IRF730AS, SiHF730AS, IRF730AL, SiHF730AL
Vishay Siliconix
Power MOSFET
PRODUCT SUMMARY
VDS (V) RDS(on) (Max.) (Ω) Qg (Max.) (nC) Qgs (nC) Qgd (nC) Configuration VGS = 10 V 22 5.8 9.3 Single
D
FEATURES
400 1.0
• Low Gate Charge Qg Results in Simple Drive Requirement • Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
Available
RoHS*
COMPLIANT
• Fully Characterized Capacitance and Avalanche Voltage and Current • Effective Coss Specified • Lead (Pb)-free Available
I2PAK (TO-262)
D2PAK (TO-263)
APPLICATIONS
• Switch Mode Power Supply (SMPS)
G
• Uninterruptible Power Supply • High Sspeed Power Switching
G
D S S N-Channel MOSFET
TYPICAL SMPS TOPOLOGIES
• Single Transistor Flyback Xfmr. Reset • Single Transistor Forward Xfmr. Reset (Both US Line Input Only)
ORDERING INFORMATION
Package Lead (Pb)-free SnPb Note a. See device orientation. D2PAK (TO-263) IRF730ASPbF SiHF730AS-E3 IRF730AS SiHF730AS D2PAK (TO-263) IRF730ASTRLPbFa SiHF730ASTL-E3a IRF730ASTRLa SiHF730ASTLa D2PAK (TO-263) IRF730ASTRRPbFa SiHF730ASTR-E3a I2PAK (TO-262) IRF730ALPbF SiHFL014T-E3 -
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Currenta, e Linear Derating Factor Single Pulse Avalanche Energyb, e Avalanche Currenta Repetiitive Avalanche Energya Maximum Power Dissipation Peak Diode Recovery dV/dtc, e Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) for 10 s Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 19 mH, RG = 25 Ω, IAS = 5.5 A (see fig. 12). c. ISD ≤ 5.5 A, dI/dt ≤ 90 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. e. Uses IRF730A/SiHF730A data and test condition * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91046 S-Pending-Rev. A, 30-May-08 www.vishay.com 1 TC = 25 °C EAS IAR EAR PD dV/dt TJ, Tstg VGS at 10 V TC = 25 °C TC = 100 °C SYMBOL VDS VGS ID IDM LIMIT 400 ± 30 5.5 3.5 22 0.6 290 5.5 7.4 74 4.6 - 55 to + 150 300d W/°C mJ A mJ W V/ns °C A UNIT V
WORK-IN-PROGRESS
IRF730AS, SiHF730AS, IRF730AL, SiHF730AL
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER Maximum Junction-to-Ambient (PCB Mounted, steady-state)a Maximum Junction-to-Case (Drain) SYMBOL RthJA RthJC TYP. MAX. 40 1.7 UNIT °C/W
Note a. When mounted on 1" square PCB (FR-4 or G-10 material).
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance Dynamic Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Effective Output Capacitance Total Gate Charge Gate-Source Charge Gate-Drain Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge Forward Turn-On Time IS ISM VSD trr Qrr ton MOSFET symbol showing the integral reverse p - n junction diode
D
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDS ΔVDS/TJ VGS(th) IGSS IDSS RDS(on) gfs Ciss Coss Crss Coss Coss eff. Qg Qgs Qgd td(on) tr td(off) tf
VGS = 0 V, ID = 250 µA Reference to 25 °C, ID = 1 mAd VDS = VGS, ID = 250 µA VGS = ± 30 V VDS = 400 V, VGS = 0 V VDS = 320 V, VGS = 0 V, TJ = 125 °C VGS = 10 V ID = 3.3 Ab VDS = 50 V, ID = 3.3 Ad
400 2.0 3.1
0.5 -
4.5 ± 100 25 250 1.0 -
V V/°C V nA µA Ω S
VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5d VDS = 1.0 V, f = 1.0 MHz VGS = 0 V VDS = 320 V, f = 1.0 MHz VDS = 0 V to 320 Vc, d ID = 3.5 A, VDS = 3200 V, see fig. 6 and 13b, d
-
600 103 4.0 890 30 45 10 22 20 16
22 5.8 9.3 ns nC pF
VGS = 10 V
-
VDD = 200 V, ID = 3.5 A, RG = 12 Ω, RD = 57 Ω, see fig. 10b, d
-
-
370 1.6
5.5 A 22 1.6 550 2.4 V ns µC
G
S
TJ = 25 °C, IS = 5.5 A, VGS = 0 Vb TJ = 25 °C, IF = 3.5 A, dI/dt = 100 A/µsb, d
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. d. Uses IRF730A/SiHF730A data and test conditions.
www.vishay.com 2
Document Number: 91046 S-Pending-Rev. A, 30-May-08
IRF730AS, SiHF730AS, IRF730AL, SiHF730AL
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
100
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
100
ID, Drain-to-Source Current (A)
10
ID, Drain-to-Source Current (A)
10
TJ = 150 °C
1
1
TJ = 25 °C
0.1
4.5V
20µs PULSE WIDTH TJ= 25 °C
1 10 100
0.01 0.1
0.1 4.0
VDS = 50V 20µs PULSE WIDTH 5.0 6.0 7.0 8.0 9.0 10.0
VDS, Drain-to-Source Voltage (V)
Fig. 1 - Typical Output Characteristics
VGS, Gate-to-Source Voltage (V)
Fig. 3 - Typical Transfer Characteristics
100
RDS(on), Drain-to-Source On Resistance (Normalized)
ID, Drain-to-Source Current (A)
10
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
2.5
ID = 5.5 A
2.0
1.5
1
4.5V
0.1
1.0
0.5
0.01 0.1
20µs PULSE WIDTH TJ= 150 °C
1 10 100
0.0 -60 -40 -20
VGS = 10V
0 20 40 60 80 100 120 140 160
VDS, Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
VGS, Gate-to-Source Voltage (V)
Fig. 4 - Normalized On-Resistance vs. Temperature
Document Number: 91046 S-Pending-Rev. A, 30-May-08
www.vishay.com 3
IRF730AS, SiHF730AS, IRF730AL, SiHF730AL
Vishay Siliconix
100000
100
10000
Crss = Cgd Coss = Cds + Cgd
ISD, Reverse Drain Current (A)
VGS = 0V, f = 1 MHz Ciss = Cgs + Cgd, Cds SHORTED
C, Capacitance (pF)
10
TJ = 150 °C
1000
Ciss Coss
100
1
TJ = 25 °C
10
Crss
1 1 10 100 1000
0.1 0.4
VGS = 0 V
0.6 0.8 1.0 1.2
VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
VSD, Source-to-Drain Voltage (V)
Fig. 7 - Typical Source-Drain Diode Forward Voltage
20
ID = 5.5 A
100
VGS, Gate-to-Source Voltage (V)
16
VDS = 320V VDS = 200V VDS = 80V
OPERATION IN THIS AREA LIMITED BY RDS(on)
10us
ID, Drain Current (A)
10 100us
12
8
1ms 1 10ms
4
0
FOR TEST CIRCUIT SEE FIGURE 13
0 5 10 15 20 25
VSD, Source-Drain Diode Forward Voltage
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
0.1 10
TC = 25 °C TJ = 150 °C Single Pulse
100 1000
VDS, Drain-to-Source Voltage (V)
Fig. 8 - Maximum Safe Operating Area
www.vishay.com 4
Document Number: 91046 S-Pending-Rev. A, 30-May-08
IRF730AS, SiHF730AS, IRF730AL, SiHF730AL
Vishay Siliconix
RD
6.0
VGS
VDS
5.0
D.U.T. + - VDD
RG
ID, Drain Current (A)
4.0
10 V
Pulse width ≤ 1 µs Duty factor ≤ 0.1 %
3.0
Fig. 10a - Switching Time Test Circuit
2.0
VDS 90 %
1.0
0.0 25 50 75 100 125 150
TC, Case Temperatrure
Fig. 9 - Maximum Drain Current vs. Case Temperature
10 % VGS td(on) tr td(off) tf
Fig. 10b - Switching Time Waveforms
10
Thermal Response (ZthJC)
1
D = 0.50 0.20 0.10 PDM
0.1
0.05 0.02 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t1 / t2 2. Peak TJ = PDM x ZthJC + TC 0.001 0.01 0.1 1
0.01 0.00001
0.0001
t1, Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
15 V
VDS tp
VDS
L
Driver
RG 20 V tp
D.U.T IAS 0.01 Ω
+ A - VDD
IAS
Fig. 12a - Unclamped Inductive Test Circuit
Fig. 12b - Unclamped Inductive Waveforms
Document Number: 91046 S-Pending-Rev. A, 30-May-08
www.vishay.com 5
IRF730AS, SiHF730AS, IRF730AL, SiHF730AL
Vishay Siliconix
610
700
EAS, Single Pulse Avalanche Energy (mJ)
TOP
600
VDSav, Avalanche Voltage (V)
BOTTOM
500 400 300 200 100 0 25 50 75 100 125
ID 2.5A 3.5A 5.5A
600 590 580 570 560 550 540
150
0.0
1.0
2.0
3.0
4.0
5.0
6.0
Starting TJ, Junction Temperature (°C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
IAV, Avalanche Current (A)
Fig. 12d - Typical Drain-to-Source Voltage vs. Avalanche Current
Current regulator Same type as D.U.T.
50 kΩ 12 V 0.2 µF 0.3 µF
10 V QGS
QG
QGD D.U.T.
+ -
VDS
VG
VGS
3 mA
Charge
IG ID Current sampling resistors
Fig. 13a - Maximum Avalanche Energy vs. Drain Current
Fig. 13b - Gate Charge Test Circuit
www.vishay.com 6
Document Number: 91046 S-Pending-Rev. A, 30-May-08
IRF730AS, SiHF730AS, IRF730AL, SiHF730AL
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
D.U.T
+
Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer
+ +
-
RG
• • • •
dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test
+ VDD
Driver gate drive P.W. Period D=
P.W. Period VGS = 10 V*
D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt
VDD
Re-applied voltage Inductor current
Body diode forward drop
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91046.
Document Number: 91046 S-Pending-Rev. A, 30-May-08
www.vishay.com 7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000 Revision: 18-Jul-08
www.vishay.com 1