0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BF998RW

BF998RW

  • 厂商:

    VISHAY

  • 封装:

  • 描述:

    BF998RW - N-Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode - Vishay Siliconix

  • 数据手册
  • 价格&库存
BF998RW 数据手册
BF998/BF998R/BF998RW Vishay Telefunken N–Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode Electrostatic sensitive device. Observe precautions for handling. Applications Input and mixer stages in UHF tuners. Features D D D D Integrated gate protection diodes Low noise figure Low feedback capacitance High cross modulation performance D Low input capacitance D High AGC-range D High gain 2 1 1 2 94 9279 13 579 94 9278 95 10831 3 4 4 3 BF998 Marking: MO Plastic case (SOT 143) 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1 BF998R Marking: MOR Plastic case (SOT 143R) 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1 1 2 13 654 13 566 4 3 BF998RW Marking: WMO Plastic case (SOT 343R) 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1 Document Number 85011 Rev. 4, 23-Jun-99 www.vishay.de • FaxBack +1-408-970-5600 1 (9) BF998/BF998R/BF998RW Vishay Telefunken Absolute Maximum Ratings Tamb = 25_C, unless otherwise specified Parameter Drain - source voltage Drain current Gate 1/Gate 2 - source peak current Gate 1/Gate 2 - source voltage Total power dissipation Channel temperature Storage temperature range Test Conditions Symbol Value VDS 12 ID 30 ±IG1/G2SM 10 ±VG1S/G2S 7 Ptot 200 TCh 150 Tstg –65 to +150 Unit V mA mA V mW °C °C Tamb ≤ 60 °C Maximum Thermal Resistance Tamb = 25_C, unless otherwise specified Parameter Test Conditions Channel ambient on glass fibre printed board (25 x 20 x 1.5) mm3 plated with 35mm Cu Symbol RthChA Value 450 Unit K/W Electrical DC Characteristics Tamb = 25_C, unless otherwise specified Parameter Drain - source breakdown voltage Gate 1 - source breakdown voltage Gate 2 - source breakdown voltage Gate 1 - source leakage current Gate 2 - source leakage current Drain current Test Conditions ID = 10 mA, –VG1S = –VG2S = 4 V ±IG1S = 10 mA, VG2S = VDS = 0 ±IG2S = 10 mA, VG1S = VDS = 0 ±VG1S = 5 V, VG2S = VDS = 0 ±VG2S = 5 V, VG1S = VDS = 0 VDS = 8 V, VG1S = 0, VG2S = 4 V Type Symbol V(BR)DS ±V(BR)G1SS ±V(BR)G2SS ±IG1SS ±IG2SS BF998/BF998R/ BF998RW BF998A/BF998RA/ BF998RAW BF998B/BF998RB/ BF998RBW IDSS IDSS IDSS –VG1S(OFF) –VG2S(OFF) 4 4 9.5 1.0 0.6 Min 12 7 7 Typ Max Unit V 14 14 50 50 18 V V nA nA mA 10.5 mA 18 2.0 1.0 mA V V Gate 1 - source cut-off voltage Gate 2 - source cut-off voltage VDS = 8 V, VG2S = 4 V, ID = 20 mA VDS = 8 V, VG1S = 0, ID = 20 mA www.vishay.de • FaxBack +1-408-970-5600 2 (9) Document Number 85011 Rev. 4, 23-Jun-99 BF998/BF998R/BF998RW Vishay Telefunken Electrical AC Characteristics VDS = 8 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz , Tamb = 25_C, unless otherwise specified Parameter Forward transadmittance Gate 1 input capacitance Gate 2 input capacitance Feedback capacitance Output capacitance Power g gain AGC range Noise figure g Test Conditions Symbol y21s Cissg1 Cissg2 Crss Coss Gps Gps DGps F F Min 21 Typ 24 2.1 1.1 25 1.05 28 20 1.0 1.5 Max 2.5 Unit mS pF pF fF pF dB dB dB dB dB VG1S = 0, VG2S = 4 V GS = 2 mS, GL = 0.5 mS, f = 200 MHz GS = 3,3 mS, GL = 1 mS, f = 800 MHz VG2S = 4 to –2 V, f = 800 MHz GS = 2 mS, GL = 0.5 mS, f = 200 MHz GS = 3,3 mS, GL = 1 mS, f = 800 MHz 16.5 40 Document Number 85011 Rev. 4, 23-Jun-99 www.vishay.de • FaxBack +1-408-970-5600 3 (9) BF998/BF998R/BF998RW Vishay Telefunken Typical Characteristics (Tamb = 25_C unless otherwise specified) 300 P tot – Total Power Dissipation ( mW ) 20 250 ID – Drain Current ( mA ) 16 12 8 0 4 VG1S= –1V 0 0 96 12159 4V VDS= 8V 5V 3V 2V 1V 200 150 100 50 20 40 60 80 100 120 140 160 12817 0 –0.6 –0.2 0.2 0.6 1.0 1.4 Tamb – Ambient Temperature ( °C ) VG2S – Gate 2 Source Voltage ( V ) Figure 1. Total Power Dissipation vs. Ambient Temperature 30 25 ID – Drain Current ( mA ) 20 15 10 5 0 0 12812 Figure 4. Drain Current vs. Gate 2 Source Voltage 3.0 VG2S= 4V VG1S= 0.6V C issg1 – Gate 1 Input Capacitance ( pF ) 2.5 2.0 1.5 1.0 0.5 0 –2 VDS=8V VG2S=4V f=1MHz 0.4V 0.2V 0 –0.2V –0.4V 2 4 6 8 10 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 VDS – Drain Source Voltage ( V ) 12863 VG1S – Gate 1 Source Voltage ( V ) Figure 2. Drain Current vs. Drain Source Voltage Figure 5. Gate 1 Input Capacitance vs. Gate 1 Source Voltage 3.0 C oss – Output Capacitance ( pF ) 20 VDS= 8V ID – Drain Current ( mA ) 16 12 8 4 0 –0.8 12816 6V 5V 4V 3V 2V 1V 2.5 2.0 1.5 1.0 0.5 0 VG2S=4V f=1MHz 0 VG2S=–1V –0.4 0.0 0.4 0.8 1.2 2 12864 4 6 8 10 12 VG1S – Gate 1 Source Voltage ( V ) VDS – Drain Source Voltage ( V ) Figure 3. Drain Current vs. Gate 1 Source Voltage Figure 6. Output Capacitance vs. Drain Source Voltage www.vishay.de • FaxBack +1-408-970-5600 4 (9) Document Number 85011 Rev. 4, 23-Jun-99 BF998/BF998R/BF998RW Vishay Telefunken 10 f= 800MHz – Transducer Gain ( dB ) 0 –10 –20 –0.2V –30 –0.4V –40 –50 –1 12818 4V 3V 2V 1V 0 Im ( y ) ( mS ) 21 5 0 –5 –10 –15 –20 –25 –30 –35 –40 1300MHz 0 12821 VDS=8V VG2S=4V f=100...1300MHz ID=5mA 10mA 20mA f=100MHz 400MHz 700MHz 1000MHz S 21 2 VG2S=–0.8V –0.5 0.0 0.5 1.0 1.5 4 8 12 16 20 24 28 32 VG1S – Gate 1 Source Voltage ( V ) Re (y21) ( mS ) Figure 7. Transducer Gain vs. Gate 1 Source Voltage y21s – Forward Transadmittance ( mS ) 32 28 24 20 16 12 8 4 0 0 0 12819 Figure 10. Short Circuit Forward Transfer Admittance 9 VDS=8V f=1MHz VG2S=4V 3V Im ( y ) ( mS ) 22 8 7 6 5 4 3 2 f=1300MHz 1000MHz 700MHz 400MHz 100MHz 0 0.25 0.50 0.75 VDS=15V VG2S=4V ID=10mA f=100...1300MHz 1.00 1.25 1.50 2V 1V 1 0 20 24 28 12822 4 8 12 16 ID – Drain Current ( mA ) Re (y22) ( mS ) Figure 8. Forward Transadmittance vs. Drain Current 20 18 16 14 Im ( y ) ( mS ) 11 12 10 8 6 4 2 0 0 12820 Figure 11. Short Circuit Output Admittance f=1300MHz 1000MHz 700MHz VDS=8V VG2S=4V ID=10mA f=100...1300MHz 6 8 10 12 14 400MHz 100MHz 2 4 Re (y11) ( mS ) Figure 9. Short Circuit Input Admittance Document Number 85011 Rev. 4, 23-Jun-99 www.vishay.de • FaxBack +1-408-970-5600 5 (9) BF998/BF998R/BF998RW Vishay Telefunken VDS = 8 V, ID = 10 mA, VG2S = 4 V , Z0 = 50 W S11 j 120° j0.5 j2 150° j0.2 j5 1300MHz 0 0.2 0.5 1 2 5 1200 200 100 180° 0.08 0.16 0° 30° S12 90° 60° 1 –j5 –j0.2 12 960 S21 120° 400 150° 1300MHz 100 180° 1 2 0° 90° 700 1000 30° 60° 0 –j0.2 –150° –30° –j0.5 –120° 12 962 –90° –60° 12 963 Figure 13. Forward transmission coefficient Figure 15. Output reflection coefficient www.vishay.de • FaxBack +1-408-970-5600 6 (9) ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁ 1300MHz 1000 –j0.5 –j –j2 100 –150° –30° –120° 12 973 –90° –60° Figure 12. Input reflection coefficient Figure 14. Reverse transmission coefficient S22 j j0.5 j2 j0.2 j5 0.2 0.5 1 2 5 100 1 –j5 1300MHz –j2 –j Document Number 85011 Rev. 4, 23-Jun-99 BF998/BF998R/BF998RW Vishay Telefunken Dimensions of BF998 in mm 96 12240 Dimensions of BF998R in mm 96 12239 Document Number 85011 Rev. 4, 23-Jun-99 www.vishay.de • FaxBack +1-408-970-5600 7 (9) BF998/BF998R/BF998RW Vishay Telefunken Dimensions of BF998RW in mm 96 12238 www.vishay.de • FaxBack +1-408-970-5600 8 (9) Document Number 85011 Rev. 4, 23-Jun-99 BF998/BF998R/BF998RW Vishay Telefunken Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs ). The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA ) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423 Document Number 85011 Rev. 4, 23-Jun-99 www.vishay.de • FaxBack +1-408-970-5600 9 (9)
BF998RW 价格&库存

很抱歉,暂时无法提供与“BF998RW”相匹配的价格&库存,您可以联系我们找货

免费人工找货