IRFI730G, SiHFI730G
Vishay Siliconix
Power MOSFET
PRODUCT SUMMARY
VDS (V) RDS(on) (Ω) Qg (Max.) (nC) Qgs (nC) Qgd (nC) Configuration VGS = 10 V 38 5.7 22 Single
D
FEATURES
400 1.0
• Isolated Package • High Voltage Isolation = 2.5 kVRMS (t = 60 s; f = 60 Hz) • Sink to Lead Creepage Distance = 4.8 mm • Dynamic dV/dt Rating • Low Thermal Resistance • Lead (Pb)-free Available
Available
RoHS*
COMPLIANT
TO-220 FULLPAK
DESCRIPTION
Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-220 FULLPAK eliminates the need for additional insulating hardware in commercial-industrial applications. The molding compound used provides a high isolation capability and a low thermal resistance between the tab and external heatsink. This isolation is equivalent to using a 100 micron mica barrier with standard TO-220 product. The FULLPAK is mounted to a heatsink using a single clip or by a single screw fixing.
G
S
GDS
N-Channel MOSFET
ORDERING INFORMATION
Package Lead (Pb)-free SnPb TO-220 FULLPAK IRFI730GPbF SiHFI730G-E3 IRFI730G SiHFI730G
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Currenta Linear Derating Factor Single Pulse Avalanche Energyb Repetitive Avalanche Currenta Repetitive Avalanche Energya Maximum Power Dissipation Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque VGS at 10 V TC = 25 °C TC = 100 °C SYMBOL VDS VGS ID IDM EAS IAR EAR PD dV/dt TJ, Tstg LIMIT 400 ± 20 3.7 2.3 15 0.28 200 3.7 3.5 35 4.0 - 55 to + 150 300d 10 1.1 UNIT V
A W/°C mJ A mJ W V/ns °C lbf · in N·m
TC = 25 °C
for 10 s 6-32 or M3 screw
Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = 50 V, starting TJ = 25 °C, L = 25 mH, RG = 25 Ω, IAS = 3.7 A (see fig. 12). c. ISD ≤ 3.7 A, dI/dt ≤ 90 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91153 S-Pending-Rev. A, 16-Jun-08 www.vishay.com 1
WORK-IN-PROGRESS
IRFI730G, SiHFI730G
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER Maximum Junction-to-Ambient Maximum Junction-to-Case (Drain) SYMBOL RthJA RthJC TYP. MAX. 65 3.6 UNIT °C/W
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance Dynamic Input Capacitance Output Capacitance Reverse Transfer Capacitance Drain to Sink Capacitance Total Gate Charge Gate-Source Charge Gate-Drain Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge Forward Turn-On Time IS ISM VSD trr Qrr ton MOSFET symbol showing the integral reverse p - n junction diode
D
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDS ΔVDS/TJ VGS(th) IGSS IDSS RDS(on) gfs Ciss Coss Crss C Qg Qgs Qgd td(on) tr td(off) tf LD LS
VGS = 0 V, ID = 250 µA Reference to 25 °C, ID = 1 mA VDS = VGS, ID = 250 µA VGS = ± 20 V VDS = 400 V, VGS = 0 V VDS = 320 V, VGS = 0 V, TJ = 125 °C VGS = 10 V ID = 2.1 Ab Ab VDS = 50 V, ID = 2.1
400 2.0 3.6
0.54 -
4.0 ± 100 25 250 1.0 -
V V/°C V nA µA Ω S
VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 f = 1.0 MHz ID = 3.7 A, VDS = 320 V, see fig. 6 and 13b
-
700 170 64 12 10 15 38 14 4.5 7.5
38 5.7 22 nH ns nC pF
VGS = 10 V
-
VDD =200 V, ID = 3.7 A, RG = 12 Ω, RD= 57 Ω, see fig. 10b
-
Between lead, 6 mm (0.25") from package and center of die contact
D
-
G
S
-
260 1.2
3.7 A 15 1.6 530 2.2 V ns µC
G
S
TJ = 25 °C, IS = 3.7 A, VGS = 0 Vb TJ = 25 °C, IF = 3.7 A, dI/dt = 100 A/µsb
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
www.vishay.com 2
Document Number: 91153 S-Pending-Rev. A, 16-Jun-08
IRFI730G, SiHFI730G
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
Fig. 1 - Typical Output Characteristics, TC = 25 °C
Fig. 3 - Typical Transfer Characteristics
Fig. 2 - Typical Output Characteristics, TC = 150 °C
Fig. 4 - Normalized On-Resistance vs. Temperature
Document Number: 91153 S-Pending-Rev. A, 16-Jun-08
www.vishay.com 3
IRFI730G, SiHFI730G
Vishay Siliconix
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
Fig. 7 - Typical Source-Drain Diode Forward Voltage
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
Fig. 8 - Maximum Safe Operating Area
www.vishay.com 4
Document Number: 91153 S-Pending-Rev. A, 16-Jun-08
IRFI730G, SiHFI730G
Vishay Siliconix
RD
VDS VGS RG
D.U.T. + - VDD
10 V
Pulse width ≤ 1 µs Duty factor ≤ 0.1 %
Fig. 10a - Switching Time Test Circuit
VDS 90 %
10 % VGS td(on) tr td(off) tf
Fig. 9 - Maximum Drain Current vs. Case Temperature
Fig. 10b - Switching Time Waveforms
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
L Vary tp to obtain required IAS RG VDS tp VDD D.U.T I AS 10 V tp 0.01 Ω IAS
Fig. 12b - Unclamped Inductive Waveforms
VDS
+ -
V DD
VDS
Fig. 12a - Unclamped Inductive Test Circuit
Document Number: 91153 S-Pending-Rev. A, 16-Jun-08
www.vishay.com 5
IRFI730G, SiHFI730G
Vishay Siliconix
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Current regulator Same type as D.U.T.
50 kΩ 12 V 0.2 µF 0.3 µF
10 V QGS
QG
QGD D.U.T.
+ -
VDS
VG
VGS
3 mA
Charge
IG ID Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
Fig. 13b - Gate Charge Test Circuit
www.vishay.com 6
Document Number: 91153 S-Pending-Rev. A, 16-Jun-08
IRFI730G, SiHFI730G
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
D.U.T.
+
Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer
+ +
-
RG
• • • •
dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test
+ VDD
Driver gate drive P.W. Period D=
P.W. Period VGS = 10 V*
D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt
VDD
Re-applied voltage Inductor current
Body diode forward drop
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig.14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91153.
Document Number: 91153 S-Pending-Rev. A, 16-Jun-08
www.vishay.com 7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000 Revision: 18-Jul-08
www.vishay.com 1