VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
VSC830
Features
• Dual 2x2 Crosspoint Switch • 2.7Gb/s NRZ Data Bandwidth, 2.7GHz Signal Bandwidth • PECL/TTL-Compatible Control Inputs • PECL-Compatible High-Speed I/O
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
• 50Ω Source Terminated Output Driver and Programmable Input Terminations • Single 3.3V Supply, 1W Typical Dissipation • Power-Down Capability for Unused Outputs • Compact 44-Pin PQFP, 10x10mm Package
General Description
The VSC830 is a monolithic dual 2x2 asynchronous crosspoint switch, designed for critical signal path control and buffering applications, such as loop-back, protection switching, and multi-channel backplane driver/receivers. Signal path delay is tightly matched between each output channel to eliminate the need for delay path compensation when switching between signal sources. The crosspoint function is based on a multiplexer tree architecture. Each 2x2 switch can be considered as a pair of 2:1 multiplexers that share the same inputs. The signal path through each switch is fully differential and delay matched. The signal path is unregistered, so there are no restrictions on the phase, frequency, or signal pattern at each input. Unused outputs can be independently powered off, thereby eliminating power on unused sections (see Design Guide section in this data sheet). The switch control inputs can be configured to be compatible with PECL or TTL levels. The high-speed input and output levels are nominally PECL compatible and capable of interfacing with a wide range of termination schemes.
VSC830 Symbol Diagram
S1,S2 A1 A2 S1,S2 A1 A2 Y1 Y2 Y1 Y2
G52192-0, Rev 4.0 05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
Page 1
VITESSE
SEMICONDUCTOR CORPORATION
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
Data Sheet
VSC830
Functional Block Diagram
PEMODE S1A A1A+ A1ATERM_ENABLE_A
SL
VCC VCCP1A
0
Y1A Y1AN VEE1A VCCP2A
1
S2A
SL
A2A+ A2A-
0
Y2A Y2AN VEE2A
1
S1B A1B+ A1BSL
VCCP1B
0
Y1B Y1BN VEE1B VCCP2B
SL
1
TERM_ENABLE_B S2B
0
A2B+ A2B-
Y2B Y2BN VEE2B
1
Page 2
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
G52192-0, Rev 4.0 05/23/01
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
VSC830
Functional Description
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
Select As shown in Figure 1, each output can be treated as a 2:1 multiplexer, with the A1 and A2 inputs common to both multiplexers. The select input S1 independently controls the state of the multiplexer that drives output Y1, and select input S2 independently controls the output of Y2. Figure 1: Select Functional Block Diagram
S1 S2
A1 A2
Y1 Y2
Table 1 specifies the function of the select inputs.
Table 1: Select Function S1
0 1 0 1
S2
0 0 1 1
Y1
A1 A2 A1 A2
Y2
A1 A1 A2 A2
MODE The interface level of the select pins, S1 and S2, can be programmed to either TTL or PECL levels by shorting the MODE pin to either VCC or VEE. Note that the MODE pin must be tied to either VCC or VEE. The function of MODE is specified in Table 2. Table 2: MODE Function MODE
VEE VCC
S1, S2
TTL PECL
G52192-0, Rev 4.0 05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
Page 3
VITESSE
SEMICONDUCTOR CORPORATION
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
Data Sheet
VSC830
Power-Down Power to each output stage is provided through VCC, VCCP, and VEE. VCC is common to all outputs. To power off unused outputs, tie the respective VEE and VCCP pin to VCC, as shown in Figure 2. Figure 2: Power-Down Mode Example
VCC
VCCP1A
VCCP2A
VCCP1B
VCCP2B
VEE1A “ON”
VEE2A “ON”
VEE1B “OFF”
VEE2B “OFF”
Minimum power configuration requires output channel 1A active, so power must be applied to VCCP1A and VEE1A at all times.
Programmable input termination Across each differential input (from the + input to the - input) of the VSC830 is a switched 100Ω termination resistor. Using the TERM_ENABLE pin, the termination can be optionally disabled. To enable the input termination, connect the respective TERM_ENABLE pin to VCC. To disable the internal termination, connect TERM_ENABLE to VEE. If unconnected, the TERM_ENABLE pin will self-bias to VEE and disable the internal termination. Independent termination controls are provided for the “A” and “B” switches.
Page 4
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
G52192-0, Rev 4.0 05/23/01
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
VSC830
AC Characteristics
Table 3: AC Timing Symbol
FRATE FBW TSKW TCON tR, tF tjP Signal path data rate Signal path bandwidth (-3dB) Channel to channel delay skew Switch configuration setup time(1) High-speed output rise/fall times, 20% to 80% Signal path added jitter, peak-peak(1)
23 (2)
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
Parameter
Min
Typ
Max
2.7 2.7
Units
Gb/s GHz ps ns ps ps
50 1 150 40
NOTES: (1) Tested on a sample basis only, with 2 -1 PRBS data, input signal rise/fall time < 150ps. Value stated in table is added to measurement system jitter. (2) Input signal rise/fall time < 150ps, measured using an alternating 1, 0 pattern.
DC Characteristics (All characteristics are over the specified operating conditions)
Table 4: Power Supply
Symbol
ICC PD PT
Parameter
Total VCC(P) supply current Power dissipation per output (Y1A±, Y2A±, Y1B±, Y2B±) Total chip power (all outputs powered on)
Min
Typ
Max
350 300 1.2
Units
mA mW W
Conditions
NOTE: Specified with outputs terminated, 100Ω between true and complement, VCC = 3.45V.
Table 5: Select Input Levels—TTL Mode
Symbol
VIH VIL IIH IIL
Parameter
Input HIGH voltage (TTL) Input LOW voltage (TTL) Input HIGH current (TTL) Input LOW current (TTL)
Min
2.0
Typ
Max
0.8 500 -500
Units
V V µA µA
Conditions
VIN = 2.4V VIN = 0.5V
Table 6: Select Input Levels—PECL Mode
Symbol
VIH VIL IIH IIL
Parameter
Input HIGH voltage (PECL) Input LOW voltage (PECL) Input HIGH current (PECL) Input LOW current (PECL)
Min
VCC1.0
Typ
Max
Units
V
Conditions
VCC1.6 500 -500
V µA µA VIN = 2.5V VIN = 1.5V
Table 7: Control Inputs
Symbol
RPEMODE
Parameter
PEMODE pin impedance
Min
Typ
3100
Max
Units
Ω
Conditions
G52192-0, Rev 4.0 05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
Page 5
VITESSE
SEMICONDUCTOR CORPORATION
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
Table 8: “A” Input Levels (Differential PECL)
Data Sheet
VSC830
Min
200 VCC1.7
Symbol
VID VICM
Parameter
Input differential voltage Input common-mode voltage
Typ
Max
1000 VCC0.9
Units
mV V
Conditions
See Note 1
NOTE: (1) Peak-to-peak swing of each side of the differential input.
Table 9: “Y” Output Levels (Differential PECL)
Symbol
VOD1 VOD2 VOCM
Parameter
Output differential voltage (Data) Output differential voltage (Clock) Output common-mode voltage
Min
400 400 VCC1.6
Typ
700 550
Max
1000 850 VCC1.0
Units
mV mV V
Conditions
See Note 1 See Note 2
NOTES: (1) Peak-peak swing of each side of the differential output. 223-1 PRBS data. (2) Peak-to-peak swing of each side of the differential output. Alternating 1, 0 pattern.
Absolute Maximum Ratings
Power Supply Voltage (VCC) Potential to GND ..............................................................................-0.5V to +4.0V TTL Input Voltage Applied ................................................................................................... -0.5V to VCC +0.5V ECL Input Voltage Applied .................................................................................................... -0.5V to VCC +0.5V Output Current (IOUT) .................................................................................................................................... 50mA Case Temperature Under Bias (TC) .............................................................................................-55oC to + 125oC Storage Temperature (TSTG)........................................................................................................-65oC to + 150oC
NOTE: (1) Caution: Stresses listed under “Absolute Maximum Ratings” may be applied to devices one at a time without causing permanent damage. Functionality at or exceeding the values listed is not implied. Exposure to these values for extended periods may affect device reliability.
Operating Conditions
Supply voltage (VEE) .......................................................................................................................................... 0V Supply voltage (VCC) ............................................................................................................................ +3.3V ±5% Supply voltage (VCCP) .......................................................................................................................... +3.3V ±5% Operating Range(1) (T) ..................................................................................................................... 0oC to +85oC
NOTE: (1) Lower limit of specification is ambient temperature and upper limit is case temperature.
ESD Ratings
Proper ESD procedures should be used when handling this product. The VSC830 is rated to the following ESD voltages based on the human body model: 1. All pins are rated at or above 1500V.
Page 6
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
G52192-0, Rev 4.0 05/23/01
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
VSC830
Package Pin Descriptions
Figure 3: Pin Diagram
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
TERM_ENABLE_A
VCCP1A
VEE1A 35
44
43
42
41
40
39
38
37
36
34 33 32 31 30 29
VCC S2A A2A+ A2AVCC PEMODE VCC A1B+ A1BS1B VCC
VEE1A
A1A+
Y1A+
A1A-
S1A
VCC
Y1A-
VCC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 VSC830
VEE2A VEE2A Y2A+ Y2AVCCP2A VCC VCCP1B Y1B+ Y1BVEE1B VEE1B
28 27 26 25 24 23
S2B
A2B+
A2B-
VEE2B
TERM_ENABLE_B
VCCP2B
VEE2B
Y2B-
Y2B+
VCC
VCC
G52192-0, Rev 4.0 05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
Page 7
VITESSE
SEMICONDUCTOR CORPORATION
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
Table 10: Pin Identification
Data Sheet
VSC830
Function
Positive Supply Negative Supply Negative Supply Negative Supply Negative Supply Positive Supply Positive Supply Positive Supply Positive Supply Termination Enable
Signal Name
VCC VEE1A VEE2A VEE1B VEE2B VCCP1A VCCP2A VCCP1B VCCP2B TERM_ENABLE_A
Pin(s)
1, 5, 7, 11, 12, 16, 28, 40, 44 34, 35 32, 33 23, 24 21, 22 38 29 27 18 39
Description
Global supply for chip For channel output 1A. Must always be powered on. For output 2A. Connect to VCC to power-off. For output 1B. Connect to VCC to power-off. For output 2B. Connect to VCC to power-off. Output driver supply for channel 1A Output driver supply for channel 2A Output driver supply for channel 1B Output driver supply for channel 2B Input termination enable for the “A” switch. Normally low (VEE). Connect to VCC to enable internal 100 ohm termination between AxA+ inputs. Input termination enable for the “B” switch. Normally low (VEE). Connect to VCC to enable internal 100Ω termination between AxA+ inputs. PECL/TTL interface control Channel 1A differential signal input Channel 1A input selector Channel 1A differential output Channel 2A differential signal input Channel 2A input selector Channel 2A differential output Channel 1B differential signal input Channel 1B input selector Channel 1B differential output Channel 2B differential signal input Channel 2B input selector Channel 2B differential output
TERM_ENABLE_B PEMODE A1A± S1A Y1A± A2A± S2A Y2A± A1B± S1B Y1B± A2B± S2B Y2B±
17 6 41, 42 43 37, 36 3, 4 2 31, 30 8, 9 10 26, 25 14, 15 13 20, 19
Termination Enable Control PECL Input PECL/TTL Input PECL Output PECL Input PECL/TTL Input PECL Output PECL Input PECL/TTL Input PECL Output PECL Input PECL/TTL Input PECL Output
Page 8
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
G52192-0, Rev 4.0 05/23/01
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
VSC830
Package Thermal Characteristics
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
The VSC830 is packaged into a standard plastic quad flatpack with an embedded, but unexposed thermal slug. This package adheres to industry-standard EIAJ footprints for a 10x10mm body, 44 lead PQFP. The package construction is as shown in Figure 4. The 44-pin PQFP with embedded slug has the thermal properties shown in Table 11. This package allows the VSC830 to operate with ambient temperatures up to 70oC in still air. Figure 4: Package Cross Reference
Wire Bond
Die
Plastic Molding Compound
Lead
Insulator Copper Heat Spreader
Table 11: 44-Pin PQFP Thermal Resistance Symbol
θCA-0 θCA-100 θCA-200 θCA-400 θCA-600
Description
Thermal resistance from case-to-ambient, still air Thermal resistance from case-to-ambient, 100 LFPM air Thermal resistance from case-to-ambient, 200 LFPM air Thermal resistance from case-to-ambient, 400 LFPM air Thermal resistance from case-to-ambient, 600 LFPM air
Value (oC/W)
28.4 22.7 19.9 16.2 13.9
TA(MAX) (oC)
50.9 57.8 61.1 65.6 68.3
NOTE: TA(MAX) = max case temperature - (max power dissipation • θCA AIRFLOW).
G52192-0, Rev 4.0 05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
Page 9
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
VSC830
Package Information
44-Pin PQFP, 10mm x 10mm Package Drawing
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
F G
44 34
Item
A
mm
2.45 2.00 0.35 13.20 10.00 13.20 10.00 0.88 0.80 0.80 3.56
Tol.
MAX +.10 / -.05 ±.05 ±.25 ±.10 ±.25 ±.10 +.15 / -.10 +.15 / -.10 BASIC ±.50 DIA.
1
33
D E
L
F
IH
G H
11
23
I J
12
10 o TYP
22
J1 K
D
L
10 o TYP
K
0.30 RAD.TYP.
A
0.20 RAD. TYP . 0 o- 8 o 0.25 MAX.
0.17 MAX. 0.25
J1 J
0.102 MAX. LEAD COPLANARITY
E
NOTES: Drawing not to scale. Heat spreader up. All units in mm unless otherwise noted. Package #: 101-299-1 Issue #: 1
G52192-0, Rev 4.0 05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
Page 10
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
VSC830
Ordering Information
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
The order number for this product is formed by a combination of the device number, and package type.
VSC830 Device Type
2.7Gb/s Asynchronous Dual 2x2 Crosspint Switch Package QZ: 44-Pin PQFP, 10 x 10mm Body
XX
Evaluation Boards
An evaluation board for the VSC830 is available. Please contact your local sales representative.
Notice
Vitesse Semiconductor Corporation (“Vitesse”) provides this document for informational purposes only. All information in this document, including descriptions of features, functions, performance, technical specifications and availability, is subject to change without notice at any time. Nothing contained in this document shall be construed as extending any warranty or promise, express or implied, that any Vitesse product will be available as described or will be suitable for or will accomplish any particular task. Vitesse products are not intended for use in life support appliances, devices or systems. Use of a Vitesse product in such applications without written consent is prohibited.
G52192-0, Rev 4.0 05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
Page 11
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
VSC830
Design Guide
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
Introduction The purpose of this document is to make it easier for system designers to use the VSC830 2.7Gb/s dual 2x2 crosspoint switch. This guide provides guidelines for I/O terminations, power supply decoupling and board layout. Signal Terminations The high-speed inputs (A1A+/-, A1B+/-, A2A+/- and A2B+/-) on the VSC830 are internally terminated with a programmable 100Ω termination between the true and complement input. The input termination can be disabled by connecting the TERM_ENABLE pin to VEE. High impedance internal biasing resistors provide the correct bias voltage at the inputs for AC-coupled applications (Figure 5). Figure 5: High-Speed Input Termination
a) Termination Enabled
Chip Boundary
VCC = 3.3 V ZO CIN
2.0 V 2.0 V
100 ZO CIN VEE = GND
R| | = 3.15kΩ (approx.)
b) Termination Disabled
Chip Boundary
VCC = 3.3 V ZO RT = ZO VTT VTT CIN VEE = GND CIN
2.0 V 2.0 V
R| | = 3.15 kΩ (approx.)
CIN TYP = 0.1µF (capacitor value is selected for data input = 2.7Gb/s) VTT = VCC - 1.3V
G52192-0, Rev 4.0 05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
Page 12
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
VSC830
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
The high-speed outputs (Y1A+/-, Y1B+/-, Y2A+/- and Y2B+/-) each consist of a differential pair designed to drive a 50Ω transmission line. The transmission line should be terminated with a 100Ω resistor at the receiver of the downstream device between the true and complement outputs. No connection to a termination voltage is required. The output driver is source terminated to 50Ω on-chip, providing a snubbing of any reflections. Output power can be cut by tying VEE to VCC. In single ended mode, the unused output must be terminated with 50Ω. Some output termination examples are shown in Figures 6 and 7.
Figure 6: Examples of High-Speed Output I/O Termination for VSC830
a) AC Termination #1
VCC 50Ω VCC
ZO = 50Ω
0.1 µF
50Ω
0.1 µF 50Ω VCC VCC
50Ω
b) AC Termination #2 (Internal biasing required for Receiver)
VCC 50Ω
ZO = 50Ω
0.1 µF 100Ω 0.1 µF
50Ω VCC
c) AC Termination #3
VCC 50Ω
ZO = 50Ω
0.1 µF
50Ω 100 pF 50Ω
0.1 µF 50Ω VCC
G52192-0, Rev 4.0 05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
Page 13
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
VSC830
a) Single-Ended AC Termination (Receiver internal biasing required)
VCC 50Ω
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
Figure 7: Examples of High-Speed Output I/O Termination for VSC830
ZO = 50Ω
0.1µF 100Ω 0.1µF
50Ω VCC
b) DC Termination
VCC 50Ω VCC
ZO = 50Ω
50Ω
0.1µF
50Ω VCC
50Ω VCC
0.1µF
Power Supply and Layout Considerations The VSC830 is a single supply part, requiring only a 3.3V supply. The location and hook-up of the bypass capacitors is critical to providing the VSC830 with a clean 3.3V power supply. VCC that are adjacent can share a 0.027µF capacitor connected to VEE. Normally the four channel specific VCC pins (VCCP1A, VCCP1B, VCCP2A, VCCP2B) are connected to one common VCC plane. In the same way the four channel specific VEE pins are connected to the common VEE plane. A suggested decoupling schematic for this configuration is shown in Figure 7a. However, a slightly higher signal integrity can be achieved if these pins are treated as different power supplies. In this case, VCCP1A should then be decoupled to VEE1A etc, as shown in Figure 7b.
G52192-0, Rev 4.0 05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
Page 14
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
VSC830
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
Figure 8: Decoupling Example: Common VCC and VEE Planes
VEE
VEE
C1
C1
44
43
42
41
40
39
38
37
36
35
VCC
VCC
C1 VEE 1 2 3 C1 VEE 4 5 6 C1 VEE 7 8 9 C1 VEE 10 VCC VCC
VCCP1A
34
VCCS2A
33 32 31 30
VSC830 Top View Heat Spreader Up
VCCP2A VCC VCCP1B
29 28 27 26 25 24
C1 VEE
12
13
14
15
16
17
18
19
VCCP2B
11
VCC VCC VCC
23
20
21
C1 VEE
C1 VEE
22 C1 = 0.027µF VCC = VEE = +3.3V (VEE typically ground) Recommended resistor and capacitor is size 805
G52192-0, Rev 4.0 05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
Page 15
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
VSC830
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
Figure 9: Decoupling Example: Separate VCC and VEE Planes
VEE C1 C1 VEE VEE1A C1
44
43
42
41
40
39
38
37
36
35
VCC
VCC
C1 VEE 1 2 3 C1 VEE 4 5 6 C1 VEE 7 8 9 C1 VEE 10 VCC VCC VCC
VCCP1A
34
33 32 31 30 C1 C1 C1 VEE2A VEE VEE1B
VSC830 Top View Heat Spreader Up
VCCP2A VCC VCCP1B
29 28 27 26 25 24
12
13
14
15
16
17
18
19
VCCP2B
11
VCC VCC VCC
23
20
21
C1 VEE
C1 VEE
C1 VEE2B C1 = 0.027µF VCC = VEE = +3.3V (VEE typically ground) Recommended resistor and capacitor is size 805
22
G52192-0, Rev 4.0 05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
Page 16
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
VSC830
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
High-Speed Serial I/O Layout Considerations The high-speed serial signals contain digital data at fundamental frequencies up to 2.488GHz clock rate. Given that, in order to preserve the edges of such data sequences, it is necessary to have excellent frequency and phase response up to at least the 3rd harmonic, if not the 7th harmonic. Improved signal quality will result should the reader follow the general design rules below:
1. Keep traces as short as possible. Initial component placement should be very carefully considered. 2. The impedance of the traces must match that of the terminations, connectors and cable(s) in order to reduce reflections and impedance mismatches. Reflections can create standing waves that will increase the signal jitter. 3. Differential transmission line impedance must be maintained at 100Ω. 4. When routing differential pairs, keep the lengths identical for both traces. Differences in trace length translate directly into signal skew and can add to the signal jitter. Remember also that the differential impedance is affected by the separation between the traces. 5. Keep differential pair traces on the same side of the PCB to minimize impedance discontinuity, such as the one caused when using printed-circuit board vias. 6. Eliminate or reduce stubs. 7. Use rounded corners rather than 45° or 90° corners. 8. Keep signal traces far from other signals which might capacitively couple noise into the signals. This includes the other trace of a differential pair or the traces of the parallel PECL or TTL interface. 9. Do not cut up the power or ground planes in an effort to steer current paths. This usually produces more noise, not less.
G52192-0, Rev 4.0 05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
Page 17
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
VSC830
2.7Gb/s Asynchronous Dual 2x2 Crosspoint Switch
G52192-0, Rev 4.0 05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012 Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: prodinfo@vitesse.com Internet: www.vitesse.com
Page 18