IRFR430A, IRFU430A, SiHFR430A, SiHFU430A
Vishay Siliconix
Power MOSFET
PRODUCT SUMMARY
VDS (V) RDS(on) (Ω) Qg (Max.) (nC) Qgs (nC) Qgd (nC) Configuration VGS = 10 V 24 6.5 13 Single
D
FEATURES
500 1.7
• Low Gate Charge Qg Results in Simple Drive Requirement Ruggedness
Available
• Improved Gate, Avalanche and Dynamic dV/dt RoHS* COMPLIANT • Fully Characterized Capacitance and Avalanche Voltage and Current • Effective Coss Specified • Lead (Pb)-free Available
DPAK (TO-252)
IPAK (TO-251)
G
APPLICATIONS
• Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply
S N-Channel MOSFET
• High Speed Power Switching
ORDERING INFORMATION
Package Lead (Pb)-free SnPb DPAK (TO-252) IRFR430APbF SiHFR430A-E3 IRFR430A SiHFR430A DPAK (TO-252) IRFR430ATRPbFa SiHFR430AT-E3a IRFR430ATRa SiHFR430ATa DPAK (TO-252) IRFR430ATRLPbFa SiHFR430ATL-E3a IRFR430ATRLa SiHFR430ATLa DPAK (TO-252) IRFR430ATRRPbFa SiHFR430ATR-E3a IRFR430ATRRa SiHFR430ATRa IPAK (TO-251) IRFU430APbF SiHFU430A-E3 IRFU430A SiHFU430A
Note a. See device orientation.
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Currenta Linear Derating Factor Single Pulse Avalanche Energyb Repetitive Avalanche Currenta TC = 25 °C Repetitive Avalanche Energya Maximum Power Dissipation Peak Diode Recovery dV/dtc for 10 s Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Notes a. b. c. d. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). Starting TJ = 25 °C, L = 11 mH, RG = 25 Ω, IAS = 5.0 A (see fig. 12). ISD ≤ 5.0 A, dI/dt ≤ 320 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. 1.6 mm from case. EAS IAR EAR PD dV/dt TJ, Tstg VGS at 10 V TC = 25 °C TC = 100 °C SYMBOL VDS VGS ID IDM LIMIT 500 ± 30 5.0 3.2 20 0.91 130 5.0 11 110 3.0 - 55 to + 150 300d W/°C mJ A mJ W V/ns °C A UNIT V
* Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91276 S-81366-Rev. A, 07-Jul-08 www.vishay.com 1
IRFR430A, IRFU430A, SiHFR430A, SiHFU430A
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER Maximum Junction-to-Ambient Case-to-Sink, Flat, Greased Surface Maximum Junction-to-Case (Drain) SYMBOL RthJA RthCS RthJC TYP. 0.50 MAX. 62 1.1 °C/W UNIT
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance Dynamic Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Effective Output Capacitance Total Gate Charge Gate-Source Charge Gate-Drain Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge Forward Turn-On Time IS ISM VSD trr Qrr ton MOSFET symbol showing the integral reverse p - n junction diode
D
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDS ΔVDS/TJ VGS(th) IGSS IDSS RDS(on) gfs
VGS = 0 V, ID = 250 µA Reference to 25 °C, ID = 1 mA VDS = VGS, ID = 250 µA VGS = ± 30 V VDS = 500 V, VGS = 0 V VDS = 400 V, VGS = 0 V, TJ = 125 °C VGS = 10 V ID = 3.0 Ab VDS = 50 V, ID = 3.0 A
500 2.0 2.3
0.60 -
4.5 ± 100 25 250 1.7 -
V V/°C V nA µA Ω S
Ciss Coss Crss Coss Coss eff. Qg Qgs Qgd td(on) tr td(off) tf
VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 VDS = 1.0 V, f = 1.0 MHz VGS = 10 V VDS = 400 V, f = 1.0 MHz VDS = 0 V to 400 VGS = 10 V Vc
-
490 75 4.5 750 25 51 8.7 27 17 16
24 6.5 13 ns nC pF pF
ID = 5.0 A, VDS = 400 V, see fig. 6 and 13b
-
VDD = 250 V, ID = 5.0 A, RG = 15 Ω, RD = 50 Ω, see fig. 10b
-
-
410 1.4
5.0 A 20 1.5 620 2.1 V ns µC
G
S
TJ = 25 °C, IS = 5.0 A, VGS = 0
Vb
TJ = 25 °C, IF = 5.0 A, dI/dt = 100 A/µsb
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS.
www.vishay.com 2
Document Number: 91276 S-81366-Rev. A, 07-Jul-08
IRFR430A, IRFU430A, SiHFR430A, SiHFU430A
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
100
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
100.00
10
ID, Drain-to-Source Current (Α )
ID, Drain-to-Source Current (A)
10.00
T J = 150°C
1
1.00
0.1
4.5V
0.01
0.10
T J = 25°C VDS = 100V 20μs PULSE WIDTH
4.0 6.0 8.0 10.0 12.0 14.0 16.0
20μs PULSE WIDTH Tj = 25°C
0.001 0.1 1 10 100
0.01
VDS, Drain-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics
VGS, Gate-to-Source Voltage (V) Fig. 3 - Typical Transfer Characteristics
100
ID, Drain-to-Source Current (A)
RDS(on) , Drain-to-Source On Resistance
10
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
3.0
I D = 5.0A
2.5
2.0
1
(Normalized)
1.5
4.5V
0.1
1.0
20μs PULSE WIDTH Tj = 150°C
0.01 0.1 1 10 100
0.5
V GS = 10V
0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160
VDS, Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics
TJ , Junction Temperature
( ° C)
Fig. 4 - Normalized On-Resistance vs. Temperature
Document Number: 91276 S-81366-Rev. A, 07-Jul-08
www.vishay.com 3
IRFR430A, IRFU430A, SiHFR430A, SiHFU430A
Vishay Siliconix
10000
100
VGS = 0V, f = 1 MHZ Ciss = C + Cgd, C gs ds SHORTED Crss = C gd Coss = C + Cgd ds
1000
C, Capacitance(pF)
Ciss
I SD , Reverse Drain Current (A)
10
100
Coss
TJ = 150 ° C
1
T = 25 ° C J
10
Crss
1 1 10 100 1000
V GS= 0 V
0.1 0.2 0.5 0.8 1.1 1.4
VDS, Drain-to-Source Voltage (V)
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
V SD,Source-to-Drain Voltage (V)
Fig. 7 - Typical Source-Drain Diode Forward Voltage
12
I D = 5.0A
100
VDS = 400V VDS = 250V VDS = 100V
OPERATION IN THIS AREA LIMITED BY R DS(on)
ID , Drain-to-Source Current (A)
10
VGS , Gate-to-Source Voltage (V)
10
7
100μsec 1 1msec Tc = 25°C Tj = 150°C Single Pulse 10 100
5
2
10msec 1000 10000
0 0 4 8 12 16 20
0.1
QG , Total Gate Charge (nC)
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
VDS , Drain-toSource Voltage (V) Fig. 8 - Maximum Safe Operating Area
www.vishay.com 4
Document Number: 91276 S-81366-Rev. A, 07-Jul-08
IRFR430A, IRFU430A, SiHFR430A, SiHFU430A
Vishay Siliconix
5.5
VDS VGS
RD
D.U.T. + - VDD
4.4
RG
10 V
ID , Drain Current (A)
3.3
Pulse width ≤ 1 µs Duty factor ≤ 0.1 %
2.2
Fig. 10a - Switching Time Test Circuit
VDS
1.1
90 %
0.0 25 50 75 100 125 150
TC , Case Temperature
( ° C)
10 % VGS td(on) tr td(off) tf
Fig. 9 - Maximum Drain Current vs. Case Temperature
10
Fig. 10b - Switching Time Waveforms
(Z thJC )
1 D = 0.50
Thermal Response
0.20 0.10 0.1 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = 2. Peak T 0.01 0.00001 0.0001 0.001 0.01 t1/ t 2 +TC 1 P DM t1 t2
J = P DM x Z thJC
0.1
t1, Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
15 V
VDS tp
VDS
L
Driver
RG 20 V tp
D.U.T IAS 0.01 Ω
+ A - VDD
IAS
Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91276 S-81366-Rev. A, 07-Jul-08
Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5
IRFR430A, IRFU430A, SiHFR430A, SiHFU430A
Vishay Siliconix
250
5.0
ID
VGS(th) Gate threshold Voltage (V)
TOP
200
2.2A 3.2A 5.0A
BOTTOM
4.5
EAS , Single Pulse Avalanche Energy (mJ)
150
4.0
ID = 250μA
3.5
100
3.0
50
2.5
0 25 50 75 100 125 150
-75
Starting Tj, Junction Temperature ( ° C)
-50
-25
0
25
50
75
100 125
150
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
T J , Temperature ( °C ) Fig. 12d - Threshold Voltage vs. Temperature
Current regulator Same type as D.U.T.
50 kΩ 12 V 0.2 µF 0.3 µF
VGS QGS
QG
QGD D.U.T.
+ -
VDS
VG
VGS
3 mA
Charge
IG ID Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
Fig. 13b - Gate Charge Test Circuit
www.vishay.com 6
Document Number: 91276 S-81366-Rev. A, 07-Jul-08
IRFR430A, IRFU430A, SiHFR430A, SiHFU430A
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
D.U.T
+
Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer
+ +
-
RG
• • • •
dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test
+ VDD
Driver gate drive P.W. Period D=
P.W. Period VGS = 10 V*
D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt
VDD
Re-applied voltage Inductor current
Body diode forward drop
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91276.
Document Number: 91276 S-81366-Rev. A, 07-Jul-08
www.vishay.com 7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000 Revision: 18-Jul-08
www.vishay.com 1