TCET120.(G) up to TCET2200
Vishay Semiconductors
Optocoupler with Phototransistor Output
Description
The TCET120./ TCET2200 consists of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 4-lead up to 8-lead plastic dual inline package. The elements are mounted on one leadframe using a coplanar technique, providing a fixed distance between input and output for highest safety requirements.
Applications
Circuits for safe protective separation against electrical shock according to safety class II (reinforced isolation):
15123
D For appl. class I – IV at mains voltage ≤ 300 V D For appl. class I – III at mains voltage ≤ 600 V
according to VDE 0884, table 2, suitable for: Switch-mode power supplies, line receiver, computer peripheral interface, microprocessor system interface.
Emitter Coll.
These couplers perform safety functions according to the following equipment standards:
D VDE 0884
Optocoupler for electrical safety requirements
Anode Cath. 4 PIN 8 PIN
D IEC 950/EN 60950 D VDE 0804 D IEC 65
Safety for mains-operated electronic and related household apparatus Office machines (applied for reinforced isolation for mains voltage ≤ 400 VRMS) apparatus and data
Telecommunication processing
C
Document Number 83501 Rev. A2, 08–Feb–01
15115
VDE Standards
www.vishay.com 1 (12)
TCET120.(G) up to TCET2200
Vishay Semiconductors Order Instruction
Ordering Code CTR Ranking TCET1200/ TCET1200G1) 50 to 600% TCET1201/ TCET1201G1) 40 to 80% 1) TCET1202/ TCET1202G 63 to 125% TCET1203/ TCET1203G1) 100 to 200% TCET1204/ TCET1204G1) 160 to 320% TCET2200 50 to 600% 1) G = Leadform 10.16 mm; G is not marked on the body Remarks 4 Pin = Single channel 4 Pin = Single channel 4 Pin = Single channel 4 Pin = Single channel 4 Pin = Single channel 8 Pin = Dual channel
Features
Approvals (are applied):
D Creepage current resistance according to
VDE 0303/IEC 112 Comparative Tracking Index: CTI ≥ 175 D Thickness through insulation ≥ 0.75 mm D Internal creepage distance > 4 mm General features:
D BSI: BS EN 41003, BS EN 60095 (BS 415),
BS EN 60950 (BS 7002), Certificate number 7081 and 7402
D FIMKO (SETI): EN 60950,
Certificate number 202117
D Underwriters Laboratory (UL) 1577 recognized,
file number E-76222 – Double Protection
D CSA (C-UL) 1577 recognized
file number E- 76222 - Double Protection
D VDE 0884, Certificate number 115667
VDE 0884 related features:
D CTR offered in 5 groups D Isolation materials according to UL94-VO D Pollution degree 2
(DIN/VDE 0110 / resp. IEC 664)
D Rated impulse voltage (transient overvoltage)
VIOTM = 8 kV peak D Isolation test voltage (partial discharge test voltage) Vpd = 1.6 kV D Rated isolation voltage (RMS includes DC) VIOWM = 600 VRMS (848 V peak) D Rated recurring peak voltage (repetitive) VIORM = 600 VRMS
D Climatic classification 55/100/21 (IEC 68 part 1) D Special construction:
Therefore, extra low coupling capacity of typical 0.2 pF, high Common Mode Rejection D Low temperature coefficient of CTR D G = Leadform 10.16 mm; provides creepage distance > 8 mm, for TCET2200 optional; suffix letter ‘G’ is not marked on the optocoupler D Coupling System U
www.vishay.com 2 (12)
Document Number 83501 Rev. A2, 08–Feb–01
TCET120.(G) up to TCET2200
Vishay Semiconductors Absolute Maximum Ratings
Input (Emitter)
Parameter Reverse voltage Forward current Forward surge current Power dissipation Junction temperature Test Conditions Symbol VR IF IFSM PV Tj Value 6 60 1.5 100 125 Unit V mA A mW °C
tp ≤ 10 ms Tamb ≤ 25°C
Output (Detector)
Parameter Collector emitter voltage Emitter collector voltage Collector current Collector peak current Power dissipation Junction temperature Test Conditions Symbol VCEO VECO IC ICM PV Tj Value 70 7 50 100 150 125 Unit V V mA mA mW °C
tp/T = 0.5, tp ≤ 10 ms Tamb ≤ 25°C
Coupler
Parameter Isolation test voltage (RMS) Total power dissipation Operating ambient temperature range Storage temperature range Soldering temperature Test Conditions Tamb ≤ 25°C Symbol VIO Ptot Tamb Tstg Tsd Value 5 250 –40 to +100 –55 to +125 260 Unit kV mW °C
2 mm from case t ≤ 10 s
°C °C
Document Number 83501 Rev. A2, 08–Feb–01
www.vishay.com 3 (12)
TCET120.(G) up to TCET2200
Vishay Semiconductors Electrical Characteristics (Tamb = 25°C)
Input (Emitter)
Parameter Forward voltage Junction capacitance Test Conditions IF = ± 50 mA VR = 0 V, f = 1 MHz Symbol VF Cj Min. Typ. 1.25 50 Max. 1.6 Unit V pF
Output (Detector)
Parameter Collector emitter voltage Emitter collector voltage Collector emitter cut-off current Test Conditions IC = 1 mA IE = 100 mA VCE = 20 V, If = 0, E = 0 Symbol VCEO VECO ICEO Min. 70 7 Typ. Max. Unit V V nA
10
100
Coupler
Parameter Collector emitter saturation voltage Cut-off frequency Coupling capacitance Test Conditions IF = 10 mA, IC = 1 mA VCE = 5 V, IF = 10 mA, RL = 100 f = 1 MHz Symbol VCEsat fc Ck Min. Typ. Max. 0.3 Unit V kHz pF
W
110 0.3
Current Transfer Ratio (CTR)
Parameter IC/IF Test Conditions VCE = 5 V, IF = 5 mA VCE = 5 V, IF = 10 mA Type TCET1200(G)/ TCET2200 TCET1201(G) TCET1202(G) TCET1203(G) TCET1204(G) Symbol CTR CTR CTR CTR CTR Min. 0.50 0.40 0.63 1.0 1.6 Typ. Max. 6.0 0.8 1.25 2.0 3.2 Unit
www.vishay.com 4 (12)
Document Number 83501 Rev. A2, 08–Feb–01
TCET120.(G) up to TCET2200
Vishay Semiconductors Maximum Safety Ratings (according to VDE 0884) see figure 1
This device is used for protective separation against electrical shock only within the maximum safety ratings. This must be ensured by using protective circuits in the applications.
Input (Emitter)
Parameters Forward current Test Conditions Symbol Isi Value 130 Unit mA
Output (Detector)
Parameters Power dissipation Test Conditions Tamb ≤ 25°C Symbol Psi Value 265 Unit mW
Coupler
Parameters Rated impulse voltage Safety temperature Test Conditions Symbol VIOTM Tsi Value 8 150 Unit kV °C
Insulation Rated Parameters (according to VDE 0884)
Parameter Partial discharge test voltage – Routine test Partial discharge test voltage – g g Lot test (sample test) Insulation resistance Test Conditions 100%, ttest = 1 s tTr = 60 s, ttest = 10 s, (see figure 2) VIO = 500 V VIO = 500 V, Tamb = 100°C VIO = 500 V, Tamb = 150°C
(construction test only) Ptot – Total Power Dissipation ( mW ) 300 250 200 VPd 150 100 50 0 0
94 9182
Symbol Vpd VIOTM Vpd RIO RIO RIO
Min. 1.6 8 1.3 1012 1011 109
Typ.
Max.
Unit kV kV kV
W W W
VIOTM Phototransistor Psi ( mW ) t1, t2 = 1 to 10 s t3, t4 = 1 s ttest = 10 s tstres = 12 s
VIOWM VIORM
IR-Diode Isi ( mA ) 0 25 50 75 100 125 150
13930
t3 ttest t4
t1
tTr = 60 s
t2
tstres
Tsi – Safety Temperature ( °C )
t
Figure 1. Derating diagram
Figure 2. Test pulse diagram for sample test according to DIN VDE 0884
Document Number 83501 Rev. A2, 08–Feb–01
www.vishay.com 5 (12)
TCET120.(G) up to TCET2200
Vishay Semiconductors Switching Characteristics
Parameter Delay time Rise time Turn-on time Storage time Fall time Turn-off time Turn-on time Turn-off time Test Conditions VS = 5 V, IC = 2 mA, RL = 100 (see figure 3) g )
W
VS = 5 V, IF = 10 mA, RL = 1 k
W (see figure 4) g )
Symbol td tr ton ts tf toff ton toff
Typ. 3.0 3.0 6.0 0.3 4.7 5.0 9.0 10.0
Unit s s s s s s s s
m m m m m m m m
0
IF
IF
+5V IC = 2 mA; adjusted through input amplitude IF
96 11698
RG = 50 tp = 0.01 T tp = 50 s
W
0 tp IC Channel I Oscilloscope 50 Channel II RL = 1 M
t
m
W
100
W
W
100% 90%
CL = 20 pF
95 10804
Figure 3. Test circuit, non-saturated operation
10% 0 tr td ton tp td tr ton (= td + tr) pulse duration delay time rise time turn-on time ts toff ts tf toff (= ts + tf) tf
t
0
IF
IF = 10 mA
+5V IC
RG = 50 tp = 0.01 T tp = 50 s
W
storage time fall time turn-off time
m
Figure 5. Switching times
Channel I Oscilloscope RL > 1 M
50
95 10843
W
1k
W
Channel II
W
CL < 20 pF
Figure 4. Test circuit, saturated operation
www.vishay.com 6 (12)
Document Number 83501 Rev. A2, 08–Feb–01
TCET120.(G) up to TCET2200
Vishay Semiconductors Typical Characteristics (Tamb = 25_C, unless otherwise specified)
300 P tot – Total Power Dissipation ( mW ) Coupled device 250 200
Phototransistor
10000 ICEO– Collector Dark Current, with open Base ( nA ) VCE=20V IF=0 1000
150 IR-diode 100 50 0 0 40 80 120
100
10
1 0
95 11026
25
50
75
100
96 11700
Tamb – Ambient Temperature ( °C )
Tamb – Ambient Temperature ( °C )
Figure 6. Total Power Dissipation vs. Ambient Temperature
1000.0
Figure 9. Collector Dark Current vs. Ambient Temperature
100 IC – Collector Current ( mA ) VCE=5V 10
I F – Forward Current ( mA )
100.0
10.0
1
1.0
0.1
0.1 0
96 11862
0.01 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 VF – Forward Voltage ( V )
95 11027
0.1
1
10
100
IF – Forward Current ( mA )
Figure 7. Forward Current vs. Forward Voltage
CTR rel – Relative Current Transfer Ratio 2.0
Figure 10. Collector Current vs. Forward Current
100 IC – Collector Current ( mA )
VCE=5V IF=5mA 1.5
20mA IF=50mA 10 10mA 5mA
1.0
1
2mA 1mA
0.5
0 –25
95 11025
0.1 0 25 50 75
95 10985
0.1
1
10
100
Tamb – Ambient Temperature ( °C )
VCE – Collector Emitter Voltage ( V )
Figure 8. Relative Current Transfer Ratio vs. Ambient Temperature
Document Number 83501 Rev. A2, 08–Feb–01
Figure 11. Collector Current vs. Collector Emitter Voltage
www.vishay.com 7 (12)
TCET120.(G) up to TCET2200
Vishay Semiconductors
V CEsat – Collector Emitter Saturation Voltage ( V ) t on / t off – Turn on / Turn off Time ( m s ) 1.0 20% 0.8 CTR=50% 0.6 10 Non Saturated Operation VS=5V RL=100
8
ton
W
6 toff 4 2 0
0.4 0.2 0 1 10 IC – Collector Current ( mA ) 100
10%
0
95 11030
2
4
6
10
95 11028
IC – Collector Current ( mA )
Figure 12. Collector Emitter Saturation Voltage vs. Collector Current
1000 CTR – Current Transfer Ratio ( % ) VCE=5V 100
Figure 15. Turn on / off Time vs. Collector Current
t on / t off – Turn on / Turn off Time ( s )
50 Saturated Operation VS=5V RL=1k
m
40
W
30 toff 20 10 0 ton 0 5 10 15 20
10
1 0.1
95 11029
1
10
100
95 11031
IF – Forward Current ( mA )
IF – Forward Current ( mA )
Figure 13. Current Transfer Ratio vs. Forward Current
Figure 16. Turn on / off Time vs. Forward Current
Pin1 Indication
Type
ET1100 820UTK63
15081
Date Code (YM)
Coupling System Indicator
Company Logo
Production Location
Figure 14. Marking example
www.vishay.com 8 (12)
Document Number 83501 Rev. A2, 08–Feb–01
TCET120.(G) up to TCET2200
Vishay Semiconductors Dimensions of TCET120. in mm
14789
Document Number 83501 Rev. A2, 08–Feb–01
www.vishay.com 9 (12)
TCET120.(G) up to TCET2200
Vishay Semiconductors Dimensions of TCET120.G in mm
14792
www.vishay.com 10 (12)
Document Number 83501 Rev. A2, 08–Feb–01
TCET120.(G) up to TCET2200
Vishay Semiconductors Dimensions of TCET2200 in mm
14784
Document Number 83501 Rev. A2, 08–Feb–01
www.vishay.com 11 (12)
TCET120.(G) up to TCET2200
Vishay Semiconductors Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs ). The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA ) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
www.vishay.com 12 (12)
Document Number 83501 Rev. A2, 08–Feb–01
This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.