless otherwise specified
Parameter Drain - source breakdown voltage Gate 1 - source breakdown voltage Gate 2 - source breakdown voltage Gate 1 - source leakage current Gate 2 - source leakage current Test condition ID = 10 μA, - VG1S = - VG2S = 4 V ± IG1S = 10 mA, VG2S = VDS = 0 ± IG2S = 10 mA, VG1S = VDS = 0 ± VG1S = 5 V, VG2S = VDS = 0 ± VG2S = 5 V, VG1S = VDS = 0 BF998/ BF998R/ BF998RW Drain current VDS = 8 V, VG1S = 0, VG2S = 4 V BF998A/ BF998RA/ BF998RAW BF998RBW Gate 1 - source cut-off voltage Gate 2 - source cut-off voltage VDS = 8 V, VG2S = 4 V, ID = 20 μA VDS = 8 V, VG1S = 0, ID = 20 μA Part Symbol V(BR)DS ± V(BR)G1SS ± V(BR)G2SS ± IG1SS ± IG2SS IDSS 4 Min. 12 7 7 14 14 50 50 18 Typ. Max. Unit V V V nA nA mA
IDSS IDSS - VG1S(OFF) - VG2S(OFF)
4 9.5 1.0 0.6
10.5 18 2.0 1.0
mA mA V V
Electrical AC Characteristics
Tamb = 25 °C, unless otherwise specified
VDS = 8 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz Parameter Forward transadmittance Gate 1 input capacitance Gate 2 input capacitance Feedback capacitance Output capacitance VG1S = 0, VG2S = 4 V Test condition Symbol |y21s| Cissg1 Cissg2 Crss Coss Min. 21 Typ. 24 2.1 1.1 25 1.05 2.5 Max. Unit mS pF pF fF pF
www.vishay.com 2
Document Number 85011 Rev. 1.8, 05-Sep-08
BF998/BF998R/BF998RW
Vishay Semiconductors
Parameter Test condition GS = 2 mS, GL = 0.5 mS, f = 200 MHz GS = 3,3 mS, GL = 1 mS, f = 800 MHz VG2S = 4 to -2 V, f = 800 MHz GS = 2 mS, GL = 0.5 mS, f = 200 MHz GS = 3,3 mS, GL = 1 mS, f = 800 MHz Symbol Gps Gps ΔGps F F 16.5 40 1.0 1.5 Min. Typ. 28 20 Max. Unit dB dB dB dB dB
Power gain
AGC range
Noise figure
Common Source S-Parameters
Tamb = 25 °C, unless otherwise specified
VDS = 8 V, VG2S = 4 V, Z0 = 50 Ω ID/mA f/MHz LOG MAG S11 ANG deg 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 - 0.03 - 0.15 - 0.34 - 0.70 - 1.03 - 1.33 - 1.62 - 1.92 - 2.21 - 2.49 - 2.80 - 3.07 - 3.31 - 0.05 - 0.16 - 0.48 - 0.76 - 1.11 - 1.43 - 1.75 - 2.07 - 2.40 - 2.70 - 3.03 - 3.32 - 3.59 - 0.05 - 0.17 - 0.50 - 0.81 - 1.18 - 1.52 - 1.86 - 2.20 - 2.53 - 2.86 - 3.21 - 3.50 - 3.80 - 7.2 - 14.1 - 20.9 - 32.1 - 39.2 - 45.8 - 52.3 - 58.7 - 64.7 - 70.7 - 76.6 - 82.5 - 88.6 - 9.0 - 18.7 - 26.0 - 33.7 - 41.2 - 48.3 - 55.1 - 61.6 - 67.9 - 74.2 - 80.2 - 86.4 - 92.3 - 9.4 - 19.4 - 27.1 - 35.0 - 42.9 - 50.3 - 57.2 - 63.9 - 70.4 - 76.8 - 82.9 - 89.0 - 95.1 5.71 5.51 5.20 2.01 1.45 0.94 0.43 - 0.10 - 0.59 - 1.12 - 1.52 - 1.93 - 2.35 5.19 5.58 4.45 3.95 3.40 2.88 2.39 1.88 1.39 0.90 0.50 0.13 - 0.28 6.07 6.44 5.31 4.80 4.23 3.72 3.22 2.72 2.24 1.74 1.34 0.95 0.56 LOG MAG S21 ANG deg 168.8 157.3 134.7 121.3 108.4 96.5 85.0 74.1 63.6 53.1 43.7 33.6 24.1 165.3 151.8 136.3 123.3 110.9 99.5 88.7 78.1 67.9 57.9 48.7 38.9 29.6 165.4 152.0 136.7 123.8 111.5 100.3 89.6 79.4 69.2 59.4 50.2 40.8 31.5 - 55.94 - 50.26 - 48.51 - 46.98 - 46.40 - 46.40 - 47.02 - 47.53 - 47.81 - 48.52 - 48.53 - 46.95 - 44.44 - 56.24 - 49.97 - 47.91 - 46.48 - 45.91 - 45.91 - 46.53 - 47.13 - 47.41 - 48.21 - 48.43 - 47.04 - 44.54 - 55.74 - 49.47 - 47.41 - 45.98 - 45.41 - 45.41 - 46.13 - 46.63 - 47.00 - 47.91 - 48.33 - 47.04 - 44.53 LOG MAG S12 ANG deg 83.6 76.8 67.7 62.8 57.8 57.3 58.9 63.3 73.1 83.5 102.1 120.4 131.7 81.9 75.0 67.2 61.8 56.3 55.8 56.7 60.7 69.9 80.0 98.9 118.2 130.5 81.4 74.6 66.4 60.8 55.1 54.4 54.9 58.5 67.3 76.7 95.2 115.3 128.7 - 0.08 - 0.13 - 0.29 - 0.44 - 0.59 - 0.76 - 0.91 - 1.08 - 1.26 - 1.45 - 1.57 - 1.75 - 1.92 - 0.11 - 0.21 - 0.33 - 0.47 - 0.65 - 0.81 - 0.96 - 1.12 - 1.32 - 1.49 - 1.61 - 1.79 - 1.96 - 0.15 - 0.24 - 0.36 - 0.52 - 0.68 - 0.84 - 1.02 - 1.16 - 1.35 - 1.53 - 1.66 - 1.84 - 2.00 LOG MAG S22 ANG deg - 3.6 - 7.0 - 9.7 - 12.3 - 15.1 - 17.4 - 19.7 - 22.0 - 24.3 - 26.2 - 28.4 - 30.5 - 32.7 - 3.5 - 7.2 - 9.8 - 12.6 - 15.3 - 17.8 - 20.0 - 22.4 - 24.6 - 26.6 - 28.8 - 31.0 - 33.3 - 3.6 - 7.3 - 10.0 - 12.9 - 15.7 - 18.0 - 20.4 - 22.7 - 25.0 - 27.1 - 29.4 - 31.6 - 33.9 www.vishay.com 3
5
10
15
Document Number 85011 Rev. 1.8, 05-Sep-08
BF998/BF998R/BF998RW
Vishay Semiconductors Typical Characteristics
Tamb = 25 °C, unless otherwise specified
300
Ptot - Total Power Dissipation (mW)
20 250 ID - Drain Current (mA) 16 12 8 200 150 100 50 0 0 20 40 60 80 100 120 140 160
12817
4V VDS = 8 V 5V
3V 2V 1V
0 4 VG1S = - 1 V 0 - 0.6 - 0.2 0.2 0.6 1.0 1.4
96 12159
Tamb - Ambient Temperature (°C)
VG2S - Gate 2 Source Voltage (V)
Figure 1. Total Power Dissipation vs. Ambient Temperature
Figure 4. Drain Current vs. Gate 2 Source Voltage
25
V G2S = 4 V
Cissg1 - Gate 1 Input Capacitance (pF)
30 V G1S = 0.6 V 0.4 V 0.2 V 0 - 0.2 V - 0.4 V 0 0
12812
3.0 2.5 2.0 1.5 1.0 0.5 0.0 - 2 - 1.5 V DS = 8 V V G2S = 4 V f = 1 MHz
ID - Drain Current (mA)
20 15 10 5
2
4
6
8
10
-1
- 0.5
0
0.5
1.0
1.5
VDS - Drain Source Voltage (V)
12863
VG1S - Gate 1 Source Voltage (V)
Figure 2. Drain Current vs. Drain Source Voltage
Figure 5. Gate 1 Input Capacitance vs. Gate 1 Source Voltage
20 VDS = 8 V 6V 5V 4V 12 8 4 0 - 0.8
12816
Coss - Output Capacitance (pF)
3V 2V 1V
3.0 2.5 2.0 1.5 1.0 0.5 0.0 1.2
12864
ID - Drain Current (mA)
16
VG2S = 4 V f = 1 MHz
0 VG2S = - 1 V - 0.4 0.0 0.4 0.8
2
4
6
8
10
12
VG1S - Gate 1 Source Voltage (V)
VDS - Drain Source Voltage (V)
Figure 3. Drain Current vs. Gate 1 Source Voltage
Figure 6. Output Capacitance vs. Drain Source Voltage
www.vishay.com 4
Document Number 85011 Rev. 1.8, 05-Sep-08
BF998/BF998R/BF998RW
Vishay Semiconductors
10 f = 800 MHz - Transducer Gain (dB) 0 - 10 - 20
4V 3V 2V 1V 0 - 0.2 V Im (y21) (ms)
5 0 -5 - 10 - 15 - 20 - 25 - 30 - 35 - 40 1300 MHz 0
12821
V DS = 8 V V G2S = 4 V f = 100...1300 MHz I D = 5 mA 10 mA 20 mA
f = 100 MHz
400 MHz 700 MHz 1000 MHz
- 30 - 0.4 V - 40 - 50 - 1.0 VG2S = - 0.8 V - 0.5 0.0 0.5 1.0 1.5
S 21
2
4
8
12
16
20
24
28
32
12818
VG1S - Gate 1 Source Voltage (V)
Re (y21) (mS)
Figure 7. Transducer Gain vs. Gate 1 Source Voltage
Figure 10. Short Circuit Forward Transfer Admittance
y21s - Forward Transadmittance (ms)
32 28 24 20 16 12 8 4 0 0 0 4 8 12 16 20 24 28 ID - Drain Current (mA) 1V 2V VDS = 8 V f = 1 MHz VG2S = 4 V 3V
Im (y22) (ms)
9 8 7 6 5 4 3 2 1 0 0.00
12822
f = 1300 MHz
1000 MHz 700 MHz 400 MHz 100 MHz 0.25 0.50 V DS = 15 V V G2S = 4 V I D =10 mA f = 100...1300 MHz 1.00 1.25 1.50
0.75
12819
Re (y22) (mS)
Figure 8. Forward Transadmittance vs. Drain Current
Figure 11. Short Circuit Output Admittance
20 18 16 14 Im (y11) (ms) 12 10 8 6 4 2 0 0
12820
f = 1300 MHz
1000 MHz 700 MHz V DS = 8 V V G2S = 4 V I D = 10 mA f = 100...1300 MHz 6 8 10 12 14
400 MHz 100 MHz 2 4
Re (y11) (mS)
Figure 9. Short Circuit Input Admittance
Document Number 85011 Rev. 1.8, 05-Sep-08
www.vishay.com 5
BF998/BF998R/BF998RW
Vishay Semiconductors
VDS = 8 V, ID = 10 mA, VG2S = 4 V, Z0 = 50 Ω S11
j 120 ° j0.5 j2 400 150 ° j0.2 j5 100 0 0.2 0.5 1 2 5 100 - j0.2 1300 MHz 1000 - j0.5
12960
S21
90 ° 700 60 ° 1000 30 ° 1300 MHz
180 °
1
2
0°
- j5 - 150° - j2 - 30°
-j
- 120°
12962
- 60° - 90°
Figure 12. Input Reflection Coefficient
Figure 14. Forward Transmission Coefficient
S12
90° 120° 60°
S22
j j0.5 150 ° 1200 1300 MHz 180 ° 200 100 0.08 0.16 0° 0 0.2 0.5 1 2 5 100 - j5 1300 MHz - j2 -j 30° j0.2 j5 j2
- j0.2 - 150° - 30° - j0.5 - 120°
12973
- 60° - 90°
12963
Figure 13. Reverse Transmission Coefficient
Figure 15. Output Reflection Coefficient
www.vishay.com 6
Document Number 85011 Rev. 1.8, 05-Sep-08
BF998/BF998R/BF998RW
Vishay Semiconductors Package Dimensions in millimeters (inches): SOT143
0.1 [0.004] max. 1.1 [0.043] 2.6 [0.102] 2.35 [0.093] 1.8 [0.071] 1.6 [0.063] 0.5 [0.020] 0.35 [0.014] 0.9 [0.035] 0.75 [0.030]
foot print recommendation:
3 [0.118] 2.8 [0.110]
0.5 [0.020] 0.35 [0.014]
0.5 [0.020] 0.35 [0.014]
0.15 [0.006]
0.08 [0.003]
1.7 [0.067] 0.9 [0.035] 0.9 [0.035] 0.8 [0.031] 1.2 [0.047]
1.4 [0.055]
1.2 [0.047]
0.9 [0.035] 0.8 [0.031] 2 [0.079]
2 [0.079] 1.8 [0.071]
0.8 [0.031] 1.9 [0.075]
96 12240
Package Dimensions in millimeters (inches): SOT143R
96 12239
Document Number 85011 Rev. 1.8, 05-Sep-08
www.vishay.com 7
BF998/BF998R/BF998RW
Vishay Semiconductors Package Dimensions in millimeters (inches): SOT343R
96 12238
www.vishay.com 8
Document Number 85011 Rev. 1.8, 05-Sep-08
BF998/BF998R/BF998RW
Vishay Semiconductors Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Document Number 85011 Rev. 1.8, 05-Sep-08
www.vishay.com 9
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000 Revision: 18-Jul-08
www.vishay.com 1