W9816G6JH
512K 2 BANKS 16 BITS SDRAM
Table of Contents1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
GENERAL DESCRIPTION ......................................................................................................... 3
FEATURES ................................................................................................................................. 3
ORDER INFORMATION ............................................................................................................. 4
PIN CONFIGURATION ............................................................................................................... 4
PIN DESCRIPTION..................................................................................................................... 5
BLOCK DIAGRAM ...................................................................................................................... 6
FUNCTIONAL DESCRIPTION.................................................................................................... 7
7.1
Power Up and Initialization ............................................................................................. 7
7.2
Programming Mode Register .......................................................................................... 7
7.3
Bank Activate Command ................................................................................................ 7
7.4
Read and Write Access Modes ...................................................................................... 7
7.5
Burst Read Command .................................................................................................... 8
7.6
Burst Write Command .................................................................................................... 8
7.7
Read Interrupted by a Read ........................................................................................... 8
7.8
Read Interrupted by a Write............................................................................................ 8
7.9
Write Interrupted by a Write ............................................................................................ 8
7.10 Write Interrupted by a Read............................................................................................ 8
7.11 Burst Stop Command ..................................................................................................... 9
7.12 Addressing Sequence of Sequential Mode .................................................................... 9
7.13 Addressing Sequence of Interleave Mode ...................................................................... 9
7.14 Auto-precharge Command ........................................................................................... 10
7.15 Precharge Command .................................................................................................... 10
7.16 Self Refresh Command ................................................................................................ 10
7.17 Power Down Mode ....................................................................................................... 11
7.18 No Operation Command ............................................................................................... 11
7.19 Deselect Command ...................................................................................................... 11
7.20 Clock Suspend Mode .................................................................................................... 11
OPERATION MODE ................................................................................................................. 12
ELECTRICAL CHARACTERISTICS ......................................................................................... 13
9.1
Absolute Maximum Ratings .......................................................................................... 13
9.2
Recommended DC Operating Conditions .................................................................... 13
9.3
Capacitance .................................................................................................................. 13
9.4
DC Characteristics ........................................................................................................ 14
9.5
AC Characteristics ........................................................................................................ 15
TIMING WAVEFORMS ............................................................................................................. 17
10.1 Command Input Timing ................................................................................................ 17
10.2 Read Timing.................................................................................................................. 18
10.3 Control Timing of Input/Output Data ............................................................................. 19
10.4 Mode Register Set Cycle .............................................................................................. 20
-1-
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.
12.
13.
OPERATING TIMING EXAMPLE ............................................................................................. 21
11.1 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3) ...................................... 21
11.2 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto-precharge) ........... 22
11.3 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3) ...................................... 23
11.4 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto-precharge) ........... 24
11.5 Interleaved Bank Write (Burst Length = 8) ................................................................... 25
11.6 Interleaved Bank Write (Burst Length = 8, Auto-precharge) ........................................ 26
11.7 Page Mode Read (Burst Length = 4, CAS Latency = 3) .............................................. 27
11.8 Page Mode Read / Write (Burst Length = 8, CAS Latency = 3) ................................... 28
11.9 Auto Precharge Read (Burst Length = 4, CAS Latency = 3) ........................................ 29
11.10 Auto Precharge Write (Burst Length = 4) .................................................................... 30
11.11 Auto Refresh Cycle ..................................................................................................... 31
11.12 Self Refresh Cycle ....................................................................................................... 32
11.13 Burst Read and Single Write (Burst Length = 4, CAS Latency = 3)............................ 33
11.14 Power Down Mode ...................................................................................................... 34
11.15 Auto-precharge Timing (Read Cycle) .......................................................................... 35
11.16 Auto-precharge Timing (Write Cycle) .......................................................................... 36
11.17 Timing Chart of Read to Write Cycle ........................................................................... 37
11.18 Timing Chart of Write to Read Cycle ........................................................................... 37
11.19 Timing Chart of Burst Stop Cycle (Burst Stop Command) .......................................... 38
11.20 Timing Chart of Burst Stop Cycle (Precharge Command) .......................................... 38
11.21 CKE/DQM Input Timing (Write Cycle) ......................................................................... 39
11.22 CKE/DQM Input Timing (Read Cycle) ......................................................................... 40
PACKAGE SPECIFICATION .................................................................................................... 41
REVISION HISTORY ................................................................................................................ 42
-2-
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
1. GENERAL DESCRIPTION
W9816G6JH is a high-speed synchronous dynamic random access memory (SDRAM), organized as
512K words 2 banks 16 bits. W9816G6JH delivers a data bandwidth of up to 200M words per
second. To fully comply with the personal computer industrial standard, W9816G6JH is sorted into the
following speed grades: -5, -6, -6I, -7 and -7I.
The -5 grade parts can run up to 200MHz/CL3.
The -6 and -6I grade parts can run up to 166MHz/CL3 (the -6I industrial grade parts which is
guaranteed to support -40°C ≤ TA ≤ 85°C).
The -7 and -7I grade parts can run up to 143MHz/CL3 (the -7I industrial grade parts which is
guaranteed to support -40°C ≤ TA ≤ 85°C).
Accesses to the SDRAM are burst oriented. Consecutive memory location in one page can be
accessed at a burst length of 1, 2, 4, 8 or full page when a bank and row is selected by an ACTIVE
command. Column addresses are automatically generated by the SDRAM internal counter in burst
operation. Random column read is also possible by providing its address at each clock cycle. The
multiple bank nature enables interleaving among internal banks to hide the precharging time.
By having a programmable Mode Register, the system can change burst length, latency cycle,
interleave or sequential burst to maximize its performance. W9816G6JH is ideal for main memory in
high performance applications.
2. FEATURES
3.3V ± 0.3V power supply for -5/-6/-6I speed grades
2.7V~3.6V power supply for -7/-7I speed grades
Up to 200 MHz Clock Frequency
524,288 words x 2 banks x 16 bits organization
Self Refresh current: standard and low power
CAS Latency: 2 and 3
Burst Length: 1, 2, 4, 8 and Full Page
Burst Read, Single Writes Mode
Byte Data Controlled by LDQM, UDQM
Auto-precharge and Controlled Precharge
2K Refresh Cycles/32 mS
Interface: LVTTL
Packaged in 50-pin, 400 mil TSOP II, using Lead free materials with RoHS compliant
-3-
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
3. ORDER INFORMATION
PART NUMBER
SPEED GRADE
SELF REFRESH CURRENT
(MAX)
OPERATING
TEMPERATURE
W9816G6JH-5
200MHz/CL3
2mA
0°C ~ 70°C
W9816G6JH-6
166MHz/CL3
2mA
0°C ~ 70°C
W9816G6JH-6I
166MHz/CL3
2mA
-40°C ~ 85°C
W9816G6JH-7
143MHz/CL3
2mA
0°C ~ 70°C
W9816G6JH-7I
143MHz/CL3
2mA
-40°C ~ 85°C
4. PIN CONFIGURATION
VDD
1
50
VSS
DQ0
2
49
DQ15
DQ1
3
48
DQ14
VSSQ
4
47
VSSQ
DQ2
5
46
DQ13
DQ3
6
45
VDDQ
7
44
VDDQ
DQ4
8
43
DQ11
DQ5
9
42
DQ10
VSSQ
10
41
VSSQ
DQ6
11
40
DQ9
DQ7
12
39
DQ8
VDDQ
13
38
VDDQ
LDQM
14
37
NC
WE
15
36
UDQM
CAS
16
35
CLK
RAS
17
34
CKE
CS
18
33
NC
BA
19
32
A9
A10
20
31
A8
A0
21
30
A7
A1
22
29
A6
A2
23
28
A5
A3
24
27
A4
VDD
25
26
VSS
-4-
DQ12
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
5. PIN DESCRIPTION
PIN NUMBER
PIN NAME
FUNCTION
2024,
2732
A0A10
Address
19
BA
Bank Select
2, 3, 5, 6, 8, 9,
11, 12, 39, 40,
DQ0DQ15
42, 43, 45, 46,
48, 49
18
CS
Data
Input/ Output
Chip Select
DESCRIPTION
Multiplexed pins for row and column address.
Row address: A0A10. Column address: A0A7.
Select bank to activate during row address latch time,
or bank to read/write during column address latch
time.
Multiplexed pins for data input and output.
Disable or enable the command decoder. When
command decoder is disabled, new command is
ignored and previous operation continues.
Command input. When sampled at the rising edge of
Row Address
the clock, R A S , C A S and W E define the operation
Strobe
to be executed.
17
RAS
16
CAS
15
WE
Write Enable
Referred to
36, 14
UDQM/
LDQM
Input/Output
Mask
The output buffer is placed at Hi-Z (with latency of 2)
when DQM is sampled high in read cycle. In write
cycle, sampling DQM high will block the write
operation with zero latency.
35
CLK
Clock Inputs
System clock used to sample inputs on the rising
edge of clock.
34
CKE
Clock Enable
CKE controls the clock activation and deactivation.
When CKE is low, Power Down mode, Suspend
mode, or Self Refresh mode is entered.
1, 25
VDD
Power
Power for input buffers and logic circuit inside DRAM.
26, 50
VSS
Ground
Ground for input buffers and logic circuit inside
DRAM.
7, 13, 38, 44,
VDDQ
Power for I/O
buffer
4, 10, 41, 47
VSSQ
Ground for I/O Separated ground from VSS, used for output buffers
buffer
to improve noise immunity.
33, 37
NC
Column
Address Strobe Referred to
RAS
RAS
Separated power from VDD, used for output buffers to
improve noise immunity.
No Connection No connection.
-5-
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
6. BLOCK DIAGRAM
CLK
CLOCK
BUFFER
CKE
CS
CONTROL
RAS
GENERATOR
COLUMN DECODER
SIGNAL
COMMAND
CAS
R
O
W
DECODER
D
E
C
O
D
E
R
WE
CELL ARRAY
BANK #0
SENSE AMPLIFIER
A10
MODE
REGISTER
A0
A9
BA
ADDRESS
BUFFER
DQ
DATA CONTROL
DQ0
BUFFER
CIRCUIT
DQ15
LDQM
UDQM
REFRESH
COLUMN
COUNTER
COUNTER
COLUMN DECODER
R
O
W
D
E
C
O
D
E
R
CELL ARRAY
BANK #1
SENSE AMPLIFIER
Note: The cell array configuration is 2048 * 256 * 16
-6-
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
7. FUNCTIONAL DESCRIPTION
7.1
Power Up and Initialization
The default power up state of the mode register is unspecified. The following power up and
initialization sequence need to be followed to guarantee the device being preconditioned to each user
specific needs during power up, all VDD and VDDQ pins must be ramp up simultaneously to the
specified voltage when the input signals are held in the “NOP” state. The power up voltage must not
exceed VDD + 0.3V on any of the input pins or VDD supplies. After power up, an initial pause of 200 µS
is required followed by a precharge of all banks using the precharge command. To prevent data
contention on the DQ bus during power up, it is required that the DQM and CKE pins be held high
during the initial pause period. Once all banks have been precharged, the Mode Register Set
Command must be issued to initialize the Mode Register. An additional eight Auto Refresh cycles
(CBR) are also required before or after programming the Mode Register to ensure proper subsequent
operation.
7.2
Programming Mode Register
After initial power up, the Mode Register Set Command must be issued for proper device operation.
All banks must be in a precharged state and CKE must be high at least one cycle before the Mode
Register Set Command can be issued. The Mode Register Set Command is activated by the low
signals of R A S , C A S , C S and W E at the positive edge of the clock. The address input data
during this cycle defines the parameters to be set as shown in the Mode Register Operation table. A
new command may be issued following the mode register set command once a delay equal to tRSC
has elapsed. Please refer to the next page for Mode Register Set Cycle and Operation Table.
7.3
Bank Activate Command
The Bank Activate command must be applied before any Read or Write operation can be executed.
The delay from when the Bank Activate command is applied to when the first read or write operation
can begin must not be less than the RAS to CAS delay time (tRCD). Once a bank has been activated it
must be precharged before another Bank Activate command can be issued to the same bank. The
minimum time interval between successive Bank Activate commands to the same bank is determined
by the RAS cycle time of the device (tRC). The minimum time interval between interleaved Bank
Activate commands (Bank A to Bank B and vice versa) is the Bank-to-Bank delay time (tRRD). The
maximum time that each bank can be held active is specified as tRAS(max.).
7.4
Read and Write Access Modes
After a bank has been activated, a read or write cycle can be followed. This is accomplished by setting
R A S high and C A S low at the clock rising edge after minimum of tRCD delay. W E pin voltage level
defines whether the access cycle is a read operation ( W E high), or a write operation ( W E low). The
address inputs determine the starting column address. Reading or writing to a different row within an
activated bank requires the bank be precharged and a new Bank Activate command be issued. When
more than one bank is activated, interleaved bank Read or Write operations are possible. By using the
programmed burst length and alternating the access and precharge operations between multiple
banks, seamless data access operation among many different pages can be realized. Read or Write
Commands can also be issued to the same bank or between active banks on every clock cycle.
-7-
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
7.5
Burst Read Command
The Burst Read command is initiated by applying logic low level to C S and C A S while holding
R A S and W E high at the rising edge of the clock. The address inputs determine the starting column
address for the burst. The Mode Register sets type of burst (sequential or interleave) and the burst
length (1, 2, 4, 8 and full page) during the Mode Register Set Up cycle.
7.6
Burst Write Command
The Burst Write command is initiated by applying logic low level to C S , C A S and W E while
holding R A S high at the rising edge of the clock. The address inputs determine the starting column
address. Data for the first burst write cycle must be applied on the DQ pins on the same clock cycle
that the Write Command is issued. The remaining data inputs must be supplied on each subsequent
rising clock edge until the burst length is completed. Data supplied to the DQ pins after burst finishes
will be ignored.
7.7
Read Interrupted by a Read
A Burst Read may be interrupted by another Read Command. When the previous burst is interrupted,
the remaining addresses are overridden by the new read address with the full burst length. The data
from the first Read Command continues to appear on the outputs until the CAS Latency from the
interrupting Read Command the is satisfied.
7.8
Read Interrupted by a Write
To interrupt a burst read with a Write Command, DQM may be needed to place the DQs (output
drivers) in a high impedance state to avoid data contention on the DQ bus. If a Read Command will
issue data on the first and second clocks cycles of the write operation, DQM is needed to insure the
DQs are tri-stated. After that point the Write Command will have control of the DQ bus and DQM
masking is no longer needed.
7.9
Write Interrupted by a Write
A burst write may be interrupted before completion of the burst by another Write Command. When the
previous burst is interrupted, the remaining addresses are overridden by the new address and data
will be written into the device until the programmed burst length is satisfied.
7.10 Write Interrupted by a Read
A Read Command will interrupt a burst write operation on the same clock cycle that the Read
Command is activated. The DQs must be in the high impedance state at least one cycle before the
new read data appears on the outputs to avoid data contention. When the Read Command is
activated, any residual data from the burst write cycle will be ignored.
-8-
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
7.11 Burst Stop Command
A Burst Stop Command may be used to terminate the existing burst operation but leave the bank open
for future Read or Write Commands to the same page of the active bank, if the burst length is full
page. Use of the Burst Stop Command during other burst length operations is illegal. The Burst Stop
Command is defined by having R A S and C A S high with C S and W E low at the rising edge of
the clock. The data DQs go to a high impedance state after a delay, which is equal to the C A S
Latency in a burst read cycle, interrupted by Burst Stop. If a Burst Stop Command is issued during a
full page burst write operation, then any residual data from the burst write cycle will be ignored.
7.12 Addressing Sequence of Sequential Mode
A column access is performed by increasing the address from the column address, which is input to
the device. The disturb address is varied by the Burst Length as shown in Table 2.
Table 2 Address Sequence of Sequential Mode
DATA
ACCESS ADDRESS
BURST LENGTH
Data 0
n
BL = 2 (disturb address is A0)
Data 1
n+1
No address carry from A0 to A1
Data 2
n+2
BL = 4 (disturb addresses are A0 and A1)
Data 3
n+3
No address carry from A1 to A2
Data 4
n+4
Data 5
n+5
BL = 8 (disturb addresses are A0, A1 and A2)
Data 6
n+6
No address carry from A2 to A3
Data 7
n+7
7.13 Addressing Sequence of Interleave Mode
A column access is started in the input column address and is performed by inverting the address bit
in the sequence shown in Table 3.
Table 3 Address Sequence of Interleave Mode
DATA
ACCESS ADDRESS
BURST LENGTH
Data 0
A8 A7 A6 A5 A4 A3 A2 A1 A0
BL = 2
Data 1
A8 A7 A6 A5 A4 A3 A2 A1
Data 2
A8 A7 A6 A5 A4 A3 A2
A1
A0
Data 3
A8 A7 A6 A5 A4 A3 A2
A1
A0
Data 4
A8 A7 A6 A5 A4 A3
Data 5
A8 A7 A6 A5 A4 A3
A2
A1
A0
Data 6
A8 A7 A6 A5 A4 A3
A2
A1
A0
Data 7
A8 A7 A6 A5 A4 A3
A2
A1
A0
A2
-9-
A0
A1 A0
BL = 4
BL = 8
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
7.14 Auto-precharge Command
If A10 is set to high when the Read or Write Command is issued, then the Auto-precharge function is
entered. During Auto-precharge, a Read Command will execute as normal with the exception that the
active bank will begin to precharge automatically before all burst read cycles have been completed.
Regardless of burst length, it will begin a certain number of clocks prior to the end of the scheduled
burst cycle. The number of clocks is determined by CAS Latency.
A Read or Write Command with Auto-precharge can not be interrupted before the entire burst
operation is completed. Therefore, use of a Read, Write, or Precharge Command is prohibited during
a read or write cycle with Auto-precharge. Once the precharge operation has started, the bank cannot
be reactivated until the Precharge time (tRP) has been satisfied. Issue of Auto-precharge command is
illegal if the burst is set to full page length. If A10 is high when a Write Command is issued, the Write
with Auto-precharge function is initiated. The SDRAM automatically enters the precharge operation
two clock delay from the last burst write cycle. This delay is referred to as Write tWR. The bank
undergoing Auto-precharge can not be reactivated until tWR and tRP are satisfied. This is referred to as
tDAL, Data-in to Active delay (tDAL = tWR + tRP). When using the Auto-precharge Command, the interval
between the Bank Activate Command and the beginning of the internal precharge operation must
satisfy tRAS(min).
7.15 Precharge Command
The Precharge Command is used to precharge or close a bank that has been activated. The
Precharge Command is entered when C S , R A S and W E are low and C A S is high at the rising
edge of the clock. The Precharge Command can be used to precharge each bank separately or all
banks simultaneously. The address bits, A10, and BA, are used to define which bank(s) is to be
precharged when the command is issued. After the Precharge Command is issued, the precharged
bank must be reactivated before a new read or write access can be executed. The delay between the
Precharge Command and the Activate Command must be greater than or equal to the Precharge time
(tRP).
7.16 Self Refresh Command
The Self-Refresh Command is defined by having C S , R A S , C A S and CKE held low with W E
high at the rising edge of the clock. All banks must be idle prior to issuing the Self-Refresh Command.
Once the command is registered, CKE must be held low to keep the device in Self-Refresh mode.
When the SDRAM has entered Self Refresh mode all of the external control signals, except CKE, are
disabled. The clock is internally disabled during Self-Refresh Operation to save power. The device will
exit Self-Refresh operation after CKE is returned high. Any subsequent commands can be issued after
tXSR from the end of Self Refresh command.
- 10 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
7.17 Power Down Mode
The Power Down mode is initiated by holding CKE low. All of the receiver circuits except CKE are
gated off to reduce the power. The Power Down mode does not perform any refresh operations;
therefore the device can not remain in Power Down mode longer than the Refresh period (tREF) of the
device.
The Power Down mode is exited by bringing CKE high. When CKE goes high, a No Operation
Command is required on the next rising clock edge, depending on tCK. The input buffers need to be
enabled with CKE held high for a period equal to tCKS(min) + tCK(min).
7.18 No Operation Command
The No Operation Command should be used in cases when the SDRAM is in an idle or a wait state to
prevent the SDRAM from registering any unwanted commands between operations. A No Operation
Command is registered when C S is low with R A S , C A S and W E held high at the rising edge of
the clock. A No Operation Command will not terminate a previous operation that is still executing, such
as a burst read or write cycle.
7.19 Deselect Command
The Deselect Command performs the same function as a No Operation Command. Deselect
Command occurs when C S is brought high, the R A S , C A S and W E signals become don't cares.
7.20 Clock Suspend Mode
During normal access mode, CKE must be held high enabling the clock. When CKE is registered low
while at least one of the banks is active and a column access/burst is in progess, Clock Suspend
mode is entered. The Clock Suspend mode deactivates the internal clock and suspends any clocked
operation that was currently being executed. There is a one-clock delay between the registration of
CKE low and the time at which the SDRAM operation suspends. While in Clock Suspend mode, the
SDRAM ignores any new commands that are issued. The Clock Suspend mode is exited by bringing
CKE high. There is a one-clock cycle delay from when CKE returns high to when Clock Suspend
mode is exited.
- 11 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
8. OPERATION MODE
Fully synchronous operations are performed to latch the commands at the positive edges of CLK.
Table 1 shows the truth table for the operation commands.
Table 1 Truth Table (Note 1, 2)
COMMAND
DEVICE
STATE
CKEn-1
CKEn
DQM
BA
A10
A9-A0
CS
RAS
CAS
WE
Bank Active
Idle
H
X
X
V
V
V
L
L
H
H
Bank Precharge
Any
H
X
X
V
L
X
L
L
H
L
Precharge All
Any
H
X
L
L
H
L
H
X
X
X
Write
Active
(3)
H
X
X
V
L
V
L
H
L
L
Write with Auto-precharge
Active
(3)
H
X
X
V
H
V
L
H
L
L
Read
Active
(3)
H
X
X
V
L
V
L
H
L
H
Read with Auto-precharge
Active
(3)
H
X
X
V
H
V
L
H
L
H
H
X
X
V
V
V
L
L
L
L
H
X
X
X
X
X
L
H
H
H
H
X
X
X
X
X
L
H
H
L
Mode Register Set
No-Operation
Burst Stop
Idle
Any
Active
(4)
Device Deselect
Any
H
X
X
X
X
X
H
X
X
X
Auto-Refresh
Idle
H
H
X
X
X
X
L
L
L
H
Self-Refresh Entry
Idle
H
L
X
X
X
X
L
L
L
H
Self-Refresh Exit
Idle
(S.R)
L
L
H
H
X
X
X
X
X
X
X
X
H
L
X
H
X
H
X
X
Clock Suspend Mode
Entry
Active
H
L
X
X
X
X
X
X
X
X
Power Down Mode Entry
Idle
(5)
Active
H
H
L
L
X
X
X
X
X
X
X
X
H
L
X
H
X
H
X
X
Clock Suspend Mode Exit
Active
L
H
X
X
X
X
X
X
X
X
Any
(power down)
L
L
H
H
X
X
X
X
X
X
X
X
H
L
X
H
X
H
X
X
H
X
L
X
X
X
X
X
X
X
X
H
X
X
X
X
X
X
X
Power Down Mode Exit
Data Write/Output Enable
Active
Data Write/Output Disable
Active
H
Notes:
(1) V = valid, X = Don't care, L = Low Level, H = High Level
(2) CKEn signal is input level when commands are provided.
CKEn-1 signal is the input level one clock cycle before the command is issued.
(3) These are state of bank designated by BA signals.
(4) Device state is full page burst operation.
(5) Power Down Mode can not be entered in the burst cycle.
When this command asserts in the burst cycle, device state is clock suspend mode.
- 12 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
9. ELECTRICAL CHARACTERISTICS
9.1
Absolute Maximum Ratings
PARAMETER
SYMBOL
RATING
UNIT
NOTES
Voltage on any pin relative to VSS
VIN, VOUT -0.5 ~ VDD + 0.5 ( 4.6V max.)
V
1
Voltage on VDD/VDDQ supply relative to VSS
VDD, VDDQ
-0.5 ~ 4.6
V
1
Operating Temperature for -5/-6/-7
TA
0 ~ 70
°C
1
Operating Temperature for -6I/-7I
TA
-40 ~ 85
°C
1
TSTG
-55 ~ 150
°C
1
TSOLDER
260
°C
1
PD
1
W
1
IOUT
50
mA
1
Storage Temperature
Soldering Temperature (10s)
Power Dissipation
Short Circuit Output Current
Note:
Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the
device
9.2
Recommended DC Operating Conditions
PARAMETER
SYM.
MIN.
TYP.
MAX.
UNIT
NOTES
Power Supply Voltage for -5/-6/-6I
VDD
3.0
3.3
3.6
V
2
Power Supply Voltage for -7/-7I
VDD
2.7
3.3
3.6
V
2
Power Supply Voltage for -5/-6/-6I (for I/O Buffer)
VDDQ
3.0
3.3
3.6
V
2
Power Supply Voltage for -7/-7I (for I/O Buffer)
VDDQ
2.7
3.3
3.6
V
2
Input High Voltage
VIH
2.0
-
VDD + 0.3
V
2
Input Low Voltage
VIL
-0.3
-
0.8
V
2
Note: VIH (max.) = VDD/VDDQ +1.5V for pulse width ≤ 5 nS
VIL (min.) = VSS/VSSQ -1.5V for pulse width ≤ 5 nS
9.3
Capacitance
(VDD = 3.3V ± 0.3V, TA = 25°C, f = 1MHz)
PARAMETER
Input Capacitance (A0 to A10, BA,
LDQM, CKE)
CS
,
RAS
,
CAS
,
WE
, UDQM,
SYM.
MIN.
MAX.
UNIT
CI
-
4
pf
-
4
pf
-
5.5
pf
Input Capacitance (CLK)
Input/Output capacitance (DQ0 to DQ15)
CIO
Note: These parameters are periodically sampled and not 100% tested
- 13 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
9.4
DC Characteristics
(VDD = 3.3V ± 0.3V for -5/-6/-6I, VDD = 2.7V to 3.6V for -7/-7I, TA = 0 to 70°C for -5/-6/-7, TA= -40 to 85°C for -6I//-7I)
PARAMETER
SYM.
-5
-6/-6I
-7/-7I
MAX.
MAX.
MAX.
UNIT
NOTES
Operating Current
tCK = min., tRC = min.
Active precharge command
cycling without burst operation
1 Bank operation
IDD1
40
35
30
3
Standby Current
tCK = min., CS = VIH
VIH/L = VIH (min.)/VIL (max.)
CKE = VIH
IDD2
15
15
15
3
CKE = VIL
(Power Down Mode)
IDD2P
2
2
2
3
CKE = VIH
IDD2S
6
6
6
CKE = VIL
IDD2PS
(Power Down Mode)
2
2
2
Bank: Inactive state
Standby Current
CLK = VIL, CS = VIH
VIH/L=VIH (min.)/VIL (max.)
Bank: Inactive state
No Operating Current
tCK = min., CS = VIH(min)
mA
CKE = VIH
IDD3
25
23
20
CKE = VIL
(Power Down Mode)
IDD3P
6
6
6
Burst Operating Current
tCK = min.
Read/ Write command cycling
IDD4
60
55
50
3, 4
Auto Refresh Current
tCK = min.
Auto refresh command cycling
IDD5
45
40
35
3
Self Refresh Current
Self Refresh Mode
CKE = 0.2V
IDD6
2
2
2
Bank: Active state (2 Banks)
PARAMETER
SYM.
MIN.
MAX.
UNIT
Input Leakage Current
(0V ≤ VIN ≤ VDD, all other pins not under test = 0V)
II(L)
-5
5
µA
Output Leakage Current
(Output disable , 0V ≤ VOUT ≤ VDDQ )
IO(L)
-5
5
µA
LVTTL Output “H” Level Voltage
(IOUT = -2 mA)
VOH
2.4
-
V
LVTTL Output “L” Level Voltage
(IOUT = 2 mA)
VOL
-
0.4
V
- 14 -
NOTES
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
9.5
AC Characteristics
(VDD = 3.3V ± 0.3V for -5/-6/-6I, VDD = 2.7V to 3.6V for -7/-7I, TA = 0 to 70°C for -5/-6/-7, TA= -40 to 85°C for -6I//-7I)
PARAMETER
SYM.
-5
MIN.
-6/-6I
MAX.
MIN.
-7/-7I
MAX.
Ref/Active to Ref/Active Command Period
tRC
55
Active to Precharge Command Period
tRAS
40
Active to Read/Write Command Delay
Time
tRCD
15
18
20
Read/Write(a) to Read/Write(b)Command
Period
tCCD
1
1
1
Precharge to Active(b) Command Period
tRP
15
18
18
Active(a) to Active(b) Command Period
tRRD
10
12
14
2
2
2
2
2
2
Write Recovery Time
CLK Cycle Time
CL* = 2
CL* = 3
CL* = 2
CL* = 3
tWR
tCK
60
MIN.
100000
42
MAX.
UNIT
NOTES
65
100000
45
100000
nS
tCK
nS
tCK
7
1000
8
1000
10
1000
5
1000
6
1000
7
1000
CLK High Level Width
tCH
2
2
2
8
CLK Low Level Width
tCL
2
2
2
8
Access Time from CLK
CL* = 2
CL* = 3
Output Data Hold Time
Output Data High
Impedance Time
tAC
tOH
CL* = 2
CL* = 3
6
5.5
5.5
4.5
5
5
2
2
tHZ
9
2
9
6
5.5
5.5
4.5
5
5
0
Output Data Low Impedance Time
tLZ
0
Power Down Mode Entry Time
tSB
0
Data-in-Set-up Time
tDS
1.5
1.5
1.5
8
Data-in Hold Time
tDH
0.7
0.7
1
8
Address Set-up Time
tAS
1.5
1.5
1.5
8
Address Hold Time
tAH
0.7
0.7
1
8
CKE Set-up Time
tCKS
1.5
1.5
1.5
8
CKE Hold Time
tCKH
0.7
0.7
1
8
Command Set-up Time
tCMS
1.5
1.5
1.5
8
Command Hold Time
tCMH
0.7
0.7
1
8
Refresh Time (2K Refresh Cycles)
tREF
Mode Register Set Cycle Time
tRSC
2
2
2
tCK
Exit self refresh to ACTIVE command
tXSR
70
72
75
nS
5
0
32
0
7
6
0
32
nS
9
7
32
mS
* CL = CAS Latency
- 15 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
Notes:
1. Operation exceeds “Absolute Maximum Ratings” may cause permanent damage to the devices.
2. All voltages are referenced to VSS.
• 3.3V ± 0.3V power supply for -5/-6/-6I speed grades.
• 2.7V~3.6V power supply for -7/-7I speed grades.
3. These parameters depend on the cycle rate and listed values are measured at a cycle rate with the minimum
values of tCK and tRC.
4. These parameters depend on the output loading conditions. Specified values are obtained with output open.
5. Power up sequence please refer to “Functional Description” section described before.
6. AC test load diagram.
1.4 V
50 ohms
output
Z = 50 ohms
30pF
AC TEST LOAD
7. tHZ defines the time at which the outputs achieve the open circuit condition and is not referenced to output
level.
8. Assumed input rise and fall time (tT) = 1nS.
If tr & tf is longer than 1nS, transient time compensation should be considered,
i.e., [(tr + tf)/2-1]nS should be added to the parameter
9. If clock rising time (tT) is longer than 1nS, (tT/2-0.5)nS should be added to the parameter.
- 16 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
10. TIMING WAVEFORMS
10.1 Command Input Timing
tCK
tCL
tCH
VIH
CLK
VIL
tT
tCMS
tCMH
tCMS
tCMH
tCMS
tCMH
tCMS
tCMH
tAS
tAH
tCMH
tT
tCMS
CS
RAS
CAS
WE
A0-A10
BA
tCKS
tCKH
tCKS
tCKS
tCKH
tCKH
CKE
- 17 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
10.2 Read Timing
Read CAS Latency
CLK
CS
RAS
CAS
WE
A0-A10
BA
tAC
tLZ
Valid
Data-Out
DQ
Read Command
tHZ
tAC
tOH
tOH
Valid
Data-Out
Burst Length
- 18 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
10.3 Control Timing of Input/Output Data
Control Timing of Input Data
(Word Mask)
CLK
tCMS
tCMH
tCMH
tCMS
DQM
tDS
tDH
tDS
tDS
Valid
Data-in
Valid
Data-in
DQ0~15
tDH
tDH
tDS
tDH
Valid
Data-in
Valid
Data-in
(Clock Mask)
CLK
tCKH
tCKS
tCKH
tDH
tDS
tDH
tCKS
CKE
tDS
DQ0~15
Valid
Data-in
tDS
Valid
Data-in
tDH
tDS
tDH
Valid
Data-in
Valid
Data-in
Control Timing of Output Data
(Output Enable)
CLK
tCMS
tCMH
tCMH
tCMS
DQM
tAC
tOH
tAC
tLZ
Valid
Data-Out
Valid
Data-Out
DQ0~15
tAC
tHZ
tOH
tOH
tAC
tOH
Valid
Data-Out
OPEN
(Clock Mask)
CLK
tCKS
tCKH
tCKH
tCKS
CKE
DQ0~15
tAC
tAC
tAC
tAC
tOH
tOH
tOH
Valid
Data-Out
Valid
Data-Out
- 19 -
tOH
Valid
Data-Out
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
10.4 Mode Register Set Cycle
tRSC
CLK
tCMS
tCMH
tCMS
tCMH
tCMS
tCMH
tCMS
tCMH
tAS
tAH
CS
RAS
CAS
WE
A0-A10
BA
Register
set data
A0
A1
Burst Length
A2
A3
Addressing Mode
A4
A5
CAS Latency
next
command
A0
A0 A0
A2 A1
0 A0
0
0
0 A0
0
1
0 A0
1
0
0 A0
1
1
1 A0
0
0
1 A0
0
1
1 A0
1
0
1 A0
1
1
A0
A3
A0
0
A0
1
A6
A0
A7
"0"
(Test Mode)
A8
"0"
Reserved
Write Mode
A9
A10
"0"
A0
BA
"0"
Reserved
A6
0
0
0
0
1
A0
A5
A0
0
A0
0
A0
1
A0
1
A0
0
A0
A9
A0
0
A0
1
- 20 -
BurstA0
Length
A0
A0
Sequential
Interleave
1
A0
1
A0
A0
2
2
A0
A0
4
4
A0
A0
8
8
A0
Reserved
A0
Reserved
FullA0
Page
A0 Mode
Addressing
A0
Sequential
A0
Interleave
A4
0
1
0
1
0
CAS A0
Latency
A0
Reserved
A0
Reserved
2
A0
3
Reserved
Single Write Mode
A0 Burst write
Burst read and
A0 single write
Burst read and
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11. OPERATING TIMING EXAMPLE
11.1 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)
0
1
2
3
4
6
5
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
tRC
tRC
tRC
tRC
RAS
tRAS
tRP
tRAS
tRAS
tRP
tRP
tRAS
CAS
WE
BA
tRCD
A10
RAa
A0-A9
RAa
tRCD
tRCD
RBb
CAw
tRCD
RAc
CBx
RBb
RBd
RAc
CAy
RAe
RBd
CBz
RAe
DQM
CKE
aw0
tRRD
Bank #0 Active
Bank #1
tAC
tAC
tAC
DQ
aw1
aw2
aw3
bx0
Precharge
Active
bx2
bx3
Active
- 21 -
cy1
cy2
cy3
tRRD
Precharge
Read
Precharge
Read
tAC
cy0
tRRD
tRRD
Read
bx1
Active
Active
Read
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.2 Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Auto-precharge)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
tRC
tRC
tRC
tRC
RAS
tRAS
tRP
tRAS
tRP
tRAS
tRP
tRAS
CAS
WE
BA
tRCD
tRCD
A10
RAa
A0-A9
RAa
RBb
CAw
tRCD
tRCD
RBd
RAc
CBx
RBb
CAy
RAc
RAe
CBz
RBd
RAe
DQM
CKE
tAC
tAC
DQ
aw0
tRRD
Bank #0
Bank #1
Active
aw1
aw2
aw3
tAC
bx0
bx1
Active
AP*
Active
bx3
tAC
cy0
cy1
tRRD
tRRD
Read
bx2
Read
cy3
dz0
tRRD
AP*
Read
AP*
cy2
Active
Active
Read
* AP is the internal precharge start timing
- 22 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.3 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
t RC
RAS
t RAS
tRP
t RAS
tRP
CAS
WE
BA
t RCD
A10
RAa
A0-A9
RAa
t RCD
t RCD
RAc
RBb
CAx
RBb
CBy
RAc
CAz
DQM
CKE
tAC
DQ
tAC
ax0
ax1
t RRD
Bank #0
Bank #1
Active
ax2
ax3
ax4
by0
by1
by4
by5
by6
by7
CZ0
t RRD
Read
Precharge
ax6
ax5
tAC
Precharge
Active
Read
- 23 -
Active
Read
Precharge
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.4 Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Auto-precharge)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
tRC
CS
RAS
tRAS
tRAS
tRP
tRAS
tRP
CAS
WE
BA
tRCD
A10
RAa
A0-A9
RAa
tRCD
tRCD
RAc
RBb
CAx
RAc
CBy
RBb
CAz
DQM
CKE
tAC
DQ
ax0
ax1
ax2
tRRD
Bank #0
Bank #1
Active
tAC
tAC
ax3
ax4
ax5
ax6
ax7
by0
by1
by4
Active
Read
by5
by6
CZ0
tRRD
AP*
Read
Active
Read
AP*
* AP is the internal precharge start timing
- 24 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.5 Interleaved Bank Write (Burst Length = 8)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
tRC
RAS
tRAS
tRP
tRAS
tRAS
tRP
CAS
WE
BA
tRCD
tRCD
A10
RAa
A0-A9
RAa
tRCD
RBb
CAx
RAb
RBb
CBy
CAz
RAc
DQM
CKE
ax0
DQ
ax1
ax4
ax5
ax6
ax7
by0
by1
Bank #1
Active
by3
by4
by5
by6
by7
CZ0
CZ1
CZ2
tRRD
tRRD
Bank #0
by2
Write
AP*
Active
Write
Active
Write
AP*
* AP is the internal precharge start timing
- 25 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.6 Interleaved Bank Write (Burst Length = 8, Auto-precharge)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
tRC
RAS
tRAS
tRP
tRAS
tRAS
tRP
CAS
WE
BA
tRCD
tRCD
A10
RAa
A0-A9
RAa
tRCD
RBb
CAx
RAb
RBb
CBy
CAz
RAc
DQM
CKE
ax0
DQ
ax1
ax4
ax5
ax6
ax7
by0
by1
Bank #1
Active
by3
by4
by5
by6
by7
CZ0
CZ1
CZ2
tRRD
tRRD
Bank #0
by2
Write
Active
AP*
Active
Write
AP*
Write
* AP is the internal precharge start timing
- 26 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.7 Page Mode Read (Burst Length = 4, CAS Latency = 3)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
tCCD
tCCD
tCCD
CS
tRAS
tRAS
RAS
CAS
WE
BA
tRCD
A10
RAa
A0-A9
RAa
tRCD
RBb
RBb
CAI
CBx
CAy
CAm
CBz
DQM
CKE
tAC
a0
DQ
tAC
tAC
a2
a1
a3
bx0
bx1
Ay0
tAC
Ay1
Ay2
tAC
am0
am1
am2
bz0
bz1
bz2
bz3
tRRD
Bank #0 Active
Bank #1
Read
Active
Read
Read
Read
Precharge
Read
AP*
* AP is the internal precharge start timing
- 27 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.8 Page Mode Read / Write (Burst Length = 8, CAS Latency = 3)
0
1
2
3
5
4
6
7
8
9
11
10
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
tRAS
RAS
CAS
WE
BA
tRCD
A10
RAa
A0-A9
RAa
CAy
CAx
DQM
CKE
tAC
DQ
tWR
ax0
Q Q
Bank #0
Active
ax1
ax3
ax2
Q
Q
ax5
ax4
Q
Q
Read
ay1
ay0
D
D
Write
ay2
D
ay3
D
ay4
D
Precharge
Bank #1
- 28 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.9 Auto Precharge Read (Burst Length = 4, CAS Latency = 3)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
tRC
RAS
tRAS
tRAS
tRP
CAS
WE
BA
tRCD
A10
RAa
A0-A9
RAa
tRCD
RAb
CAw
RAb
CAx
DQM
CKE
tAC
DQ
Bank #0
tAC
aw0
Active
Read
aw1
aw2
bx0
aw3
AP*
Active
Read
bx1
bx2
bx3
AP*
Bank #1
* AP is the internal precharge start timing
- 29 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.10 Auto Precharge Write (Burst Length = 4)
CLK
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CS
tRC
tRC
RAS
tRP
tRAS
tRAS
tRP
CAS
WE
BA
tRCD
tRCD
A10
RAa
A0-A9
RAa
RAc
RAb
CAw
RAb
CAx
RAc
DQM
CKE
aw0
DQ
Bank #0
Active
Write
aw1
aw2
aw3
bx0
AP*
Active
Write
bx1
bx2
bx3
AP*
Active
Bank #1
* AP is the internal precharge start timing
- 30 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.11 Auto Refresh Cycle
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
tRP
tRC
tRC
CS
RAS
CAS
WE
BA
A10
A0-A9
DQM
CKE
DQ
All Banks
Prechage
Auto
Refresh
Auto Refresh (Arbitrary Cycle)
- 31 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.12 Self Refresh Cycle
CLK
CS
tRP
RAS
CAS
WE
BA
A10
A0-A9
DQM
tCKS
tSB
CKE
tCKS
DQ
tXSR
Self Refresh Cycle
All Banks
Precharge
Self Refresh
Entry
No Operation / Command Inhibit
Self Refresh
Exit
- 32 -
Arbitrary Cycle
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.13 Burst Read and Single Write (Burst Length = 4, CAS Latency = 3)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
RAS
CAS
tRCD
WE
BA
A10
RBa
A0-A9
RBa
CBv
CBw
CBx
CBy
CBz
DQM
CKE
tAC
tAC
DQ
av0
Q
Bank #0 Active
av1
Q
av2
av3
aw0
ax0
ay0
az0
az1
az2
az3
Q
Q
D
D
D
Q
Q
Q
Q
Read
Single Write Read
Bank #1
- 33 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.14 Power Down Mode
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CLK
CS
RAS
CAS
WE
BA
A10
RAa
A0-A9
RAa
RAa
CAa
RAa
CAx
DQM
tSB
tSB
CKE
tCKS
tCKS
ax0
Active
tCKS
tCKS
DQ
ax1
ax2
NOP Read
ax3
Precharge
NOP Active
Precharge Standby
Power Down mode
Active Standby
Power Down mode
Note: The Power Down Mode is entered by asserting CKE "low".
All Input/Output buffers (except CKE buffers) are turned off in the Power Down mode.
When CKE goes high, command input must be No operation at next CLK rising edge.
Violating refresh requirements during power-down may result in a loss of data.
- 34 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.15 Auto-precharge Timing (Read Cycle)
0
1
R ead
AP
2
3
4
5
6
7
8
Q5
Q6
9
10
11
(1 ) C A S L a te n cy =2
( a ) b u r s t le n g t h = 1
C om m and
Act
tR P
DQ
Q0
( b ) b u rs t le n g t h = 2
C om m and
R ead
AP
Act
tR P
DQ
Q0
Q1
( c ) b u r s t le n g t h = 4
C om m and
R ead
AP
Act
tR P
DQ
Q0
Q1
Q2
Q3
Q0
Q1
Q2
Q3
( d ) b u rs t le n g t h = 8
C om m and
R ead
AP
Act
tR P
DQ
Q4
Q7
(2 ) C A S L a te n cy =3
( a ) b u r s t le n g t h = 1
C om m and
R ead
AP
Act
tR P
Q0
DQ
( b ) b u rs t le n g t h = 2
C om m and
R ead
AP
Act
tR P
Q0
DQ
Q1
( c ) b u r s t le n g t h = 4
C om m and
R ead
AP
Act
tR P
Q0
DQ
Q1
Q2
Q3
( d ) b u rs t le n g t h = 8
C om m and
R ead
AP
Act
tR P
Q0
DQ
Q1
Q2
Q3
Q4
Q5
Q6
Q7
N o te :
R ead
AP
A ct
re p re s e n t s t h e R e a d w i t h A u t o p re c h a rg e c o m m a n d .
re p re s e n t s t h e s t a rt o f in t e rn a l p re c h a rg in g .
re p re s e n t s t h e B a n k A c t i v a t e c o m m a n d .
W h e n t h e A u t o p re c h a rg e c o m m a n d is a s s e rt e d , t h e p e ri o d f ro m B a n k A c t iv a t e c o m m a n d t o
t h e s t a rt o f i n t e rn a l p re c g a rg i n g m u s t b e a t l e a s t Rt A S (m in ).
- 35 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.16 Auto-precharge Timing (Write Cycle)
0
1
2
3
4
5
6
7
8
9
10
11
12
CLK
( 1 ) C A S L a te n c y = 2
( a ) b u r s t l e n g th = 1
C ommand
W r it e
AP
tW R
DQ
A ct
tR P
D0
( b ) b u r s t l e n g th = 2
C ommand
W r it e
AP
A ct
tW R
DQ
D0
tR P
D1
( c ) b u r s t l e n g th = 4
C ommand
AP
W r it e
DQ
D0
D1
D2
A ct
tR P
tW R
D3
( d ) b u r s t l e n g th = 8
C ommand
W r it e
AP
tW R
DQ
D0
D1
D2
D3
D4
D5
D6
A ct
tR P
D7
( 2 ) C A S L a te n c y = 3
( a ) b u r s t l e n g th = 1
C ommand
W r it e
AP
A ct
tW R
DQ
tR P
D0
( b ) b u r s t l e n g th = 2
C ommand
W r it e
AP
A ct
tW R
DQ
D0
tR P
D1
( c ) b u r s t l e n g th = 4
C ommand
W r it e
AP
A ct
tW R
DQ
D0
D1
D2
tR P
D3
( d ) b u r s t l e n g th = 8
C ommand
W r it e
AP
tW R
DQ
D0
D1
D2
D3
D4
D5
D6
A ct
tR P
D7
N o te )
W r it e
r e p r e s e n t s t h e W r it e w it h A u t o p r e c h a r g e c o m m a n d .
AP
r e p r e s e n t s t h e s ta r t o f in t e r n a l p r e c h a r in g .
A ct
r e p r e s e n t s t h e B a n k A c tiv e c o m m a n d .
W h e n t h e / a u t o p r e c h a r g e c o m m a n d is a s s e r t e d , t h e p e r io d f r o m B a n k A c t iv a t e
c o m m a n d t o t h e s t a r t o f in t e r m a l p r e c g a r g in g m u s t b e a t le a s t t R A S ( m in ) .
- 36 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.17 Timing Chart of Read to Write Cycle
In th e c a s e o f B u r s t L e n g th = 4
0
1
2
R ead
W r ite
3
4
5
D1
D2
D3
D0
D1
D2
D1
D2
D3
D1
D2
6
7
8
9
10
11
9
10
11
(1 ) C A S L a t e n c y = 2
( a ) C o m m an d
DQM
DQ
D0
( b ) C o m m an d
R ead
W r ite
DQM
DQ
D3
(2 ) C A S L a t e n c y = 3
R ead
( a ) C o m m an d
W r ite
DQM
D0
DQ
R ead
( b ) C o m m an d
W r ite
DQM
D0
DQ
D3
N o te : T h e O u tp u t d a ta m u s t b e m a s k e d b y D Q M to a v o id I/O c o n fli c t
11.18 Timing Chart of Write to Read Cycle
In th e c a s e o f B u r s t L e n g th = 4
0
1
2
W ri te
R ead
3
4
5
6
7
8
Q0
Q1
Q2
Q3
Q0
Q1
Q2
Q3
Q0
Q1
Q2
Q3
Q0
Q1
Q2
( 1 ) C A S L a te n c y = 2
( a ) C o m m an d
DQM
DQ
( b ) C o m m an d
D0
R ead
W ri te
DQM
DQ
D0
D1
W ri te
R ead
( 2 ) C A S L a te n c y = 3
( a ) C o m m an d
DQM
DQ
( b ) C o m m an d
D0
W ri te
R ead
DQM
DQ
D0
D1
- 37 -
Q3
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.19 Timing Chart of Burst Stop Cycle (Burst Stop Command)
0
1
2
3
4
5
6
7
8
9
10
11
( 1 ) R e a d c y c le
( a ) C A S la t e n c y = 2
C o m m an d
R ead
BST
Q0
DQ
Q1
Q2
Q4
Q3
( b ) C A S la t e n c y = 3
C o m m an d
R ead
BST
Q0
DQ
Q1
Q2
Q3
Q4
( 2 ) W rit e c y c le
C o m m an d
W ri te
BST
DQ
Q0
Q1
Q2
N o te :
Q3
BST
Q4
re p re s e n ts th e B u rs t s to p c o m m a n d
11.20 Timing Chart of Burst Stop Cycle (Precharge Command)
0
1
2
3
4
5
6
7
8
9
10
11
(1 ) R e a d c y c le
( a ) C A S la t e n c y = 2
C om m and
Read
PRCG
DQ
Q0
Q1
Q2
Q3
Q4
( b ) C A S la t e n c y = 3
C om m and
Read
PRCG
DQ
Q0
Q1
Q2
Q3
Q4
(2 ) W r ite c y c le
C om m and
PRCG
W r it e
tW R
DQM
DQ
Q0
Q1
Q2
Q3
Q4
- 38 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.21 CKE/DQM Input Timing (Write Cycle)
C L K c y c le N o .
1
2
D1
D2
3
4
5
6
7
E x te r n a l
CLK
In t e r n a l
C KE
DQM
DQ
D3
D5
D Q M MASK
D6
C KE MASK
( 1 )
C L K c y c le N o .
1
2
3
D1
D2
D3
4
5
6
7
E x te r n a l
CLK
In t e r n a l
C KE
DQM
DQ
D Q M MASK
D5
D6
6
7
C KE MASK
( 2 )
C L K c y c le N o .
1
2
3
D1
D2
D3
4
5
E x te r n a l
CLK
In t e r n a l
CKE
DQM
DQ
D4
D5
D6
C KE MASK
( 3 )
- 39 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
11.22 CKE/DQM Input Timing (Read Cycle)
C L K c y c le N o .
1
2
3
4
Q2
Q3
Q4
6
5
7
E x te r n a l
C LK
In te r n a l
CKE
DQM
DQ
Q1
Q6
O pe n
O pe n
( 1 )
C L K c y c le N o .
1
2
3
Q1
Q2
Q3
4
5
7
6
E x te r n a l
C LK
In te r n a l
CKE
DQM
DQ
Q6
Q4
O pe n
( 2 )
C L K c y c le N o .
1
2
Q1
Q2
3
4
5
6
7
E x te r n a l
C LK
In te r n a l
CKE
DQM
DQ
Q4
Q3
Q5
Q6
( 3 )
- 40 -
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
12. PACKAGE SPECIFICATION
Package Outline 50L TSOP (II)-400 mil
50
26
HE
E
1
25
e
b
C
D
q
L
A2
A
L1
A1
ZD
SEATING PLANE
Y
Controlling Dimension: Millimeters
DIMENSION
SYM.
MIN.
NOM.
A
(MM)
DIMENSION
MAX.
MIN.
NOM.
1.20
(INCH)
MAX.
0.047
A1
0.05
0.10
0.15
0.002
0.004
0.006
A2
0.90
1.00
1.10
0.035
0.039
0.043
b
0.30
0.45
0.012
c
0.10
0.15
0.20
0.004
0.006
0.008
D
20.82
20.95
21.08
0.820
0.825
0.830
E
10.03
10.16
10.29
0.395
0.400
0.405
HE
11.56
11.76
11.96
0.455
0.463
0.471
0.80
e
L
0.40
0.50
0.60
0.016
0.020
0.004
0.031
0.88
0o
0.024
0.031
0.10
Y
ZD
0.031
0.80
L1
0.018
o
10
0o
- 41 -
10
o
Publication Release Date: Jun. 24, 2014
Revision: A01
W9816G6JH
13. REVISION HISTORY
VERSION
DATE
PAGE
A01
Jun. 24, 2014
All
DESCRIPTION
Initial formally datasheet
Important Notice
Winbond products are not designed, intended, authorized or warranted for use as components
in systems or equipment intended for surgical implantation, atomic energy control
instruments, airplane or spaceship instruments, transportation instruments, traffic signal
instruments, combustion control instruments, or for other applications intended to support or
sustain life. Further more, Winbond products are not intended for applications wherein failure
of Winbond products could result or lead to a situation wherein personal injury, death or
severe property or environmental damage could occur.
Winbond customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Winbond for any damages resulting from such improper
use or sales.
- 42 -
Publication Release Date: Jun. 24, 2014
Revision: A01