0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF540S

IRF540S

  • 厂商:

    VISHAY

  • 封装:

  • 描述:

    IRF540S - Power MOSFET - Vishay Siliconix

  • 数据手册
  • 价格&库存
IRF540S 数据手册
IRF540S, SiHF540S Vishay Siliconix Power MOSFET PRODUCT SUMMARY VDS (V) RDS(on) () Qg (Max.) (nC) Qgs (nC) Qgd (nC) Configuration 100 VGS = 10 V 72 11 32 Single 0.077 FEATURES D • Halogen-free According to IEC 61249-2-21 Definition • Surface Mount • Available in Tape and Reel • Dynamic dV/dt Rating • Repetitive Avalanche Rated • 175 °C Operating Temperature • Fast Switching • Ease of Paralleling • Compliant to RoHS Directive 2002/95/EC D2PAK (TO-263) DESCRIPTION G GD S S N-Channel MOSFET Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The D2PAK (TO-263) is a surface mount power package capable of accommodating die size up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D2PAK (TO-263) is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0 W in a typical surface mount application. D2PAK (TO-263) SiHF540STRL-GE3a IRF540STRLPbFa SiHF540STL-E3a D2PAK (TO-263) SiHF540STRR-GE3a IRF540STRRPbFa SiHF540STR-E3a ORDERING INFORMATION Package Lead (Pb)-free and Halogen-free Lead (Pb)-free Note a. See device orientation. D2PAK (TO-263) SiHF540S-GE3 IRF540SPbF SiHF540S-E3 ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Currenta Linear Derating Factor Linear Derating Factor (PCB Mount)e Single Pulse Avalanche Energyb Avalanche Currenta Repetitive Avalanche Energya Maximum Power Dissipation Maximum Power Dissipation (PCB Mount)e Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) VGS at 10 V TC = 25 °C TC = 100 °C SYMBOL VDS VGS ID IDM LIMIT 100 ± 20 28 20 110 1.0 0.025 230 28 15 150 3.7 5.5 - 55 to + 175 300d UNIT V A W/°C mJ A mJ W V/ns °C EAS IAR EAR TC = 25 °C TA = 25 °C PD dV/dt TJ, Tstg for 10 s Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = 25 V, starting TJ = 25 °C, L = 440 μH, Rg = 25 , IAS = 28 A (see fig. 12). c. ISD  28 A, dI/dt  170 A/μs, VDD  VDS, TJ  175 °C. d. 1.6 mm from case. e. When mounted on 1" square PCB (FR-4 or G-10 material). * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91022 S11-1046-Rev. D, 30-May-11 www.vishay.com 1 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF540S, SiHF540S Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER Maximum Junction-to-Ambient Maximum Junction-to-Ambient (PCB Mount)a Maximum Junction-to-Case (Drain) SYMBOL RthJA RthJA RthJC TYP. MAX. 62 40 1.0 °C/W UNIT Note a. When mounted on 1" square PCB (FR-4 or G-10 material). SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance Dynamic Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge Gate-Drain Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge Forward Turn-On Time IS ISM VSD trr Qrr ton MOSFET symbol showing the integral reverse p - n junction diode D SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VDS/TJ VGS(th) IGSS IDSS RDS(on) gfs Ciss Coss Crss Qg Qgs Qgd td(on) tr td(off) tf LD LS VGS = 0, ID = 250 μA Reference to 25 °C, ID = 1 mA VDS = VGS, ID = 250 μA VGS = ± 20 V VDS = 100 V, VGS = 0 V VDS = 80 V, VGS = 0 V, TJ = 150 °C VGS = 10 V ID = 17 Ab VDS = 50 V, ID = 17 Ab 100 2.0 8.7 - 0.13 1700 560 120 11 44 53 43 4.5 7.5 4.0 ± 100 25 250 0.077 72 11 32 - V V/°C V nA μA  S VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 ID = 17 A, VDS = 80 V, see fig. 6 and 13b pF VGS = 10 V nC VDD = 50 V, ID = 17 A, Rg = 9.1 , RD = 2.9 , see fig. 10b - ns Between lead, 6 mm (0.25") from package and center of die contact D - nH G - S - 180 1.3 28 A 110 2.5 360 2.8 V ns μC G S TJ = 25 °C, IS = 28 A, VGS = 0 Vb TJ = 25 °C, IF = 17 A, dI/dt = 100 A/μsb Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width  300 μs; duty cycle  2 %. www.vishay.com 2 Document Number: 91022 S11-1046-Rev. D, 30-May-11 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF540S, SiHF540S Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 102 ID, Drain Current (A) ID, Drain Current (A) VGS 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom 4.5 V Top 4.5 V 102 25 °C 175 °C 101 101 20 µs Pulse Width TC = 25 °C 10-1 91022_01 20 µs Pulse Width VDS = 50 V 4 91022_03 100 101 5 6 7 8 9 10 VDS, Drain-to-Source Voltage (V) VGS, Gate-to-Source Voltage (V) Fig. 3 - Typical Transfer Characteristics Fig. 1 - Typical Output Characteristics, TC = 25 °C RDS(on), Drain-to-Source On Resistance (Normalized) 102 ID, Drain Current (A) 101 VGS Top 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom 4.5 V 3.0 2.5 2.0 1.5 1.0 0.5 ID = 17 A VGS = 10 V 4.5 V 20 µs Pulse Width TC = 175 °C 10-1 91022_02 100 101 91022_04 0.0 - 60 - 40 - 20 0 20 40 60 80 100 120 140 160180 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature (°C) Fig. 2 - Typical Output Characteristics, TC = 175 °C Fig. 4 - Normalized On-Resistance vs. Temperature Document Number: 91022 S11-1046-Rev. D, 30-May-11 www.vishay.com 3 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF540S, SiHF540S Vishay Siliconix 3000 2400 ISD, Reverse Drain Current (A) Capacitance (pF) VGS = 0 V, f = 1 MHz Ciss = Cgs + Cgd, Cds Shorted Crss = Cgd Coss = Cds + Cgd Ciss 150 °C 101 25 °C 1800 1200 Coss 600 Crss 0 100 101 100 10-1 0.4 91022_07 VGS = 0 V 0.8 1.2 1.6 91022_05 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 20 VGS, Gate-to-Source Voltage (V) ID = 17 A VDS = 80 V 103 5 2 Operation in this area limited by RDS(on) ID, Drain Current (A) 16 VDS = 50 V VDS = 20 V 102 5 2 10 µs 100 µs 1 ms 10 ms 12 8 10 5 4 For test circuit see figure 13 2 0 0 91022_06 1 0.1 91022_08 TC = 25 °C TJ = 175 °C Single Pulse 2 5 10 20 30 40 50 60 70 1 2 5 10 2 5 102 2 5 103 2 5 104 QG, Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage Fig. 8 - Maximum Safe Operating Area www.vishay.com 4 Document Number: 91022 S11-1046-Rev. D, 30-May-11 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF540S, SiHF540S Vishay Siliconix VDS 30 25 Rg VGS RD D.U.T. + - VDD ID, Drain Current (A) 20 15 10 5 VDS 0 25 50 75 100 125 150 175 90 % 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % Fig. 10a - Switching Time Test Circuit 91022_09 TC, Case Temperature (°C) 10 % VGS td(on) tr td(off) tf Fig. 9 - Maximum Drain Current vs. Case Temperature Fig. 10b - Switching Time Waveforms 10 Thermal Response (ZthJC) 1 D = 0.5 PDM 0.2 0.1 0.1 0.05 0.02 0.01 10-2 10-5 10-4 10-3 10-2 0.1 Single Pulse (Thermal Response) t1 t2 Notes: 1. Duty Factor, D = t1/t2 2. Peak Tj = PDM x ZthJC + TC 1 10 91022_11 t1, Rectangular Pulse Duration (s) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case Document Number: 91022 S11-1046-Rev. D, 30-May-11 www.vishay.com 5 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF540S, SiHF540S Vishay Siliconix L Vary tp to obtain required IAS Rg VDS tp VDD D.U.T I AS 10 V tp 0.01 Ω IAS + V DD VDS VDS Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms 600 EAS, Single Pulse Energy (mJ) 500 400 300 200 100 0 VDD = 25 V 25 50 75 100 ID 11 A 20 A Bottom 28 A Top 125 150 175 91022_12c Starting TJ, Junction Temperature (°C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. QG 12 V 0.2 µF 0.3 µF 50 kΩ 10 V QGS QGD D.U.T. + - VDS VG VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform Fig. 13b - Gate Charge Test Circuit www.vishay.com 6 Document Number: 91022 S11-1046-Rev. D, 30-May-11 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 IRF540S, SiHF540S Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer D.U.T. + - - + Rg • • • • dV/dt controlled by Rg Driver same type as D.U.T. ISD controlled by duty factor “D” D.U.T. - device under test + VDD Driver gate drive P.W. Period D= P.W. Period VGS = 10 Va D.U.T. lSD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt VDD Re-applied voltage Inductor current Body diode forward drop Ripple ≤ 5 % Note a. VGS = 5 V for logic level devices ISD Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91022. Document Number: 91022 S11-1046-Rev. D, 30-May-11 www.vishay.com 7 This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Package Information Vishay Siliconix TO-263AB (HIGH VOLTAGE) A (Datum A) 3 E 4 L1 4 4 A A c2 Gauge plane 0° to 8° D 1 L2 B B 2 C 3 C 5 H L3 Detail A L4 Detail “A” Rotated 90° CW scale 8:1 L A1 H B B Seating plane 2 x b2 2xb 0.010 M A M B 2xe c A E ± 0.004 M B 5 b1, b3 Base metal Plating D1 4 (c) c1 5 (b, b2) Lead tip Section B - B and C - C Scale: none E1 View A - A 4 MILLIMETERS DIM. A A1 b b1 b2 b3 c c1 c2 D MIN. 4.06 0.00 0.51 0.51 1.14 1.14 0.38 0.38 1.14 8.38 MAX. 4.83 0.25 0.99 0.89 1.78 1.73 0.74 0.58 1.65 9.65 MIN. INCHES MAX. 0.190 0.010 0.039 0.035 0.070 0.068 0.029 0.023 0.065 0.380 DIM. D1 E E1 e H L L1 L2 L3 L4 MILLIMETERS MIN. 6.86 9.65 6.22 2.54 BSC 14.61 1.78 15.88 2.79 1.65 1.78 0.25 BSC 4.78 5.28 MAX. 10.67 MIN. INCHES MAX. 0.420 - 0.160 0.000 0.020 0.020 0.045 0.045 0.015 0.015 0.045 0.330 0.270 0.380 0.245 0.100 BSC 0.575 0.070 - 0.625 0.110 0.066 0.070 0.010 BSC 0.188 0.208 ECN: S-82110-Rev. A, 15-Sep-08 DWG: 5970 Notes 1. Dimensioning and tolerancing per ASME Y14.5M-1994. 2. Dimensions are shown in millimeters (inches). 3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body at datum A. 4. Thermal PAD contour optional within dimension E, L1, D1 and E1. 5. Dimension b1 and c1 apply to base metal only. 6. Datum A and B to be determined at datum plane H. 7. Outline conforms to JEDEC outline to TO-263AB. Document Number: 91364 Revision: 15-Sep-08 www.vishay.com 1 Legal Disclaimer Notice Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 11-Mar-11 www.vishay.com 1
IRF540S 价格&库存

很抱歉,暂时无法提供与“IRF540S”相匹配的价格&库存,您可以联系我们找货

免费人工找货