0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLWB

TLWB

  • 厂商:

    VISHAY

  • 封装:

  • 描述:

    TLWB - TELUX LED - Vishay Siliconix

  • 数据手册
  • 价格&库存
TLWB 数据手册
TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors TELUX™ LED Description The TELUX™ series is a clear, non diffused LED for high end applications where supreme luminous flux is required. It is designed in an industry standard 7.62 mm square package utilizing highly developed (AS) AllnGaP and InGaN technologies. The supreme heat dissipation of TELUX™ allows applications at high ambient temperatures. All packing units are binned for luminous flux and color to achieve best homogenous light appearance in application. 19232 e3 Pb Pb-free Features • • • • • • • • • • Utilizing (AS) AlInGaP and InGaN technologies High luminous flux Supreme heat dissipation: RthJP is 90 K/W High operating temperature: Tamb = - 40 to + 110 °C Type TLWR meets SAE and ECE color requirements Packed in tubes for automatic insertion Luminous flux and color categorized for each tube Small mechanical tolerances allow precise usage of external reflectors or lightguides TLWR and TLWY types additionally forward voltage categorized ESD-withstand voltage: > 2 kV acc. to MIL STD 883 D, Method 3015.7 for AlInGaP, > 1 kV for InGaN • Lead-free device Applications Exterior lighting Dashboard illumination Tail-, Stop - and Turn Signals of motor vehicles Replaces incandescent lamps Traffic signals and signs Parts Table Part TLWR7900 TLWO7900 TLWY7900 TLWTG7900 TLWBG7900 TLWB7900 TLWW7900 Color, Luminous Intensity Red, φV = 2100 mlm (typ.) Yellow, φV = 1400 mlm (typ.) True green, φV = 900 mlm (typ.) Blue green, φV = 700 mlm (typ.) Blue, φV = 330 mlm (typ.) White, φV = 650 mlm (typ.) Angle of Half Intensity (±ϕ) 45 ° Technology AllnGaP on GaAs AllnGaP on GaAs AllnGaP on GaAs InGaN on SiC InGaN on SiC InGaN on SiC InGaN / TAG on SiC Softorange, φV = 2100 mlm (typ.) 45 ° 45 ° 45 ° 45 ° 45 ° 45 ° Document Number 83144 Rev. 1.8, 14-Jan-05 www.vishay.com 1 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors Absolute Maximum Ratings Tamb = 25 °C, unless otherwise specified TLWR7900 , TLWO7900 , TLWY7900 Parameter Reverse voltage DC Forward current Surge forward current Power dissipation Junction temperature Operating temperature range Storage temperature range Soldering temperature t ≤ 5 s, 1.5 mm from body preheat temperature 100 °C/ 30 sec. with cathode heatsink of 70 mm2 RthJP Test condition IR = 10 µA Tamb ≤ 50 °C tp ≤ 10 µs Tamb ≤ 50 °C Symbol VR IF IFSM PV PV PV PV Junction temperature Operating temperature range Storage temperature range Soldering temperature t ≤ 5 s, 1.5 mm from body preheat temperature 100 °C/ 30 sec. with cathode heatsink of 70 mm2 RthJP 90 K/W Tj Tamb Tstg Tsd 90 K/W Test condition IR = 10 µA Tamb ≤ 85 °C tp ≤ 10 µs Tamb ≤ 85 °C Symbol VR IF IFSM PV Tj Tamb Tstg Tsd Value 10 70 1 187 125 - 40 to + 110 - 55 to + 110 260 Unit V mA A mW °C °C °C °C Thermal resistance junction/ ambient Thermal resistance junction/pin RthJA 200 K/W TLWTG7900 , TLWBG7900 , TLWB7900 , TLWW7900 Parameter Reverse voltage DC Forward current Surge forward current Power dissipation Value 5 50 0.1 230 230 230 255 100 - 40 to + 100 - 55 to + 100 260 Unit V mA A mW mW mW mW °C °C °C °C Thermal resistance junction/ ambient Thermal resistance junction/pin RthJA 200 K/W Optical and Electrical Characteristics Tamb = 25 °C, unless otherwise specified Red TLWR7900 Parameter Total flux Luminous intensity/Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Test condition IF = 70 mA, RthJA = 200 °K/W IF = 70 mA, RthJA = 200 °K/W IF = 70 mA, RthJA = 200 °K/W IF = 70 mA, RthJA = 200 °K/W IF = 70 mA, RthJA = 200 °K/W 90 % of Total Flux Captured IF = 70 mA, RthJA = 200 °K/W Symbol φV IV/φV λd λp ϕ ϕ VF 1.83 611 Min 1500 Typ. 2100 0.7 618 624 ± 45 100 2.2 2.67 634 Max 3000 Unit mlm mcd/mlm nm nm deg deg V www.vishay.com 2 Document Number 83144 Rev. 1.8, 14-Jan-05 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors Parameter Reverse voltage Junction capacitance Temperature coefficient of λdom Test condition I R = 10 µ A VR = 0, f = 1 MHz IF = 50 mA Symbol VR Cj TCλdom Min 10 Typ. 20 17 0.05 Max Unit V pF nm/K Soft Orange TLWO7900 Parameter Total flux Luminous intensity/Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Temperature coefficient of λdom Test condition IF = 70 mA, RthJA = 200 °K/W IF = 70 mA, RthJA = 200 °K/W IF = 70 mA, RthJA = 200 °K/W IF = 70 mA, RthJA = 200 °K/W IF = 70 mA, RthJA = 200 °K/W 90 % of Total Flux Captured IF = 70 mA, RthJA = 200 °K/W I R = 10 µ A VR = 0, f = 1 MHz IF = 50 mA Symbol φV IV/φV λd λp ϕ ϕ VF VR Cj TCλdom 1.83 10 598 Min 1500 Typ. 2100 0.7 605 610 ± 45 100 2.2 20 17 0.06 2.67 611 Max 3000 Unit mlm mcd/mlm nm nm deg deg V V pF nm/K Yellow TLWY7900 Parameter Total flux Luminous intensity/Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Temperature coefficient of λdom Test condition IF = 70 mA, RthJA = 200 °K/W IF = 70 mA, RthJA = 200 °K/W IF = 70 mA, RthJA = 200 °K/W IF = 70 mA, RthJA = 200 °K/W IF = 70 mA, RthJA = 200 °K/W 90 % of Total Flux Captured IF = 70 mA, RthJA = 200 °K/W I R = 10 µ A VR = 0, f = 1 MHz IF = 50 mA Symbol φV IV/φV λd λp ϕ ϕ VF VR Cj TCλdom 1.83 10 585 Min 1000 Typ. 1400 0.7 592 594 ± 45 100 2.1 15 32 0.1 2.67 597 Max 2400 Unit mlm mcd/mlm nm nm deg deg V V pF nm/K True green TLWTG7900 Parameter Total flux Luminous intensity/Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Temperature coefficient of λdom Test condition IF = 50 mA, RthJA = 200 °K/W IF = 50 mA, RthJA = 200 °K/W IF = 50 mA, RthJA = 200 °K/W IF = 50 mA, RthJA = 200 °K/W IF = 50 mA, RthJA = 200 °K/W 90 % of Total Flux Captured IF = 50 mA, RthJA = 200 °K/W I R = 10 µ A VR = 0, f = 1 MHz IF = 30 mA Symbol φV IV/φV λd λp ϕ ϕ VF VR Cj TCλdom 5 509 Min 630 Typ. 900 0.7 523 518 ± 45 100 4.2 10 50 0.02 4.7 535 Max 1800 Unit mlm mcd/mlm nm nm deg deg V V pF nm/K Document Number 83144 Rev. 1.8, 14-Jan-05 www.vishay.com 3 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors Blue green TLWBG7900 Parameter Total flux Luminous intensity/Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Temperature coefficient of λdom Test condition IF = 50 mA, RthJA = 200 °K/W IF = 50 mA, RthJA = 200 °K/W IF = 50 mA, RthJA = 200 °K/W IF = 50 mA, RthJA = 200 °K/W IF = 50 mA, RthJA = 200 °K/W 90 % of Total Flux Captured IF = 50 mA, RthJA = 200 °K/W IR = 10 µA VR = 0, f = 1 MHz IF = 30 mA Symbol φV IV/φV λd λp ϕ ϕ VF VR Cj TCλdom 5 492 Min 400 Typ. 700 0.7 505 503 ± 45 100 4.2 10 50 0.02 4.7 510 Max 1250 Unit mlm mcd/mlm nm nm deg deg V V pF nm/K Blue TLWB7900 Parameter Total flux Luminous intensity/Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Temperature coefficient of λdom Test condition IF = 50 mA, RthJA = 200 °K/W IF = 50 mA, RthJA = 200 °K/W IF = 50 mA, RthJA = 200 °K/W IF = 50 mA, RthJA = 200 °K/W IF = 50 mA, RthJA = 200 °K/W 90 % of Total Flux Captured IF = 50 mA, RthJA = 200 °K/W IR = 10 µA VR = 0, f = 1 MHz IF = 30 mA Symbol φV IV/φV λd λp ϕ ϕ VF VR Cj TCλdom 5 462 Min 200 Typ. 330 0.7 470 460 ± 45 100 4.3 10 50 0.03 4.7 476 Max 630 Unit mlm mcd/mlm nm nm deg deg V V pF nm/K White TLWW7900 Parameter Total flux Luminous intensity/Total flux Color temperature Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Test condition IF = 50 mA, RthJA = 200 °K/W IF = 50 mA, RthJA = 200 °K/W IF = 50 mA, RthJA = 200 °K/W IF = 50 mA, RthJA = 200 °K/W 90 % of Total Flux Captured IF = 50 mA, RthJA = 200 °K/W IR = 10 µA VR = 0, f = 1 MHz Symbol φV IV/φV TK ϕ ϕ VF VR Cj 5 Min 400 Typ. 650 0.7 5500 ± 45 100 4.3 10 50 5.1 Max 1250 Unit mlm mcd/mlm K deg deg V V pF www.vishay.com 4 Document Number 83144 Rev. 1.8, 14-Jan-05 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors Typical Characteristics (Tamb = 25 °C unless otherwise specified) 200 PV – Power Dissipation ( mW ) I F - Forward Current ( mA ) 60 50 40 30 20 10 0 0 20 40 60 80 100 120 16067 175 150 125 100 75 50 25 0 RthJA=200K/W Red RthJA = 200 K/W 0 20 40 60 80 100 120 15982 Tamb – Ambient Temperature ( C ) T amb - Ambient Temperature ( ° C ) Figure 1. Power Dissipation vs. Ambient Temperature Figure 4. Forward Current vs. Ambient Temperature for InGaN 10000 100 I F – Forward Current ( mA ) Red 80 60 40 20 RthJA=200K/W 0 0 20 40 60 80 100 120 Tamb – Ambient Temperature ( C ) IF – Forward Current ( mA ) Red, Softorange, Yellow 1000 tp/T=0.01 0.02 Tamb 85 °C 0.05 0.1 100 1 10 0.5 0.2 1 0.01 16010 0.1 1 10 100 15983 tp – Pulse Length ( ms ) Figure 2. Forward Current vs. Ambient Temperature Figure 5. Forward Current vs. Pulse Length 250 PV - Power Dissipation ( mW ) 0° I V rel - Relative Luminous Intensity 10 ° 20 ° 30 ° 225 200 175 150 125 100 75 50 25 0 0 20 40 60 80 100 120 RthJA = 200 K/W 40 ° 1.0 0.9 0.8 0.7 50 ° 60 ° 70 ° 80 ° 0.6 0.4 0.2 0 0.2 0.4 Angular Displacement 0.6 16066 T amb - Ambient Temperature ( ° C ) 16200 Figure 3. Power Dissipation vs. Ambient Temperature for InGaN Figure 6. Rel. Luminous Intensity vs. Angular Displacement Document Number 83144 Rev. 1.8, 14-Jan-05 www.vishay.com 5 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors 100 90 Φ Vrel – Relative Luminous Flux % Total Luminous Flux 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40 15976 80 70 60 50 40 30 20 10 0 0 25 50 75 100 125 Red, Softorange I F = 70 mA 16201 Total Included Angle (Degrees) -20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) Figure 7. Percentage Total Luminous Flux vs. Total Included Angle for 90 ° emission angle Figure 10. Rel. Luminous Flux vs. Ambient Temperature 230 I Spec - Specific Luninous Flux 220 210 R thJA in K/W Padsize 8 mm 2 per Anode Pin Red, Softorange 1.0 200 190 180 170 160 0 50 100 150 200 250 300 0.1 1 15980 10 IF - Forward Current ( mA ) 100 16009 Cathode Padsize in mm 2 Figure 8. Thermal Resistance Junction Ambient vs. Cathode Padsize Figure 11. Specific Luminous Flux vs. Forward Current 100 90 I F – Forward Current ( mA ) I Vrel - Relative Luminous Intensity 10 Red Yellow Red 1 80 70 60 50 40 30 20 10 0.1 0 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 15974 0.01 1 15978 10 IF - Forward Current ( mA ) 100 V F – Forward Voltage ( V ) Figure 9. Forward Current vs. Forward Voltage Figure 12. Relative Luminous Flux vs. Forward Current www.vishay.com 6 Document Number 83144 Rev. 1.8, 14-Jan-05 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors 605.0 1.2 Red 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 570 580 590 600 610 620 630 640 650 660 670 λ - Wavelength ( nm ) I Vrel - Relative Luminous Intensity Dominant Wavelength λ ( nm ) 604.5 Softorange 604.0 603.5 603.0 0 16436 10 20 30 40 50 60 70 I F - Forward Current ( mA ) 16007 Figure 13. Relative Intensity vs. Wavelength Figure 16. Dominant Wavelength vs. Forward Current 1.2 1.1 Soft orange 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 560 570 580 590 600 610 620 630 640 650 660 λ - Wavelength ( nm ) I Vrel - Relative Luminous Intensity 100 90 I F - Forward Current ( mA ) Yellow 80 70 60 50 40 30 20 10 0 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 16314 15975 V F – Forward Voltage ( V ) Figure 14. Relative Intensity vs. Wavelength Figure 17. Forward Current vs. Forward Voltage 619.0 Dominant Wavelength λ ( nm ) 2.0 Φ V rel – Relative Luminous Flux 618.5 618.0 Red 617.5 617.0 616.5 616.0 0 10 20 30 40 50 60 70 I F - Forward Current ( mA ) 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40 Yellow I F = 70 mA 16434 -20 0 20 40 60 80 100 15977 Tamb – Ambient Temperature ( °C ) Figure 15. Dominant Wavelength vs. Forward Current Figure 18. Rel. Luminous Flux vs. Ambient Temperature Document Number 83144 Rev. 1.8, 14-Jan-05 www.vishay.com 7 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors 592.0 Yellow I Spec - Specific Luninous Flux Dominant Wavelength λ ( nm ) 591.5 1.0 591.0 Yellow 590.5 590.0 0.1 1 0 10 IF - Forward Current ( mA ) 100 16435 10 20 30 40 50 60 70 I F - Forward Current ( mA ) 15981 Figure 19. Specific Luminous Flux vs. Forward Current Figure 22. Dominant Wavelength vs. Forward Current 10 IV rel - Relative Luminous Intensity I F - Forward Current ( mA ) 100 Yellow 90 80 70 60 50 40 30 20 10 0 1 10 IF - Forward Current ( mA ) 100 16037 True Green 1 0.1 0.01 15979 2.5 3.0 3.5 4.0 4.5 5.0 5.5 V F - Forward Current ( V ) Figure 20. Relative Luminous Flux vs. Forward Current Figure 23. Forward Current vs. Forward Voltage 1.2 Yellow 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 540 550 560 570 580 590 600 610 620 630 640 λ - Wavelength ( nm ) 1.8 Φ V rel – Relative Luminous Flux I Vrel - Relative Luminous Intensity 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40 -20 True Green I F = 50 mA 0 20 40 60 80 100 16008 16056 Tamb – Ambient Temperature ( °C ) Figure 21. Relative Intensity vs. Wavelength Figure 24. Rel. Luminous Flux vs. Ambient Temperature www.vishay.com 8 Document Number 83144 Rev. 1.8, 14-Jan-05 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors 541 I Spec - Specific Luminous Flux Dominant Wavelength λ ( nm ) True Green 1.0 539 537 535 533 531 529 527 525 523 521 0 10 20 30 40 50 True Green 0.1 1 16038 10 I F - Forward Current ( mA ) 100 16301 I F - Forward Current ( mA ) Figure 25. Specific Luminous Flux vs. Forward Current Figure 28. Dominant Wavelength vs. Forward Current 10.00 IVrel - Relative Luminous Intensity I F - Forward Current ( mA ) 100 True Green 90 80 70 60 50 40 30 20 10 0 2.5 16058 Blue Green 1.00 0.10 0.01 1 16039 10 IF - Forward Current ( mA ) 100 3.0 3.5 4.0 4.5 5.0 5.5 V F - Forward Voltage ( V ) Figure 26. Relative Luminous Flux vs. Forward Current Figure 29. Forward Current vs. Forward Voltage 1.2 True Green 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 460 480 500 520 540 560 580 600 620 λ - Wavelength ( nm ) 1.8 Φ Vrel - Relative Luminous Flux I Vrel - Relative Luminous Intensity 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40 -20 Blue Green I F = 50 mA 0 20 40 60 80 100 16068 16061 Tamb − Ambient Temperature ( °C ) Figure 27. Relative Intensity vs. Wavelength Figure 30. Rel. Luminous Flux vs. Ambient Temperature Document Number 83144 Rev. 1.8, 14-Jan-05 www.vishay.com 9 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors 511 Dominant Wavelength λ ( nm ) 510 509 508 507 506 505 504 503 502 0 10 20 30 40 50 Blue Green Blue Green I Spec - Specific Luninous Flux 1.0 0.1 1 16059 10 IF - Forward Current ( mA ) 100 16300 I F - Forward Current ( mA ) Figure 31. Specific Luminous Flux vs. Forward Current Figure 34. Dominant Wavelength vs. Forward Current 10.00 I Vrel - Relative Luminous Flux I F - Forward Current ( mA ) 100 Blue Green 90 80 70 60 50 40 30 20 10 0 2.5 16040 1.00 Blue Truegreen 0.10 0.01 1 16060 10 IF - Forward Current ( mA ) 100 3.0 3.5 4.0 4.5 5.0 5.5 V F - Forward Voltage ( V ) Figure 32. Relative Luminous Flux vs. Forward Current Figure 35. Forward Current vs. Forward Voltage 1.2 Blue Green I F = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 420 440 460 480 500 520 540 560 580 600 λ - Wavelength ( nm ) I Vrel - Relative Luminous Intensity 1.8 Φ Vrel - Relative Luminous Flux 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40 -20 Blue I F = 50 mA 16070 0 20 40 60 80 100 16057 T amb - Ambient Temperature ( ° C ) Figure 33. Relative Intensity vs. Wavelength Figure 36. Rel. Luminous Flux vs. Ambient Temperature www.vishay.com 10 Document Number 83144 Rev. 1.8, 14-Jan-05 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors 473 Dominant Wavelength λ ( nm ) Blue I Spec - Specific Luninous Flux Blue 472 1.0 471 470 469 0.1 1 0 10 I F - Forward Current ( mA ) 100 16299 10 20 30 40 50 I F - Forward Current ( mA ) 16041 Figure 37. Specific Luminous Flux vs. Forward Current Figure 40. Dominant Wavelength vs. Forward Current 10.00 I Vrel - Relative Luminous Intensity I F - Forward Current ( mA ) 100 Blue 90 80 70 60 50 40 30 20 10 0 2.5 16062 White 1.00 0.10 0.01 1 16042 10 IF - Forward Current ( mA ) 100 3.0 3.5 4.0 4.5 5.0 5.5 V F - Forward Voltage ( V ) Figure 38. Relative Luminous Flux vs. Forward Current Figure 41. Forward Current vs. Forward Voltage 1.2 Blue 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 400 420 440 460 480 500 520 540 560 λ - W avelength ( nm ) 1.8 Φ V rel - Relative Luminous Flux I Vrel - Relative Luminous Intensity 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40 -20 White I F = 50 mA 0 20 40 60 80 100 16069 16065 T amb - Ambient Temperature ( ° C ) Figure 39. Relative Intensity vs. Wavelength Figure 42. Rel. Luminous Flux vs. Ambient Temperature Document Number 83144 Rev. 1.8, 14-Jan-05 www.vishay.com 11 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors f - Chromaticity coordinate shift (x,y) 0.345 White 0.340 X 0.335 0.330 Y 0.325 0.320 0.315 0 10 20 30 40 50 60 I F - Forward Current ( mA ) I Spec - Specific Luminous Flux White 1.0 0.1 1 16063 10 I F - Forward Current ( mA ) 100 16198 Figure 43. Specific Luminous Flux vs. Forward Current Figure 46. Chromaticity Coordinate Shift vs. Forward Current 10.00 I V rel - Relative Luminous Flux White 1.00 0.10 0.01 1 16064 10 I F - Forward Current ( mA ) 100 Figure 44. Relative Luminous Flux vs. Forward Current 1.2 White I F = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 400 450 500 550 600 650 700 750 800 λ - Wavelength ( nm ) 16071 I V rel - Relative Luminous Intensity Figure 45. Relative Intensity vs. Wavelength www.vishay.com 12 Document Number 83144 Rev. 1.8, 14-Jan-05 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors Package Dimensions in mm 15984 Document Number 83144 Rev. 1.8, 14-Jan-05 www.vishay.com 13 TLWB / BG / O / R / TG / W / Y7900 Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 www.vishay.com 14 Document Number 83144 Rev. 1.8, 14-Jan-05

很抱歉,暂时无法提供与“TLWB”相匹配的价格&库存,您可以联系我们找货

免费人工找货

推荐型号