0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SI1563DH_10

SI1563DH_10

  • 厂商:

    VISHAY

  • 封装:

  • 描述:

    SI1563DH_10 - Complementary 20 V (D-S) Low-Threshold MOSFET - Vishay Siliconix

  • 数据手册
  • 价格&库存
SI1563DH_10 数据手册
Si1563DH Vishay Siliconix Complementary 20 V (D-S) Low-Threshold MOSFET PRODUCT SUMMARY VDS (V) N-Channel 20 RDS(on) (Ω) 0.280 at VGS = 4.5 V 0.360 at VGS = 2.5 V 0.450 at VGS = 1.8 V 0.490 at VGS = - 4.5 V P-Channel - 20 0.750 at VGS = - 2.5 V 1.10 at VGS = - 1.8 V ID (A) 1.28 1.13 1.00 - 1.00 - 0.81 - 0.67 FEATURES • Halogen-free According to IEC 61249-2-21 Definition • TrenchFET® Power MOSFETs: 1.8 V Rated • Thermally Enhanced SC-70 Package • Fast Switching • Compliant to RoHS Directive 2002/95/EC APPLICATIONS • Load Switch for Portable Devices SOT-363 SC-70 (6-LEADS) D1 S1 1 6 D1 Marking Code EB G1 2 5 G2 XX YY S2 Lot Traceability and Date Code Part # Code G1 G2 D2 3 4 S2 Top View Ordering Information: Si1563DH-T1-E3 (Lead (Pb)-free) Si1563DH-T1-GE3 (Lead (Pb)-free and Halogen-free) S1 N-Channel D2 P-Channel ABSOLUTE MAXIMUM RATINGS TA = 25 °C, unless otherwise noted N-Channel Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current (TJ = 150 °C)a Pulsed Drain Current Continuous Source Current (Diode Conduction)a Maximum Power Dissipationa TA = 25 °C TA = 85 °C TA = 25 °C TA = 85 °C Symbol VDS VGS ID IDM IS PD TJ, Tstg 0.61 0.74 0.38 1.28 0.92 4.0 0.48 0.57 0.30 - 0.61 0.30 0.16 - 55 to 150 5s Steady State 20 ±8 1.13 0.81 - 1.00 - 0.72 - 3.0 - 0.48 0.57 0.3 W °C 5s P-Channel Steady State - 20 ±8 - 0.88 - 0.63 A Unit V Operating Junction and Storage Temperature Range THERMAL RESISTANCE RATINGS Parameter Maximum Junction-to-Ambienta Maximum Junction-to-Foot (Drain) Notes: a. Surface mounted on 1" x 1" FR4 board. Document Number: 71963 S10-1054-Rev. B, 03-May-10 www.vishay.com 1 t≤5s Steady State Steady State Symbol RthJA RthJF Typical 130 170 80 Maximum 170 220 100 °C/W Unit Si1563DH Vishay Siliconix SPECIFICATIONS TJ = 25 °C, unless otherwise noted Parameter Static Gate Threshold Voltage Gate-Body Leakage VGS(th) IGSS VDS = VGS, ID = 100 µA VDS = VGS, ID = - 100 µA VDS = 0 V, VGS = ± 8 V VDS = 16 V, VGS = 0 V Zero Gate Voltage Drain Current IDSS VDS = - 16 V, VGS = 0 V VDS = 16 V, VGS = 0 V, TJ = 85 °C VDS = - 16 V, VGS = 0 V, TJ = 85 °C On-State Drain Currenta ID(on) VDS ≥ 5 V, VGS = 4.5 V VDS ≤ - 5 V, VGS = - 4.5 V VGS = 4.5 V, ID = 1.13 A VGS = - 4.5 V, ID = - 0.88 A Drain-Source On-State Resistancea RDS(on) VGS = 2.5 V, ID = 0.99 A VGS = - 2.5 V, ID = - 0.71 A VGS = 1.8 V, ID = 0.20 A VGS = - 1.8 V, ID = - 0.20 A Forward Transconductancea Diode Forward Voltagea Dynamicb Total Gate Charge Gate-Source Charge Gate-Drain Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Reverse Recovery Time Qg Qgs Qgd td(on) tr td(off) tf trr IF = 0.48 A, dI/dt = 100 A/µs N-Channel VDD = 10 V, RL = 20 Ω ID ≅ 0.5 A, VGEN = 4.5 V, Rg = 6 Ω P-Channel VDD = - 10 V, RL = 20 Ω ID ≅ - 0.5 A, VGEN = - 4.5 V, Rg = 6 Ω N-Ch N-Channel VDS = 10 V, VGS = 4.5 V, ID = 1.13 A P-Channel VDS = - 10 V, VGS = - 4.5 V, ID = - 0.88 A P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch 1.25 1.2 0.21 0.3 0.3 0.21 15 18 22 25 25 15 12 12 30 30 25 30 35 40 40 25 20 20 60 60 ns 2 1.8 nC gfs VSD VDS = 10 V, ID = 1.13 A VDS = - 10 V, ID = - 0.88 A IS = 0.48 A, VGS = 0 V IS = - 0.48 A, VGS = 0 V N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch 2 -2 0.220 0.400 0.281 0.610 0.344 0.850 2.6 1.5 0.8 - 0.8 1.2 - 1.2 0.280 0.490 0.360 0.750 0.450 1.10 S V Ω 0.45 - 0.45 1 1 ± 100 ± 100 1 -1 5 -5 A µA V nA Symbol Test Conditions Min. Typ. Max. Unit Notes: a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %. b. Guaranteed by design, not subject to production testing. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. www.vishay.com 2 Document Number: 71963 S10-1054-Rev. B, 03-May-10 Si1563DH Vishay Siliconix N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 2.0 VGS = 5 V thru 2 V 2.0 TC = - 55 °C 25 °C I D - Drain Current (A) I D - Drain Current (A) 1.5 1.5 V 1.0 1.5 125 °C 1.0 0.5 1V 0.0 0 1 2 3 4 0.5 0.0 0.0 0.5 1.0 1.5 2.0 VDS - Drain-to-Source Voltage (V) VGS - Gate-to-Source Voltage (V) Output Characteristics 0.6 160 Transfer Characteristics 0.5 RDS(on) - On-Resistance (Ω) 120 0.4 VGS = 1.8 V 0.3 VGS = 2.5 V VGS = 4.5 V 0.2 C - Capacitance (pF) Ciss 80 40 0.1 Crss 0.0 0.0 0 0.5 1.0 ID - Drain Current (A) 1.5 2.0 0 4 Coss 8 12 16 20 VDS - Drain-to-Source Voltage (V) On-Resistance vs. Drain Current 5 VDS = 10 V ID = 1.28 A 4 R DS(on) - On-Resistance (Normalized) 1.4 1.6 VGS = 4.5 V ID = 1.13 A Capacitance VGS - Gate-to-Source Voltage (V) 3 1.2 2 1.0 1 0.8 0 0.0 0.3 0.6 0.9 1.2 1.5 0.6 - 50 - 25 0 25 50 75 100 125 150 Qg - Total Gate Charge (nC) TJ - Junction Temperature (°C) Gate Charge On-Resistance vs. Junction Temperature Document Number: 71963 S10-1054-Rev. B, 03-May-10 www.vishay.com 3 Si1563DH Vishay Siliconix N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 2 TJ = 150 °C 1 I S - Source Current (A) R DS(on) - On-Resistance (Ω) 0.6 0.5 0.4 ID = 1.13 A 0.3 TJ = 25 °C 0.2 0.1 0.1 0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0 1 2 3 4 5 VSD - Source-to-Drain Voltage (V) VGS - Gate-to-Source Voltage (V) Source-Drain Diode Forward Voltage 0.2 ID = 100 µA 4 5 On-Resistance vs. Gate-to-Source Voltage 0.1 VGS(th) Variance (V) 0.0 Power (W) 3 - 0.1 2 - 0.2 1 - 0.3 - 0.4 - 50 - 25 0 25 50 75 100 125 150 0 0.01 0.1 1 Time (s) 10 100 600 TJ - Temperature (°C) Threshold Voltage 10 Single Pulse Power, Junction-to-Ambient IDM Limited Limited by RDS(on)* P(t) = 0.0001 I D - Drain Current (A) 1 ID(on) Limited 0.1 TA = 25 °C Single Pulse BVDSS Limited 0.01 0.1 1 10 100 P(t) = 0.1 P(t) = 1 P(t) = 10, DC P(t) = 0.001 P(t) = 0.01 V DS - Drain-to-Source Voltage (V) * V GS > minimum VGS at which RDS(on) is specified Safe Operating Area, Junction-to-Ambient www.vishay.com 4 Document Number: 71963 S10-1054-Rev. B, 03-May-10 Si1563DH Vishay Siliconix N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 2 1 Normalized Effective Transient Thermal Impedance Duty Cycle = 0.5 0.2 Notes: 0.1 0.1 PDM 0.05 t1 t2 1. Duty Cycle, D = t1 t2 0.02 Single Pulse 0.01 10-4 10-3 10-2 10-1 1 2. Per Unit Base = R thJA = 170 °C/W 3. T JM - TA = PDMZthJA(t) 4. Surface Mounted 10 100 600 Square Wave Pulse Duration (s) Normalized Thermal Transient Impedance, Junction-to-Ambient 2 1 Normalized Effective Transient Thermal Impedance Duty Cycle = 0.5 0.2 0.1 0.1 0.05 0.02 Single Pulse 0.01 10-4 10-3 10-2 10-1 1 10 Square Wave Pulse Duration (s) Normalized Thermal Transient Impedance, Junction-to-Foot Document Number: 71963 S10-1054-Rev. B, 03-May-10 www.vishay.com 5 Si1563DH Vishay Siliconix P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 3.0 VGS = 5 V 2.5 I D - Drain Current (A) thru 3.5 V 3V TC = - 55 °C 2.5 2.5 V I D - Drain Current (A) 25 °C 125 °C 1.5 3.0 2.0 2.0 1.5 2V 1.0 1.5 V 1V 0.0 0 1 2 3 4 1.0 0.5 0.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VDS - Drain-to-Source Voltage (V) VGS - Gate-to-Source Voltage (V) Output Characteristics 1.6 VGS = 1.8 V R DS(on) - On-Resistance (Ω) 1.2 C - Capacitance (pF) 120 160 Transfer Characteristics Ciss VGS = 2.5 V 0.8 80 VGS = 4.5 V 0.4 40 Crss Coss 0.0 0.0 0 0.5 1.0 1.5 2.0 2.5 3.0 0 2 4 6 8 10 12 ID - Drain Current (A) VDS - Drain-to-Source Voltage (V) On-Resistance vs. Drain Current 5 VDS = 10 V ID = 0.9 A VGS - Gate-to-Source Voltage (V) 4 R DS(on) - On-Resistance 1.4 1.6 VGS = 4.5 V ID = 0.88 A Capacitance (Normalized) 3 1.2 2 1.0 1 0.8 0 0.0 0.3 0.6 0.9 1.2 1.5 0.6 - 50 - 25 0 25 50 75 100 125 150 Qg - Total Gate Charge (nC) TJ - Junction Temperature (°C) Gate Charge On-Resistance vs. Junction Temperature www.vishay.com 6 Document Number: 71963 S10-1054-Rev. B, 03-May-10 Si1563DH Vishay Siliconix P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 2 TJ = 150 °C 1 I S - Source Current (A) 1.6 R DS(on) - On-Resistance (Ω) ID = 0.88 A 1.2 0.8 TJ = 25 °C 0.4 0.1 0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0 1 2 3 4 5 VSD - Source-to-Drain Voltage (V) VGS - Gate-to-Source Voltage (V) Source-Drain Diode Forward Voltage 0.30 0.25 ID = 100 µA 0.20 V GS(th) Variance (V) 0.15 0.10 0.05 0.00 - 0.05 - 0.10 - 0.15 - 50 0 0.01 1 Power (W) 3 4 5 On-Resistance vs. Gate-to-Source Voltage 2 - 25 0 25 50 75 100 125 150 0.1 1 Time (s) 10 100 600 TJ - Temperature (°C) Threshold Voltage 10 IDM Limited Single Pulse Power, Junction-to-Ambient P(t) = 0.0001 I D - Drain Current (A) Limited by RDS(on)* 1 P(t) = 0.001 ID(on) Limited 0.1 TA = 25 °C Single Pulse BVDSS Limited 0.01 0.1 1 10 P(t) = 0.01 P(t) = 0.1 P(t) = 1 P(t) = 10 DC 100 VDS - Drain-to-Source Voltage (V) * VGS > minimum VGS at which R DS(on) is specified Safe Operating Area, Junction-to-Ambient Document Number: 71963 S10-1054-Rev. B, 03-May-10 www.vishay.com 7 Si1563DH Vishay Siliconix P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 2 1 Normalized Effective Transient Thermal Impedance Duty Cycle = 0.5 0.2 Notes: 0.1 0.1 0.05 t1 t2 1. Duty Cycle, D = t1 t2 PDM 0.02 Single Pulse 0.01 10-4 10-3 10-2 10-1 1 2. Per Unit Base = R thJA = 170 °C/W 3. T JM - TA = PDMZthJA(t) 4. Surface Mounted 10 100 600 Square Wave Pulse Duration (s) Normalized Thermal Transient Impedance, Junction-to-Ambient 2 1 Duty Cycle = 0.5 Normalized Effective Transient Thermal Impedance 0.2 0.1 0.1 0.05 0.02 Single Pulse 0.01 10-4 10-3 10-2 10-1 1 10 Square Wave Pulse Duration (s) Normalized Thermal Transient Impedance, Junction-to-Foot Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?71963. www.vishay.com 8 Document Number: 71963 S10-1054-Rev. B, 03-May-10 Package Information Vishay Siliconix SC 70: 6 LEADS MILLIMETERS 6 5 4 E1 E 1 2 3 -Be e1 D -Ac A2 A L A1 b INCHES Min 0.035 – 0.031 0.006 0.004 0.071 0.071 0.045 Dim A A1 A2 b c D E E1 e e1 L Min 0.90 – 0.80 0.15 0.10 1.80 1.80 1.15 Nom – – – – – 2.00 2.10 1.25 0.65BSC Max 1.10 0.10 1.00 0.30 0.25 2.20 2.40 1.35 Nom – – – – – 0.079 0.083 0.049 0.026BSC Max 0.043 0.004 0.039 0.012 0.010 0.087 0.094 0.053 1.20 0.10 1.30 0.20 7_Nom 1.40 0.30 0.047 0.004 0.051 0.008 7_Nom 0.055 0.012 ECN: S-03946—Rev. B, 09-Jul-01 DWG: 5550 Document Number: 71154 06-Jul-01 www.vishay.com 1 AN816 Vishay Siliconix Dual-Channel LITTLE FOOTR 6-Pin SC-70 MOSFET Copper Leadframe Version Recommended Pad Pattern and Thermal Performance INTRODUCTION 26 (mil) 87 (mil) The new dual 6-pin SC-70 package with a copper leadframe enables improved on-resistance values and enhanced thermal performance as compared to the existing 3-pin and 6-pin packages with Alloy 42 leadframes. These devices are intended for small to medium load applications where a miniaturized package is required. Devices in this package come in a range of on-resistance values, in n-channel and p-channel versions. This technical note discusses pin-outs, package outlines, pad patterns, evaluation board layout, and thermal performance for the dual-channel version. 6 5 4 96 (mil) 71 (mil) 48 (mil) 23 (mil) 1 2 3 61 (mil) PIN-OUT Figure 1 shows the pin-out description and Pin 1 identification for the dual-channel SC-70 device in the 6-pin configuration. Both n-and p-channel devices are available in this package – the drawing example below illustrates the p-channel device. SOT-363 SC-70 (6-LEADS) S1 G1 D2 1 6 5 D1 G2 S2 0.0 (mil) 8 (mil) 26 (mil) 16 (mil) FIGURE 2. SC-70 (6 leads) Dual EVALUATION BOARD FOR THE DUALCHANNEL SC70-6 The 6-pin SC-70 evaluation board (EVB) shown in Figure 3 measures 0.6 in. by 0.5 in. The copper pad traces are the same as described in the previous section, Basic Pad Patterns. The board allows for examination from the outer pins to the 6-pin DIP connections, permitting test sockets to be used in evaluation testing. The thermal performance of the dual 6-pin SC-70 has been measured on the EVB, comparing both the copper and Alloy 42 leadframes. This test was then repeated using the 1-inch2 PCB with dual-side copper coating. A helpful way of displaying the thermal performance of the 6-pin SC-70 dual copper leadframe is to compare it to the traditional Alloy 42 version. 2 3 4 Top View FIGURE 1. For package dimensions see outline drawing SC-70 (6-Leads) (http://www.vishay.com/doc?71154) BASIC PAD PATTERNS See Application Note 826, Recommended Minimum Pad Patterns With Outline Drawing Access for Vishay Siliconix MOSFETs, (http://www.vishay.com/doc?72286) for the SC-70 6-pin basic pad layout and dimensions. This pad pattern is sufficient for the low-power applications for which this package is intended. Increasing the drain pad pattern (Figure 2) yields a reduction in thermal resistance and is a preferred footprint. Document Number: 71405 12-Dec-03 www.vishay.com 1 AN816 Vishay Siliconix Front of Board SC70-6 Back of Board SC70-6 S1 G1 D2 D1 G2 S2 SC70−6 DUAL FIGURE 3. vishay.com THERMAL PERFORMANCE Junction-to-Foot Thermal Resistance (the Package Performance) Thermal performance for the dual SC-70 6-pin package is measured as junction-to-foot thermal resistance, in which the “foot” is the drain lead of the device as it connects with the body. The junction-to-foot thermal resistance for this device is typically 80_C/W, with a maximum thermal resistance of approximately 100_C/W. This data compares favorably with another compact, dual-channel package – the dual TSOP-6 – which features a typical thermal resistance of 75_C/W and a maximum of 90_C/W. COOPER LEADFRAME Room Ambient 25 _C PD + T J(max) * T A Rq JA Elevated Ambient 60 _C PD + T J(max) * T A Rq JA o o P D + 150 Co* 25 C 224 C W o o P D + 150 Co* 60 C 224 C W P D + 558 mW P D + 402 mW Although they are intended for low-power applications, devices in the 6-pin SC-70 dual-channel configuration will handle power dissipation in excess of 0.5 W. TESTING Power Dissipation The typical RθJA for the dual-channel 6-pin SC-70 with a copper leadframe is 224_C/W steady-state, compared to 413_C/W for the Alloy 42 version. All figures are based on the 1-inch2 FR4 test board. The following example shows how the thermal resistance impacts power dissipation for the dual 6-pin SC-70 package at varying ambient temperatures. To further aid the comparison of copper and Alloy 42 leadframes, Figures 4 and 5 illustrate the dual-channel 6-pin SC-70 thermal performance on two different board sizes and pad patterns. The measured steady-state values of RθJA for the dual 6-pin SC-70 with varying leadframes are as follows: LITTLE FOOT 6-PIN SC-70 Alloy 42 1) Minimum recommended pad pattern on the EVB board (see Figure 3). 518_C/W 413_C/W Copper 344_C/W 224_C/W Alloy 42 Leadframe 2) Industry standard PCB with maximum copper both sides. 1-inch2 ALLOY 42 LEADFRAME Room Ambient 25 _C PD + T J(max) * T A Rq JA Elevated Ambient 60 _C PD + T J(max) * T A Rq JA The results indicate that designers can reduce thermal resistance (θJA) by 34% simply by using the copper leadframe device as opposed to the Alloy 42 version. In this example, a 174_C/W reduction was achieved without an increase in board area. If an increase in board size is feasible, a further 120_C/W reduction can be obtained by utilizing a 1-inch2. PCB area. The Dual copper leadframe versions have the following suffix: Dual: Compl.: Si19xxEDH Si15xxEDH Document Number: 71405 12-Dec-03 o o P D + 150 Co* 25 C 413 C W o o P D + 150 Co* 60 C 413 C W P D + 303 mW www.vishay.com P D + 218 mW 2 AN816 Vishay Siliconix 500 500 400 Thermal Resistance (C/W) Thermal Resistance (C/W) 400 300 Alloy 42 300 Alloy 42 200 200 100 Copper 100 Copper 0 10-5 10-4 10-3 10-2 10-1 1 10 100 1000 Time (Secs) 0 10-5 10-4 10-3 10-2 10-1 1 10 100 1000 Time (Secs) FIGURE 4. Dual SC70-6 Thermal Performance on EVB FIGURE 5. Dual SC70-6 Comparison on 1-inch2 PCB Document Number: 71405 12-Dec-03 www.vishay.com 3 Application Note 826 Vishay Siliconix RECOMMENDED MINIMUM PADS FOR SC-70: 6-Lead 0.067 (1.702) (2.438) 0.016 (0.406) 0.026 (0.648) 0.010 (0.241) Recommended Minimum Pads Dimensions in Inches/(mm) Return to Index Return to Index APPLICATION NOTE www.vishay.com 18 (1.143) 0.096 0.045 (0.648) 0.026 Document Number: 72602 Revision: 21-Jan-08 Legal Disclaimer Notice Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 11-Mar-11 www.vishay.com 1
SI1563DH_10 价格&库存

很抱歉,暂时无法提供与“SI1563DH_10”相匹配的价格&库存,您可以联系我们找货

免费人工找货