TSAL7600
Vishay Telefunken
GaAs/GaAlAs IR Emitting Diode in ø 5 mm (T–1¾) Package
Description
TSAL7600 is a high efficiency infrared emitting diode in GaAlAs on GaAs technology, molded in clear plastic packages. In comparison with the standard GaAs on GaAs technology these emitters achieve more than 100 % radiant power improvement at a similar wavelength. The forward voltages at low current and at high pulse current roughly correspond to the low values of the standard technology. Therefore these emitters are ideally suitable as high performance replacements of standard emitters.
Features
D D D D D D D D
Extra high radiant power and radiant intensity High reliability Low forward voltage Suitable for high pulse current operation Standard T–1¾ (ø 5 mm) package Angle of half intensity ϕ = ± 30° Peak wavelength lp = 940 nm Good spectral matching to Si photodetectors
94 8494
Applications
Infrared remote control units with high power requirements Free air transmission systems Infrared source for optical counters and card readers IR source for smoke detectors
Absolute Maximum Ratings
Tamb = 25_C Parameter Reverse Voltage Forward Current Peak Forward Current Surge Forward Current Power Dissipation Junction Temperature Operating Temperature Range Storage Temperature Range Soldering Temperature Thermal Resistance Junction/Ambient Test Conditions Symbol VR IF IFM IFSM PV Tj Tamb Tstg Tsd RthJA Value 5 100 200 1.5 210 100 –55...+100 –55...+100 260 350 Unit V mA mA A mW °C °C °C °C K/W
tp/T = 0.5, tp = 100 ms tp = 100 ms
t
x 5sec, 2 mm from case
Document Number 81015 Rev. 2, 20-May-99
www.vishay.de • FaxBack +1-408-970-5600 1 (5)
TSAL7600
Vishay Telefunken Basic Characteristics
Tamb = 25_C Parameter Forward Voltage g Temp. Coefficient of VF Reverse Current Junction Capacitance Radiant Intensity y Radiant Power Temp. Coefficient of fe Angle of Half Intensity Peak Wavelength Spectral Bandwidth Temp. Coefficient of lp Rise Time Fall Time Test Conditions IF = 100 mA, tp = 20 ms IF = 1 A, tp = 100 ms IF = 100mA VR = 5 V VR = 0 V, f = 1 MHz, E = 0 IF = 100 mA, tp = 20 ms IF = 1.0 A, tp = 100 ms IF = 100 mA, tp = 20 ms IF = 20 mA IF = 100 mA IF = 100 mA IF = 100 mA IF = 100 mA IF = 100 mA Symbol VF VF TKVF IR Cj Ie Ie TKfe ϕ Min Typ 1.35 2.6 –1.3 25 25 200 35 –0.6 ±30 940 50 0.2 800 800 Max 1.6 3 10 15 120 Unit V V mV/K mA pF mW/sr mW/sr mW %/K deg nm nm nm/K ns ns
fe
TKlp tr tf
lp Dl
Typical Characteristics (Tamb = 25_C unless otherwise specified)
250 PV – Power Dissipation ( mW ) 200 IF – Forward Current ( mA ) 250 200
150 RthJA 100
150 100 RthJA 50 0
50 0 0 20 40 60 80 100
0
96 11986
20
40
60
80
100
94 7957 e
Tamb – Ambient Temperature ( °C )
Tamb – Ambient Temperature ( °C )
Figure 1. Power Dissipation vs. Ambient Temperature
Figure 2. Forward Current vs. Ambient Temperature
www.vishay.de • FaxBack +1-408-970-5600 2 (5)
Document Number 81015 Rev. 2, 20-May-99
TSAL7600
Vishay Telefunken
101 I e – Radiant Intensity ( mW/sr ) 102
14255
1000
I F – Forward Current ( A )
IFSM = 1 A ( Single Pulse ) tp / T = 0.01 100 0.1 0.5 0.05
100
10
1
1.0 10–1 10–2
96 11987
0.1 10–1 100 101 tp – Pulse Duration ( ms ) 100 101 102 103 IF – Forward Current ( mA ) 104
Figure 3. Pulse Forward Current vs. Pulse Duration
104 IF – Forward Current ( mA )
Figure 6. Radiant Intensity vs. Forward Current
1000
103
Fe – Radiant Power ( mW )
4
13602
100
102
tp = 100 ms tp / T = 0.001
10
101
1
100 0
13600
0.1 1 2 3 100 VF – Forward Voltage ( V ) 101 102 103 IF – Forward Current ( mA ) 104
Figure 4. Forward Current vs. Forward Voltage
1.2 V Frel – Relative Forward Voltage 1.1 I e rel ; Fe rel IF = 10 mA 1.0 0.9
Figure 7. Radiant Power vs. Forward Current
1.6
1.2 IF = 20 mA 0.8
0.4 0.8 0.7 0 20 40 60 80 100
94 7993 e
0 –10 0 10
50
100
140
94 7990 e
Tamb – Ambient Temperature ( °C )
Tamb – Ambient Temperature ( °C )
Figure 5. Relative Forward Voltage vs. Ambient Temperature
Figure 8. Rel. Radiant Intensity\Power vs. Ambient Temperature
Document Number 81015 Rev. 2, 20-May-99
www.vishay.de • FaxBack +1-408-970-5600 3 (5)
TSAL7600
Vishay Telefunken
1.25 1.0 I e rel – Relative Radiant Intensity 0° 10 ° 20 ° 30°
Fe rel – Relative Radiant Power
40° 1.0 0.9 0.8 0.7 50° 60° 70° 80° 0.6 0.4 0.2 0 0.2 0.4 0.6
0.75 0.5
0.25 IF = 100 mA 0 890 940 990
14291
l – Wavelength ( nm )
94 8011 e
Figure 9. Relative Radiant Power vs. Wavelength
Figure 10. Relative Radiant Intensity vs. Angular Displacement
Dimensions in mm
15908
www.vishay.de • FaxBack +1-408-970-5600 4 (5)
Document Number 81015 Rev. 2, 20-May-99
TSAL7600
Vishay Telefunken Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs ). The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA ) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
Document Number 81015 Rev. 2, 20-May-99
www.vishay.de • FaxBack +1-408-970-5600 5 (5)
很抱歉,暂时无法提供与“TSAL7600”相匹配的价格&库存,您可以联系我们找货
免费人工找货