IRFS9N60A, SiHFS9N60A
Vishay Siliconix
Power MOSFET
PRODUCT SUMMARY
VDS (V) RDS(on) (Ω) Qg (Max.) (nC) Qgs (nC) Qgd (nC) Configuration VGS = 10 V 49 13 20 Single
D
FEATURES
600 0.75
• Low Gate Charge Qg results in Simple Drive Requirement Ruggedness
Available
• Improved Gate, Avalanche and Dynamic dV/dt RoHS*
COMPLIANT
• Fully Characterized Capacitance and Avalanche Voltage and Current • Lead (Pb)-free Available
D2PAK (TO-263)
APPLICATIONS
• Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply
G
• High Speed Power Switching
GD S S N-Channel MOSFET
APPLICABLE OFF LINE SMPS TOPOLOGIES
• Active Clamped Forward • Main Switch
ORDERING INFORMATION
Package Lead (Pb)-free SnPb Note a. See device orientation. D2PAK (TO-263) IRFS9N60APbF SiHFS9N60A-E3 IRFS9N60A SiHFS9N60A D2PAK (TO-263) IRFS9N60ATRRPbFa SiHFS9N60ATR-E3a IRFS9N60ATRRa SiHFS9N60ATRa D2PAK (TO-263) IRFS9N60ATRLPbFa SiHFS9N60ATL-E3a IRFS9N60ATRLa SiHFS9N60ATLa
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Currenta Linear Derating Factor Single Pulse Avalanche Energyb Repetitive Avalanche Currenta Repetitive Avalanche Energya Maximum Power Dissipation Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) for 10 s TC = 25 °C EAS IAR EAR PD dV/dt TJ, Tstg VGS at 10 V TC = 25 °C TC = 100 °C SYMBOL VDS VGS ID IDM LIMIT 600 ± 30 9.2 5.8 37 1.3 290 9.2 17 170 5.0 - 55 to + 150 300d W/°C mJ A mJ W V/ns °C UNIT V
A
Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 6.8 mH, RG = 25 Ω, IAS = 9.2 A (see fig. 12). c. ISD ≤ 9.2 A, dI/dt ≤ 50 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91287 S-Pending-Rev. A, 22-Jul-08 www.vishay.com 1
WORK-IN-PROGRESS
IRFS9N60A, SiHFS9N60A
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER Maximum Junction-to-Ambient Maximum Junction-to-Case (Drain) SYMBOL RthJA RthJC TYP. MAX. 40 0.75 UNIT °C/W
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance Dynamic Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Effective Output Capacitance Total Gate Charge Gate-Source Charge Gate-Drain Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge Forward Turn-On Time IS ISM VSD trr Qrr ton MOSFET symbol showing the integral reverse p - n junction diode
D
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDS ΔVDS/TJ VGS(th) IGSS IDSS RDS(on) gfs
VGS = 0 V, ID = 250 µA Reference to 25 °C, ID = 1 mA VDS = VGS, ID = 250 µA VGS = ± 30 V VDS = 600 V, VGS = 0 V VDS = 480 V, VGS = 0 V, TJ = 125 °C VGS = 10 V ID = 5.5 Ab VDS = 25 V, ID = 3.1 A
600 2.0 5.5
0.66 -
4.0 ± 100 25 250 0.75 -
V V/°C V nA µA Ω S
Ciss Coss Crss Coss Coss eff. Qg Qgs Qgd td(on) tr td(off) tf
VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 VDS = 1.0 V, f = 1.0 MHz VGS = 0 V VDS = 480 V, f = 1.0 MHz VDS = 0 V to 480 VGS = 10 V Vc
-
1400 180 7.1 1957 49 96 13 25 30 22
49 13 20 ns nC pF
ID = 9.2 A, VDS = 400 V see fig. 6 and 13b
-
VDD = 300 V, ID = 9.2 A RG = 9.1 Ω, RD = 35.5 Ω, see fig. 10b
-
-
530 3.0
9.2 A 37 1.5 800 4.4 V ns µC
G
S
TJ = 25 °C, IS = 9.2 A, VGS = 0 Vb TJ = 25 °C, IF = 9.2 A, dI/dt = 100 A/µsb
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS.
www.vishay.com 2
Document Number: 91287 S-Pending-Rev. A, 22-Jul-08
IRFS9N60A, SiHFS9N60A
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
100
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.7V TOP
100
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
10
10
TJ = 150 ° C
TJ = 25 ° C
1
1
4.7V
20µs PULSE WIDTH TJ = 25 °C
1 10 100
0.1 0.1
0.1 4.0
V DS = 50V 20µs PULSE WIDTH 5.0 6.0 7.0 8.0 9.0 10.0
VDS , Drain-to-Source Voltage (V)
Fig. 1 - Typical Output Characteristics
VGS , Gate-to-Source Voltage (V)
Fig. 3 - Typical Transfer Characteristics
100
TOP
r DS(on), Drain-to-Source On Resistance (Normalized)
I D , Drain-to-Source Current (A)
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.7V
3.0
ID = 9.2A
2.5
2.0
10
1.5
1.0
4.7V
20µs PULSE WIDTH TJ = 150 ° C
1 10 100
0.5
1
0.0 -60 -40 -20
VGS = 10V
0 20 40 60 80 100 120 140 160
VDS , Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
TJ , Junction Temperature ( °C)
Fig. 4 - Normalized On-Resistance vs. Temperature
Document Number: 91287 S-Pending-Rev. A, 22-Jul-08
www.vishay.com 3
IRFS9N60A, SiHFS9N60A
Vishay Siliconix
2400
2000
C, Capacitance (pF)
iss
1600
ISD , Reverse Drain Current (A)
V GS = 0V, f = 1MHz C iss = Cgs + C gd , Cds SHORTED C rss = C gd C oss = C ds + C gd
100
10
oss
1200
TJ = 150 ° C
800
1
TJ = 25 ° C
400
rss
0 1 10 100 1000
A
0.1 0.2
V GS = 0 V
0.5 0.7 1.0 1.2
VDS , Drain-to-Source Voltage (V)
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
VSD ,Source-to-Drain Voltage (V)
Fig. 7 - Typical Source-Drain Diode Forward Voltage
20
ID = 9.2A VDS = 480V VDS = 300V VDS = 120V
1000
VGS , Gate-to-Source Voltage (V)
OPERATION IN THIS AREA LIMITED BY RDS(on)
16
12
ID , Drain Current (A)
100
10us 10 100us 1ms 1 10ms
8
4
0 0 10 20
FOR TEST CIRCUIT SEE FIGURE 13
30 40 50
0.1
TC = 25 ° C TJ = 150 ° C Single Pulse
10 100 1000 10000
QG , Total Gate Charge (nC)
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
Fig. 8 - Maximum Safe Operating Area
VDS , Drain-to-Source Voltage (V)
www.vishay.com 4
Document Number: 91287 S-Pending-Rev. A, 22-Jul-08
IRFS9N60A, SiHFS9N60A
Vishay Siliconix
RD
10.0
VGS
VDS D.U.T. + - VDD 10 V
8.0
RG
ID , Drain Current (A)
6.0
Pulse width ≤ 1 µs Duty factor ≤ 0.1 %
Fig. 10a - Switching Time Test Circuit
4.0
VDS 90 %
2.0
0.0 25 50 75 100 125 150
TC , Case Temperature ( ° C)
Fig. 9 - Maximum Drain Current vs. Case Temperature
1
10 % VGS td(on) tr td(off) tf
Fig. 10b - Switching Time Waveforms
Thermal Response (Z thJC )
D = 0.50
0.20 0.1 0.10 0.05 0.02 0.01 PDM t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.01 0.1 1
0.01 0.00001
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
15 V
VDS tp
VDS
L
Driver
RG 20 V tp
D.U.T IAS 0.01 Ω
+ A - VDD
IAS
Fig. 12a - Unclamped Inductive Test Circuit
Fig. 12b - Unclamped Inductive Waveforms
Document Number: 91287 S-Pending-Rev. A, 22-Jul-08
www.vishay.com 5
IRFS9N60A, SiHFS9N60A
Vishay Siliconix
EAS , Single Pulse Avalanche Energy (mJ)
600
TOP
500
BOTTOM
ID 4.1A 5.8A 9.2A
400
300
200
100
0 25 50 75 100 125 150
Starting TJ , Junction Temperature ( °C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Current regulator Same type as D.U.T.
50 kΩ
12 V
10 V QGS
QG
0.2 µF
0.3 µF
QGD D.U.T.
+ -
VDS
VG
VGS
3 mA
Charge
IG ID Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
Fig. 13b - Gate Charge Test Circuit
www.vishay.com 6
Document Number: 91287 S-Pending-Rev. A, 22-Jul-08
IRFS9N60A, SiHFS9N60A
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
D.U.T
+
Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer
+ +
-
RG
• • • •
dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test
+ VDD
Driver gate drive P.W. Period D=
P.W. Period VGS = 10 V*
D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt
VDD
Re-applied voltage Inductor current
Body diode
forward drop
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91287.
Document Number: 91287 S-Pending-Rev. A, 22-Jul-08
www.vishay.com 7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000 Revision: 18-Jul-08
www.vishay.com 1