New Product
SiA400EDJ
Vishay Siliconix
N-Channel 30 V (D-S) MOSFET
FEATURES PRODUCT SUMMARY
VDS (V) 30 RDS(on) () 0.019 at VGS = 4.5 V 0.025 at VGS = 2.5 V
PowerPAK SC-70-6L-Single
ID (A)a 12
Qg (Typ.) 11.6
12
• Halogen-free According to IEC 61249-2-21 Definition • TrenchFET® Power MOSFET • New Thermally Enhanced PowerPAK® SC-70 Package - Small Footprint Area • Typical ESD Performance 2500 V HBM • 100 % Rg and UIS Tested • Compliant to RoHS Directive 2002/95/EC
RoHS
COMPLIANT
1 D 2 D 3 6 D 5 2.05 mm D S 4 Part # code S 2.05 mm G
APPLICATIONS
• Load Switch, OVP Switch • Boost Converters • DC/DC Converters
D
Marking Code
AIX XXX Lot Traceability and Date code
S N-Channel MOSFET G
Ordering Information: SiA400EDJ-T1-GE3 (Lead (Pb)-free and Halogen-free)
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise noted)
Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current (TJ = 150 °C) Pulsed Drain Current (t = 300 µs) Continuous Source-Drain Diode Current Avalanche Current Single Pulse Avalanche TC = 25 °C TA = 25 °C L = 0.1 mH TC = 25 °C TC = 70 °C TA = 25 °C TA = 70 °C Symbol VDS VGS ID IDM IS IAS EAS PD TJ, Tstg Limit 30 ± 12 12a 12a 11b, c 8.8b, c 30 12a 2.9b, c 15 11.25 19.2 12.3 3.5b, c 2.2b, c - 55 to 150 260 Unit V
A
mJ W
TC = 25 °C TC = 70 °C Maximum Power Dissipation TA = 25 °C TA = 70 °C Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature)
d, e
°C
THERMAL RESISTANCE RATINGS
Symbol Typical Maximum Unit RthJA t5s 28 36 Maximum Junction-to-Ambientb, f °C/W RthJC 5.3 6.5 Maximum Junction-to-Case (Drain) Steady State Notes: a. Package limited. b. Surface mounted on 1" x 1" FR4 board. c. t = 5 s. d. See solder profile (www.vishay.com/ppg?73257). The PowerPAK SC-70 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection. e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components. f. Maximum under steady state conditions is 80 °C/W. Document Number: 67844 S11-1148-Rev. A, 13-Jun-11 www.vishay.com 1 Parameter
This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
New Product
SiA400EDJ
Vishay Siliconix
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
Parameter Static Drain-Source Breakdown Voltage VDS Temperature Coefficient VGS(th) Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current On-State Drain Currenta Drain-Source On-State Resistancea Forward Transconductancea Dynamicb Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge Gate-Drain Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulse Diode Forward Current Body Diode Voltage Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge Reverse Recovery Fall Time Reverse Recovery Rise Time IS ISM VSD trr Qrr ta tb IF = 8.8 A, dI/dt = 100 A/µs, TJ = 25 °C IS = 8.8 A, VGS 0 V 0.8 15 7 9 6 TC = 25 °C 12 30 1.2 23 14 A V ns nC ns Ciss Coss Crss Qg Qgs Qgd Rg td(on) tr td(off) tf td(on) tr td(off) tf VDD = 15 V, RL = 1.7 ID 8.8 A, VGEN = 10 V, Rg = 1 VDD = 15 V, RL = 1.7 ID 8.8 A, VGEN = 4.5 V, Rg = 1 f = 1 MHz 0.6 VDS = 15 V, VGS = 10 V, ID = 10 A VDS = 15 V, VGS = 4.5 V, ID = 10 A VDS = 15 V, VGS = 0 V, f = 1 MHz 1265 132 80 24 11.6 2.9 2.2 3.3 10 23 26 9 4 14 25 9 6.6 15 35 39 18 8 21 38 18 ns 36 17.4 nC pF VDS VDS/TJ VGS(th)/TJ VGS(th) IGSS IDSS ID(on) RDS(on) gfs VGS = 0, ID = 250 µA ID = 250 µA VDS = VGS , ID = 250 µA VDS = 0 V, VGS = ± 12 V VDS = 30 V, VGS = 0 V VDS = 30 V, VGS = 0 V, TJ = 55 °C VDS 5 V, VGS = 10 V VGS 4.5 V, ID = 11 A VGS 2.5 V, ID = 9.6 A VDS = 10 V, ID = 11 A 20 0.016 0.019 50 0.019 0.025 0.6 30 34 - 3.8 1.5 ± 15 1 10 V mV/°C V µA µA A S Symbol Test Conditions Min. Typ. Max. Unit
Notes: a. Pulse test; pulse width 300 µs, duty cycle 2 %. b. Guaranteed by design, not subject to production testing.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
www.vishay.com 2
Document Number: 67844 S11-1148-Rev. A, 13-Jun-11
This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
New Product
SiA400EDJ
Vishay Siliconix
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
0.020 TJ = 25 °C IGSS - Gate Current (mA)
10-02
IGSS - Gate Current (A)
0.015
10-04
TJ = 150 °C
0.010
10-06
TJ = 25 °C
0.005
10-08
0.000 0 3 6 9 12 15 VGS - Gate-Source Voltage (V)
10-10
0 3 6 9 12 VGS - Gate-to-Source Voltage (V) 15
Gate Current vs. Gate-Source Voltage
30 VGS = 5 V thru 2.5 V 24 VGS = 2 V 8 10
Gate Current vs. Gate-Source Voltage
ID - Drain Current (A)
18
ID - Drain Current (A)
6 TC = 25 °C 4
12
6 VGS = 1.5 V 0 0 0.5 1 1.5 2 VDS - Drain-to-Source Voltage (V)
2 TC = 125 °C 0 0 0.5 1 TC = - 55 °C 1.5 2 VGS - Gate-to-Source Voltage (V)
Output Characteristics
0.030 1500
Transfer Characteristics
1200 RDS(on) - On-Resistance (Ω) 0.024 C - Capacitance (pF) VGS = 2.5 V 0.018 VGS = 4.5 V 900 Ciss
600
0.012 300 Coss 0.006 0 6 12 18 ID - Drain Current (A) 24 30 0 0 Crss 5 10 15 20
VDS - Drain-to-Source Voltage (V)
On-Resistance vs. Drain Current and Gate Voltage
Capacitance
Document Number: 67844 S11-1148-Rev. A, 13-Jun-11
www.vishay.com 3
This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
New Product
SiA400EDJ
Vishay Siliconix
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
10 ID = 11 A 8 VDS = 15 V 6 VDS = 7.5 V 4 VDS = 24 V 2
RDS(on) - On-Resistance (Normalized) 1.8 ID = 11 A 1.5 VGS = 2.5 V 1.2 VGS = 4.5 V
VGS - Gate-to-Source Voltage (V)
0.9
0 0 5 10 15 20 25 Qg - Total Gate Charge (nC)
0.6 - 50
- 25
0
25
50
75
100
125
150
TJ - Junction Temperature (°C)
Gate Charge
10 0.030
On-Resistance vs. Junction Temperature
ID = 11 A RDS(on) - On-Resistance (Ω) 0.024 TJ = 125 °C 0.018 TJ = 25 °C 0.012
IS - Source Current (A)
TJ = 150 °C
1 TJ = 25 °C
0.1 0.0
0.006 0.2 0.4 0.6 0.8 1.0 1.2 0 VSD - Source-to-Drain Voltage (V) 2 4 6 8 VGS - Gate-to-Source Voltage (V) 10
Source-Drain Diode Forward Voltage
1.2
On-Resistance vs. Gate-to-Source Voltage
30
25
1
20
Power (W)
ID = 250 μA 0.6
VGS(th) (V)
0.8
15
10
5
0.4 - 50
- 25
0
25
50
75
100
125
150
0 0.001
0.01
0.1
1 Time (s)
10
100
1000
TJ - Temperature (°C)
Threshold Voltage
Single Pulse Power (Junction-to-Ambient)
www.vishay.com 4
Document Number: 67844 S11-1148-Rev. A, 13-Jun-11
This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
New Product
SiA400EDJ
Vishay Siliconix
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
100 Limited by RDS(on)* 10
ID - Drain Current (A) 21 28
1 ms 1 10 ms 100 ms 0.1 TC = 25 °C Single Pulse 0.1 BVDSS Limited 1 s, 10 s DC
ID - Drain Current (A)
100 μs
14
Package Limited
7
0.01
0 0 25 50 75 100 125 150 TC - Case Temperature (°C)
1 10 100 VDS - Drain-to-Source Voltage (V) * VGS > minimum VGS at which RDS(on) is specified
Safe Operating Area, Junction-to-Ambient
25
2.0
Current Derating**
20
1.5 Power (W)
Power (W)
15
1.0
10
0.5
5
0 0 25 50 75 100 TC - Case Temperature (°C) 125 150
0.0 0 25 50 75 100 125 150 TA - Ambient Temperature (°C)
Power, Junction-to-Case
Power, Junction-to-Ambient
** The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.
Document Number: 67844 S11-1148-Rev. A, 13-Jun-11
www.vishay.com 5
This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
New Product
SiA400EDJ
Vishay Siliconix
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
1 Duty Cycle = 0.5
Normalized Effective Transient Thermal Impedance
0.2 0.1 0.1 0.05 0.02
PDM t1 t2 1. Duty Cycle, D =
Notes:
2. Per Unit Base = RthJA = 65 °C/W
t1 t2
Single Pulse 0.01 10 -4 10 -3 10 -2 10 -1 1 Square Wave Pulse Duration (s) 10
3. TJM - TA = PDMZthJA(t) 4. Surface Mounted
100
1000
Normalized Thermal Transient Impedance, Junction-to-Ambient
1 Duty Cycle = 0.5
Normalized Effective Transient Thermal Impedance
0.2
0.1 0.05 0.02 0.1 0.0001 Single Pulse 0.001 Square Wave Pulse Duration (s) 0.01 0.1
Normalized Thermal Transient Impedance, Junction-to-Case
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67844.
www.vishay.com 6
Document Number: 67844 S11-1148-Rev. A, 13-Jun-11
This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Package Information
Vishay Siliconix
PowerPAK® SC70-6L
PIN1 e PIN2 b PIN3 L PIN1 e PIN2 b PIN3 L K E1 D1 D1 K PIN6 K2 PIN5 K1 PIN4 K2
BACKSIDE VIEW OF DUAL
E2
K4
E1
D1
PIN6 K3
PIN5 K1
PIN4 K2
BACKSIDE VIEW OF SINGLE
K
E3
D2
D
A
Notes: 1. All dimensions are in millimeters 2. Package outline exclusive of mold flash and metal burr 3. Package outline inclusive of plating
E
z
Z
DETAIL Z
SINGLE PAD DIM Min A A1 b C D D1 D2 E E1 E2 E3 e K K1 K2 K3 K4 L T ECN: C-07431 − Rev. C, 06-Aug-07 DWG: 5934 Document Number: 73001 06-Aug-07 0.175 0.675 0 0.23 0.15 1.98 0.85 0.135 1.98 1.40 0.345 0.425 MILLIMETERS Nom 0.75 0.30 0.20 2.05 0.95 0.235 2.05 1.50 0.395 0.475 0.65 BSC 0.275 TYP 0.400 TYP 0.240 TYP 0.225 TYP 0.355 TYP 0.275 0.375 0.007 Max 0.80 0.05 0.38 0.25 2.15 1.05 0.335 2.15 1.60 0.445 0.525 Min 0.027 0 0.009 0.006 0.078 0.033 0.005 0.078 0.055 0.014 0.017 INCHES Nom 0.030 0.012 0.008 0.081 0.037 0.009 0.081 0.059 0.016 0.019 0.026 BSC 0.011 TYP 0.016 TYP 0.009 TYP 0.009 TYP 0.014 TYP 0.011 0.015 0.175 0.05 0.275 0.10 Max 0.032 0.002 0.015 0.010 0.085 0.041 0.013 0.085 0.063 0.018 0.021 0.65 BSC 0.275 TYP 0.320 TYP 0.252 TYP 1.98 0.85 2.05 0.95 Min 0.675 0 0.23 0.15 1.98 0.513 MILLIMETERS Nom 0.75 0.30 0.20 2.05 0.613
A1
C
DUAL PAD INCHES Max 0.80 0.05 0.38 0.25 2.15 0.713 2.15 1.05 Min 0.027 0 0.009 0.006 0.078 0.020 0.078 0.033 Nom 0.030 0.012 0.008 0.081 0.024 0.081 0.037 Max 0.032 0.002 0.015 0.010 0.085 0.028 0.085 0.041
E1
0.026 BSC 0.011 TYP 0.013 TYP 0.010 TYP
0.375 0.15
0.007 0.002
0.011 0.004
0.015 0.006
www.vishay.com 1
Application Note 826
Vishay Siliconix
RECOMMENDED PAD LAYOUT FOR PowerPAK® SC70-6L Single
0.300 (0.012)
0.650 (0.026)
0.350 (0.014) 0.275 (0.011) 0.550 (0.022)
0.475 (0.019) 2.200 (0.087) 1.500 (0.059) 0.870 (0.034) 0.235 (0.009)
0.355 (0.014)
0.350 (0.014)
1
0.650 (0.026) 0.950 (0.037)
0.300 (0.012)
Dimensions in mm/(Inches)
Return to Index
APPLICATION NOTE
Document Number: 70486 Revision: 21-Jan-08
www.vishay.com 11
Legal Disclaimer Notice
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000 Revision: 11-Mar-11
www.vishay.com 1