W78L51 8-BIT MICROCONTROLLER
GENERAL DESCRIPTION
The W78L51 microcontroller supplies a wider frequency and supply voltage range than most 8-bit microcontrollers on the market. It is compatible with the industry standard 80C51 microcontroller series. The W78L51 contains four 8-bit bidirectional parallel ports, one extra 4-bit bit-addressable I/O port (Port 4) and two additional external interrupts ( INT2 , INT3 ), two 16-bit timer/counters, one watchdog timer and a serial port. These peripherals are supported by a seven-source, two-level interrupt capability. There are 128 bytes of RAM and an 4K byte mask ROM for application programs. The W78L51 microcontroller has two power reduction modes, idle mode and power-down mode, both of which are software selectable. The idle mode turns off the processor clock but allows for continued peripheral operation. The power-down mode stops the crystal oscillator for minimum power consumption. The external clock can be stopped at any time and in any state without affecting the processor.
FEATURES
• Fully static design • Supply voltage of 1.8V to 5.5V • DC-24 MHz operation • 128 bytes of on-chip scratchpad RAM • 4K bytes of on-chip mask ROM • 64K bytes program memory address space • 64K bytes data memory address space • Four 8-bit bidirectional ports • Two 16-bit timer/counters • One full duplex serial port • Seven-source, two-level interrupt capability • One extra 4-bit bit-addressable I/O port • Two additional external interrupts INT2 / INT3 • Watchdog timer • EMI reduction mode • Built-in power management • Code protection • Packages:
− DIP 40: W78L51-24 − PLCC 44: W78L51P-24 − QFP 44: W78L51F-24
-1-
Publication Release Date: January 1999 Revision A2
W78L51
PIN CONFIGURATIONS
40-Pin DIP (W78L51)
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 RST RXD, P3.0 TXD, P3.1 INT0, P3.2 INT1, P3.3 T0, P3.4 T1, P3.5 WR, P3.6 RD, P3.7 XTAL2 XTAL1 VSS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 VDD P0.0, AD0 P0.1, AD1 P0.2, AD2 P0.3, AD3 P0.4, AD4 P0.5, AD5 P0.6, AD6 P0.7, AD7 EA ALE PSEN P2.7, A15 P2.6, A14 P2.5, A13 P2.4, A12 P2.3, A11 P2.2, A10 P2.1, A9 P2.0, A8
44-Pin PLCC (W78L51P)
/ I N T 3 , PPPPP P 1 1111 4V ..... .D 4 3210 2D
44-Pin QFP (W78L51F)
/ I A N D T 0 3 , , PPPPPP P 111114V0 . . . .. .D. 432102D0
A D 0 , P 0 . 0
A D 1 , P 0 . 1
A D 2 , P 0 . 2
A D 3 , P 0 . 3
A D 1 , P 0 . 1
A D 2 , P 0 . 2
A D 3 , P 0 . 3
P1.5 P1.6 P1.7 RST RXD, P3.0 INT2, P4.3 TXD, P3.1 INT0, P3.2 INT1, P3.3 T0, P3.4 T1, P3.5
6 5 4 3 2 1 44 43 42 41 40 39 38 37 9 36 10 35 11 7 8 12 13 14 15 34 33 32
P0.4, AD4 P0.5, AD5 P0.6, AD6 P0.7, AD7 EA P4.1 ALE PSEN P2.7, A15 P2.6, A14 P2.5, A13
P1.5 P1.6 P1.7 RST RXD, P3.0 INT2, P4.3 TXD, P3.1 INT0, P3.2 INT1, P3.3 T0, P3.4 T1, P3.5
1 2
31 30 16 29 17 18 19 20 21 22 23 24 25 26 27 28 P 3 . 6 , / W R P 3 . 7 , / R D X T A L 2 XVPP TS42 AS. . L 00 1 , A 8 P 2 . 1 , A 9 P 2 . 2 , A 1 0 P 2 . 3 , A 1 1 P 2 . 4 , A 1 2
44 43 42 41 40 39 38 37 36 35 34 33 32 31 3 30 4 29 5 28 6 27 7 26 8 9 25 10 24 11 23 12 13 14 15 16 17 18 19 20 21 22 P 3 . 6 , / W R P 3 . 7 , / R D X T A L 2 XVPPP TS422 AS. . . L 001 1 ,, AA 89 P 2 . 2 , A 1 0 P 2 . 3 , A 1 1 P 2 . 4 , A 1 2
P0.4, AD4 P0.5, AD5 P0.6, AD6 P0.7, AD7 EA P4.1 ALE PSEN P2.7, A15 P2.6, A14 P2.5, A13
-2-
W78L51
PIN DESCRIPTION
P0.0− P0.7
Port 0, Bits 0 through 7. Port 0 is a bidirectional I/O port. This port also provides a multiplexed low order address/data bus during accesses to external memory.
P1.0− P1.7
Port 1, Bits 0 through 7. Port 1 is a bidirectional I/O port with internal pull-ups.
P2.0− P2.7
Port 2, Bits 0 through 7. Port 2 is a bidirectional I/O port with internal pull-ups. This port also provides the upper address bits for accesses to external memory.
P3.0− P3.7
Port 3, Bits 0 through 7. Port 3 is a bidirectional I/O port with internal pull-ups. All bits have alternate functions, which are described below: PIN P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7 ALTERNATE FUNCTION RXD Serial Receive Data TXD Serial Transmit Data INT0 External Interrupt 0 INT1 External Interrupt 1 T0 Timer 0 Input T1 Timer 1 Input WR Data Write Strobe RD Data Read Strobe
P4.0− P4.3
Another bit-addressable bidirectional I/O port P4. P4.3 and P4.2 are alternative function pins. It can be used as general I/O pins or external interrupt input sources ( INT2 / INT3 ). EA External Address Input, active low. This pin forces the processor to execute out of external ROM. This pin should be kept low for all W78C31 operations. RST Reset Input, active high. This pin resets the processor. It must be kept high for at least two machine cycles in order to be recognized by the processor.
-3-
Publication Release Date: January 1999 Revision A2
W78L51
ALE Address Latch Enable Output, active high. ALE is used to enable the address latch that separates the address from the data on Port 0. ALE runs at 1/6th of the oscillator frequency. A single ALE pulse is skipped during external data memory accesses. ALE goes to a high impedance state during reset with a weak pull-up. PSEN Program Store Enable Output, active low. PSEN enables the external ROM onto the Port 0 address/data bus during fetch and MOVC operations. PSEN goes to a high impedance state during reset with a weak pull-up.
XTAL1
Crystal 1. This is the crystal oscillator input. This pin may be driven by an external clock.
XTAL2
Crystal 2. This is the crystal oscillator output. It is the inversion of XTAL1.
VSS, VDD
Power Supplies. These are the chip ground and positive supplies.
BLOCK DIAGRAM
P1.0 ~ P1.7
Port 1 Latch ACC
INT2
Port 1
B
Port 0 T1 T2 Latch Port 0
Interrupt
INT3
P0.0 ~ P0.7
DPTR Timer 0 Timer 1 UART PSW ALU Stack Pointer Temp Reg. PC
Incrementor
Addr. Reg.
P3.0 ~ P3.7
Port 3
Port 3 Latch Instruction Decoder & Sequencer
SFR RAM Address
128bytes RAM & SFR Port 2
Bus & Clock Controller
4KB ROM
Port 2 Latch
P2.0 ~ P2.7
P4.0 ~ P4.3
Port 4
Port 4 Latch
Watchdog Timer
Oscillator
Reset Block
Power control
XTAL1
XTAL2 ALE PSEN
RST
VDD
GND
-4-
W78L51
FUNCTIONAL DESCRIPTION
The W78L51 architecture consists of a core controller surrounded by various registers, five general purpose I/O ports, 128 bytes of RAM, two timer/counters, one watchdog timer and a serial port. The processor supports 111 different opcodes and references both a 64K program address space and a 64 K data storage space.
Timers 0, 1
Timers 0, 1 each consist of two 8-bit data registers. These are called TL0 and TH0 for Timer 0, TL1 and TH1 for Timer 1. The TCON and TMOD registers provide control functions for timers 0, 1.
Clock
The W78L51 is designed to be used with either a crystal oscillator or an external clock. Internally, the clock is divided by two before it is used. This makes the W78L51 relatively insensitive to duty cycle variations in the clock.
Crystal Oscillator
The W78L51 incorporates a built-in crystal oscillator. To make the oscillator work, a crystal must be connected across pins XTAL1 and XTAL2. In addition, a load capacitor must be connected from each pin to ground, and a resistor must also be connected from XTAL1 to XTAL2 to provide a DC bias when the crystal frequency is above 24 MHz.
External Clock
An external clock should be connected to pin XTAL1. Pin XTAL2 should be left unconnected. The XTAL1 input is a CMOS-type input, as required by the crystal oscillator. As a result, the external clock signal should have an input high level of greater than 3.5 volts when VDD = 5 volts.
Power Management
Idle Mode The idle mode is entered by setting the IDL bit in the PCON register. In the idle mode, the internal clock to the processor is stopped. The peripherals and the interrupt logic continue to be clocked. The processor will exit idle mode when either an interrupt or a reset occurs. Power-down Mode When the PD bit of the PCON register is set, the processor enters the power-down mode. In this mode all of the clocks, including the oscillator are stopped. The only way to exit power-down mode is by a reset.
Reset
The external RESET signal is sampled at S5P2. To take effect, it must be held high for at least two machine cycles while the oscillator is running. An internal trigger circuit in the reset line is used to deglitch the reset line when the W78L51 is used with an external RC network. The reset logic also has a special glitch removal circuit that ignores glitches on the reset line. During reset, the ports are initialized to FFH, the stack pointer to 07H, PCON (with the exception of bit 4) to 00H, and all of the other SFR registers except SBUF to 00H. SBUF is not reset.
-5-
Publication Release Date: January 1999 Revision A2
W78L51
New Defined Peripheral
In order to be more suitable for I/O, an extra 4-bit bit-addressable port P4 and two external interrupts INT2 , INT3 have been added to either the PLCC or QFP package. And description follows: 1. INT2 / INT3 Two additional external interrupts, INT2 and INT3 , whose functions are similar to those of external interrupt 0 and 1 in the standard 80C52. The functions/status of these interrupts are determined/shown by the bits in the XICON (External Interrupt Control) register. The XICON register is bit-addressable but is not a standard register in the standard 80C52. Its address is at 0C0H. To set/clear bits in the XICON register, one can use the "SETB (/CLR) bit" instruction. For example, "SETB 0C2H" sets the EX2 bit of XICON. ***XICON - external interrupt control (C0H) PX3 EX3 IE3 IT3 PX2 EX2 IE2 IT2
PX3: External interrupt 3 priority high if set EX3: External interrupt 3 enable if set IE3: If IT3 = 1, IE3 is set/cleared automatically by hardware when interrupt is detected/serviced IT3: External interrupt 3 is falling-edge/low-level triggered when this bit is set/cleared by software PX2: External interrupt 2 priority high if set EX2: External interrupt 2 enable if set IE2: If IT2 = 1, IE2 is set/cleared automatically by hardware when interrupt is detected/serviced IT2: External interrupt 2 is falling-edge/low-level triggered when this bit is set/cleared by software Seven-source interrupt informations: INTERRUPT SOURCE External Interrupt 0 Timer/Counter 0 External Interrupt 1 Timer/Counter 1 Serial Port External Interrupt 2 External Interrupt 3 VECTOR ADDRESS 03H 0BH 13H 1BH 23H 33H 3BH POLLING SEQUENCE WITHIN PRIORITY LEVEL 0 (highest) 1 2 3 4 5 6 (lowest) ENABLE REQUIRED SETTINGS IE.0 IE.1 IE.2 IE.3 IE.4 XICON.2 XICON.6 INTERRUPT TYPE EDGE/LEVEL TCON.0 TCON.2 XICON.0 XICON.3
-6-
W78L51
2. PORT4 Another bit-addressable port P4 is also available and only 4 bits (P4) can be used. This port address is located at 0D8H with the same function as that of port P1, except the P4.3 and P4.2 are alternative function pins. It can be used as general I/O pins or external interrupt input sources ( INT2 / INT3 ). Example: P4 REG 0D8H MOV P4, #0AH ; Output data "A" through P4.0−P4.3. MOV A, P4 ; Read P4 status to Accumulator. SETB P4.0 ; Set bit P4.0 CLR P4.1 ; Clear bit P4.1
Watchdog Timer
The Watchdog timer is a free-running timer which can be programmed by the user to serve as a system monitor, a time-base generator or an event timer. It is basically a set of dividers that divide the system clock. The divider output is selectable and determines the time-out interval. When the time-out occurs a flag is set, and a system reset can also be caused if it is enabled. The main use of the Watchdog timer is as a system monitor. This is important in real-time control applications. In case of power glitches or electro-magnetic interference, the processor may begin to execute errant code. If this is left unchecked the entire system may crash. The watchdog time-out selection will result in different time-out values depending on the clock speed. The Watchdog timer will de disabled on reset. In general, software should restart the Watchdog timer to put it into a known state. The control bits that support the Watchdog timer are discussed below. Watchdog Timer Control Register Bit: 7 ENW 6 CLRW 5 WIDL 4 3 2 PS2 1 PS1 0 PS0
Mnemonic: WDTC
Address: 8FH
ENW : Enable watch-dog if set. CLRW : Clear watch-dog timer and prescaler if set. This flag will be cleared automatically WIDL : If this bit is set, watch-dog is enabled under IDLE mode. If cleared, watch-dog is disabled under IDLE mode. Default is cleared. PS2, PS1, PS0 : Watch-dog prescaler timer select. Prescaler is selected when set PS2~0 as follows: PS2 0 0 0 0 1 1 1 1 PS1 0 1 0 1 0 0 1 1 PS0 0 0 1 1 0 1 0 1 PRESCALER SELECT 2 4 8 16 32 64 128 256
-7-
Publication Release Date: January 1999 Revision A2
W78L51
The time-out period is obtained using the following formula: 1 × 2 14 × PRESCALER × 1000 × 12 mS OSC Before Watchdog time-out occurs, the program must clear the 14-bit timer by writing 1 to WDTC.6 (CLRW). After 1 is written to this bit, the 14-bit timer, prescaler and this bit will be reset on the next instruction cycle. The Watchdog timer is cleared on reset.
WIDL IDLE EXTERNAL RESET 14-BIT TIMER
CLEAR
ENW
OSC
1/12
PRESCALER
INTERNAL RESET
Watchdog Timer Block Diagram
CLRW
Typical Watchdog time-out period when OSC = 20 MHz PS2 PS1 PS0 00 0 01 0 00 1 01 1 10 0 10 1 11 0 11 1 WATCHDOG TIME-OUT PERIOD 19.66 mS 39.32 mS 78.64 mS 157.28 mS 314.57 mS 629.14 mS 1.25 S 2.50 S
Reduce EMI Emission
Because of the on-chip ROM, when a program is running in internal ROM space, the ALE will be unused. The transition of ALE will cause noise, so it can be turned off to reduce the EMI emission if it is not needed. Turning off the ALE signal transition only requires setting the bit 0 of the AUXR SFR, which is located at 08Eh. When ALE is turned off, it will be reactivated when the program accesses external ROM/RAM data or jumps to execute an external ROM code. The ALE signal will turn off again after it has been completely accessed or the program returns to internal ROM code space. AUXR - Auxiliary Register Bit: 7 6 5 4 3 2 1 0 AO
Mnemonic: AUXR AO: Turn off ALE signal.
Address: 8Eh
-8-
W78L51
ABSOLUTE MAXIMUM RATINGS
PARAMETER DC Power Supply Input Voltage Operating Temperature Storage Temperature SYMBOL VCC−VSS VIN TA TST MIN. -0.3 VSS -0.3 0 -55 MAX. +7.0 VCC +0.3 70 +150 UNIT V V °C °C
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.
DC CHARACTERISTICS
(VDD−VSS = 5V ±10%, TA = 25°C, Fosc = 20 MHz, unless otherwise specified.)
PARAMETER
SYM.
PECIFICATION MIN. MAX. 5.5 20 3 6 1.5 50 20 +10 +300 +10
UNIT
TEST CONDITIONS
Operating Voltage Operating Current Idle Current Power Down Current
VDD IDD IIDLE IPWDN
1.8 -
V mA mA mA mA µA µA µA µA µA µA No load, VDD = 5.5V, 20 MHz No load, VDD = 2.0V, 16 MHz VDD = 5.5V, Fosc = 20 MHz VDD = 2.0V, Fosc = 16 MHz VDD = 5.5V, Fosc = 20 MHz VDD = 2.0V, Fosc = 16 MHz VDD = 5.5V VIN = 0V or VDD VDD = 5.5V 0 < VIN < VDD VDD = 5.5V 0V < VIN < VDD
Input Current P1, P2, P3, P4 Input Current RST Input Leakage Current P0, EA Logic 1 to 0 Transition Current P1, P2, P3, P4 Input Low Voltage P0, P1, P2, P3, P4, EA Input Low Voltage RST[*1]
IIN1 IIN2 ILK
-50 -10 -10
ITL [*4]
-500
-
VDD = 5.5V VIN = 2.0V
VIL1
0 0
0.8 0.5 0.8 0.3
V V V V
VDD = 4.5V VDD = 2.0V VDD = 4.5V VDD = 2.0V
VIL2
0 0
-9-
Publication Release Date: January 1999 Revision A2
W78L51
DC Characteristics, continued
PARAMETER Input Low Voltage XTAL1 [*3] Input High Voltage P0, P1, P2, P3, P4, EA Input High Voltage RST[*1] Input High Voltage XTAL1 [*3] Output Low Voltage P1, P2, P3, P4 Output Low Voltage P0, ALE, PSEN [*2] Sink Current P1, P2, P3, P4 Sink Current P0, ALE, PSEN Output High Voltage P1, P2, P3, P4 Output High Voltage P0, ALE, PSEN [*2] Source Current P1, P2, P3, P4 Source Current P0, ALE, PSEN
SYM. VIL3 VIH1
SPECIFICATION MIN. 0 0 2.0 1.4 MAX. 0.8 0.6 VDD +0.2 VDD +0.2 VDD +0.2 VDD +0.2 VDD +0.2 VDD +0.2 0.45 0.25 0.45 0.25 9 5.4 16 9 -250 -30 -16 -2.4
UNIT V V V V V V V V V V V V mA mA mA mA V V V V µA µA mA mA
TEST CONDITIONS VDD = 4.5V VDD = 2.0V VDD = 5.5V VDD = 2.0V VDD = 5.5V VDD = 2.0V VDD = 5.5V VDD = 2.0V VDD = 4.5V, IOL = +2 mA VDD = 2.0V, IOL = +1 mA VDD = 4.5V, IOL = +4 mA VDD = 2.0V, IOL = +2 mA VDD = 4.5V, Vin = 0.45V VDD = 2.0V, Vin = 0.45V VDD = 4.5V, Vin = 0.45V VDD = 2.0V, Vin = 0.45V VDD = 4.5V, IOH = -100 µA VDD = 2.0V, IOH = -8 µA VDD = 4.5V, IOH = -400 µA VDD = 2.0V, IOH = -200 µA VDD = 4.5V, Vin = 2.4V VDD = 2.0V, Vin = 1.4V VDD = 4.5V, Vin = 2.4V VDD = 2.0V, Vin = 1.4V
VIH2 VIH3 VOL1 VOL2
3.5 1.7 3.5 1.6 -
ISK1 ISK2
4 1.8 8 4.5
VOH1 VOH2
2.4 1.4 2.4 1.4
ISR1 ISR2
-100 -10 -8 -1.0
Notes: *1. RST pin is a Schmitt trigger input. *2. P0, ALE and /PSEN are tested in the external access mode. *3. XTAL1 is a CMOS input. *4. Pins of P1, P2, P3, P4 can source a transition current when they are being externally driven from 1 to 0.
- 10 -
W78L51
AC CHARACTERISTICS
The AC specifications are a function of the particular process used to manufacture the part, the ratings of the I/O buffers, the capacitive load, and the internal routing capacitance. Most of the specifications can be expressed in terms of multiple input clock periods (TCP), and actual parts will usually experience less than a ±20 nS variation. The numbers below represent the performance expected from a 0.5 micron CMOS process when using 2 and 4 mA output buffers.
Clock Input Waveform
XTAL1
T CH F OP, T CP T CL
PARAMETER Operating Speed Clock Period Clock High Clock Low
SYMBOL FOP TCP TCH TCL
MIN. 0 25 10 10
TYP. -
MAX. 24 -
UNIT MHz nS nS nS
NOTES 1 2 3 3
Notes: 1. The clock may be stopped indefinitely in either state. 2. The TCP specification is used as a reference in other specifications. 3. There are no duty cycle requirements on the XTAL1 input.
Program Fetch Cycle
PARAMETER Address Valid to ALE Low Address Hold from ALE Low ALE Low to PSEN Low SYMBOL TAAS TAAH TAPL TPDA TPDH TPDZ TALW TPSW MIN. 1 TCP-∆ 1 TCP-∆ 1 TCP-∆ 0 0 2 TCP-∆ 3 TCP-∆ TYP. 2 TCP 3 TCP MAX. 2 TCP 1 TCP 1 TCP UNIT nS nS nS nS nS nS nS nS 4 4 NOTES 4 1, 4 4 2 3
PSEN Low to Data Valid
Data Hold after PSEN High Data Float after PSEN High ALE Pulse Width PSEN Pulse Width
Notes: 1. P0.0−P0.7, P2.0−P2.7 remain stable throughout entire memory cycle. 2. Memory access time is 3 TCP. 3. Data have been latched internally prior to PSEN going high. 4. "∆" (due to buffer driving delay and wire loading) is 20 nS.
- 11 -
Publication Release Date: January 1999 Revision A2
W78L51
Data Read Cycle
PARAMETER ALE Low to RD Low RD Low to Data Valid Data Hold from RD High Data Float from RD High RD Pulse Width SYMBOL TDAR TDDA TDDH TDDZ TDRD MIN. 3 TCP-∆ 0 0 6 TCP-∆ TYP. 6 TCP MAX. 3 TCP+∆ 4 TCP 2 TCP 2 TCP UNIT nS nS nS nS nS 2 NOTES 1, 2 1
Notes: 1. Data memory access time is 8 TCP. 2. "∆" (due to buffer driving delay and wire loading) is 20 nS.
Data Write Cycle
ITEM ALE Low to WR Low Data Valid to WR Low Data Hold from WR High WR Pulse Width SYMBOL TDAW TDAD TDWD TDWR MIN. 3 TCP-∆ 1 TCP-∆ 1 TCP-∆ 6 TCP-∆ TYP. 6 TCP MAX. 3 TCP+∆ UNIT nS nS nS nS
Note: "∆" (due to buffer driving delay and wire loading) is 20 nS.
Port Access Cycle
PARAMETER Port Input Setup to ALE Low Port Input Hold from ALE Low Port Output to ALE SYMBOL TPDS TPDH TPDA MIN. 1 TCP 0 1 TCP TYP. MAX. UNIT nS nS nS
Note: Ports are read during S5P2, and output data becomes available at the end of S6P2. The timing data are referenced to ALE, since it provides a convenient reference.
- 12 -
W78L51
TIMING WAVEFORMS
Program Fetch Cycle
S1 XTAL1
S2
S3
S4
S5
S6
S1
S2
S3
S4
S5
S6
TALW ALE TAPL PSEN TPSW TAAS PORT 2 TAAH PORT 0 Code A0-A7 Data A0-A7 Code A0-A7 Data A0-A7 TPDA TPDH, TPDZ
Data Read Cycle
S4 XTAL1 ALE PSEN PORT 2
S5
S6
S1
S2
S3
S4
S5
S6
S1
S2
S3
A8-A15 A0-A7 DATA T DAR T DDA
PORT 0 T DDH, TDDZ RD TDRD
- 13 -
Publication Release Date: January 1999 Revision A2
W78L51
Timing Waveforms, continued
Data Write Cycle
S4 XTAL1 ALE PSEN PORT 2 PORT 0 WR
S5
S6
S1
S2
S3
S4
S5
S6
S1
S2
S3
A8-A15 A0-A7 DATA OUT
TDAD
T DWD
T DAW
T DWR
Port Access Cycle
S5 XTAL1
S6
S1
ALE TPDS PORT INPUT SAMPLE T PDH T PDA DATA OUT
- 14 -
W78L51
TYPICAL APPLICATION CIRCUITS
Expanded External Program Memory and Crystal
VDD VDD 31 19 10 u R
CRYSTAL
EA XTAL1 XTAL2 RST INT0 INT1 T0 T1 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 W78L51
18 9
8.2 K C1 C2
P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 RD WR PSEN ALE TXD RXD
39 38 37 36 35 34 33 32 21 22 23 24 25 26 27 28 17 16 29 30 11 10
AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 A8 A9 A10 A11 A12 A13 A14 A15
AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7
3 4 7 8 13 14 17 18
D0 D1 D2 D3 D4 D5 D6 D7 OC G
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7
2 5 6 9 12 15 16 19
A0 A1 A2 A3 A4 A5 A6 A7
GND 1 11
12 13 14 15 1 2 3 4 5 6 7 8
74HC373
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 GND
10 9 8 7 6 5 4 3 25 24 21 23 2 26 27 1 20 22
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 CE OE 27512
O0 O1 O2 O3 O4 O5 O6 O7
11 12 13 15 16 17 18 19
AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7
Figure A
CRYSTAL 16 MHz 24 MHz 33 MHz 40 MHz
C1 30P 15P 10P 5P
C2 30P 15P 10P 5P
R − − 6.8K 4.7K
Above table shows the reference values for crystal applications.
Note: C1, C2, R components refer to Figure A.
- 15 -
Publication Release Date: January 1999 Revision A2
W78L51
Typical Application Circuits, continued
Expanded External Data Memory and Oscillator
V DD V DD 31 19 10 u
OSCILLATOR
EA XTAL1 XTAL2 RST INT0 INT1 T0 T1 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 W78L51
18 8.2 K 9 12 13 14 15 1 2 3 4 5 6 7 8
P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 RD WR PSEN ALE TXD RXD
39 38 37 36 35 34 33 32 21 22 23 24 25 26 27 28 17 16 29 30 11 10
AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 A8 A9 A10 A11 A12 A13 A14
AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 GND
3 4 7 8 13 14 17 18 1 11
D0 D1 D2 D3 D4 D5 D6 D7 OC G
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7
2 5 6 9 12 15 16 19
A0 A1 A2 A3 A4 A5 A6 A7
74HC373
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 GND
10 9 8 7 6 5 4 3 25 24 21 23 2 26 1 20 22 27
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 CE OE WR 20256
D0 D1 D2 D3 D4 D5 D6 D7
11 12 13 15 16 17 18 19
AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7
Figure B
PACKAGE DIMENSIONS
40-pin DIP
Symbol
Dimension in inch Dimension in mm Min. Nom. Max. Min. Nom. Max.
0.210 0.010 0.150 0.016 0.048 0.008 0.155 0.018 0.050 0.010 2.055 0.590 0.540 0.090 0.120 0 0.630 0.650 0.600 0.545 0.100 0.130 0.160 0.022 0.054 0.014 2.070 0.610 0.550 0.110 0.140 15 0.670 0.090 14.986 13.72 2.286 3.048 0 16.00 16.51 0.254 3.81 0.406 1.219 0.203 3.937 0.457 1.27 0.254 52.20 15.24 13.84 2.54 3.302 4.064 0.559 1.372 0.356 52.58 15.494 13.97 2.794 3.556 15 17.01 2.286 5.334
D 40 21
E1
A A1 A2 B B1 c D E E1 e1 L
a
1
20 E c
eA S
Notes:
S
A A2
A1
Base Plane Seating Plane
L B B1
e1
a
eA
1. Dimension D Max. & S include mold flash or tie bar burrs. 2. Dimension E1 does not include interlead flash. 3. Dimension D & E1 include mold mismatch and . are determined at the mold parting line. 4. Dimension B1 does not include dambar protrusion/intrusion. 5. Controlling dimension: Inches. 6. General appearance spec. should be based on final visual inspection spec.
- 16 -
W78L51
Package Dimensions, continued
44-pin PLCC
HD D
6 1 44 40
Symbol
7 39
Dimension in inch Dimension in mm Min. Nom. Max. Min. Nom. Max.
0.185 0.020 0.145 0.026 0.016 0.008 0.648 0.648 0.150 0.028 0.018 0.010 0.653 0.653 0.155 0.032 0.022 0.014 0.658 0.658 0.508 3.683 0.66 0.406 0.203 16.46 16.46 3.81 0.711 0.457 0.254 16.59 16.59 3.937 0.813 0.559 0.356 16.71 16.71 4.699
E
HE
GE
17
29
18
28
c
A A1 A2 b1 b c D E e GD GE HD HE L y
Notes:
0.050 0.590 0.590 0.680 0.680 0.090
BSC 0.630 0.630 0.700 0.700 0.110 0.004
1.27 14.99 14.99 17.27 17.27 2.296
BSC 16.00 16.00 17.78 17.78 2.794 0.10
0.610 0.610 0.690 0.690 0.100
15.49 15.49 17.53 17.53 2.54
L A2 A θ
e
Seating Plane GD
b b1
A1 y
1. Dimension D & E do not include interlead flash. 2. Dimension b1 does not include dambar protrusion/intrusion. 3. Controlling dimension: Inches 4. General appearance spec. should be based on final visual inspection spec.
44-pin QFP
HD D
Dimension in inch
Dimension in mm
Symbol
44 34
Min. Nom. Max.
--0.002 0.075 0.01 0.004 0.390 0.390 0.025 0.510 0.510 0.025 0.051 --0.01 0.081 0.014 0.006 0.394 0.394 0.031 0.520 0.520 0.031 0.063 --0.02 0.087 0.018 0.010 0.398 0.398 0.036 0.530 0.530 0.037 0.075 0.003 0 7
Min. Nom.
--0.05 1.90 0.25 0.101 9.9 9.9 0.635 12.95 12.95 0.65 1.295 --0.25 2.05 0.35 0.152 10.00 10.00 0.80 13.2 13.2 0.8 1.6
Max.
--0.5 2.20 0.45 0.254 10.1 10.1 0.952 13.45 13.45 0.95 1.905 0.08
1
33
E HE
11
12
e
b
22
A A1 A2 b c D E e HD HE L L1 y θ
Notes:
c
0
7
A2 A A1 θ L L1 Detail F
Seating Plane
See Detail F
y
1. Dimension D & E do not include interlead flash. 2. Dimension b does not include dambar protrusion/intrusion. 3. Controlling dimension: Millimeter 4. General appearance spec. should be based on final visual inspection spec.
- 17 -
Publication Release Date: January 1999 Revision A2
W78L51
Headquarters
No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5792697 http://www.winbond.com.tw/ Voice & Fax-on-demand: 886-2-7197006
Winbond Electronics (H.K.) Ltd.
Rm. 803, World Trade Square, Tower II, 123 Hoi Bun Rd., Kwun Tong, Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064
Winbond Electronics North America Corp. Winbond Memory Lab. Winbond Microelectronics Corp. Winbond Systems Lab.
2727 N. First Street, San Jose, CA 95134, U.S.A. TEL: 408-9436666 FAX: 408-5441798
Taipei Office
11F, No. 115, Sec. 3, Min-Sheng East Rd., Taipei, Taiwan TEL: 886-2-7190505 FAX: 886-2-7197502
Note: All data and specifications are subject to change without notice.
- 18 -