0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
WM5628L

WM5628L

  • 厂商:

    WOLFSON

  • 封装:

  • 描述:

    WM5628L - 3 & 5V Octal 8-Bit Voltage Output DAC with Serial Interface - Wolfson Microelectronics plc

  • 详情介绍
  • 数据手册
  • 价格&库存
WM5628L 数据手册
WM5628L, WM5628 Production Data Sept. 1996 Rev 2 3 & 5V Octal 8-Bit Voltage Output DAC with Serial Interface Description WM5628L and WM5628 are Octal 8-bit digital to analogue converters (DAC) controlled via a serial interface. Each DAC's output voltage range is programmable for either x1 or x 2 its reference input voltage, allowing near rail to rail operation for the x 2 output range. High impedance buffered voltage reference inputs are provided for each group of four DACs. WM5628L operates on a single supply voltage of 3 V while WM5628 operates on 5 V. WM5628/L interfaces to all popular microcontrollers and microprocessors via a three wire serial interface with CMOS compatible, schmitt trigger, digital inputs. An 12 bit command word comprises 3 DAC select bits, an output range selection bit and 8-bits of data. Individual or all DAC outputs are changed using WM5628/L's double buffered DAC registers and the separate LOAD and LDAC inputs. DAC outputs are updated simultaneously by writing a complete set of new values and then pulsing the LDAC input. The DAC outputs are optimised for single supply operation and driving ground referenced loads. An internal power-on-reset function sets the DAC's input codes to zero at power up. Ideal in space critical applications WM5628/L is available in wide-bodied and DIP packages for commercial (0oC to 70oC) and industrial (-40oC to 85o C) temperature ranges. Features • • • • • • Eight 8-bit voltage output DAC's Three wire serial interface Programmable x1 or x 2 output range. Power-on-reset sets outputs to zero Buffered voltage reference inputs Simultaneous DAC output update Key Specifications • Single supply operation: WM5628L : 3 V WM5628 : 5V 0 to 4 V output (x 2 output range) at 5 V VDD 0 to 2.5 V output (x 2 output range) at 3 V VDD Guaranteed monotonic output • • • Applications • • • • • • Programmable d.c. voltage sources Digitally controlled attenuator/amplifier Signal synthesis Mobile communications Automatic test equipment Process control Pin Configuration Top View 16 pin N and DW packages DACB DACA GND Data CLK VDD DACE DACF 1 2 3 4 5 6 7 8 16 DACC 15 DACD 14 Ref1 13 LDAC 12 Load 11 Ref2 10 DACH 9 DAC G Ordering Information DEVICE WM5628CN WM5628CDW WM5628IN WM5628IDW WM5628LCN WM5628LCDW WM5628LIN WM5628LIDW TEMP. RANGE 0oC to 70oC 0oC to 70oC -40oC to 85oC -40oC to 85oC 0oC to 70oC 0oC to 70oC -40oC to 85oC -40oC to 85oC PACKAGE 16 pin plastic DIP 16 pin wide-bodied plastic SO 16 pin plastic DIP 16 pin wide-bodied plastic SO 16 pin plastic DIP 16 pin wide-bodied plastic SO 16 pin plastic DIP 16 pin wide-bodied plastic SO Production Data data sheets contain final specifications current on publication date. Supply of products conforms to Wolfson Microelectronics standard terms and conditions Wolfson Microelectronics Lutton Court, Bernard Terrace, Edinburgh EH8 9NX, UK © 1996 Wolfson Microelectronics Tel: +44 (0) 131 667 9386 Fax: +44 (0) 131 667 5176 email: admin@wolfson.co.uk www: http://www.wolfson.co.uk WM5628L, WM5628 Block Diagram VDD 6 Ref 1 14 DAC 9 Latch Latch 8 x2 2 DACA DAC 9 Latch Latch 8 x2 1 DACB DAC 9 Latch Latch 8 x2 16 DACC DAC 9 Latch Latch 8 x2 15 DACD Ref 2 11 DAC 9 Latch Latch 8 x2 7 DACE DAC 9 Latch Latch 8 x2 8 DACF DAC 9 Latch Latch 8 x2 9 DACG DAC 9 Latch Latch 8 x2 10 DACH 5 CLK Data 4 Load 12 Serial Inter face Power-on-Reset 13 LDAC 3 GND 2 Wolfson Microelectronics WM5628L, WM5628 (note 1) Supply Voltage (VDD - VGND) . . . . . . . . . . . . +7V Digital Inputs . . . . . . . . . . .GND - 0.3 V, VDD + 0.3 V Reference inputs . . . . . . . GND - 0.3 V, VDD + 0.3 V Absolute Maximum Ratings Operating temperature range, TA . . . . WM5628_C_ . . . . . . . . . . . . . . WM5628_I_ . . . . . . . . . . . . . . . Storage Temperature . . . . . . . . . . Lead Temperature 1.6mm (1/16 inch) from case for 10 secs . . . . . . . . . . . TMIN to TMAX 0oC to +70oC -40oC to +85oC -50oC to +150oC .... 260OC Recommended Operating Conditions Supply voltage WM5628 Supply Voltage WM5628L Reference input range, X1 gain DAC output load resistance to GND High level digital input voltage Low level digital input voltage Clock frequency SYMBOL V DD V DD VREF RL V IH VIL F CLK MIN 4.75 2.7 10 0.8 VDD 0.8 1 NOMINAL MAX 5.25 5.25 VDD - 1.5 UNIT V V V kΩ V V MHz 3.3 Electrical Characteristics: WM5628 VDD = 5 V, GND = 0 V, VREF = 2 V, RL = 10 kΩ , CL = 100 pF, TA = full range, unless otherwise stated. PARAMETER Power Supply Supply current Static Accuracy Resolution Monotonicity Differential Nonlinearity Integral Nonlinearity Zero-code error Zero-code error temperature coefficient Zero-code error supply rejection Full scale error Full scale error temperature coefficient Full scale error supply rejection Output sink current Output source current SYMBOL IDD TEST CONDITIONS Outputs unloaded, digital inputs = 0 V or VDD 8 8 DNL INL ZCE VREF = 2 V, Range x 2. (note 3) VREF = 2 V, Range x 2. (note 4) VREF = 2 V, Range x 2. (note 5) Input code = 00 Hex (note 6) Input code = 00 Hex, VDD = 5 V ± 5 % (note 7) VREF = 2 V, Range x 2. (note 8) Input code = FF Hex (note 9) Input code = FF Hex, VDD = 5 V ± 5 % (note 10) Each DAC output ± 0.1 ± 0.9 ± 1.0 30 MIN TYP MAX 4.0 UNIT mA 10 0.5 ± 60 ± 25 0.5 20 2 Bits Bits LSB LSB mV µ V/OC mV/V mV µ V/OC mV/V µA mA FSE IO(SINK) IO(SOURCE) Wolfson Microelectronics 3 WM5628L, WM5628 Electrical Characteristics: WM5628L VDD = 3 .6V, GND = 0 V, VREF = 2 V x 1 gain, R L = 10 kΩ, CL = 100 pF, TA = full range, unless otherwise stated. PARAMETER Power Supply Supply current Static Accuracy Resolution Monotonicity Differential Nonlinearity Integral Nonlinearity Zero-code error Zero-code error temperature coefficient Full scale error Full scale error temperature coefficient Output sink current Output source current Power supply sensitivity SYMBOL IDD TEST CONDITIONS VDD = 3.3v 8 8 DNL INL ZCE VREF = 1.25 V, Range x 2. (note 3) VREF = 1.25 V, Range x 2. (note 4) VREF = 1.25 V, Range x 2. (note 5) Input code = 00 Hex (note 6) VREF = 1.25 V, Range x 2. (note 8) Input code = FF Hex (note 9) 20 1 0.5 ± 0.9 ± 1.0 0 10 ± 60 ± 25 30 MIN TYP MAX 4 UNIT mA Bits Bits LSB LSB mV µV/O C mV µV/O C µA mA mV/V FSE I O(SINK) Each DAC output IO(SOURCE) IREF VDD = 3.3V, VREF = 1.5V PSRR Electrical Characteristics: WM5628 & WM5628L VDD = 2.7 to 5.5V, GND = 0 V, VREF = 2 V x 1 gain, R L = 10 kΩ, CL = 100 pF, TA = full range, unless otherwise stated. PARAMETER Digital Inputs High level input current Low level input current Input capacitance Timing Parameters Data input setup time Data input hold time CLK to Load Load to CLK Load duration LDAC duration Load to LDAC Reference Inputs Reference input voltage Reference input capacitance Reference feedthrough Channel to channel isolation SYMBOL IIH IIL CI t SD t HD t HL t SL tWL tWD t LD VREF A, B, C, D, inputs A, B, C, D, inputs A, B, C, D inputs (note 11) A, B, C, D inputs (note 12) TEST CONDITIONS VI = VDD VI = 0V 15 50 50 50 50 250 250 0 GND 15 -60 -60 VDD-1.5 MIN TYP MAX ±10 ±10 UNIT µA µA pF ns ns ns ns ns ns ns V pF dB dB 4 Wolfson Microelectronics WM5628L, WM5628 Electrical Characteristics: WM5628 & WM5628L (continued) VDD = 3 .6V, GND = 0 V, V REF = 2 V x 1 gain, RL = 10 kΩ , CL = 100 pF, TA = full range, unless otherwise stated. PARAMETER SYMBOL TEST CONDITIONS Dynamic Performance Output settling time To 1/2LSB, VDD=3V & 5V (note 13) Output slew rate Input bandwidth (note 14) Large Signal Bandwidth Measured at -3dB point Digital Crosstalk Clk = 1MHz sq wave measured at DACA - DACD Notes: 1. Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating range limits are given under Recommended Operating Conditions. Guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified. 2. Total Unadjusted Error is the sum of integral linearity error, zero code error and full scale error over the input code range. 3. Differential Nonlinearity (DNL) is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes. A guarantee of monotonicity means the output voltage changes in the same direction (or remains constant) as a change in the digital input code. 4. Integral Nonlinearity (INL) is the maximum deviation of the output from the line between zero and full scale (excluding the effects of zero code and full-scale errors). 5. Zero code error is the deviation from zero voltage output when the digital input code is zero. 6. Zero code error temperature coefficient is given by: 6 ZCETC = (ZCE(Tmax - ZCE(Tmin)) /VREF x 10 / (Tmax - Tmin) 7. Zero-code Error Rejection Ratio (ZCE-RR) is measured by varying the VDD voltage, from 4.5 to 5.5 V d.c., and measuring the proportion of this signal imposed on the zero-code output voltage. MIN TYP 10 1 100 100 -50 MAX UNIT µs V/µs kHz kHz dB 8. Full-scale error is the deviation from the ideal full-scale output (VREF - 1LSB) with an output load of 10kΩ 9. Full-Scale Temperature Co-efficient is given by: FSETC = (FSE(T max) - FSE(Tmin)) / VREF x 106 / T max - T min) 10. Full Scale Error Rejection Ratio (FSE-RR) is measured by varying the V DD voltage from 4.5 to 5.5 V d.c. and measuring the proportion of this signal imposed on the full-scale output voltage 11 Reference feedthrough is measured at a DAC output with an input code = 00 Hex with a VREF input = 1 Vdc + 1 VPP at 10kHz 12. Channel to channel isolation is measured at a DAC output with an input code of one DAC to FF Hex and the code oa all other DACs to oo Hex with a VREF input = 1 Vdc + 1 Vpp at 10kHz 13 Setting time is the time for the output signal to remain within ±0.5 LSB of the final measurement value for a digital input code change of 00 Hex to FF Hex. For WM 5628: VDD = 5V, VREF = 2V and range = x 2. For WM5628L: V DD = 3, V REF = 1.25V and range = x 2. 14 Reference bandwidth is the -3dB bandwidth with an input at VREF = 1.25 Vdc =+ 2 V pp with a digital input code of full-scale. Wolfson Microelectronics 5 WM5628L, WM5628 Parameter Measurement Information DACA DACB DACC . . DACH 10KΩ CL - 100pF Slewing Settling Time and Linearity Measurements Typical Performance Characteristics Typical DNL, INL and TUE * at VDD = 5 V Diffe re ntia l Nonlinea rity VDD = 5 V, Vref = 2.5 V, Range x 1, TA = 25oC Integral Nonlinearity 0.4 V DD = 5 V, Vref =2.5 V, Ra nge x 1, TA = 25o C 0.2 Error (lsb) 0.1 0 -0.1 -0.2 0 32 64 96 128 160 192 224 256 Inpu t Code Error (lsb) 0.2 0 -0.2 0 32 64 96 128 160 192 224 256 Inp ut Code T otal Unadjusted Error 0.5 Error (lsb) 0.25 0 -0.25 -0.5 0 32 64 96 128 160 192 224 256 I nput C ode V DD = 5 V, Vref = 2.5 V, Range x 1, T = 2 5o C A Diffe re ntia l Nonline a rity Error (ls 0.2 0.1 0 -0.1 -0.2 0 32 64 96 128 160 Inpu t Code 192 224 256 V DD = 5 V, Vref = 1.25 V, Ra ng e x 2, TA = 25oC * see note 2 6 Wolfson Microelectronics WM5628L, WM5628 Typical Performance Characteristics (continued) Typical DNL, INL and TUE * at VDD = 5 V (continued) Inte gra l Nonline a rity V DD = 5 V, Vref = 1.25 V, Ra nge x 2, TA = 25o C Tota l Una d justed Error VDD = 5 V, Vref = 1.25 V, Ra nge x 2, TA = 25oC 0.5 Error (ls 0.4 Error (ls 0 32 64 96 128 160 I nputC ode 192 224 256 0.2 0 -0.2 0.25 0 -0.25 -0.5 0 32 64 96 128 160 Inpu t Code 192 224 256 Typical DNL, INL and TUE at VDD = 3 V Diffe re ntia l Nonlinea rity VDD = 3 V , V re f = 1.25 V , Ra n g e x 2, TA = 25oC Integral Nonlinearity V DD = 3 V, Vref = 1.25 V, Range x 2, TA = 25 oC 0.5 0.2 0.1 0 -0.1 -0.2 0 32 64 96 128 160 192 224 256 Inpu t Code Error (lsb) Error (lsb) 0.25 0 -0.25 -0.5 0 32 64 96 128 160 Inp ut Code 192 224 256 Total Unadjusted Error VDD = 3 V, Vref = 1.25 V, Range x 2, TA = 25o C 0.5 Error (ls 0.25 0 -0.25 -0.5 0 32 64 96 128 160 I nputC ode 192 224 256 Output Source Current v s Output Voltage 8 7 Supply Current vs Temperature 2.4 2.2 6 VDD = 5V Vre f = 2V 4 3 2 1 0 0 VDD = 5 V T A = 2 5O C Vref = 2 V Range = x 2 Input code = 255 IDD (mA) Iout (mA) 5 2 Range = x 2 Input Code = 25 5 1.8 VDD + 3V Vre f = 1.25V 1.6 1.4 1 2 V out (V) 3 4 5 -50 -25 0 25 50 75 100 o Temperature ('C) C Wolfson Microelectronics 7 WM5628L, WM5628 Typical Performance Characteristics (continued) Large Signal Frequency Response 2 0 -2 10 0 Small Signal Frequency R esponse Relative Gain (dB) -4 -6 -8 -10 -12 -14 -16 -18 -20 1 10 100 1000 VDD = 5 V O TA = 25 C Vref = 1.25 Vdc + 2 Vpp Input Code = 255 Relative Gain (dB) -10 -20 -30 -40 -50 -60 1 10 100 1000 10000 V DD = 5 V T A = 2 5O C Vref = 2 V dc + 0.5 Vpp Input cod e = 255 Frequency (kHz ) Frequency (kHz) Positive Rise and Settling Time VDD = 3 V Negative Fall and Settling Time VDD = 3 V 500 mV/Vert. div 2 µs/Hor. div VDD = 3 V TA = 25OC code 00 to FF Hex Range = x 2 Vref = 1.25 V 500 mV/Vert. div 2 µs/Hor. div VDD = 3 V TA = 25OC code FF to 00 Hex Range = x 2 Vref = 1.25 V Rise time = 2.5 µs, Positive slew rate = 0.80 µ s Settling time = 4.5 µ s Positive Rise and Settling Time VDD = 5 V Fall time = 4.85 µ s, Negative slew rate = 0.41 µs Settling time = 8.0 µs Negative Fall and Settling Time VDD = 5 V 1 V/Vert. div 2 µs/Hor. div VDD = 5 V TA = 25OC code 00 to FF Hex Range = x 2 Vref = 2 V VDD = 5 V TA = 25OC code FF to 00 Hex Range = x 2 Vref = 2 V 1 V/Vert. div 5 µs/Hor. div Rise time = 3.75 µs, Positive slew rate = 0.54 µ s Settling time = 5.9 µ s Fall time = 5.9 µ s, Negative slew rate = 0.54 µs Settling time = 8.5 µs 8 Wolfson Microelectronics WM5628L, WM5628 Equivalent Input and Output Circuits Timing Waveforms Data Input Timing Load and LDAC Timing CLK tSD 50 % CLK 50 % tHD Load tHL tWL tSL Data tLD tWD LDAC Wolfson Microelectronics 9 WM5628L, WM5628 Timing Diagrams 1 CLK 2 3 4 5 6 7 8 9 10 11 12 Data A2 A1 A0 RNG D7 D6 D5 D4 D3 D2 D1 D0 Load LDAC Figure 1. Load controlled update (LDAC = 0) 1 CLK 2 3 4 5 6 7 8 9 10 11 12 Data A2 A1 A0 RNG D7 D6 D5 D4 D3 D2 D1 D0 Load LDAC Figure 2. LDAC controlled update 1 CLK 2 3 4 5 6 7 8 9 10 11 12 Data A2 A1 A0 RNG D7 D6 D5 D4 D3 D2 D1 D0 Load LDAC Figure 3. Load controlled update (LDAC = 0) using 8-bit serial word. 1 CLK 2 3 4 5 6 7 8 9 10 11 12 Data A2 A1 A0 RNG D7 D6 D5 D4 D3 D2 D1 D0 Load LDAC Figure 4. LDAC controlled update using 8-bit serial word. 10 Wolfson Microelectronics WM5628L, WM5628 Pin Descriptions Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Name DACB DACA GND Data CLK VDD DACE DACF DACG DACH Ref2 Load LDAC Ref1 DACD DACC Type Analogue output Analogue input Supply Digital input Digital input Supply Analogue output Analogue output Analogue output Analogue output Analogue input Digital input Digital input Analogue input Analogue output Analogue output Function DAC B output DAC A output Ground return Serial data input Serial interface clock, negative edge sensitive Positive supply voltage DAC E output DAC F output DAC G output DAC H output Reference to DACE, DACF, DACG and DACH Serial input load DAC update latch control Reference to DACA, DACB, DACC and DACD DAC D output DAC C output Functional Description DAC operation Each of WM5628/L 's eight digital to analogue converters (DACs) are implemented using a single resistor string with 256 taps corresponding to each of the input 8-bit codes. One end of a resistor string is connected to the GND pin and the other end is driven from the output of a reference input buffer. The use of a resistor string guarantees monotonicity of the DAC's output voltage. Linearity depends upon the matching of the resistor string's individual elements and the performance of the output buffer. Two high input impedance voltage reference buffers are provided, each driving four DACs, Each DAC has a voltage output amplifier which is programmable for gains of x1 or x 2 through the serial interface. The DAC output amplifiers feature rail to rail output stages, allowing outputs over the full supply voltage range to be achieved with a x 2 gain setting and a VDD /2 reference voltage input. Used in this way a slight degradation in linearity will occur as the output voltage approaches V DD. A power-on-reset activates at power up resetting the DACs inputs to code 0. Each output voltage is given by: Vout = Vref x CODE/256 x (RNG+1 ) Where: RNG controls the output gains of x 1 and x 2 CODE is the range 0 to 255 Data Interface WM5628/L's eight double buffered DAC inputs allow several ways of controlling the update of each DAC's output. Serial data is input, MSB first, into the DATA input pin Serial Input DAC Address and Output Tables using CLK, LOAD and LDAC control inputs and comprises 3 DAC address bits, an output range (RNG) bit and 8 DAC input bits. With the LOAD pin high data is clocked into the DATA pin on each falling edge of CLK. Any number of data bits may be clocked in, only the last 12 bits are used. When all data bits have been clocked in, a falling edge at the LOAD pin latches the data and RNG bits into the correct 9 bit input latch using the 3 bit DAC address. If the LDAC input pin is low, the second latch at the DAC input is transparent, and the DAC input and RNG bit will be updated on the falling edge of LOAD simultaneously with the input latch, as shown in figure 1. If the LDAC input is high during serial data input, as shown in figure 2, the falling edge of the LOAD input stores the data in the addressed input latch. The falling edge of LDAC updates the second latches from the input latches and hence the DAC outputs. Wolfson Microelectronics 11 WM5628L, WM5628 Functional Description (continued) Using these inputs individual DACs can be updated using one 12 bit serial input word and the LOAD pin. Using both LOAD and LDAC, all or selected DACs can be updated after an appropriate number of data words have been inputted. Figures 3 &4 illustrate operation with the 8 clock pulses available from some microprocessors. If the data input is interrupted in this way the clock input must be held low during the break in clock pulses. The RNG bit controls the DAC output range. When RNG = 0 the output is between Vref(A,B,C,D) and GND and when RNG = 1 the range is between 2 x Vref (A,B,C,D) and GND. Serial Input DAC Address and Output Tables A2 0 0 0 0 1 1 1 1 D7 0 0 A1 0 0 1 1 0 0 1 1 D6 0 0 D5 0 0 A0 0 1 0 1 0 1 0 1 D4 0 0 DAC Updated DACA DACB DACC DACD DACE DACF DACG DACH D3 0 0 D2 0 0 D1 0 0 D0 0 1 Output Voltage GND (1/256) x Ref (1 + RNG) 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 (127/256) x Ref (1 + RNG) (128/256) x Ref (1 + RNG) 1 1 1 1 1 1 1 1 (255/256) x Ref (1 + RNG) 12 Wolfson Microelectronics WM5628L, WM5628 Functional Description (Continued) Linearity, offset, and gain error using single end supplies When an amplifier is operated from a single supply, the voltage offset can still be either positive or negative. With a positive offset, the output voltage changes on the first code change. With a negative offset the output voltage may not change with the first code depending on the magnitude of the offset voltage. The output amplifier, with a negative voltage offset, attempts to drive the output to a negative voltage. However, because the most negative supply rail is GND, the output cannot drive to a negative voltage. So when the output offset voltage is negative, the output voltage remains at ZERO volts until the input code value produces a sufficient output voltage to overcome the inherent negative offset voltage, resulting in the transfer function shown below This negative offset error, not the linearity error, produces this breakpoint. The transfer function would have followed the dotted line if the output buffer could drive to a negative voltage. For a DAC, linearity is measured between ZERO input code ( all inputs 0 ) and full scale code ( all inputs 1 ) after offset and full scale are adjusted out or accounted for in some way. However, single supply operation does not allow for adjustment when the offset is negative due to the breakpoint in the transfer function. So the linearity in the unipolar mode is measured between full scale code and the lowest code which produces a positive output voltage. The code is calculated from the maximum specification for the negative offset. Effect of negative offset (single supply) Wolfson Microelectronics 13 WM5628L, WM5628 Package Descriptions Dual-In-Line Package N or P N 0.325 0.290 0.015 Min. 1 N/2 A 0.070 Max. 0.280 0.240 0.210 Max. 105O 90O 0.014 0.008 0.150 0.115 0.005 Min. Pin spacing 0.100 B.S.C. 0.045 0.030 0.022 0.014 Seating plane Dimension 'A' Variations N 8 14 16 20 Min 0.355 0.735 0.735 0.940 Max 0.400 0.775 0.775 0.975 Notes: A. Dimensions are in inches B. Falls within JEDEC MS-001( 20 pin package is shorter than MS-001) C. N is the maximum number of terminals D. All end pins are partial width pins as shown, except the 14 pin package which is full width. Rev. 1 November 96 14 Wolfson Microelectronics WM5628L, WM5628 Package Description Wide body Plastic Small-Outline Package DW - 16 pin shown 1,27 B.S.C. 0,51 0,33 16 0,25 M 9 DIM A MAX 10,50 13,00 15,60 18,10 PINS** 16 20 24 28 10,65 10,00 7,60 7,40 A MIN 10,10 12,60 15,20 17,70 0.75 x 45 0 0.25 x 45 0 1 A 8 Gauge Plane 0o - 8o 1,27 0,40 2,65 2,35 0,30 0,10 0,10 0,33 0,23 Notes: A. Dimensions in millimeters. B. Complies with Jedec standard MS-013. C. This drawing is subject to change without notice. D. Body dimensions do not include mold flash or protrusion. E. Dimension A, mould flash or protrusion shall not exceed 0.15mm. Body width, interlead flash or protrusions shall not exceed 0.25mm. Rev. 1 November 96 Wolfson Microelectronics 15
WM5628L
物料型号: - WM5628L 和 WM5628

器件简介: WM5628L 和 WM5628 是8位数字模拟转换器(DAC),通过串行接口控制。每个DAC的输出电压范围可以编程设置为参考输入电压的1倍或2倍,允许接近轨到轨操作。为每组四个DAC提供高阻抗缓冲电压参考输入。WM5628L在3V单电源电压下工作,而WM5628在5V下工作。

引脚分配: - 1号引脚:DACB DACA模拟输出 - 2号引脚:模拟输入 - 3号引脚:GND - 4号引脚:数据输入 - 5号引脚:VDD 供电 - 6号引脚:时钟输入 - 7号引脚:DACE - 8号引脚:DACS - 9号引脚:VDD 供电 - 10号引脚:LOAD LDAC - 11号引脚:DACH - 12号引脚:Ref2 - 13号引脚:DACG - 14号引脚:Ref1 - 15号引脚:DACC - 16号引脚:DACE

参数特性: - 8位电压输出DAC - 三线串行接口 - 可编程1倍或2倍输出范围 - 上电复位将输出设置为零 - 缓冲电压参考输入 - 同时更新DAC输出

功能详解: 每个WM5628/L的八个数字模拟转换器(DAC)使用单个电阻串,具有256个抽头,对应于输入的8位代码。电阻串的一端连接到GND引脚,另一端由参考输入缓冲器的输出驱动。使用电阻串保证了DAC输出电压的单调性。线性度取决于电阻串各个元素的匹配和输出缓冲器的性能。

应用信息: - 可编程直流电压源 - 数字控制衰减器/放大器 - 信号合成 - 移动通信 - 自动测试设备 - 过程控制

封装信息: - WM5628CN:0°C至70°C,16引脚塑料DIP封装 - WM5628CDW:0°C至70°C,16引脚宽体塑料SO封装 - WM5628IN:-40°C至85°C,16引脚塑料DIP封装 - WM5628IDW:-40°C至85°C,16引脚宽体塑料SO封装 - WM5628LCN:0°C至70°C,16引脚塑料DIP封装 - WM5628LCDW:0°C至70°C,16引脚宽体塑料SO封装 - WM5628LIN:-40°C至85°C,16引脚塑料DIP封装 - WM5628LIDW:-40°C至85°C,16引脚宽体塑料SO封装
WM5628L 价格&库存

很抱歉,暂时无法提供与“WM5628L”相匹配的价格&库存,您可以联系我们找货

免费人工找货