0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XCV600E-7FG676C

XCV600E-7FG676C

  • 厂商:

    XILINX(赛灵思)

  • 封装:

    BGA676

  • 描述:

    IC FPGA 444 I/O 676FCBGA

  • 详情介绍
  • 数据手册
  • 价格&库存
XCV600E-7FG676C 数据手册
0 Virtex™-E 1.8 V Field Programmable Gate Arrays R DS022-1 (v2.3) July 17, 2002 0 0 Production Product Specification Features • • • • • Fast, High-Density 1.8 V FPGA Family - Densities from 58 k to 4 M system gates - 130 MHz internal performance (four LUT levels) - Designed for low-power operation - PCI compliant 3.3 V, 32/64-bit, 33/ 66-MHz Highly Flexible SelectI/O+™ Technology - Supports 20 high-performance interface standards - Up to 804 singled-ended I/Os or 344 differential I/O pairs for an aggregate bandwidth of > 100 Gb/s Differential Signalling Support - LVDS (622 Mb/s), BLVDS (Bus LVDS), LVPECL - Differential I/O signals can be input, output, or I/O - Compatible with standard differential devices - LVPECL and LVDS clock inputs for 300+ MHz clocks Proprietary High-Performance SelectLink™ Technology - Double Data Rate (DDR) to Virtex-E link - Web-based HDL generation methodology Sophisticated SelectRAM+™ Memory Hierarchy - 1 Mb of internal configurable distributed RAM - Up to 832 Kb of synchronous internal block RAM - True Dual-Port BlockRAM capability - Memory bandwidth up to 1.66 Tb/s (equivalent bandwidth of over 100 RAMBUS channels) - Designed for high-performance Interfaces to External Memories - 200 MHz ZBT* SRAMs - 200 Mb/s DDR SDRAMs - Supported by free Synthesizable reference design • • • • • • • High-Performance Built-In Clock Management Circuitry - Eight fully digital Delay-Locked Loops (DLLs) - Digitally-Synthesized 50% duty cycle for Double Data Rate (DDR) Applications - Clock Multiply and Divide - Zero-delay conversion of high-speed LVPECL/LVDS clocks to any I/O standard Flexible Architecture Balances Speed and Density - Dedicated carry logic for high-speed arithmetic - Dedicated multiplier support - Cascade chain for wide-input function - Abundant registers/latches with clock enable, and dual synchronous/asynchronous set and reset - Internal 3-state bussing - IEEE 1149.1 boundary-scan logic - Die-temperature sensor diode Supported by Xilinx Foundation™ and Alliance Series™ Development Systems - Further compile time reduction of 50% - Internet Team Design (ITD) tool ideal for million-plus gate density designs - Wide selection of PC and workstation platforms SRAM-Based In-System Configuration - Unlimited re-programmability Advanced Packaging Options - 0.8 mm Chip-scale - 1.0 mm BGA - 1.27 mm BGA - HQ/PQ 0.18 μm 6-Layer Metal Process 100% Factory Tested * ZBT is a trademark of Integrated Device Technology, Inc. © 2000-2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice. DS022-1 (v2.3) July 17, 2002 Production Product Specification www.xilinx.com 1-800-255-7778 Module 1 of 4 1 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 1: Virtex-E Field-Programmable Gate Array Family Members Device System Gates Logic Gates CLB Array Logic Cells Differential I/O Pairs User I/O BlockRAM Bits Distributed RAM Bits XCV50E 71,693 20,736 16 x 24 1,728 83 176 65,536 24,576 XCV100E 128,236 32,400 20 x 30 2,700 83 196 81,920 38,400 XCV200E 306,393 63,504 28 x 42 5,292 119 284 114,688 75,264 XCV300E 411,955 82,944 32 x 48 6,912 137 316 131,072 98,304 XCV400E 569,952 129,600 40 x 60 10,800 183 404 163,840 153,600 XCV600E 985,882 186,624 48 x 72 15,552 247 512 294,912 221,184 XCV1000E 1,569,178 331,776 64 x 96 27,648 281 660 393,216 393,216 XCV1600E 2,188,742 419,904 72 x 108 34,992 344 724 589,824 497,664 XCV2000E 2,541,952 518,400 80 x 120 43,200 344 804 655,360 614,400 XCV2600E 3,263,755 685,584 92 x 138 57,132 344 804 753,664 812,544 XCV3200E 4,074,387 876,096 104 x 156 73,008 344 804 851,968 1,038,336 Virtex-E Compared to Virtex Devices The Virtex-E family offers up to 43,200 logic cells in devices up to 30% faster than the Virtex family. I/O performance is increased to 622 Mb/s using Source Synchronous data transmission architectures and synchronous system performance up to 240 MHz using singled-ended SelectI/O technology. Additional I/O standards are supported, notably LVPECL, LVDS, and BLVDS, which use two pins per signal. Almost all signal pins can be used for these new standards. Virtex-E devices have up to 640 Kb of faster (250 MHz) block SelectRAM, but the individual RAMs are the same size and structure as in the Virtex family. They also have eight DLLs instead of the four in Virtex devices. Each individual DLL is slightly improved with easier clock mirroring and 4x frequency multiplication. VCCINT, the supply voltage for the internal logic and memory, is 1.8 V, instead of 2.5 V for Virtex devices. Advanced processing and 0.18 μm design rules have resulted in smaller dice, faster speed, and lower power consumption. I/O pins are 3 V tolerant, and can be 5 V tolerant with an external 100 Ω resistor. PCI 5 V is not supported. With the addition of appropriate external resistors, any pin can tolerate any voltage desired. Banking rules are different. With Virtex devices, all input buffers are powered by VCCINT. With Virtex-E devices, the LVTTL, LVCMOS2, and PCI input buffers are powered by the I/O supply voltage VCCO. Module 1 of 4 2 The Virtex-E family is not bitstream-compatible with the Virtex family, but Virtex designs can be compiled into equivalent Virtex-E devices. The same device in the same package for the Virtex-E and Virtex families are pin-compatible with some minor exceptions. See the data sheet pinout section for details. General Description The Virtex-E FPGA family delivers high-performance, high-capacity programmable logic solutions. Dramatic increases in silicon efficiency result from optimizing the new architecture for place-and-route efficiency and exploiting an aggressive 6-layer metal 0.18 μm CMOS process. These advances make Virtex-E FPGAs powerful and flexible alternatives to mask-programmed gate arrays. The Virtex-E family includes the nine members in Table 1. Building on experience gained from Virtex FPGAs, the Virtex-E family is an evolutionary step forward in programmable logic design. Combining a wide variety of programmable system features, a rich hierarchy of fast, flexible interconnect resources, and advanced process technology, the Virtex-E family delivers a high-speed and high-capacity programmable logic solution that enhances design flexibility while reducing time-to-market. Virtex-E Architecture Virtex-E devices feature a flexible, regular architecture that comprises an array of configurable logic blocks (CLBs) surrounded by programmable input/output blocks (IOBs), all interconnected by a rich hierarchy of fast, versatile routing www.xilinx.com 1-800-255-7778 DS022-1 (v2.3) July 17, 2002 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays resources. The abundance of routing resources permits the Virtex-E family to accommodate even the largest and most complex designs. Virtex-E FPGAs are SRAM-based, and are customized by loading configuration data into internal memory cells. Configuration data can be read from an external SPROM (master serial mode), or can be written into the FPGA (SelectMAP™, slave serial, and JTAG modes). The standard Xilinx Foundation Series™ and Alliance Series™ Development systems deliver complete design support for Virtex-E, covering every aspect from behavioral and schematic entry, through simulation, automatic design translation and implementation, to the creation and downloading of a configuration bit stream. Table 2: Performance for Common Circuit Functions Function Bits Virtex-E (-7) 16 64 4.3 ns 6.3 ns 8x8 16 x 16 4.4 ns 5.1 ns 16 64 3.8 ns 5.5 ns Register-to-Register Adder Pipelined Multiplier Address Decoder 16:1 Multiplexer 4.6 ns Parity Tree Higher Performance Virtex-E devices provide better performance than previous generations of FPGAs. Designs can achieve synchronous system clock rates up to 240 MHz including I/O or 622 Mb/s using Source Synchronous data transmission architechtures. Virtex-E I/Os comply fully with 3.3 V PCI specifications, and interfaces can be implemented that operate at 33 MHz or 66 MHz. While performance is design-dependent, many designs operate internally at speeds in excess of 133 MHz and can achieve over 311 MHz. Table 2 shows performance data for representative circuits, using worst-case timing parameters. 9 18 36 3.5 ns 4.3 ns 5.9 ns Chip-to-Chip HSTL Class IV LVTTL,16mA, fast slew LVDS LVPECL Virtex-E Device/Package Combinations and Maximum I/O Table 3: Virtex-E Family Maximum User I/O by Device/Package (Excluding Dedicated Clock Pins) XCV 50E XCV 100E XCV 200E CS144 94 94 94 PQ240 158 158 158 XCV 300E XCV 400E 158 158 HQ240 BG352 196 260 BG432 316 176 176 FG456 FG676 FG680 XCV 1000E 158 158 176 176 284 312 316 316 404 404 404 444 512 FG860 FG900 512 FG1156 DS022-1 (v2.3) July 17, 2002 Production Product Specification XCV 1600E XCV 2000E 404 404 404 512 512 512 660 660 660 660 700 660 724 XCV 2600E XCV 3200E 804 804 260 BG560 FG256 XCV 600E www.xilinx.com 1-800-255-7778 804 Module 1 of 4 3 R Virtex™-E 1.8 V Field Programmable Gate Arrays Virtex-E Ordering Information Example: XCV300E-6PQ240C Device Type Temperature Range C = Commercial (Tj = 0 C to +85 C) I = Industrial (Tj = -40 C to +100 C) Speed Grade (-6, -7, -8) Number of Pins Package Type BG = Ball Grid Array FG = Fine Pitch Ball Grid Array HQ = High Heat Dissipation DS022_043_072000 Figure 1: Ordering Information Revision History The following table shows the revision history for this document. Date Version Revision 12/7/99 1.0 Initial Xilinx release. 1/10/00 1.1 Re-released with spd.txt v. 1.18, FG860/900/1156 package information, and additional DLL, Select RAM and SelectI/O information. 1/28/00 1.2 Added Delay Measurement Methodology table, updated SelectI/O section, Figures 30, 54, & 55, text explaining Table 5, TBYP values, buffered Hex Line info, p. 8, I/O Timing Measurement notes, notes for Tables 15, 16, and corrected F1156 pinout table footnote references. 2/29/00 1.3 Updated pinout tables, VCC page 20, and corrected Figure 20. 5/23/00 1.4 Correction to table on p. 22. 7/10/00 1.5 • • • Numerous minor edits. Data sheet upgraded to Preliminary. Preview -8 numbers added to Virtex-E Electrical Characteristics tables. 8/1/00 1.6 • • Reformatted entire document to follow new style guidelines. Changed speed grade values in tables on pages 35-37. 9/20/00 1.7 • • Min values added to Virtex-E Electrical Characteristics tables. XCV2600E and XCV3200E numbers added to Virtex-E Electrical Characteristics tables (Module 3). Corrected user I/O count for XCV100E device in Table 1 (Module 1). Changed several pins to “No Connect in the XCV100E“ and removed duplicate VCCINT pins in Table ~ (Module 4). Changed pin J10 to “No connect in XCV600E” in Table 74 (Module 4). Changed pin J30 to “VREF option only in the XCV600E” in Table 74 (Module 4). Corrected pair 18 in Table 75 (Module 4) to be “AO in the XCV1000E, XCV1600E“. • • • • • Module 1 of 4 4 www.xilinx.com 1-800-255-7778 DS022-1 (v2.3) July 17, 2002 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Date Version 11/20/00 1.8 Revision • • • • • 2/12/01 1.9 Upgraded speed grade -8 numbers in Virtex-E Electrical Characteristics tables to Preliminary. Updated minimums in Table 13 and added notes to Table 14. Added to note 2 to Absolute Maximum Ratings. Changed speed grade -8 numbers for TSHCKO32, TREG, TBCCS, and TICKOF. • Changed all minimum hold times to –0.4 under Global Clock Setup and Hold for LVTTL Standard, with DLL. Revised maximum TDLLPW in -6 speed grade for DLL Timing Parameters. • Changed GCLK0 to BA22 for FG860 package in Table 46. • • • Revised footnote for Table 14. Added numbers to Virtex-E Electrical Characteristics tables for XCV1000E and XCV2000E devices. Updated Table 27 and Table 78 to include values for XCV400E and XCV600E devices. Revised Table 62 to include pinout information for the XCV400E and XCV600E devices in the BG560 package. Updated footnotes 1 and 2 for Table 76 to include XCV2600E and XCV3200E devices. • • 4/2/01 2.0 • • Updated numerous values in Virtex-E Switching Characteristics tables. Converted data sheet to modularized format. See the Virtex-E Data Sheet section. 10/25/01 2.1 • Updated the Virtex-E Device/Package Combinations and Maximum I/O table to show XCV3200E in the FG1156 package. 11/09/01 2.2 • Minor edits. 07/17/02 2.3 • Data sheet designation upgraded from Preliminary to Production. Virtex-E Data Sheet The Virtex-E Data Sheet contains the following modules: • DS022-1, Virtex-E 1.8V FPGAs: • Introduction and Ordering Information (Module 1) • DS022-2, Virtex-E 1.8V FPGAs: Functional Description (Module 2) DS022-1 (v2.3) July 17, 2002 Production Product Specification DS022-3, Virtex-E 1.8V FPGAs: DC and Switching Characteristics (Module 3) • DS022-4, Virtex-E 1.8V FPGAs: Pinout Tables (Module 4) www.xilinx.com 1-800-255-7778 Module 1 of 4 5 R Virtex™-E 1.8 V Field Programmable Gate Arrays Module 1 of 4 6 www.xilinx.com 1-800-255-7778 DS022-1 (v2.3) July 17, 2002 Production Product Specification 0 Virtex™-E 1.8 V Field Programmable Gate Arrays R DS022-2 (v2.8) January 16, 2006 0 0 Production Product Specification Architectural Description Virtex-E Array The Virtex-E user-programmable gate array, shown in Figure 1, comprises two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs). • CLBs provide the functional elements for constructing logic • IOBs provide the interface between the package pins and the CLBs CLBs interconnect through a general routing matrix (GRM). The GRM comprises an array of routing switches located at the intersections of horizontal and vertical routing channels. Each CLB nests into a VersaBlock™ that also provides local routing resources to connect the CLB to the GRM. Values stored in static memory cells control the configurable logic elements and interconnect resources. These values load into the memory cells on power-up, and can reload if necessary to change the function of the device. Input/Output Block The Virtex-E IOB, Figure 2, features SelectI/O+ inputs and outputs that support a wide variety of I/O signalling standards, see Table 1. T TCE D Q CE Weak Keeper SR DLLDLL DLLDLL O OCE PAD D Q CE OBUFT VersaRing SR I IQ Q D CE Programmable Delay CLBs BRAMs CLBs BRAMs CLBs CLBs BRAMs BRAMs Vref IOBs IOBs IBUF SR SR CLK ICE ds022_02_091300 Figure 2: Virtex-E Input/Output Block (IOB) The three IOB storage elements function either as edge-triggered D-type flip-flops or as level-sensitive latches. Each IOB has a clock signal (CLK) shared by the three flip-flops and independent clock enable signals for each flip-flop. VersaRing DLLDLL DLLDLL ds022_01_121099 Figure 1: Virtex-E Architecture Overview The VersaRing™ I/O interface provides additional routing resources around the periphery of the device. This routing improves I/O routability and facilitates pin locking. The Virtex-E architecture also includes the following circuits that connect to the GRM. • Dedicated block memories of 4096 bits each • Clock DLLs for clock-distribution delay compensation and clock domain control • 3-State buffers (BUFTs) associated with each CLB that drive dedicated segmentable horizontal routing resources © 2000–2006 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice. DS022-2 (v2.8) January 16, 2006 Production Product Specification www.xilinx.com Module 2 of 4 1 R Virtex™-E 1.8 V Field Programmable Gate Arrays Input Path Table 1: Supported I/O Standards I/O Output Input Input Board Termination Standard VCCO VCCO VREF Voltage (VTT) LVTTL 3.3 3.3 N/A N/A LVCMOS2 2.5 2.5 N/A N/A LVCMOS18 1.8 1.8 N/A N/A SSTL3 I & II 3.3 N/A 1.50 1.50 SSTL2 I & II 2.5 N/A 1.25 1.25 GTL N/A N/A 0.80 1.20 GTL+ N/A N/A 1.0 1.50 HSTL I 1.5 N/A 0.75 0.75 HSTL III & IV 1.5 N/A 0.90 1.50 CTT 3.3 N/A 1.50 1.50 AGP-2X 3.3 N/A 1.32 N/A PCI33_3 3.3 3.3 N/A N/A PCI66_3 3.3 3.3 N/A N/A BLVDS & LVDS 2.5 N/A N/A N/A LVPECL 3.3 N/A N/A N/A An optional delay element at the D-input of this flip-flop eliminates pad-to-pad hold time. The delay is matched to the internal clock-distribution delay of the FPGA, and when used, assures that the pad-to-pad hold time is zero. Each input buffer can be configured to conform to any of the low-voltage signalling standards supported. In some of these standards the input buffer utilizes a user-supplied threshold voltage, VREF. The need to supply VREF imposes constraints on which standards can be used in close proximity to each other. See I/O Banking. There are optional pull-up and pull-down resistors at each user I/O input for use after configuration. Their value is in the range 50 – 100 kΩ. Output Path The output path includes a 3-state output buffer that drives the output signal onto the pad. The output signal can be routed to the buffer directly from the internal logic or through an optional IOB output flip-flop. The 3-state control of the output can also be routed directly from the internal logic or through a flip-flip that provides synchronous enable and disable. In addition to the CLK and CE control signals, the three flip-flops share a Set/Reset (SR). For each flip-flop, this signal can be independently configured as a synchronous Set, a synchronous Reset, an asynchronous Preset, or an asynchronous Clear. The output buffer and all of the IOB control signals have independent polarity controls. All pads are protected against damage from electrostatic discharge (ESD) and from over-voltage transients. After configuration, clamping diodes are connected to VCCO with the exception of LVCMOS18, LVCMOS25, GTL, GTL+, LVDS, and LVPECL. Optional pull-up, pull-down and weak-keeper circuits are attached to each pad. Prior to configuration all outputs not involved in configuration are forced into their high-impedance state. The pull-down resistors and the weak-keeper circuits are inactive, but I/Os can optionally be pulled up. The activation of pull-up resistors prior to configuration is controlled on a global basis by the configuration mode pins. If the pull-up resistors are not activated, all the pins are in a high-impedance state. Consequently, external pull-up or pull-down resistors must be provided on pins required to be at a well-defined logic level prior to configuration. All Virtex-E IOBs support IEEE 1149.1-compatible Boundary Scan testing. Module 2 of 4 2 The Virtex-E IOB input path routes the input signal directly to internal logic and/ or through an optional input flip-flop. Each output driver can be individually programmed for a wide range of low-voltage signalling standards. Each output buffer can source up to 24 mA and sink up to 48 mA. Drive strength and slew rate controls minimize bus transients. In most signalling standards, the output High voltage depends on an externally supplied VCCO voltage. The need to supply VCCO imposes constraints on which standards can be used in close proximity to each other. See I/O Banking. An optional weak-keeper circuit is connected to each output. When selected, the circuit monitors the voltage on the pad and weakly drives the pin High or Low to match the input signal. If the pin is connected to a multiple-source signal, the weak keeper holds the signal in its last state if all drivers are disabled. Maintaining a valid logic level in this way eliminates bus chatter. Since the weak-keeper circuit uses the IOB input buffer to monitor the input level, an appropriate VREF voltage must be provided if the signalling standard requires one. The provision of this voltage must comply with the I/O banking rules. I/O Banking Some of the I/O standards described above require VCCO and/or VREF voltages. These voltages are externally supplied and connected to device pins that serve groups of IOBs, called banks. Consequently, restrictions exist about which I/O standards can be combined within a given bank. www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Eight I/O banks result from separating each edge of the FPGA into two banks, as shown in Figure 3. Each bank has multiple VCCO pins, all of which must be connected to the same voltage. This voltage is determined by the output standards in use. The VCCO and VREF pins for each bank appear in the device pin-out tables and diagrams. The diagrams also show the bank affiliation of each I/O. Bank 1 GCLK3 GCLK2 Bank 2 Bank 7 Bank 0 Within a given package, the number of VREF and VCCO pins can vary depending on the size of device. In larger devices, more I/O pins convert to VREF pins. Since these are always a super set of the VREF pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device if necessary. All the VREF pins for the largest device anticipated must be connected to the VREF voltage, and not used for I/O. Bank 3 Bank 6 VirtexE Device GCLK1 GCLK0 Bank 5 In Virtex-E, input buffers with LVTTL, LVCMOS2, LVCMOS18, PCI33_3, PCI66_3 standards are supplied by VCCO rather than VCCINT. For these standards, only input and output buffers that have the same VCCO can be mixed together. Bank 4 In smaller devices, some VCCO pins used in larger devices do not connect within the package. These unconnected pins can be left unconnected externally, or can be connected to the VCCO voltage to permit migration to a larger device if necessary. ds022_03_121799 Figure 3: Virtex-E I/O Banks Within a bank, output standards can be mixed only if they use the same VCCO. Compatible standards are shown in Table 2. GTL and GTL+ appear under all voltages because their open-drain outputs do not depend on VCCO. Table 2: Compatible Output Standards VCCO Compatible Standards 3.3 V PCI, LVTTL, SSTL3 I, SSTL3 II, CTT, AGP, GTL, GTL+, LVPECL 2.5 V SSTL2 I, SSTL2 II, LVCMOS2, GTL, GTL+, BLVDS, LVDS 1.8 V LVCMOS18, GTL, GTL+ 1.5 V HSTL I, HSTL III, HSTL IV, GTL, GTL+ Configurable Logic Blocks The basic building block of the Virtex-E CLB is the logic cell (LC). An LC includes a 4-input function generator, carry logic, and a storage element. The output from the function generator in each LC drives both the CLB output and the D input of the flip-flop. Each Virtex-E CLB contains four LCs, organized in two similar slices, as shown in Figure 4. Figure 5 shows a more detailed view of a single slice. In addition to the four basic LCs, the Virtex-E CLB contains logic that combines function generators to provide functions of five or six inputs. Consequently, when estimating the number of system gates provided by a given device, each CLB counts as 4.5 LCs. Look-Up Tables Some input standards require a user-supplied threshold voltage, VREF. In this case, certain user-I/O pins are automatically configured as inputs for the VREF voltage. Approximately one in six of the I/O pins in the bank assume this role. The VREF pins within a bank are interconnected internally and consequently only one VREF voltage can be used within each bank. All VREF pins in the bank, however, must be connected to the external voltage source for correct operation. Within a bank, inputs that require VREF can be mixed with those that do not. However, only one VREF voltage can be used within a bank. DS022-2 (v2.8) January 16, 2006 Production Product Specification Virtex-E function generators are implemented as 4-input look-up tables (LUTs). In addition to operating as a function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, or a 16 x 1-bit dual-port synchronous RAM. The Virtex-E LUT can also provide a 16-bit shift register that is ideal for capturing high-speed or burst-mode data. This mode can also be used to store data in applications such as Digital Signal Processing. www.xilinx.com Module 2 of 4 3 R Virtex™-E 1.8 V Field Programmable Gate Arrays COUT COUT YB Y G4 G3 G2 LUT SP D Q CE Carry & Control YB Y G4 G3 YQ G1 LUT G2 SP D Q CE Carry & Control YQ G1 RC BY RC BY XB X F4 F3 LUT F2 SP D Q CE Carry & Control F1 XB F3 XQ LUT F2 SP D Q CE Carry & Control XQ F1 RC BX X F4 RC BX Slice 1 Slice 0 CIN CIN ds022_04_121799 Figure 4: 2-Slice Virtex-E CLB COUT YB CY G4 G3 G2 G1 I3 I2 I1 I0 Y O LUT DI WE 0 INIT D Q CE 1 REV YQ BY XB F5IN F6 CY CK WE A4 WSO I3 I2 I1 I0 WE WSH BX X DI INIT DQ CE BX F4 F3 F2 F1 F5 F5 BY DG XQ DI REV O LUT 0 1 SR CLK CE CIN ds022_05_092000 Figure 5: Detailed View of Virtex-E Slice Storage Elements The storage elements in the Virtex-E slice can be configured either as edge-triggered D-type flip-flops or as level-sensitive latches. The D inputs can be driven either by Module 2 of 4 4 the function generators within the slice or directly from slice inputs, bypassing the function generators. In addition to Clock and Clock Enable signals, each Slice has synchronous set and reset signals (SR and BY). SR www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays forces a storage element into the initialization state specified for it in the configuration. BY forces it into the opposite state. Alternatively, these signals can be configured to operate asynchronously. All of the control signals are independently invertible, and are shared by the two flip-flops within the slice. Additional Logic The F5 multiplexer in each slice combines the function generator outputs. This combination provides either a function generator that can implement any 5-input function, a 4:1 multiplexer, or selected functions of up to nine inputs. Similarly, the F6 multiplexer combines the outputs of all four function generators in the CLB by selecting one of the F5-multiplexer outputs. This permits the implementation of any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs. Each CLB has four direct feedthrough paths, two per slice. These paths provide extra data input lines or additional local routing that does not consume logic resources. Arithmetic Logic Dedicated carry logic provides fast arithmetic carry capability for high-speed arithmetic functions. The Virtex-E CLB supports two separate carry chains, one per Slice. The height of the carry chains is two bits per CLB. The arithmetic logic includes an XOR gate that allows a 2-bit full adder to be implemented within a slice. In addition, a dedicated AND gate improves the efficiency of multiplier implementation. The dedicated carry path can also be used to cascade function generators for implementing wide logic functions. BUFTs Each Virtex-E CLB contains two 3-state drivers (BUFTs) that can drive on-chip buses. See Dedicated Routing. Each Virtex-E BUFT has an independent 3-state control pin and an independent input pin. Block SelectRAM Virtex-E FPGAs incorporate large block SelectRAM memories. These complement the Distributed SelectRAM memories that provide shallow RAM structures implemented in CLBs. Block SelectRAM memory blocks are organized in columns, starting at the left (column 0) and right outside edges and inserted every 12 CLB columns (see notes for smaller devices). Each memory block is four CLBs high, and each memory column extends the full height of the chip, immediately adjacent (to the right, except for column 0) of the CLB column locations indicated in Table 3. DS022-2 (v2.8) January 16, 2006 Production Product Specification Table 3: CLB/Block RAM Column Locations XCV Device /Col. 0 12 24 36 48 60 72 84 96 108 50E Columns 0, 6, 18, & 24 100E Columns 0, 12, 18, & 30 200E Columns 0, 12, 30, & 42 300E √ √ √ 400E √ √ 600E √ √ √ 1000E √ √ √ 1600E √ √ √ √ 2000E √ √ √ √ 2600E √ √ √ √ 3200E √ √ √ √ 120 138 156 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ Table 4 shows the amount of block SelectRAM memory that is available in each Virtex-E device. Table 4: Virtex-E Block SelectRAM Amounts Virtex-E Device # of Blocks Block SelectRAM Bits XCV50E 16 65,536 XCV100E 20 81,920 XCV200E 28 114,688 XCV300E 32 131,072 XCV400E 40 163,840 XCV600E 72 294,912 XCV1000E 96 393,216 XCV1600E 144 589,824 XCV2000E 160 655,360 XCV2600E 184 753,664 XCV3200E 208 851,968 As illustrated in Figure 6, each block SelectRAM cell is a fully synchronous dual-ported (True Dual Port) 4096-bit RAM with independent control signals for each port. The data widths of the two ports can be configured independently, providing built-in bus-width conversion. www.xilinx.com Module 2 of 4 5 R Virtex™-E 1.8 V Field Programmable Gate Arrays • RAMB4_S#_S# WEA ENA RSTA CLKA ADDRA[#:0] DIA[#:0] WEB ENB RSTB CLKB ADDRB[#:0] DIB[#:0] Direct paths that provide high-speed connections between horizontally adjacent CLBs, eliminating the delay of the GRM. DOA[#:0] To Adjacent GRM To Adjacent GRM GRM To Adjacent GRM DOB[#:0] To Adjacent GRM Direct Connection To Adjacent CLB ds022_06_121699 Figure 6: Dual-Port Block SelectRAM CLB Direct Connection To Adjacent CLB XCVE_ds_007 Table 5 shows the depth and width aspect ratios for the block SelectRAM. The Virtex-E block SelectRAM also includes dedicated routing to provide an efficient interface with both CLBs and other block SelectRAMs. Refer to XAPP130 for block SelectRAM timing waveforms. Figure 7: Virtex-E Local Routing General Purpose Routing Width Depth ADDR Bus Data Bus Most Virtex-E signals are routed on the general purpose routing, and consequently, the majority of interconnect resources are associated with this level of the routing hierarchy. General-purpose routing resources are located in horizontal and vertical routing channels associated with the CLB rows and columns and are as follows: 1 4096 ADDR DATA • 2 2048 ADDR DATA 4 1024 ADDR DATA 8 512 ADDR DATA 16 256 ADDR DATA Table 5: Block SelectRAM Port Aspect Ratios • • Programmable Routing Matrix It is the longest delay path that limits the speed of any worst-case design. Consequently, the Virtex-E routing architecture and its place-and-route software were defined in a joint optimization process. This joint optimization minimizes long-path delays, and consequently, yields the best system performance. The joint optimization also reduces design compilation times because the architecture is software-friendly. Design cycles are correspondingly reduced due to shorter design iteration times. Local Routing The VersaBlock provides local routing resources (see Figure 7), providing three types of connections: • • Interconnections among the LUTs, flip-flops, and GRM Internal CLB feedback paths that provide high-speed connections to LUTs within the same CLB, chaining them together with minimal routing delay Module 2 of 4 6 • Adjacent to each CLB is a General Routing Matrix (GRM). The GRM is the switch matrix through which horizontal and vertical routing resources connect, and is also the means by which the CLB gains access to the general purpose routing. 24 single-length lines route GRM signals to adjacent GRMs in each of the four directions. 72 buffered Hex lines route GRM signals to another GRMs six-blocks away in each one of the four directions. Organized in a staggered pattern, Hex lines are driven only at their endpoints. Hex-line signals can be accessed either at the endpoints or at the midpoint (three blocks from the source). One third of the Hex lines are bidirectional, while the remaining ones are uni-directional. 12 Longlines are buffered, bidirectional wires that distribute signals across the device quickly and efficiently. Vertical Longlines span the full height of the device, and horizontal ones span the full width of the device. I/O Routing Virtex-E devices have additional routing resources around their periphery that form an interface between the CLB array and the IOBs. This additional routing, called the VersaRing, facilitates pin-swapping and pin-locking, such that logic redesigns can adapt to existing PCB layouts. Time-to-market is reduced, since PCBs and other system components can be manufactured while the logic design is still in progress. www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Dedicated Routing Clock Routing Some classes of signal require dedicated routing resources to maximize performance. In the Virtex-E architecture, dedicated routing resources are provided for two classes of signal. Clock Routing resources distribute clocks and other signals with very high fanout throughout the device. Virtex-E devices include two tiers of clock routing resources referred to as global and local clock routing resources. • Horizontal routing resources are provided for on-chip 3-state buses. Four partitionable bus lines are provided per CLB row, permitting multiple buses within a row, as shown in Figure 8. • Two dedicated nets per CLB propagate carry signals vertically to the adjacent CLB.Global Clock Distribution Network • DLL Location • • The global routing resources are four dedicated global nets with dedicated input pins that are designed to distribute high-fanout clock signals with minimal skew. Each global clock net can drive all CLB, IOB, and block RAM clock pins. The global nets can be driven only by global buffers. There are four global buffers, one for each global net. The local clock routing resources consist of 24 backbone lines, 12 across the top of the chip and 12 across bottom. From these lines, up to 12 unique signals per column can be distributed via the 12 longlines in the column. These local resources are more flexible than the global resources since they are not restricted to routing only to clock pins. Tri-State Lines CLB CLB CLB CLB buft_c.eps Figure 8: BUFT Connections to Dedicated Horizontal Bus LInes Global Clock Distribution Virtex-E provides high-speed, low-skew clock distribution through the global routing resources described above. A typical clock distribution net is shown in Figure 9. GCLKPAD3 GCLKPAD2 GCLKBUF3 GCLKBUF2 Global Clock Column Global Clock Rows Four global buffers are provided, two at the top center of the device and two at the bottom center. These drive the four global nets that in turn drive any clock pin. Four dedicated clock pads are provided, one adjacent to each of the global buffers. The input to the global buffer is selected either from these pads or from signals in the general purpose routing. Digital Delay-Locked Loops Global Clock Spine GCLKBUF1 GCLKBUF0 GCLKPAD1 GCLKPAD0 XCVE_009 Figure 9: Global Clock Distribution Network DS022-2 (v2.8) January 16, 2006 Production Product Specification There are eight DLLs (Delay-Locked Loops) per device, with four located at the top and four at the bottom, Figure 10. The DLLs can be used to eliminate skew between the clock input pad and the internal clock input pins throughout the device. Each DLL can drive two global clock networks.The DLL monitors the input clock and the distributed clock, and automatically adjusts a clock delay element. Additional delay is introduced such that clock edges arrive at internal flip-flops synchronized with clock edges arriving at the input. In addition to eliminating clock-distribution delay, the DLL provides advanced control of multiple clock domains. The DLL provides four quadrature phases of the source clock, and can double the clock or divide the clock by 1.5, 2, 2.5, 3, 4, 5, 8, or 16. www.xilinx.com Module 2 of 4 7 R Virtex™-E 1.8 V Field Programmable Gate Arrays The DLL also operates as a clock mirror. By driving the output from a DLL off-chip and then back on again, the DLL can be used to deskew a board level clock among multiple devices. To guarantee that the system clock is operating correctly prior to the FPGA starting up after configuration, the DLL can delay the completion of the configuration process until after it has achieved lock. For more information about DLL functionality, see the Design Consideration section of the data sheet. DLLDLL Primary DLLs DLLDLL Boundary Scan operation is independent of individual IOB configurations, and unaffected by package type. All IOBs, including un-bonded ones, are treated as independent 3-state bidirectional pins in a single scan chain. Retention of the bidirectional test capability after configuration facilitates the testing of external interconnections, provided the user design or application is turned off. Before the device is configured, all instructions except USER1 and USER2 are available. After configuration, all instructions are available. During configuration, it is recommended that those operations using the Boundary Scan register (SAMPLE/PRELOAD, INTEST, EXTEST) not be performed. DLLDLL XCVE_0010 Figure 10: DLL Locations Boundary Scan Virtex-E devices support all the mandatory Boundary Scan instructions specified in the IEEE standard 1149.1. A Test Access Port (TAP) and registers are provided that implement the EXTEST, INTEST, SAMPLE/PRELOAD, BYPASS, IDCODE, USERCODE, and HIGHZ instructions. The TAP Module 2 of 4 8 The JTAG input pins (TDI, TMS, TCK) do not have a VCCO requirement and operate with either 2.5 V or 3.3 V input signalling levels. The output pin (TDO) is sourced from the VCCO in bank 2, and for proper operation of LVTTL 3.3 V levels, the bank should be supplied with 3.3 V. Table 6 lists the Boundary Scan instructions supported in Virtex-E FPGAs. Internal signals can be captured during EXTEST by connecting them to un-bonded or unused IOBs. They can also be connected to the unused outputs of IOBs defined as unidirectional input pins. Secondary DLLs Secondary DLLs DLLDLL also supports two internal scan chains and configuration/readback of the device. In addition to the test instructions outlined above, the Boundary Scan circuitry can be used to configure the FPGA, and also to read back the configuration data. Figure 11 is a diagram of the Virtex-E Series Boundary Scan logic. It includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes. www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays DATA IN IOB.T 0 1 0 IOB IOB IOB IOB sd D Q D Q 1 LE IOB IOB IOB IOB IOB IOB IOB IOB IOB 1 sd D Q D Q 0 LE 1 IOB.I 0 1 IOB IOB IOB IOB IOB 0 D Q D Q LE 1 0 IOB.Q IOB BYPASS REGISTER sd IOB.T INSTRUCTION REGISTER TDI 0 M TDO U X 1 0 sd D Q D Q 1 LE 1 0 sd D Q D Q LE 1 IOB.I 0 DATAOUT SHIFT/ CLOCK DATA CAPTURE REGISTER UPDATE EXTEST X9016 Figure 11: Virtex-E Family Boundary Scan Logic Instruction Set Table 6: Boundary Scan Instructions (Continued) The Virtex-E series Boundary Scan instruction set also includes instructions to configure the device and read back configuration data (CFG_IN, CFG_OUT, and JSTART). The complete instruction set is coded as shown in Table 6.. Boundary Scan Command Binary Code(4:0) CFG_IN 00101 Access the configuration bus for write operations. INTEST 00111 Enables Boundary Scan INTEST operation Table 6: Boundary Scan Instructions Boundary Scan Command Binary Code(4:0) Description Description EXTEST 00000 Enables Boundary Scan EXTEST operation USERCODE 01000 Enables shifting out USER code SAMPLE/ PRELOAD 00001 Enables Boundary Scan SAMPLE/PRELOAD operation IDCODE 01001 Enables shifting out of ID Code HIGHZ 01010 3-states output pins while enabling the Bypass Register JSTART 01100 Clock the start-up sequence when StartupClk is TCK BYPASS 11111 Enables BYPASS USER1 00010 Access user-defined register 1 USER2 00011 Access user-defined register 2 CFG_OUT 00100 Access the configuration bus for read operations. DS022-2 (v2.8) January 16, 2006 Production Product Specification RESERVED www.xilinx.com All other codes Xilinx reserved instructions Module 2 of 4 9 R Virtex™-E 1.8 V Field Programmable Gate Arrays Data Registers The primary data register is the Boundary Scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out, and 3-State Control. Non-IOB pins have appropriate partial bit population if input-only or output-only. Each EXTEST CAPTURED-OR state captures all In, Out, and 3-state pins. The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream Boundary Scan device. The FPGA supports up to two additional internal scan chains that can be specified using the BSCAN macro. The macro provides two user pins (SEL1 and SEL2) which are decodes of the USER1 and USER2 instructions respectively. For these instructions, two corresponding pins (T DO1 and TDO2) allow user scan data to be shifted out of TDO. Likewise, there are individual clock pins (DRCK1 and DRCK2) for each user register. There is a common input pin (TDI) and shared output pins that represent the state of the TAP controller (RESET, SHIFT, and UPDATE). BSDL (Boundary Scan Description Language) files for Virtex-E Series devices are available on the Xilinx web site in the File Download area. Identification Registers The IDCODE register is supported. By using the IDCODE, the device connected to the JTAG port can be determined. The IDCODE register has the following binary format: vvvv:ffff:fffa:aaaa:aaaa:cccc:cccc:ccc1 where v = the die version number f = the family code (05 for Virtex-E family) a = the number of CLB rows (ranges from 16 for XCV50E to 104 for XCV3200E) c = the company code (49h for Xilinx) The USERCODE register is supported. By using the USERCODE, a user-programmable identification code can be loaded and shifted out for examination. The identification code (see Table 7) is embedded in the bitstream during bitstream generation and is valid only after configuration. Bit Sequence The order within each IOB is: In, Out, 3-State. The input-only pins contribute only the In bit to the Boundary Scan I/O data register, while the output-only pins contributes all three bits. Table 7: IDCODEs Assigned to Virtex-E FPGAs FPGA IDCODE XCV50E v0A10093h XCV100E v0A14093h XCV200E v0A1C093h XCV300E v0A20093h XCV400E v0A28093h XCV600E v0A30093h Left half of top-edge IOBs (Right to Left) XCV1000E v0A40093h Left-edge IOBs (Top to Bottom) XCV1600E v0A48093h M1 M0 M2 XCV2000E v0A50093h XCV2600E v0A5C093h XCV3200E v0A68093h From a cavity-up view of the chip (as shown in EPIC), starting in the upper right chip corner, the Boundary Scan data-register bits are ordered as shown in Figure 12. Bit 0 ( TDO end) Bit 1 Bit 2 Right half of top-edge IOBs (Right to Left) GCLK2 GCLK3 Left half of bottom-edge IOBs (Left to Right) GCLK1 GCLK0 Right half of bottom-edge IOBs (Left to Right) Note: Attempting to load an incorrect bitstream causes configuration to fail and can damage the device. DONE PROG Right-edge IOBs (Bottom to Top) (TDI end) Including Boundary Scan in a Design CCLK 990602001 Figure 12: Boundary Scan Bit Sequence Since the Boundary Scan pins are dedicated, no special element needs to be added to the design unless an internal data register (USER1 or USER2) is desired. If an internal data register is used, insert the Boundary Scan symbol and connect the necessary pins as appropriate. Module 2 of 4 10 www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Development System Virtex-E FPGAs are supported by the Xilinx Foundation and Alliance Series CAE tools. The basic methodology for Virtex-E design consists of three interrelated steps: design entry, implementation, and verification. Industry-standard tools are used for design entry and simulation (for example, Synopsys FPGA Express), while Xilinx provides proprietary architecture-specific tools for implementation. The Xilinx development system is integrated under the Xilinx Design Manager (XDM™) software, providing designers with a common user interface regardless of their choice of entry and verification tools. The XDM software simplifies the selection of implementation options with pull-down menus and on-line help. Application programs ranging from schematic capture to Placement and Routing (PAR) can be accessed through the XDM software. The program command sequence is generated prior to execution, and stored for documentation. Several advanced software features facilitate Virtex-E design. RPMs, for example, are schematic-based macros with relative location constraints to guide their placement. They help ensure optimal implementation of common functions. For HDL design entry, the Xilinx FPGA Foundation development system provides interfaces to the following synthesis design environments. • • • Synopsys (FPGA Compiler, FPGA Express) Exemplar (Spectrum) Synplicity (Synplify) For schematic design entry, the Xilinx FPGA Foundation and Alliance development system provides interfaces to the following schematic-capture design environments. • • Mentor Graphics V8 (Design Architect, QuickSim II) Viewlogic Systems (Viewdraw) Third-party vendors support many other environments. A standard interface-file specification, Electronic Design Interchange Format (EDIF), simplifies file transfers into and out of the development system. Virtex-E FPGAs are supported by a unified library of standard functions. This library contains over 400 primitives and macros, ranging from 2-input AND gates to 16-bit accumulators, and includes arithmetic functions, comparators, counters, data registers, decoders, encoders, I/O functions, latches, Boolean functions, multiplexers, shift registers, and barrel shifters. The “soft macro” portion of the library contains detailed descriptions of common logic functions, but does not contain any partitioning or placement information. The performance of these macros depends, therefore, on the partitioning and placement obtained during implementation. RPMs, on the other hand, do contain predetermined partitioning and placement information that permits optimal DS022-2 (v2.8) January 16, 2006 Production Product Specification implementation of these functions. Users can create their own library of soft macros or RPMs based on the macros and primitives in the standard library. The design environment supports hierarchical design entry, with high-level schematics that comprise major functional blocks, while lower-level schematics define the logic in these blocks. These hierarchical design elements are automatically combined by the implementation tools. Different design entry tools can be combined within a hierarchical design, thus allowing the most convenient entry method to be used for each portion of the design. Design Implementation The place-and-route tools (PAR) automatically provide the implementation flow described in this section. The partitioner takes the EDIF net list for the design and maps the logic into the architectural resources of the FPGA (CLBs and IOBs, for example). The placer then determines the best locations for these blocks based on their interconnections and the desired performance. Finally, the router interconnects the blocks. The PAR algorithms support fully automatic implementation of most designs. For demanding applications, however, the user can exercise various degrees of control over the process. User partitioning, placement, and routing information is optionally specified during the design-entry process. The implementation of highly structured designs can benefit greatly from basic floor planning. The implementation software incorporates Timing Wizard® timing-driven placement and routing. Designers specify timing requirements along entire paths during design entry. The timing path analysis routines in PAR then recognize these user-specified requirements and accommodate them. Timing requirements are entered on a schematic in a form directly relating to the system requirements, such as the targeted clock frequency, or the maximum allowable delay between two registers. In this way, the overall performance of the system along entire signal paths is automatically tailored to user-generated specifications. Specific timing information for individual nets is unnecessary. Design Verification In addition to conventional software simulation, FPGA users can use in-circuit debugging techniques. Because Xilinx devices are infinitely reprogrammable, designs can be verified in real time without the need for extensive sets of software simulation vectors. The development system supports both software simulation and in-circuit debugging techniques. For simulation, the system extracts the post-layout timing information from the design database, and back-annotates this information into the net list for use by the simulator. Alternatively, the user can verify timing-critical portions of the design using the TRCE® static timing analyzer. www.xilinx.com Module 2 of 4 11 R Virtex™-E 1.8 V Field Programmable Gate Arrays For in-circuit debugging, an optional download and readback cable is available. This cable connects the FPGA in the target system to a PC or workstation. After downloading the design into the FPGA, the designer can single-step the logic, readback the contents of the flip-flops, and so observe the internal logic state. Simple modifications can be downloaded into the system in a matter of minutes. Configuration Virtex-E devices are configured by loading configuration data into the internal configuration memory. Note that attempting to load an incorrect bitstream causes configuration to fail and can damage the device. Some of the pins used for configuration are dedicated pins, while others can be re-used as general purpose inputs and outputs once configuration is complete. The following are dedicated pins: • • • • • Mode pins (M2, M1, M0) Configuration clock pin (CCLK) PROGRAM pin DONE pin Boundary Scan pins (TDI, TDO, TMS, TCK) Depending on the configuration mode chosen, CCLK can be an output generated by the FPGA, or can be generated externally and provided to the FPGA as an input. The PROGRAM pin must be pulled High prior to reconfiguration. Note that some configuration pins can act as outputs. For correct operation, these pins require a VCCO of 3.3 V or 2.5 V. At 3.3 V the pins operate as LVTTL, and at 2.5 V they operate as LVCMOS. All affected pins fall in banks 2 or 3. The configuration pins needed for SelectMap (CS, Write) are located in bank 1. Configuration Modes Virtex-E supports the following four configuration modes. • • • • Slave-serial mode Master-serial mode SelectMAP mode Boundary Scan mode (JTAG) The Configuration mode pins (M2, M1, M0) select among these configuration modes with the option in each case of having the IOB pins either pulled up or left floating prior to configuration. The selection codes are listed in Table 8. Configuration through the Boundary Scan port is always available, independent of the mode selection. Selecting the Boundary Scan mode simply turns off the other modes. The three mode pins have internal pull-up resistors, and default to a logic High if left unconnected. However, it is recommended to drive the configuration mode pins externally. Table 8: Configuration Codes M2 (1) M1 M0 CCLK Direction Data Width Serial Dout Configuration Pull-ups (1) Master-serial mode 0 0 0 Out 1 Yes No Boundary Scan mode 1 0 1 N/A 1 No No SelectMAP mode 1 1 0 In 8 No No Slave-serial mode 1 1 1 In 1 Yes No Master-serial mode 1 0 0 Out 1 Yes Yes Boundary Scan mode 0 0 1 N/A 1 No Yes SelectMAP mode 0 1 0 In 8 No Yes Slave-serial mode 0 1 1 In 1 Yes Yes Configuration Mode Notes: 1. M2 is sampled continuously from power up until the end of the configuration. Toggling M2 while INIT is being held externally Low can cause the configuration pull-up settings to change. Module 2 of 4 12 www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 9 lists the total number of bits required to configure each device. Table 9: Virtex-E Bitstream Lengths Device # of Configuration Bits XCV50E 630,048 XCV100E 863,840 XCV200E 1,442,016 XCV300E 1, 875,648 XCV400E 2,693,440 XCV600E 3,961,632 XCV1000E 6,587,520 XCV1600E 8,308,992 XCV2000E 10,159,648 XCV2600E 12,922,336 XCV3200E 16,283,712 For more detailed information on serial PROMs, see the PROM data sheet at http://www.xilinx.com/bvdocs/publications/ds026.pdf. Multiple FPGAs can be daisy-chained for configuration from a single source. After a particular FPGA has been configured, the data for the next device is routed to the DOUT pin. The maximum capacity for a single LOUT/DOUT write is 220-1 (1,048,575) 32-bit words, or 33,554,4000 bits. The data on the DOUT pin changes on the rising edge of CCLK. The change of DOUT on the rising edge of CCLK differs from previous families, but does not cause a problem for mixed configuration chains. This change was made to improve serial configuration rates for Virtex and Virtex-E only chains. Figure 13 shows a full master/slave system. A Virtex-E device in slave-serial mode should be connected as shown in the right-most device. Slave-Serial Mode In slave-serial mode, the FPGA receives configuration data in bit-serial form from a serial PROM or other source of serial configuration data. The serial bitstream must be set up at the DIN input pin a short time before each rising edge of an externally generated CCLK. Slave-serial mode is selected by applying or to the mode pins (M2, M1, M0). A weak pull-up on the mode pins makes slave serial the default mode if the pins are left unconnected. However, it is recommended to drive the configuration mode pins externally. Figure 14 shows slave-serial mode programming switching characteristics. Table 10 provides more detail about the characteristics shown in Figure 14. Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High. Table 10: Master/Slave Serial Mode Programming Switching Figure References Symbol Values Units DIN setup/hold, slave mode 1/2 TDCC/TCCD 5.0 / 0.0 ns, min DIN setup/hold, master mode 1/2 TDSCK/TCKDS 5.0 / 0.0 ns, min DOUT 3 TCCO 12.0 ns, max High time 4 TCCH 5.0 ns, min Low time 5 TCCL 5.0 ns, min FCC 66 MHz, max Description CCLK Maximum Frequency Frequency Tolerance, master mode with respect to nominal DS022-2 (v2.8) January 16, 2006 Production Product Specification www.xilinx.com +45% –30% Module 2 of 4 13 R Virtex™-E 1.8 V Field Programmable Gate Arrays . N/C 3.3V 330 Ω M0 M1 M2 N/C DOUT XC1701L CCLK DIN PROGRAM DONE DOUT CCLK VIRTEX-E MASTER SERIAL Optional Pull-up 1 Resistor on Done M0 M1 M2 DIN CLK DATA CE INIT CEO RESET/OE VIRTEX-E, XC4000XL, SLAVE PROGRAM DONE INIT (Low Reset Option Used) PROGRAM Note 1: If none of the Virtex FPGAs have been selected to drive DONE, an external pull-up resistor of 330 Ω should be added to the common DONE line. (For Spartan-XL devices, add a 4.7K Ω pull-up resistor.) This pull-up is not needed if the DriveDONE attribute is set. If used, DriveDONE should be selected only for the last device in the configuration chain. XCVE_ds_013_050103 Figure 13: Master/Slave Serial Mode Circuit Diagram DIN 1 TDCC 2 TCCD 5 TCCL CCLK 4 TCCH 3 TCCO DOUT (Output) X5379_a Figure 14: Slave-Serial Mode Programming Switching Characteristics Master-Serial Mode In master-serial mode, the CCLK output of the FPGA drives a Xilinx Serial PROM that feeds bit-serial data to the DIN input. The FPGA accepts this data on each rising CCLK edge. After the FPGA has been loaded, the data for the next device in a daisy-chain is presented on the DOUT pin after the rising CCLK edge. The maximum capacity for a single LOUT/DOUT write is 220-1 (1,048,575) 32-bit words, or 33,554,4000 bits. The interface is identical to slave-serial except that an internal oscillator is used to generate the configuration clock (CCLK). A wide range of frequencies can be selected for CCLK, which always starts at a slow default frequency. Configuration bits then switch CCLK to a higher frequency for the remainder of the configuration. Switching to a lower frequency is prohibited. The CCLK frequency is set using the ConfigRate option in the bitstream generation software. The maximum CCLK fre- Module 2 of 4 14 quency that can be selected is 60 MHz. When selecting a CCLK frequency, ensure that the serial PROM and any daisy-chained FPGAs are fast enough to support the clock rate. On power-up, the CCLK frequency is approximately 2.5 MHz. This frequency is used until the ConfigRate bits have been loaded when the frequency changes to the selected ConfigRate. Unless a different frequency is specified in the design, the default ConfigRate is 4 MHz. In a full master/slave system (Figure 13), the left-most device operates in master-serial mode. The remaining devices operate in slave-serial mode. The SPROM RESET pin is driven by INIT, and the CE input is driven by DONE. There is the potential for contention on the DONE pin, depending on the start-up sequence options chosen. The sequence of operations necessary to configure a Virtex-E FPGA serially appears in Figure 15. www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Figure 16 shows the timing of master-serial configuration. Master-serial mode is selected by a or on the mode pins (M2, M1, M0). Table 10 shows the timing information for Figure 16. Apply Power FPGA starts to clear configuration memory. Set PROGRAM = High FPGA makes a final clearing pass and releases INIT when finished. If used to delay configuration Release INIT INIT? Low High Load a Configuration Bit Once per bitstream, FPGA checks data using CRC and pulls INIT Low on error. If no CRC errors found, FPGA enters start-up phase causing DONE to go High. End of Bitstream? No Yes Configuration Completed ds009_15_111799 Figure 15: Serial Configuration Flowchart CCLK (Output) TCKDS 2 1 TDSCK Serial Data In Serial DOUT (Output) DS022_44_071201 Figure 16: Master-Serial Mode Programming Switching Characteristics At power-up, VCC must rise from 1.0 V to VCC Min in less than 50 ms, otherwise delay configuration by pulling PROGRAM Low until VCC is valid. SelectMAP Mode The SelectMAP mode is the fastest configuration option. Byte-wide data is written into the FPGA with a BUSY flag controlling the flow of data. An external data source provides a byte stream, CCLK, a Chip Select (CS) signal and a Write signal (WRITE). If BUSY is asserted (High) by the FPGA, the data must be held until BUSY goes Low. Data can also be read using the SelectMAP mode. If WRITE is not asserted, configuration data is read out of the FPGA as part of a readback operation. After configuration, the pins of the SelectMAP port can be used as additional user I/O. Alternatively, the port can be retained to permit high-speed 8-bit readback. Retention of the SelectMAP port is selectable on a design-by-design basis when the bitstream is generated. If retention is selected, PROHIBIT constraints are required to prevent the SelectMAP-port pins from being used as user I/O. DS022-2 (v2.8) January 16, 2006 Production Product Specification Multiple Virtex-E FPGAs can be configured using the SelectMAP mode, and be made to start-up simultaneously. To configure multiple devices in this way, wire the individual CCLK, Data, WRITE, and BUSY pins of all the devices in parallel. The individual devices are loaded separately by asserting the CS pin of each device in turn and writing the appropriate data. See Table 11 for SelectMAP Write Timing Characteristics. Write Write operations send packets of configuration data into the FPGA. The sequence of operations for a multi-cycle write operation is shown below. Note that a configuration packet can be split into many such sequences. The packet does not have to complete within one assertion of CS, illustrated in Figure 17. 1. Assert WRITE and CS Low. Note that when CS is asserted on successive CCLKs, WRITE must remain either asserted or de-asserted. Otherwise, an abort is initiated, as described below. 2. Drive data onto D[7:0]. Note that to avoid contention, the data source should not be enabled while CS is Low and WRITE is High. Similarly, while WRITE is High, no more that one CS should be asserted. www.xilinx.com Module 2 of 4 15 R Virtex™-E 1.8 V Field Programmable Gate Arrays 3. At the rising edge of CCLK: If BUSY is Low, the data is accepted on this clock. If BUSY is High (from a previous write), the data is not accepted. Acceptance instead occurs on the first clock after BUSY goes Low, and the data must be held until this has happened. 4. Repeat steps 2 and 3 until all the data has been sent. 5. De-assert CS and WRITE. Table 11: SelectMAP Write Timing Characteristics Description CCLK Symbol Units D0-7 Setup/Hold 1/2 TSMDCC/TSMCCD 5.0 / 1.7 ns, min CS Setup/Hold 3/4 TSMCSCC/TSMCCCS 7.0 / 1.7 ns, min WRITE Setup/Hold 5/6 TSMCCW/TSMWCC 7.0 / 1.7 ns, min 7 TSMCKBY 12.0 ns, max FCC 66 MHz, max FCCNH 50 MHz, max BUSY Propagation Delay Maximum Frequency Maximum Frequency with no handshake CCLK CS WRITE 3 4 5 6 1 2 DATA[0:7] 7 BUSY No Write Write No Write Write DS022_45_071702 Figure 17: Write Operations A flowchart for the write operation is shown in Figure 18. Note that if CCLK is slower than fCCNH, the FPGA never asserts BUSY, In this case, the above handshake is unnecessary, and data can simply be entered into the FPGA every CCLK cycle. rent packet command to be aborted. The device remains BUSY until the aborted operation has completed. Following an abort, data is assumed to be unaligned to word boundaries, and the FPGA requires a new synchronization word prior to accepting any new packets. Abort To initiate an abort during a write operation, de-assert WRITE. At the rising edge of CCLK, an abort is initiated, as shown in Figure 19. During a given assertion of CS, the user cannot switch from a write to a read, or vice-versa. This action causes the cur- Module 2 of 4 16 www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Apply Power FPGA starts to clear configuration memory. PROGRAM from Low to High FPGA makes a final clearing pass and releases INIT when finished. No Yes If used to delay configuration Release INIT Low INIT? High Set WRITE = Low Enter Data Source Sequence A On first FPGA Set CS = Low Apply Configuration Byte Once per bitstream, FPGA checks data using CRC and pulls INIT Low on error. High Busy? Low End of Data? If no errors, first FPGAs enter start-up phase releasing DONE. If no errors, later FPGAs enter start-up phase releasing DONE. No Yes Set CS = High Repeat Sequence A On first FPGA For any other FPGAs Disable Data Source Set WRITE = High When all DONE pins are released, DONE goes High and start-up sequences complete. Configuration Completed ds003_17_090602 Figure 18: SelectMAP Flowchart for Write Operations CCLK CS WRITE DATA[0:7] BUSY Abort DS022_46_071702 Figure 19: SelectMAP Write Abort Waveforms Boundary Scan Mode In the Boundary Scan mode, configuration is done through the IEEE 1149.1 Test Access Port. Note that the DS022-2 (v2.8) January 16, 2006 Production Product Specification PROGRAM pin must be pulled High prior to reconfiguration. A Low on the PROGRAM pin resets the TAP controller and no JTAG operations can be performed. www.xilinx.com Module 2 of 4 17 R Virtex™-E 1.8 V Field Programmable Gate Arrays Configuration through the TAP uses the CFG_IN instruction. This instruction allows data input on TDI to be converted into data packets for the internal configuration bus. The following steps are required to configure the FPGA through the Boundary Scan port (when using TCK as a start-up clock). 1. Load the CFG_IN instruction into the Boundary Scan instruction register (IR). 2. Enter the Shift-DR (SDR) state. 3. Shift a configuration bitstream into TDI. Configuration and readback via the TAP is always available. The Boundary Scan mode is selected by a or on the mode pins (M2, M1, M0). For details on TAP characteristics, refer to XAPP139. Configuration Sequence The configuration of Virtex-E devices is a three-phase process. First, the configuration memory is cleared. Next, configuration data is loaded into the memory, and finally, the logic is activated by a start-up process. Configuration is automatically initiated on power-up unless it is delayed by the user, as described below. The configuration process can also be initiated by asserting PROGRAM. The end of the memory-clearing phase is signalled by INIT going High, and the completion of the entire process is signalled by DONE going High. 4. Return to Run-Test-Idle (RTI). 5. Load the JSTART instruction into IR. 6. Enter the SDR state. 7. Clock TCK through the startup sequence. 8. Return to RTI. The power-up timing of configuration signals is shown in Figure 20. Vcc TPOR PROGRAM TPL INIT TICCK CCLK OUTPUT or INPUT M0, M1, M2 (Required) VALI ds022_020_071201 Figure 20: Power-Up Timing Configuration Signals The corresponding timing characteristics are listed in Table 12. Table 12: Power-up Timing Characteristics Description Symbol Value Units Power-on Reset1 TPOR 2.0 ms, max Program Latency TPL 100.0 μs, max CCLK (output) Delay TICCK 0.5 μs, min 4.0 μs, max Program Pulse Width TPROGRAM 300 ns, min Notes: 1. TPOR delay is the initialization time required after VCCINT and VCCO in Bank 2 reach the recommended operating voltage. Module 2 of 4 18 Delaying Configuration INIT can be held Low using an open-drain driver. An open-drain is required since INIT is a bidirectional open-drain pin that is held Low by the FPGA while the configuration memory is being cleared. Extending the time that the pin is Low causes the configuration sequencer to wait. Thus, configuration is delayed by preventing entry into the phase where data is loaded. Start-Up Sequence The default Start-up sequence is that one CCLK cycle after DONE goes High, the global 3-state signal (GTS) is released. This permits device outputs to turn on as necessary. One CCLK cycle later, the Global Set/Reset (GSR) and Global Write Enable (GWE) signals are released. This permits www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays the internal storage elements to begin changing state in response to the logic and the user clock. The relative timing of these events can be changed. In addition, the GTS, GSR, and GWE events can be made depen- dent on the DONE pins of multiple devices all going High, forcing the devices to start synchronously. The sequence can also be paused at any stage until lock has been achieved on any or all DLLs. Readback The configuration data stored in the Virtex-E configuration memory can be readback for verification. Along with the configuration data it is possible to readback the contents all flip-flops/latches, LUT RAMs, and block RAMs. This capa- bility is used for real-time debugging. For more detailed information, see application note XAPP138 “Virtex FPGA Series Configuration and Readback”. Design Considerations This section contains more detailed design information on the following features. • • • Delay-Locked Loop . . . see page 19 BlockRAM . . . see page 24 SelectI/O . . . see page 31 high-speed signal. A multiplied clock also provides designers the option of time-domain-multiplexing, using one circuit twice per clock cycle, consuming less area than two copies of the same circuit. Two DLLs in can be connected in series to increase the effective clock multiplication factor to four. The DLL can also act as a clock mirror. By driving the DLL output off-chip and then back in again, the DLL can be used to deskew a board level clock between multiple devices. Using DLLs The Virtex-E FPGA series provides up to eight fully digital dedicated on-chip Delay-Locked Loop (DLL) circuits which provide zero propagation delay, low clock skew between output clock signals distributed throughout the device, and advanced clock domain control. These dedicated DLLs can be used to implement several circuits which improve and simplify system level design. Introduction As FPGAs grow in size, quality on-chip clock distribution becomes increasingly important. Clock skew and clock delay impact device performance and the task of managing clock skew and clock delay with conventional clock trees becomes more difficult in large devices. The Virtex-E series of devices resolve this potential problem by providing up to eight fully digital dedicated on-chip DLL circuits, which provide zero propagation delay and low clock skew between output clock signals distributed throughout the device. Each DLL can drive up to two global clock routing networks within the device. The global clock distribution network minimizes clock skews due to loading differences. By monitoring a sample of the DLL output clock, the DLL can compensate for the delay on the routing network, effectively eliminating the delay from the external input port to the individual clock loads within the device. In order to guarantee the system clock establishes prior to the device “waking up,” the DLL can delay the completion of the device configuration process until after the DLL achieves lock. By taking advantage of the DLL to remove on-chip clock delay, the designer can greatly simplify and improve system level design involving high-fanout, high-performance clocks. Library DLL Symbols Figure 21 shows the simplified Xilinx library DLL macro symbol, BUFGDLL. This macro delivers a quick and efficient way to provide a system clock with zero propagation delay throughout the device. Figure 22 and Figure 23 show the two library DLL primitives. These symbols provide access to the complete set of DLL features when implementing more complex applications. I 0ns O ds022_25_121099 Figure 21: Simplified DLL Macro Symbol BUFGDLL In addition to providing zero delay with respect to a user source clock, the DLL can provide multiple phases of the source clock. The DLL can also act as a clock doubler or it can divide the user source clock by up to 16. Clock multiplication gives the designer a number of design alternatives. For instance, a 50 MHz source clock doubled by the DLL can drive an FPGA design operating at 100 MHz. This technique can simplify board design because the clock path on the board no longer distributes such a DS022-2 (v2.8) January 16, 2006 Production Product Specification www.xilinx.com Module 2 of 4 19 R Virtex™-E 1.8 V Field Programmable Gate Arrays GDLL requires an external signal source clock. Therefore, only an external input port can source the signal that drives the BUFGDLL I pin. CLKDLL CLKIN CLK0 CLK90 CLK180 CLK270 CLKFB Clock Output — O The clock output pin O represents a delay-compensated version of the source clock (I) signal. This signal, sourced by a global clock buffer BUFG symbol, takes advantage of the dedicated global clock routing resources of the device. CLK2X CLKDV RST LOCKED The output clock has a 50-50 duty cycle unless you deactivate the duty cycle correction property. ds022_26_121099 Figure 22: Standard DLL Symbol CLKDLL CLKDLL Primitive Pin Descriptions The library CLKDLL primitives provide access to the complete set of DLL features needed when implementing more complex applications with the DLL. CLKDLLHF CLK0 CLK180 CLKIN CLKFB Source Clock Input — CLKIN CLKDV RST LOCKED ds022_027_121099 Figure 23: High Frequency DLL Symbol CLKDLLHF BUFGDLL Pin Descriptions Use the BUFGDLL macro as the simplest way to provide zero propagation delay for a high-fanout on-chip clock from an external input. This macro uses the IBUFG, CLKDLL and BUFG primitives to implement the most basic DLL application as shown in Figure 24. IBUFG I O CLKDLL CLKIN CLKFB CLK0 CLK90 CLK180 CLK270 BUFG I O The CLKIN pin provides the user source clock (the clock signal on which the DLL operates) to the DLL. The CLKIN frequency must fall in the ranges specified in the data sheet. A global clock buffer (BUFG) driven from another CLKDLL, one of the global clock input buffers (IBUFG), or an IO_LVDS_DLL pin on the same edge of the device (top or bottom) must source this clock signal. There are four IO_LVDS_DLL input pins that can be used as inputs to the DLLs. This makes a total of eight usable input pins for DLLs in the Virtex-E family. Feedback Clock Input — CLKFB The DLL requires a reference or feedback signal to provide the delay-compensated output. Connect only the CLK0 or CLK2X DLL outputs to the feedback clock input (CLKFB) pin to provide the necessary feedback to the DLL. The feedback clock input can also be provided through one of the following pins. IBUFG - Global Clock Input Pad IO_LVDS_DLL - the pin adjacent to IBUFG CLK2X CLKDV RST If an IBUFG sources the CLKFB pin, the following special rules apply. LOCKED 1. An external input port must source the signal that drives the IBUFG I pin. ds022_28_121099 Figure 24: BUFGDLL Schematic This symbol does not provide access to the advanced clock domain controls or to the clock multiplication or clock division features of the DLL. This symbol also does not provide access to the RST, or LOCKED pins of the DLL. For access to these features, a designer must use the library DLL primitives described in the following sections. Source Clock Input — I The I pin provides the user source clock, the clock signal on which the DLL operates, to the BUFGDLL. For the BUFGDLL macro the source clock frequency must fall in the low frequency range as specified in the data sheet. The BUFModule 2 of 4 20 2. The CLK2X output must feedback to the device if both the CLK0 and CLK2X outputs are driving off chip devices. 3. That signal must directly drive only OBUFs and nothing else. These rules enable the software determine which DLL clock output sources the CLKFB pin. Reset Input — RST When the reset pin RST activates the LOCKED signal deactivates within four source clock cycles. The RST pin, active High, must either connect to a dynamic signal or tied to www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays ground. As the DLL delay taps reset to zero, glitches can occur on the DLL clock output pins. Activation of the RST pin can also severely affect the duty cycle of the clock output pins. Furthermore, the DLL output clocks no longer deskew with respect to one another. For these reasons, rarely use the reset pin unless re-configuring the device or changing the input frequency. The timing diagrams in Figure 25 illustrate the DLL clock output characteristics. 0 90 180 270 0 90 180 270 t CLKIN CLK2X 2x Clock Output — CLK2X CLKDV_DIVIDE=2 The output pin CLK2X provides a frequency-doubled clock with an automatic 50/50 duty-cycle correction. Until the CLKDLL has achieved lock, the CLK2X output appears as a 1x version of the input clock with a 25/75 duty cycle. This behavior allows the DLL to lock on the correct edge with respect to source clock. This pin is not available on the CLKDLLHF primitive. CLKDV DUTY_CYCLE_CORRECTION=FALSE CLK0 CLK90 CLK180 Clock Divide Output — CLKDV CLK270 The clock divide output pin CLKDV provides a lower frequency version of the source clock. The CLKDV_DIVIDE property controls CLKDV such that the source clock is divided by N where N is either 1.5, 2, 2.5, 3, 4, 5, 8, or 16. DUTY_CYCLE_CORRECTION=TRUE CLK0 CLK90 This feature provides automatic duty cycle correction such that the CLKDV output pin always has a 50/50 duty cycle, with the exception of noninteger divides in HF mode, where the duty cycle is 1/3 for N=1.5 and 2/5 for N=2.5. CLK180 CLK270 ds022_29_121099 1x Clock Outputs — CLK[0|90|180|270] Figure 25: DLL Output Characteristics The 1x clock output pin CLK0 represents a delay-compensated version of the source clock (CLKIN) signal. The CLKDLL primitive provides three phase-shifted versions of the CLK0 signal while CLKDLLHF provides only the 180 phase-shifted version. The relationship between phase shift and the corresponding period shift appears in Table 13. Table 13: Relationship of Phase-Shifted Output Clock to Period Shift The DLL provides duty cycle correction on all 1x clock outputs such that all 1x clock outputs by default have a 50/50 duty cycle. The DUTY_CYCLE_CORRECTION property (TRUE by default), controls this feature. In order to deactivate the DLL duty cycle correction, attach the DUTY_CYCLE_CORRECTION=FALSE property to the DLL symbol. When duty cycle correction deactivates, the output clock has the same duty cycle as the source clock. Phase (degrees) Period Shift (percent) 0 0% 90 25% The DLL clock outputs can drive an OBUF, a BUFG, or they can route directly to destination clock pins. The DLL clock outputs can only drive the BUFGs that reside on the same edge (top or bottom). 180 50% Locked Output — LOCKED 270 75% To achieve lock, the DLL might need to sample several thousand clock cycles. After the DLL achieves lock, the LOCKED signal activates. The DLL timing parameter section of the data sheet provides estimates for locking times. To guarantee that the system clock is established prior to the device “waking up,” the DLL can delay the completion of the device configuration process until after the DLL locks. The STARTUP_WAIT property activates this feature. Until the LOCKED signal activates, the DLL output clocks are not valid and can exhibit glitches, spikes, or other spurious movement. In particular the CLK2X output appears as a 1x clock with a 25/75 duty cycle. DS022-2 (v2.8) January 16, 2006 Production Product Specification www.xilinx.com Module 2 of 4 21 R Virtex™-E 1.8 V Field Programmable Gate Arrays DLL Properties Input Clock Properties provide access to some of the Virtex-E series DLL features, (for example, clock division and duty cycle correction). The output clock signal of a DLL, essentially a delayed version of the input clock signal, reflects any instability on the input clock in the output waveform. For this reason the quality of the DLL input clock relates directly to the quality of the output clock waveforms generated by the DLL. The DLL input clock requirements are specified in the data sheet. Duty Cycle Correction Property The 1x clock outputs, CLK0, CLK90, CLK180, and CLK270, use the duty-cycle corrected default, exhibiting a 50/50 duty cycle. The DUTY_CYCLE_CORRECTION property (by default TRUE) controls this feature. To deactivate the DLL duty-cycle correction for the 1x clock outputs, attach the DUTY_CYCLE_CORRECTION=FALSE property to the DLL symbol. Clock Divide Property The CLKDV_DIVIDE property specifies how the signal on the CLKDV pin is frequency divided with respect to the CLK0 pin. The values allowed for this property are 1.5, 2, 2.5, 3, 4, 5, 8, or 16; the default value is 2. Input Clock Changes Startup Delay Property This property, STARTUP_WAIT, takes on a value of TRUE or FALSE (the default value). When TRUE the device configuration DONE signal waits until the DLL locks before going to High. Virtex-E DLL Location Constraints As shown in Figure 26, there are four additional DLLs in the Virtex-E devices, for a total of eight per Virtex-E device. These DLLs are located in silicon, at the top and bottom of the two innermost block SelectRAM columns. The location constraint LOC, attached to the DLL symbol with the identifier DLL0S, DLL0P, DLL1S, DLL1P, DLL2S, DLL2P, DLL3S, or DLL3P, controls the DLL location. The LOC property uses the following form: LOC = DLL0P DLL-3S DLL-3P DLL-2P DLL-2S B R A M B R A M B R A M B R A M DLL-1S DLL-1P In most systems a crystal oscillator generates the system clock. The DLL can be used with any commercially available quartz crystal oscillator. For example, most crystal oscillators produce an output waveform with a frequency tolerance of 100 PPM, meaning 0.01 percent change in the clock period. The DLL operates reliably on an input waveform with a frequency drift of up to 1 ns — orders of magnitude in excess of that needed to support any crystal oscillator in the industry. However, the cycle-to-cycle jitter must be kept to less than 300 ps in the low frequencies and 150 ps for the high frequencies. DLL-0P DLL-0S Changing the period of the input clock beyond the maximum drift amount requires a manual reset of the CLKDLL. Failure to reset the DLL produces an unreliable lock signal and output clock. It is possible to stop the input clock with little impact to the DLL. Stopping the clock should be limited to less than 100 μs to keep device cooling to a minimum. The clock should be stopped during a Low phase, and when restored the full High period should be seen. During this time, LOCKED stays High and remains High when the clock is restored. When the clock is stopped, one to four more clocks are still observed as the delay line is flushed. When the clock is restarted, the output clocks are not observed for one to four clocks as the delay line is filled. The most common case is two or three clocks. In a similar manner, a phase shift of the input clock is also possible. The phase shift propagates to the output one to four clocks after the original shift, with no disruption to the CLKDLL control. Output Clocks Bottom Right Half Edge x132_14_100799 Figure 26: Virtex Series DLLs Design Factors Use the following design considerations to avoid pitfalls and improve success designing with Xilinx devices. As mentioned earlier in the DLL pin descriptions, some restrictions apply regarding the connectivity of the output pins. The DLL clock outputs can drive an OBUF, a global clock buffer BUFG, or they can route directly to destination clock pins. The only BUFGs that the DLL clock outputs can drive are the two on the same edge of the device (top or bottom). In addition, the CLK2X output of the secondary DLL can connect directly to the CLKIN of the primary DLL in the same quadrant. Do not use the DLL output clock signals until after activation of the LOCKED signal. Prior to the activation of the LOCKED signal, the DLL output clocks are not valid and can exhibit glitches, spikes, or other spurious movement. Module 2 of 4 22 www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Useful Application Examples Virtex-E Device The Virtex-E DLL can be used in a variety of creative and useful applications. The following examples show some of the more common applications. The Verilog and VHDL example files are available at: CLKDLL IBUFG CLKIN OBUF CLK0 CLK90 CLK180 CLK270 CLKFB IBUFG ftp://ftp.xilinx.com/pub/applications/xapp/xapp132.zip CLK2X CLKDV Standard Usage RST The circuit shown in Figure 27 resembles the BUFGDLL macro implemented to provide access to the RST and LOCKED pins of the CLKDLL. LOCKED CLK0 CLK90 CLK180 CLK270 CLKFB CLKDLL IBUFG CLKIN CLKFB BUFG CLKDLL CLKIN BUFG CLK0 CLK90 CLK180 CLK270 CLK2X CLKDV RST CLK2X LOCKED CLKDV OBUF IBUF RST LOCKED ds022_028_121099 Non-Virtex-E Chip Figure 27: Standard DLL Implementation Non-Virtex-E Chip Board Level Deskew of Multiple Non-Virtex-E Devices Other Non_Virtex-E Chips ds022_029_121099 The circuit shown in Figure 28 can be used to deskew a system clock between a Virtex-E chip and other non-Virtex-E chips on the same board. This application is commonly used when the Virtex-E device is used in conjunction with other standard products such as SRAM or DRAM devices. While designing the board level route, ensure that the return net delay to the source equals the delay to the other chips involved. Figure 28: DLL Deskew of Board Level Clock Board-level deskew is not required for low-fanout clock networks. It is recommended for systems that have fanout limitations on the clock network, or if the clock distribution chip cannot handle the load. Do not use the DLL output clock signals until after activation of the LOCKED signal. Prior to the activation of the LOCKED signal, the DLL output clocks are not valid and can exhibit glitches, spikes, or other spurious movement. The dll_mirror_1 files in the xapp132.zip file show the VHDL and Verilog implementation of this circuit. Deskew of Clock and Its 2x Multiple The circuit shown in Figure 29 implements a 2x clock multiplier and also uses the CLK0 clock output with a zero ns skew between registers on the same chip. Alternatively, a clock divider circuit can be implemented using similar connections. CLKDLL IBUFG CLKIN CLKFB BUFG CLK0 CLK90 CLK180 CLK270 BUFG CLK2X CLKDV IBUF RST OBUF LOCKED ds022_030_121099 Figure 29: DLL Deskew of Clock and 2x Multiple DS022-2 (v2.8) January 16, 2006 Production Product Specification www.xilinx.com Module 2 of 4 23 R Virtex™-E 1.8 V Field Programmable Gate Arrays Because any single DLL can access only two BUFGs at most, any additional output clock signals must be routed from the DLL in this example on the high speed backbone routing. new capabilities allowing the FPGA designer to simplify designs. The dll_2x files in the xapp132.zip file show the VHDL and Verilog implementation of this circuit. VIrtex-E block SelectRAM+ memory supports two operating modes: Virtex-E 4x Clock • • Two DLLs located in the same half-edge (top-left, top-right, bottom-right, bottom-left) can be connected together, without using a BUFG between the CLKDLLs, to generate a 4x clock as shown in Figure 30. Virtex-E devices, like the Virtex devices, have four clock networks that are available for internal deskewing of the clock. Each of the eight DLLs have access to two of the four clock networks. Although all the DLLs can be used for internal deskewing, the presence of two GCLKBUFs on the top and two on the bottom indicate that only two of the four DLLs on the top (and two of the four DLLs on the bottom) can be used for this purpose. CLKDLL-S IBUFG CLKIN CLKFB Read Through (one clock edge) The read address is registered on the read port clock edge and data appears on the output after the RAM access time. Some memories might place the latch/register at the outputs, depending on whether a faster clock-to-out versus set-up time is desired. This is generally considered to be an inferior solution, since it changes the read operation to an asynchronous function with the possibility of missing an address/control line transition during the generation of the read pulse clock. The write address is registered on the write port clock edge and the data input is written to the memory and mirrored on the output. CLK2X INV Block SelectRAM+ Characteristics LOCKED • CLKDLL-P CLKIN CLKFB • CLK0 CLK90 CLK180 CLK270 BUFG CLK2X CLKDV RST • OBUF LOCKED ds022_031_041901 Figure 30: DLL Generation of 4x Clock in Virtex-E Devices The dll_4xe files in the xapp132.zip file show the DLL implementation in Verilog for Virtex-E devices. These files can be found at: ftp://ftp.xilinx.com/pub/applications/xapp/xapp132.zip Using Block SelectRAM+ Features The Virtex FPGA Series provides dedicated blocks of on-chip, true dual-read/write port synchronous RAM, with 4096 memory cells. Each port of the block SelectRAM+ memory can be independently configured as a read/write port, a read port, a write port, and can be configured to a specific data width. The block SelectRAM+ memory offers Module 2 of 4 24 Read Through Write Back Write Back (one clock edge) CLK0 CLK90 CLK180 CLK270 CLKDV RST Operating Modes • • • All inputs are registered with the port clock and have a set-up to clock timing specification. All outputs have a read through or write back function depending on the state of the port WE pin. The outputs relative to the port clock are available after the clock-to-out timing specification. The block SelectRAMs are true SRAM memories and do not have a combinatorial path from the address to the output. The LUT SelectRAM+ cells in the CLBs are still available with this function. The ports are completely independent from each other (i.e., clocking, control, address, read/write function, and data width) without arbitration. A write operation requires only one clock edge. A read operation requires only one clock edge. The output ports are latched with a self timed circuit to guarantee a glitch free read. The state of the output port does not change until the port executes another read or write operation. Library Primitives Figure 31 and Figure 32 show the two generic library block SelectRAM+ primitives. Table 14 describes all of the available primitives for synthesis and simulation. www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Port Signals RAMB4_S#_S# WEA ENA RSTA CLKA ADDRA[#:0] DIA[#:0] Each block SelectRAM+ port operates independently of the others while accessing the same set of 4096 memory cells. Table 15 describes the depth and width aspect ratios for the block SelectRAM+ memory. DOA[#:0] Table 15: Block SelectRAM+ Port Aspect Ratios WEB ENB RSTB CLKB ADDRB[#:0] DIB[#:0] Width Depth ADDR Bus Data Bus 1 4096 ADDR DATA 2 2048 ADDR DATA 4 1024 ADDR DATA 8 512 ADDR DATA 16 256 ADDR DATA DOB[#:0] ds022_032_121399 Figure 31: Dual-Port Block SelectRAM+ Memory RAMB4_S# Clock—CLK[A|B] WE EN RST CLK Each port is fully synchronous with independent clock pins. All port input pins have setup time referenced to the port CLK pin. The data output bus has a clock-to-out time referenced to the CLK pin. DO[#:0] ADDR[#:0] DI[#:0] Enable—EN[A|B] ds022_033_121399 Figure 32: Single-Port Block SelectRAM+ Memory Table 14: Available Library Primitives Primitive Port A Width N/A RAMB4_S1 1 RAMB4_S1_S1 RAMB4_S1_S2 RAMB4_S1_S4 Port B Width 1 2 4 RAMB4_S1_S8 8 RAMB4_S1_S16 16 RAMB4_S2 N/A RAMB4_S2_S2 2 The enable pin affects the read, write and reset functionality of the port. Ports with an inactive enable pin keep the output pins in the previous state and do not write data to the memory cells. Write Enable—WE[A|B] Activating the write enable pin allows the port to write to the memory cells. When active, the contents of the data input bus are written to the RAM at the address pointed to by the address bus, and the new data also reflects on the data out bus. When inactive, a read operation occurs and the contents of the memory cells referenced by the address bus reflect on the data out bus. Reset—RST[A|B] RAMB4_S2_S8 8 RAMB4_S2_S16 16 The reset pin forces the data output bus latches to zero synchronously. This does not affect the memory cells of the RAM and does not disturb a write operation on the other port. RAMB4_S4 N/A Address Bus—ADDR[A|B] RAMB4_S2_S4 RAMB4_S4_S4 RAMB4_S4_S8 2 4 4 4 8 RAMB4_S4_S16 16 RAMB4_S8 N/A RAMB4_S8_S8 8 RAMB4_S8_S16 RAMB4_S16 RAMB4_S16_S16 8 16 16 DS022-2 (v2.8) January 16, 2006 Production Product Specification The address bus selects the memory cells for read or write. The width of the port determines the required width of this bus as shown in Table 15. Data In Bus—DI[A|B] The data in bus provides the new data value to be written into the RAM. This bus and the port have the same width, as shown in Table 15. N/A 16 www.xilinx.com Module 2 of 4 25 R Virtex™-E 1.8 V Field Programmable Gate Arrays Data Output Bus—DO[A|B] The data out bus reflects the contents of the memory cells referenced by the address bus at the last active clock edge. During a write operation, the data out bus reflects the data in bus. The width of this bus equals the width of the port. The allowed widths appear in Table 15. Table 16 shows low order address mapping for each port width. Table 16: Port Address Mapping Port Port Width Addresses 1 4095... 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 The four control pins (CLK, EN, WE and RST) for each port have independent inversion control as a configuration option. 2 2047... 07 4 1023... 8 511... Address Mapping 16 255... Inverting Control Pins Each port accesses the same set of 4096 memory cells using an addressing scheme dependent on the width of the port. The physical RAM location addressed for a particular width are described in the following formula (of interest only when the two ports use different aspect ratios). 06 05 03 04 03 02 02 01 01 01 00 00 00 00 Creating Larger RAM Structures The block SelectRAM+ columns have specialized routing to allow cascading blocks together with minimal routing delays. This achieves wider or deeper RAM structures with a smaller timing penalty than when using normal routing channels. Location Constraints Start = ((ADDRport +1) * Widthport) –1 Block SelectRAM+ instances can have LOC properties attached to them to constrain the placement. The block SelectRAM+ placement locations are separate from the CLB location naming convention, allowing the LOC properties to transfer easily from array to array. End = ADDRport * Widthport The LOC properties use the following form. LOC = RAMB4_R#C# RAMB4_R0C0 is the upper left RAMB4 location on the device. Conflict Resolution The block SelectRAM+ memory is a true dual-read/write port RAM that allows simultaneous access of the same memory cell from both ports. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window. The following lists specifics of port and memory cell write conflict resolution. • • If both ports write to the same memory cell simultaneously, violating the clock-to-clock setup requirement, consider the data stored as invalid. If one port attempts a read of the same memory cell the other simultaneously writes, violating the clock-to-clock setup requirement, the following occurs. - The write succeeds - The data out on the writing port accurately reflects the data written. - The data out on the reading port is invalid. Conflicts do not cause any physical damage. Single Port Timing Figure 33 shows a timing diagram for a single port of a block SelectRAM+ memory. The block SelectRAM+ AC switching characteristics are specified in the data sheet. The block SelectRAM+ memory is initially disabled. At the first rising edge of the CLK pin, the ADDR, DI, EN, WE, and RST pins are sampled. The EN pin is High and the WE pin is Low indicating a read operation. The DO bus contains the contents of the memory location, 0x00, as indicated by the ADDR bus. At the second rising edge of the CLK pin, the ADDR, DI, EN, WR, and RST pins are sampled again. The EN and WE pins are High indicating a write operation. The DO bus mirrors the DI bus. The DI bus is written to the memory location 0x0F. At the third rising edge of the CLK pin, the ADDR, DI, EN, WR, and RST pins are sampled again. The EN pin is High and the WE pin is Low indicating a read operation. The DO bus contains the contents of the memory location 0x7E as indicated by the ADDR bus. At the fourth rising edge of the CLK pin, the ADDR, DI, EN, WR, and RST pins are sampled again. The EN pin is Low Module 2 of 4 26 www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays indicating that the block SelectRAM+ memory is now disabled. The DO bus retains the last value. the contents of the memory are correct, but the read port has invalid data. Dual Port Timing At the first rising edge of the CLKA, memory location 0x00 is to be written with the value 0xAAAA and is mirrored on the DOA bus. The last operation of Port B was a read to the same memory location 0x00. The DOB bus of Port B does not change with the new value on Port A, and retains the last read value. A short time later, Port B executes another read to memory location 0x00, and the DOB bus now reflects the new memory value written by Port A. Figure 34 shows a timing diagram for a true dual-port read/write block SelectRAM+ memory. The clock on port A has a longer period than the clock on Port B. The timing parameter TBCCS, (clock-to-clock set-up) is shown on this diagram. The parameter, TBCCS is violated once in the diagram. All other timing parameters are identical to the single port version shown in Figure 33. At the second rising edge of CLKA, memory location 0x7E is written with the value 0x9999 and is mirrored on the DOA bus. Port B then executes a read operation to the same memory location without violating the TBCCS parameter and the DOB reflects the new memory values written by Port A. TBCCS is only of importance when the address of both ports are the same and at least one port is performing a write operation. When the clock-to-clock set-up parameter is violated for a WRITE-WRITE condition, the contents of the memory at that location are invalid. When the clock-to-clock set-up parameter is violated for a WRITE-READ condition, TBPWH TBPWL CLK TBACK ADDR 00 0F 7E 8F CCCC BBBB 2222 TBDCK DIN DDDD TBCKO DOUT MEM (00) CCCC MEM (7E) TBECK EN RST TBWCK WE DISABLED READ WRITE READ DISABLED ds022_0343_121399 Figure 33: Timing Diagram for Single Port Block SelectRAM+ Memory DS022-2 (v2.8) January 16, 2006 Production Product Specification www.xilinx.com Module 2 of 4 27 R Virtex™-E 1.8 V Field Programmable Gate Arrays TBCCS VIOLATION CLK_A PORT A ADDR_A 00 EN_A 7E 0F 0F 7E TBCCS TBCCS WE_A DI_A AAAA DO_A 9999 AAAA AAAA 1111 0000 9999 AAAA UNKNOWN 2222 CLK_B PORT B ADDR_B 00 00 7E 0F 0F 7E 1A 1111 1111 1111 BBBB 1111 2222 FFFF EN_B WE_B DI_B DO_B MEM (00) AAAA 9999 BBBB UNKNOWN 2222 FFFF ds022_035_121399 Figure 34: Timing Diagram for a True Dual-port Read/Write Block SelectRAM+ Memory At the third rising edge of CLKA, the TBCCS parameter is violated with two writes to memory location 0x0F. The DOA and DOB buses reflect the contents of the DIA and DIB buses, but the stored value at 0x0F is invalid. At the fourth rising edge of CLKA, a read operation is performed at memory location 0x0F and invalid data is present on the DOA bus. Port B also executes a read operation to memory location 0x0F and also reads invalid data. presently support generics. The initialization values instead attach as attributes to the RAM by a built-in Synopsys dc_script. The translate_off statement stops synthesis translation of the generic statements. The following code illustrates a module that employs these techniques. Table 17: RAM Initialization Properties Property Memory Cells INIT_00 255 to 0 INIT_01 511 to 256 INIT_02 767 to 512 INIT_03 1023 to 768 Initialization INIT_04 1279 to 1024 The block SelectRAM+ memory can initialize during the device configuration sequence. The 16 initialization properties of 64 hex values each (a total of 4096 bits) set the initialization of each RAM. These properties appear in Table 17. Any initialization properties not explicitly set configure as zeros. Partial initialization strings pad with zeros. Initialization strings greater than 64 hex values generate an error. The RAMs can be simulated with the initialization values using generics in VHDL simulators and parameters in Verilog simulators. INIT_05 1535 to 1280 INIT_06 1791 to 2047 INIT_07 2047 to 1792 INIT_08 2303 to 2048 INIT_09 2559 to 2304 INIT_0a 2815 to 2560 INIT_0b 3071 to 2816 INIT_0c 3327 to 3072 INIT_0d 3583 to 3328 INIT_0e 3839 to 3584 INIT_0f 4095 to 3840 At the fifth rising edge of CLKA a read operation is performed that does not violate the TBCCS parameter to the previous write of 0x7E by Port B. THe DOA bus reflects the recently written value by Port B. Initialization in VHDL and Synopsys The block SelectRAM+ structures can be initialized in VHDL for both simulation and synthesis for inclusion in the EDIF output file. The simulation of the VHDL code uses a generic to pass the initialization. Synopsys FPGA compiler does not Module 2 of 4 28 www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Initialization in Verilog and Synopsys The block SelectRAM+ structures can be initialized in Verilog for both simulation and synthesis for inclusion in the EDIF output file. The simulation of the Verilog code uses a defparam to pass the initialization. The Synopsys FPGA compiler does not presently support defparam. The initialization values instead attach as attributes to the RAM by a built-in Synopsys dc_script. The translate_off statement stops synthesis translation of the defparam statements. The following code illustrates a module that employs these techniques. address bus of Port B to 0 (GND), allows a 32-bit wide single port RAM to be created. Creating Two Single-Port RAMs The true dual-read/write port functionality of the block SelectRAM+ memory allows a single RAM to be split into two single port memories of 2K bits each as shown in Figure 36. RAMB4_S4_S16 Design Examples WE1 EN1 RST1 CLK1 V CC , ADDR1[8:0] DI1[3:0] WEA ENA RSTA CLKA ADDRA[9:0] DIA[3:0] WE2 EN2 RST2 CLK2 GND, ADDR2[6:0] DI2[15:0] WEB ENB RSTB CLKB ADDRB[7:0] DIB[15:0] DOA[3:0] DO1[3:0] DOB[15:0] DO2[15:0] Creating a 32-bit Single-Port RAM The true dual-read/write port functionality of the block SelectRAM+ memory allows a single port, 128 deep by 32-bit wide RAM to be created using a single block SelectRAM+ cell as shown in Figure 35. ds022_037_121399 Figure 36: 512 x 4 RAM and 128 x 16 RAM RAMB4_S16_S16 WE EN RST CLK ADDR[6:0], V CC DI[31:16] WEA ENA RSTA CLKA ADDRA[7:0] DIA[15:0] WE EN RST CLK ADDR[6:0], GND DI[15:0] WEB ENB RSTB CLKB ADDRB[7:0] DIB[15:0] DOA[15:0] DO[31:16] DOB[15:0] DO[15:0] In this example, a 512K x 4 RAM (Port A) and a 128 x 16 RAM (Port B) are created out of a single block SelectRAM+. The address space for the RAM is split by fixing the MSB of Port A to 1 (VCC) for the upper 2K bits and the MSB of Port B to 0 (GND) for the lower 2K bits. Block Memory Generation ds022_036_121399 Figure 35: Single Port 128 x 32 RAM Interleaving the memory space, setting the LSB of the address bus of Port A to 1 (VCC), and the LSB of the DS022-2 (v2.8) January 16, 2006 Production Product Specification The CoreGen program generates memory structures using the block SelectRAM+ features. This program outputs VHDL or Verilog simulation code templates and an EDIF file for inclusion in a design. www.xilinx.com Module 2 of 4 29 R Virtex™-E 1.8 V Field Programmable Gate Arrays VHDL Initialization Example library IEEE; use IEEE.std_logic_1164.all; entity MYMEM is port (CLK, WE:in std_logic; ADDR: in std_logic_vector(8 downto 0); DIN: in std_logic_vector(7 downto 0); DOUT: out std_logic_vector(7 downto 0)); end MYMEM; architecture BEHAVE of MYMEM is signal logic0, logic1: std_logic; component RAMB4_S8 --synopsys translate_off generic( INIT_00,INIT_01, INIT_02, INIT_03, INIT_04, INIT_05, INIT_06, INIT_07, INIT_08, INIT_09, INIT_0a, INIT_0b, INIT_0c, INIT_0d, INIT_0e, INIT_0f : BIT_VECTOR(255 downto 0) := X"0000000000000000000000000000000000000000000000000000000000000000"); --synopsys translate_on port (WE, EN, RST, CLK: in STD_LOGIC; ADDR: in STD_LOGIC_VECTOR(8 downto 0); DI: in STD_LOGIC_VECTOR(7 downto 0); DO: out STD_LOGIC_VECTOR(7 downto 0)); end component; --synopsys dc_script_begin --set_attribute ram0 INIT_00 "0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF" -type string --set_attribute ram0 INIT_01 "FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210" -type string --synopsys dc_script_end begin logic0 X"FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210") --synopsys translate_on port map (WE=>WE, EN=>logic1, RST=>logic0, CLK=>CLK,ADDR=>ADDR, DI=>DIN, DO=>DOUT); end BEHAVE; Module 2 of 4 30 www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Verilog Initialization Example module MYMEM (CLK, WE, ADDR, DIN, DOUT); input CLK, WE; input [8:0] ADDR; input [7:0] DIN; output [7:0] DOUT; wire logic0, logic1; //synopsys dc_script_begin //set_attribute ram0 INIT_00 "0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF" -type string //set_attribute ram0 INIT_01 "FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210" -type string //synopsys dc_script_end assign logic0 = 1’b0; assign logic1 = 1’b1; RAMB4_S8 ram0 (.WE(WE), .EN(logic1), .RST(logic0), .CLK(CLK), .ADDR(ADDR), .DI(DIN), .DO(DOUT)); //synopsys translate_off defparam ram0.INIT_00 = 256h’0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF; defparam ram0.INIT_01 = 256h’FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210; //synopsys translate_on endmodule Using SelectI/O The Virtex-E FPGA series includes a highly configurable, high-performance I/O resource, called SelectI/O™ to provide support for a wide variety of I/O standards. The SelectI/O resource is a robust set of features including programmable control of output drive strength, slew rate, and input delay and hold time. Taking advantage of the flexibility and SelectI/O features and the design considerations described in this document can improve and simplify system level design. Introduction As FPGAs continue to grow in size and capacity, the larger and more complex systems designed for them demand an increased variety of I/O standards. Furthermore, as system clock speeds continue to increase, the need for high performance I/O becomes more important. While chip-to-chip delays have an increasingly substantial impact on overall system speed, the task of achieving the desired system performance becomes more difficult with the proliferation of low-voltage I/O standards. SelectI/O, the revolutionary input/output resources of Virtex-E devices, resolve this potential problem by providing a highly configurable, high-performance alternative to the I/O resources of more conventional programmable devices. Virtex-E SelectI/O features combine the flexibility and time-to-market advantages of programmable logic with the high performance previously available only with ASICs and custom ICs. DS022-2 (v2.8) January 16, 2006 Production Product Specification Each SelectI/O block can support up to 20 I/O standards. Supporting such a variety of I/O standards allows the support of a wide variety of applications, from general purpose standard applications to high-speed low-voltage memory buses. SelectI/O blocks also provide selectable output drive strengths and programmable slew rates for the LVTTL output buffers, as well as an optional, programmable weak pull-up, weak pull-down, or weak “keeper” circuit ideal for use in external bussing applications. Each Input/Output Block (IOB) includes three registers, one each for the input, output, and 3-state signals within the IOB. These registers are optionally configurable as either a D-type flip-flop or as a level sensitive latch. The input buffer has an optional delay element used to guarantee a zero hold time requirement for input signals registered within the IOB. The Virtex-E SelectI/O features also provide dedicated resources for input reference voltage (VREF) and output source voltage (VCCO), along with a convenient banking system that simplifies board design. By taking advantage of the built-in features and wide variety of I/O standards supported by the SelectI/O features, system-level design and board design can be greatly simplified and improved. www.xilinx.com Module 2 of 4 31 R Virtex™-E 1.8 V Field Programmable Gate Arrays Fundamentals Overview of Supported I/O Standards Modern bus applications, pioneered by the largest and most influential companies in the digital electronics industry, are commonly introduced with a new I/O standard tailored specifically to the needs of that application. The bus I/O standards provide specifications to other vendors who create products designed to interface with these applications. Each standard often has its own specifications for current, voltage, I/O buffering, and termination techniques. This section provides a brief overview of the I/O standards supported by all Virtex-E devices. The ability to provide the flexibility and time-to-market advantages of programmable logic is increasingly dependent on the capability of the programmable logic device to support an ever increasing variety of I/O standards LVTTL — Low-Voltage TTL The SelectI/O resources feature highly configurable input and output buffers which provide support for a wide variety of I/O standards. As shown in Table 18, each buffer type can support a variety of voltage requirements. Table 18: Virtex-E Supported I/O Standards While most I/O standards specify a range of allowed voltages, this document records typical voltage values only. Detailed information on each specification can be found on the Electronic Industry Alliance Jedec website at: http://www.jedec.org The Low-Voltage TTL, or LVTTL standard is a general purpose EIA/JESDSA standard for 3.3V applications that uses an LVTTL input buffer and a Push-Pull output buffer. This standard requires a 3.3V output source voltage (VCCO), but does not require the use of a reference voltage (VREF) or a termination voltage (VTT). LVCMOS2 — Low-Voltage CMOS for 2.5 Volts The Low-Voltage CMOS for 2.5 Volts or lower, or LVCMOS2 standard is an extension of the LVCMOS standard (JESD 8.-5) used for general purpose 2.5V applications. This standard requires a 2.5V output source voltage (VCCO), but does not require the use of a reference voltage (VREF) or a board termination voltage (VTT). Output VCCO Input VCCO Input VREF Board Termination Voltage (VTT) LVTTL 3.3 3.3 N/A N/A LVCMOS2 2.5 2.5 N/A N/A LVCMOS18 1.8 1.8 N/A N/A SSTL3 I & II 3.3 N/A 1.50 1.50 SSTL2 I & II 2.5 N/A 1.25 1.25 GTL N/A N/A 0.80 1.20 GTL+ N/A N/A 1.0 1.50 HSTL I 1.5 N/A 0.75 0.75 The Peripheral Component Interface, or PCI standard specifies support for both 33 MHz and 66 MHz PCI bus applications. It uses a LVTTL input buffer and a Push-Pull output buffer. This standard does not require the use of a reference voltage (VREF) or a board termination voltage (VTT), however, it does require a 3.3V output source voltage (VCCO). HSTL III & IV 1.5 N/A 0.90 1.50 GTL — Gunning Transceiver Logic Terminated CTT 3.3 N/A 1.50 1.50 AGP-2X 3.3 N/A 1.32 N/A PCI33_3 3.3 3.3 N/A N/A PCI66_3 3.3 3.3 N/A N/A BLVDS & LVDS 2.5 N/A N/A N/A LVPECL 3.3 N/A N/A N/A I/O Standard LVCMOS18 — 1.8 V Low Voltage CMOS This standard is an extension of the LVCMOS standard. It is used in general purpose 1.8 V applications. The use of a reference voltage (VREF) or a board termination voltage (VTT) is not required. PCI — Peripheral Component Interface The Gunning Transceiver Logic, or GTL standard is a high-speed bus standard (JESD8.3) invented by Xerox. Xilinx has implemented the terminated variation for this standard. This standard requires a differential amplifier input buffer and a Open Drain output buffer. GTL+ — Gunning Transceiver Logic Plus The Gunning Transceiver Logic Plus, or GTL+ standard is a high-speed bus standard (JESD8.3) first used by the Pentium Pro processor. HSTL — High-Speed Transceiver Logic The High-Speed Transceiver Logic, or HSTL standard is a general purpose high-speed, 1.5V bus standard sponsored by IBM (EIA/JESD 8-6). This standard has four variations or classes. SelectI/O devices support Class I, III, and IV. This Module 2 of 4 32 www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays standard requires a Differential Amplifier input buffer and a Push-Pull output buffer. SSTL3 — Stub Series Terminated Logic for 3.3V The Stub Series Terminated Logic for 3.3V, or SSTL3 standard is a general purpose 3.3V memory bus standard also sponsored by Hitachi and IBM (JESD8-8). This standard has two classes, I and II. SelectI/O devices support both classes for the SSTL3 standard. This standard requires a Differential Amplifier input buffer and an Push-Pull output buffer. SSTL2 — Stub Series Terminated Logic for 2.5V The Stub Series Terminated Logic for 2.5V, or SSTL2 standard is a general purpose 2.5V memory bus standard sponsored by Hitachi and IBM (JESD8-9). This standard has two classes, I and II. SelectI/O devices support both classes for the SSTL2 standard. This standard requires a Differential Amplifier input buffer and an Push-Pull output buffer. Library Symbols The Xilinx library includes an extensive list of symbols designed to provide support for the variety of SelectI/O features. Most of these symbols represent variations of the five generic SelectI/O symbols. • • • • • IBUF (input buffer) IBUFG (global clock input buffer) OBUF (output buffer) OBUFT (3-state output buffer) IOBUF (input/output buffer) IBUF Signals used as inputs to the Virtex-E device must source an input buffer (IBUF) via an external input port. The generic Virtex-E IBUF symbol appears in Figure 37. The extension IBUF I CTT — Center Tap Terminated The Center Tap Terminated, or CTT standard is a 3.3V memory bus standard sponsored by Fujitsu (JESD8-4). This standard requires a Differential Amplifier input buffer and a Push-Pull output buffer. AGP-2X — Advanced Graphics Port The Intel AGP standard is a 3.3V Advanced Graphics Port-2X bus standard used with the Pentium II processor for graphics applications. This standard requires a Push-Pull output buffer and a Differential Amplifier input buffer. LVDS — Low Voltage Differential Signal LVDS is a differential I/O standard. It requires that one data bit is carried through two signal lines. As with all differential signaling standards, LVDS has an inherent noise immunity over single-ended I/O standards. The voltage swing between two signal lines is approximately 350mV. The use of a reference voltage (VREF) or a board termination voltage (VTT) is not required. LVDS requires the use of two pins per input or output. LVDS requires external resistor termination. BLVDS — Bus LVDS This standard allows for bidirectional LVDS communication between two or more devices. The external resistor termination is different than the one for standard LVDS. LVPECL — Low Voltage Positive Emitter Coupled Logic LVPECL is another differential I/O standard. It requires two signal lines for transmitting one data bit. This standard specifies two pins per input or output. The voltage swing between these two signal lines is approximately 850 mV. The use of a reference voltage (VREF) or a board termination voltage (VTT) is not required. The LVPECL standard requires external resistor termination. DS022-2 (v2.8) January 16, 2006 Production Product Specification O x133_01_111699 Figure 37: Input Buffer (IBUF) Symbols to the base name defines which I/O standard the IBUF uses. The assumed standard is LVTTL when the generic IBUF has no specified extension. The following list details the variations of the IBUF symbol: • • • • • • • • • • • • • • • • • • IBUF IBUF_LVCMOS2 IBUF_PCI33_3 IBUF_PCI66_3 IBUF_GTL IBUF_GTLP IBUF_HSTL_I IBUF_HSTL_III IBUF_HSTL_IV IBUF_SSTL3_I IBUF_SSTL3_II IBUF_SSTL2_I IBUF_SSTL2_II IBUF_CTT IBUF_AGP IBUF_LVCMOS18 IBUF_LVDS IBUF_LVPECL When the IBUF symbol supports an I/O standard that requires a VREF, the IBUF automatically configures as a differential amplifier input buffer. The VREF voltage must be supplied on the VREF pins. In the case of LVDS, LVPECL, and BLVDS, VREF is not required. www.xilinx.com Module 2 of 4 33 R Virtex™-E 1.8 V Field Programmable Gate Arrays The voltage reference signal is “banked” within the Virtex-E device on a half-edge basis such that for all packages there are eight independent VREF banks internally. See Figure 38 for a representation of the Virtex-E I/O banks. Within each bank approximately one of every six I/O pins is automatically configured as a VREF input. After placing a differential amplifier input signal within a given VREF bank, the same external source must drive all I/O pins configured as a VREF input. IBUF placement restrictions require that any differential amplifier input signals within a bank be of the same standard. How to specify a specific location for the IBUF via the LOC property is described below. Table 19 summarizes the Virtex-E input standards compatibility requirements. An optional delay element is associated with each IBUF. When the IBUF drives a flip-flop within the IOB, the delay element by default activates to ensure a zero hold-time requirement. The NODELAY=TRUE property overrides this default. When the IBUF does not drive a flip-flop within the IOB, the delay element de-activates by default to provide higher performance. To delay the input signal, activate the delay element with the DELAY=TRUE property. Table 19: Xilinx Input Standards Compatibility Requirements Standards with the same input VCCO, output VCCO, and VREF can be placed within the same bank. Bank 7 Bank 0 Bank 1 GCLK3 GCLK2 Bank 2 Rule 1 Bank 3 Bank 6 Bank 5 GCLK0 Bank 4 ds022_42_012100 Figure 38: Virtex-E I/O Banks IBUFG Signals used as high fanout clock inputs to the Virtex-E device should drive a global clock input buffer (IBUFG) via an external input port in order to take advantage of one of the four dedicated global clock distribution networks. The output of the IBUFG should only drive a CLKDLL, Module 2 of 4 34 IBUFG I O x133_03_111699 Figure 39: Virtex-E Global Clock Input Buffer (IBUFG) Symbol The extension to the base name determines which I/O standard is used by the IBUFG. With no extension specified for the generic IBUFG symbol, the assumed standard is LVTTL. The following list details variations of the IBUFG symbol. • • • • • • • • • • • • • • • • • • IBUFG IBUFG_LVCMOS2 IBUFG_PCI33_3 IBUFG_PCI66_3 IBUFG_GTL IBUFG_GTLP IBUFG_HSTL_I IBUFG_HSTL_III IBUFG_HSTL_IV IBUFG_SSTL3_I IBUFG_SSTL3_II IBUFG_SSTL2_I IBUFG_SSTL2_II IBUFG_CTT IBUFG_AGP IBUFG_LVCMOS18 IBUFG_LVDS IBUFG_LVPECL When the IBUFG symbol supports an I/O standard that requires a differential amplifier input, the IBUFG automatically configures as a differential amplifier input buffer. The low-voltage I/O standards with a differential amplifier input require an external reference voltage input VREF. Virtex-E Device GCLK1 CLKDLLHF, or BUFG symbol. The generic Virtex-E IBUFG symbol appears in Figure 39. The voltage reference signal is “banked” within the Virtex-E device on a half-edge basis such that for all packages there are eight independent VREF banks internally. See Figure 38 for a representation of the Virtex-E I/O banks. Within each bank approximately one of every six I/O pins is automatically configured as a VREF input. After placing a differential amplifier input signal within a given VREF bank, the same external source must drive all I/O pins configured as a VREF input. IBUFG placement restrictions require any differential amplifier input signals within a bank be of the same standard. The LOC property can specify a location for the IBUFG. As an added convenience, the BUFGP can be used to instantiate a high fanout clock input. The BUFGP symbol www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays represents a combination of the LVTTL IBUFG and BUFG symbols, such that the output of the BUFGP can connect directly to the clock pins throughout the design. Unlike previous architectures, the Virtex-E BUFGP symbol can only be placed in a global clock pad location. The LOC property can specify a location for the BUFGP. OBUF An OBUF must drive outputs through an external output port. The generic output buffer (OBUF) symbol appears in Figure 40. The extension to the base name defines which I/O standard the OBUF uses. With no extension specified for the generic OBUF symbol, the assumed standard is slew rate limited LVTTL with 12 mA drive strength. OBUF I Figure 40: Virtex-E Output Buffer (OBUF) Symbol The LVTTL OBUF additionally can support one of two slew rate modes to minimize bus transients. By default, the slew rate for each output buffer is reduced to minimize power bus transients when switching non-critical signals. LVTTL output buffers have selectable drive strengths. The format for LVTTL OBUF symbol names is as follows: OBUF__ where is either F (Fast) or S (Slow), and is specified in milliamps (2, 4, 6, 8, 12, 16, or 24). The following list details variations of the OBUF symbol. OBUF OBUF_S_2 OBUF_S_4 OBUF_S_6 OBUF_S_8 OBUF_S_12 OBUF_S_16 OBUF_S_24 OBUF_F_2 OBUF_F_4 OBUF_F_6 OBUF_F_8 OBUF_F_12 OBUF_F_16 OBUF_F_24 OBUF_LVCMOS2 OBUF_PCI33_3 DS022-2 (v2.8) January 16, 2006 Production Product Specification OBUF_PCI66_3 OBUF_GTL OBUF_GTLP OBUF_HSTL_I OBUF_HSTL_III OBUF_HSTL_IV OBUF_SSTL3_I OBUF_SSTL3_II OBUF_SSTL2_I OBUF_SSTL2_II OBUF_CTT OBUF_AGP OBUF_LVCMOS18 OBUF_LVDS OBUF_LVPECL The Virtex-E series supports eight banks for the HQ and PQ packages. The CS packages support four VCCO banks. O x133_04_111699 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • OBUF placement restrictions require that within a given VCCO bank each OBUF share the same output source drive voltage. Input buffers of any type and output buffers that do not require VCCO can be placed within any VCCO bank. Table 20 summarizes the Virtex-E output compatibility requirements. The LOC property can specify a location for the OBUF. Table 20: Output Standards Compatibility Requirements Rule 1 Only outputs with standards that share compatible VCCO can be used within the same bank. Rule 2 There are no placement restrictions for outputs with standards that do not require a VCCO. VCCO Compatible Standards 3.3 LVTTL, SSTL3_I, SSTL3_II, CTT, AGP, GTL, GTL+, PCI33_3, PCI66_3 2.5 SSTL2_I, SSTL2_II, LVCMOS2, GTL, GTL+ 1.5 HSTL_I, HSTL_III, HSTL_IV, GTL, GTL+ OBUFT The generic 3-state output buffer OBUFT (see Figure 41) typically implements 3-state outputs or bidirectional I/O. The extension to the base name defines which I/O standard OBUFT uses. With no extension specified for the generic OBUFT symbol, the assumed standard is slew rate limited LVTTL with 12 mA drive strength. The LVTTL OBUFT additionally can support one of two slew rate modes to minimize bus transients. By default, the slew rate for each output buffer is reduced to minimize power bus transients when switching non-critical signals. www.xilinx.com Module 2 of 4 35 R Virtex™-E 1.8 V Field Programmable Gate Arrays LVTTL 3-state output buffers have selectable drive strengths. The Virtex-E series supports eight banks for the HQ and PQ packages. The CS package supports four VCCO banks. The format for LVTTL OBUFT symbol names is as follows: The SelectI/O OBUFT placement restrictions require that within a given VCCO bank each OBUFT share the same output source drive voltage. Input buffers of any type and output buffers that do not require VCCO can be placed within the same VCCO bank. OBUFT__ where is either F (Fast) or S (Slow), and is specified in milliamps (2, 4, 6, 8, 12, 16, or 24). T I 3-state output buffers and bidirectional buffers can have either a weak pull-up resistor, a weak pull-down resistor, or a weak “keeper” circuit. Control this feature by adding the appropriate symbol to the output net of the OBUFT (PULLUP, PULLDOWN, or KEEPER). OBUFT O x133_05_111699 Figure 41: 3-State Output Buffer Symbol (OBUFT) The following list details variations of the OBUFT symbol. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • OBUFT OBUFT_S_2 OBUFT_S_4 OBUFT_S_6 OBUFT_S_8 OBUFT_S_12 OBUFT_S_16 OBUFT_S_24 OBUFT_F_2 OBUFT_F_4 OBUFT_F_6 OBUFT_F_8 OBUFT_F_12 OBUFT_F_16 OBUFT_F_24 OBUFT_LVCMOS2 OBUFT_PCI33_3 OBUFT_PCI66_3 OBUFT_GTL OBUFT_GTLP OBUFT_HSTL_I OBUFT_HSTL_III OBUFT_HSTL_IV OBUFT_SSTL3_I OBUFT_SSTL3_II OBUFT_SSTL2_I OBUFT_SSTL2_II OBUFT_CTT OBUFT_AGP OBUFT_LVCMOS18 OBUFT_LVDS OBUFT_LVPECL Module 2 of 4 36 The LOC property can specify a location for the OBUFT. The weak “keeper” circuit requires the input buffer within the IOB to sample the I/O signal. So, OBUFTs programmed for an I/O standard that requires a VREF have automatic placement of a VREF in the bank with an OBUFT configured with a weak “keeper” circuit. This restriction does not affect most circuit design as applications using an OBUFT configured with a weak “keeper” typically implement a bidirectional I/O. In this case the IBUF (and the corresponding VREF) are explicitly placed. The LOC property can specify a location for the OBUFT. IOBUF Use the IOBUF symbol for bidirectional signals that require both an input buffer and a 3-state output buffer with an active high 3-state pin. The generic input/output buffer IOBUF appears in Figure 42. The extension to the base name defines which I/O standard the IOBUF uses. With no extension specified for the generic IOBUF symbol, the assumed standard is LVTTL input buffer and slew rate limited LVTTL with 12 mA drive strength for the output buffer. The LVTTL IOBUF additionally can support one of two slew rate modes to minimize bus transients. By default, the slew rate for each output buffer is reduced to minimize power bus transients when switching non-critical signals. LVTTL bidirectional buffers have selectable output drive strengths. The format for LVTTL IOBUF symbol names is as follows: IOBUF__ where is either F (Fast) or S (Slow), and is specified in milliamps (2, 4, 6, 8, 12, 16, or 24). www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays T The low-voltage I/O standards with a differential amplifier input require an external reference voltage input VREF. IOBUF I IO O x133_06_111699 Figure 42: Input/Output Buffer Symbol (IOBUF) The following list details variations of the IOBUF symbol. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • IOBUF IOBUF_S_2 IOBUF_S_4 IOBUF_S_6 IOBUF_S_8 IOBUF_S_12 IOBUF_S_16 IOBUF_S_24 IOBUF_F_2 IOBUF_F_4 IOBUF_F_6 IOBUF_F_8 IOBUF_F_12 IOBUF_F_16 IOBUF_F_24 IOBUF_LVCMOS2 IOBUF_PCI33_3 IOBUF_PCI66_3 IOBUF_GTL IOBUF_GTLP IOBUF_HSTL_I IOBUF_HSTL_III IOBUF_HSTL_IV IOBUF_SSTL3_I IOBUF_SSTL3_II IOBUF_SSTL2_I IOBUF_SSTL2_II IOBUF_CTT IOBUF_AGP IOBUF_LVCMOS18 IOBUF_LVDS IOBUF_LVPECL IOBUF placement restrictions require any differential amplifier input signals within a bank be of the same standard. The Virtex-E series supports eight banks for the HQ and PQ packages. The CS package supports four VCCO banks. Additional restrictions on the Virtex-E SelectI/O IOBUF placement require that within a given VCCO bank each IOBUF must share the same output source drive voltage. Input buffers of any type and output buffers that do not require VCCO can be placed within the same VCCO bank. The LOC property can specify a location for the IOBUF. An optional delay element is associated with the input path in each IOBUF. When the IOBUF drives an input flip-flop within the IOB, the delay element activates by default to ensure a zero hold-time requirement. Override this default with the NODELAY=TRUE property. In the case when the IOBUF does not drive an input flip-flop within the IOB, the delay element de-activates by default to provide higher performance. To delay the input signal, activate the delay element with the DELAY=TRUE property. 3-state output buffers and bidirectional buffers can have either a weak pull-up resistor, a weak pull-down resistor, or a weak “keeper” circuit. Control this feature by adding the appropriate symbol to the output net of the IOBUF (PULLUP, PULLDOWN, or KEEPER). SelectI/O Properties Access to some of the SelectI/O features (for example, location constraints, input delay, output drive strength, and slew rate) is available through properties associated with these features. Input Delay Properties An optional delay element is associated with each IBUF. When the IBUF drives a flip-flop within the IOB, the delay element activates by default to ensure a zero hold-time requirement. Use the NODELAY=TRUE property to override this default. When the IOBUF symbol used supports an I/O standard that requires a differential amplifier input, the IOBUF automatically configures with a differential amplifier input buffer. DS022-2 (v2.8) January 16, 2006 Production Product Specification The voltage reference signal is “banked” within the Virtex-E device on a half-edge basis such that for all packages there are eight independent VREF banks internally. See Figure 38, page 34 for a representation of the Virtex-E I/O banks. Within each bank approximately one of every six I/O pins is automatically configured as a VREF input. After placing a differential amplifier input signal within a given VREF bank, the same external source must drive all I/O pins configured as a VREF input. In the case when the IBUF does not drive a flip-flop within the IOB, the delay element by default de-activates to provide higher performance. To delay the input signal, activate the delay element with the DELAY=TRUE property. www.xilinx.com Module 2 of 4 37 R Virtex™-E 1.8 V Field Programmable Gate Arrays IOB Flip-Flop/Latch Property Design Considerations The Virtex-E series I/O Block (IOB) includes an optional register on the input path, an optional register on the output path, and an optional register on the 3-state control pin. The design implementation software automatically takes advantage of these registers when the following option for the Map program is specified. Reference Voltage (VREF) Pins map –pr b Alternatively, the IOB = TRUE property can be placed on a register to force the mapper to place the register in an IOB. Location Constraints Specify the location of each SelectI/O symbol with the location constraint LOC attached to the SelectI/O symbol. The external port identifier indicates the value of the location constrain. The format of the port identifier depends on the package chosen for the specific design. The LOC properties use the following form: LOC=P37 Output Slew Rate Property As mentioned above, a variety of symbol names provide the option of choosing the desired slew rate for the output buffers. In the case of the LVTTL output buffers (OBUF, OBUFT, and IOBUF), slew rate control can be alternatively programed with the SLEW= property. By default, the slew rate for each output buffer is reduced to minimize power bus transients when switching non-critical signals. The SLEW= property has one of the two following values. SLEW=SLOW SLEW=FAST Output Drive Strength Property The desired output drive strength can be additionally specified by choosing the appropriate library symbol. The Xilinx library also provides an alternative method for specifying this feature. For the LVTTL output buffers (OBUF, OBUFT, and IOBUF, the desired drive strength can be specified with the DRIVE= property. This property could have one of the following seven values. Module 2 of 4 38 The voltage reference signal is “banked” within the device on a half-edge basis such that for all packages there are eight independent VREF banks internally. See Figure 38 for a representation of the Virtex-E I/O banks. Within each bank approximately one of every six I/O pins is automatically configured as a VREF input. After placing a differential amplifier input signal within a given VREF bank, the same external source must drive all I/O pins configured as a VREF input. Within each VREF bank, any input buffers that require a VREF signal must be of the same type. Output buffers of any type and input buffers can be placed without requiring a reference voltage within the same VREF bank. Output Drive Source Voltage (VCCO) Pins LOC=A42 DRIVE=2 DRIVE=4 DRIVE=6 DRIVE=8 DRIVE=12 (Default) DRIVE=16 DRIVE=24 Low-voltage I/O standards with a differential amplifier input buffer require an input reference voltage (VREF). Provide the VREF as an external signal to the device. Many of the low voltage I/O standards supported by SelectI/O devices require a different output drive source voltage (VCCO). As a result each device can often have to support multiple output drive source voltages. The Virtex-E series supports eight banks for the HQ and PQ packages. The CS package supports four VCCO banks. Output buffers within a given VCCO bank must share the same output drive source voltage. Input buffers for LVTTL, LVCMOS2, LVCMOS18, PCI33_3, and PCI 66_3 use the VCCO voltage for Input VCCO voltage. Transmission Line Effects The delay of an electrical signal along a wire is dominated by the rise and fall times when the signal travels a short distance. Transmission line delays vary with inductance and capacitance, but a well-designed board can experience delays of approximately 180 ps per inch. Transmission line effects, or reflections, typically start at 1.5" for fast (1.5 ns) rise and fall times. Poor (or non-existent) termination or changes in the transmission line impedance cause these reflections and can cause additional delay in longer traces. As system speeds continue to increase, the effect of I/O delays can become a limiting factor and therefore transmission line termination becomes increasingly more important. Termination Techniques A variety of termination techniques reduce the impact of transmission line effects. The following are output termination techniques: • • • • None Series Parallel (Shunt) Series and Parallel (Series-Shunt) www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Input termination techniques include the following. Simultaneous Switching Guidelines • • Ground bounce can occur with high-speed digital ICs when multiple outputs change states simultaneously, causing undesired transient behavior on an output, or in the internal logic. This problem is also referred to as the Simultaneous Switching Output (SSO) problem. None Parallel (Shunt) These termination techniques can be applied in any combination. A generic example of each combination of termination methods appears in Figure 43. Ground bounce is primarily due to current changes in the combined inductance of ground pins, bond wires, and ground metallization. The IC internal ground level deviates from the external system ground level for a short duration (a few nanoseconds) after multiple outputs change state simultaneously. Double Parallel Terminated Unterminated VTT VTT Z=50 Z=50 VREF Unterminated Output Driving a Parallel Terminated Input Series Terminated Output Driving a Parallel Terminated Input VTT VTT Ground bounce affects stable Low outputs and all inputs because they interpret the incoming signal by comparing it to the internal ground. If the ground bounce amplitude exceeds the actual instantaneous noise margin, then a non-changing input can be interpreted as a short pulse with a polarity opposite to the ground bounce. Z=50 Z=50 VREF VREF Series-Parallel Terminated Output Driving a Parallel Terminated Input VTT Series Terminated Output VTT Z=50 Z=50 VREF VREF x133_07_111699 Figure 43: Overview of Standard Input and Output Termination Methods Table 21 provides guidelines for the maximum number of simultaneously switching outputs allowed per output power/ground pair to avoid the effects of ground bounce. See Table 22 for the number of effective output power/ground pairs for each Virtex-E device and package combination. Table 21: Guidelines for Max Number of Simultaneously Switching Outputs per Power/Ground Pair Package Standard BGA, CS, FGA HQ PQ, TQ LVTTL Slow Slew Rate, 2 mA drive 68 49 36 LVTTL Slow Slew Rate, 4 mA drive 41 31 20 LVTTL Slow Slew Rate, 6 mA drive 29 22 15 LVTTL Slow Slew Rate, 8 mA drive 22 17 12 LVTTL Slow Slew Rate, 12 mA drive 17 12 9 LVTTL Slow Slew Rate, 16 mA drive 14 10 7 LVTTL Slow Slew Rate, 24 mA drive 9 7 5 LVTTL Fast Slew Rate, 2 mA drive 40 29 21 LVTTL Fast Slew Rate, 4 mA drive 24 18 12 LVTTL Fast Slew Rate, 6 mA drive 17 13 9 LVTTL Fast Slew Rate, 8 mA drive 13 10 7 LVTTL Fast Slew Rate, 12 mA drive 10 7 5 LVTTL Fast Slew Rate, 16 mA drive 8 6 4 LVTTL Fast Slew Rate, 24 mA drive 5 4 3 LVCMOS 10 7 5 PCI 8 6 4 GTL 4 4 4 GTL+ 4 4 4 DS022-2 (v2.8) January 16, 2006 Production Product Specification www.xilinx.com Module 2 of 4 39 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 21: Guidelines for Max Number of Simultaneously Switching Outputs per Power/Ground Pair (Continued) Package BGA, CS, FGA HQ PQ, TQ HSTL Class I 18 13 9 HSTL Class III 9 7 5 HSTL Class IV 5 4 3 SSTL2 Class I 15 11 8 SSTL2 Class II 10 7 5 SSTL3 Class I 11 8 6 SSTL3 Class II 7 5 4 CTT 14 10 7 AGP 9 7 5 Standard Note: This analysis assumes a 35 pF load for each output. Table 22: Virtex-E Equivalent Power/Ground Pairs Pkg/Part XCV100E XCV200E CS144 12 12 PQ240 20 20 XCV300E XCV400E 20 20 HQ240 BG352 20 32 BG432 32 FG456 FG676 20 XCV1000E XCV1600E XCV2000E 20 20 56 58 60 56 56 56 58 60 64 32 BG560 FG256(1) XCV600E 24 24 40 40 40 40 40 40 54 56 FG680(2) 46 FG860 FG900 56 FG1156 58 96 60 104 120 Notes: 1. Virtex-E devices in FG256 packages have more VCCO than Virtex series devices. 2. FG680 numbers are preliminary. Module 2 of 4 40 www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Application Examples GTL+ Creating a design with the SelectI/O features requires the instantiation of the desired library symbol within the design code. At the board level, designers need to know the termination techniques required for each I/O standard. A sample circuit illustrating a valid termination technique for GTL+ appears in Figure 45. DC voltage specifications appear in Table 24. GTL+ VTT = 1.5V VTT = 1.5V This section describes some common application examples illustrating the termination techniques recommended by each of the standards supported by the SelectI/O features. 50Ω VCCO = N/A Termination Examples GTL A sample circuit illustrating a valid termination technique for GTL is shown in Figure 44. GTL Z = 50 VREF = 1.0V Circuit examples involving typical termination techniques for each of the SelectI/O standards follow. For a full range of accepted values for the DC voltage specifications for each standard, refer to the table associated with each figure. The resistors used in each termination technique example and the transmission lines depicted represent board level components and are not meant to represent components on the device. 50Ω x133_09_012400 Figure 45: Terminated GTL+ Table 24: GTL+ Voltage Specifications Parameter Min Typ Max - - - 0.88 1.0 1.12 VTT 1.35 1.5 1.65 VIH = VREF + 0.1 0.98 1.1 - VIL = VREF – 0.1 - 0.9 1.02 VCCO VREF = N × VTT1 VTT = 1.2V VTT = 1.2V VOH - - - 50Ω 50Ω VOL 0.3 0.45 0.6 - - - IOLat VOL (mA) at 0.6V 36 - - IOLat VOL (mA) at 0.3V - - 48 VCCO = N/A IOH at VOH (mA) Z = 50 VREF = 0.8V x133_08_111699 Figure 44: Terminated GTL Notes: 1. N must be greater than or equal to 0.653 and less than or equal to 0.68. Table 23 lists DC voltage specifications. Table 23: GTL Voltage Specifications Parameter Min Typ Max - N/A - VREF = N × VTT1 0.74 0.8 0.86 VTT 1.14 1.2 1.26 VIH = VREF + 0.05 0.79 0.85 - VIL = VREF – 0.05 - 0.75 0.81 VOH - - - VOL - 0.2 0.4 IOH at VOH(mA) - - - IOLat VOL(mA) at 0.4V 32 - - IOLat VOL(mA) at 0.2V - - 40 VCCO Notes: 1. N must be greater than or equal to 0.653 and less than or equal to 0.68. DS022-2 (v2.8) January 16, 2006 Production Product Specification www.xilinx.com Module 2 of 4 41 R Virtex™-E 1.8 V Field Programmable Gate Arrays HSTL HSTL Class III A sample circuit illustrating a valid termination technique for HSTL_I appears in Figure 46. A sample circuit illustrating a valid termination technique for HSTL_III appears in Figure 47. 50Ω Z = 50 Table 25: HSTL Class I Voltage Specification Parameter VTT= 1.5V VCCO = 1.5V VREF = 0.9V Min Typ Max VCCO 1.40 1.50 1.60 VREF 0.68 0.75 0.90 VTT - VCCO × 0.5 - A sample circuit illustrating a valid termination technique for HSTL_IV appears in Figure 48. VIH VREF + 0.1 - - Table 27: HSTL Class IV Voltage Specification VIL - - VREF – 0.1 VOH VCCO – 0.4 - 0.4 x133_11_111699 VOL Figure 47: Terminated HSTL Class III Parameter Min Typ Max VCCO 1.40 1.50 1.60 VREF - 0.90 - IOH at VOH (mA) −8 - - VTT - VCCO - IOLat VOL (mA) 8 - - VIH VREF + 0.1 - - VIL - - VREF – 0.1 VOH VCCO – 0.4 - - VTT= 0.75V VOL - - 0.4 50Ω IOH at VOH (mA) −8 - - IOLat VOL (mA) 48 - - HSTL Class I VCCO = 1.5V Z = 50 VREF = 0.75V Note: Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise margin in the use conditions specified by the user. x133_10_111699 Figure 46: Terminated HSTL Class I Table 26: HSTL Class III Voltage Specification Parameter HSTL Class IV Min Typ Max 1.40 1.50 1.60 VREF (1) - 0.90 - VTT - VCCO - VIH VREF + 0.1 - - VIL - - VREF – 0.1 VOH VCCO – 0.4 - - VOL - - 0.4 IOH at VOH (mA) −8 - - IOLat VOL (mA) 24 - - VCCO VCCO = 1.5V VTT= 1.5V VTT= 1.5V 50Ω 50Ω Z = 50 VREF = 0.9V x133_12_111699 Figure 48: Terminated HSTL Class IV Note: Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise margin in the use conditions specified by the user.” Module 2 of 4 42 www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays SSTL3_I A sample circuit illustrating a valid termination technique for SSTL3_I appears in Figure 49. DC voltage specifications appear in Table 28. SSTL3 Class I VTT= 1.5V VCCO = 3.3V 50Ω 25Ω Z = 50 VREF = 1.5V Table 29: SSTL3_II Voltage Specifications Parameter Min Typ Max VCCO 3.0 3.3 3.6 VREF = 0.45 × VCCO 1.3 1.5 1.7 VTT = VREF 1.3 1.5 1.7 VIH = VREF + 0.2 1.5 1.7 3.9(1) VIL= VREF – 0.2 −0.3(2) 1.3 1.5 VOH = VREF + 0.8 2.1 - - VOL= VREF – 0.8 - - 0.9 IOH at VOH (mA) −16 - - IOLat VOL (mA) 16 - - x133_13_111699 Figure 49: Terminated SSTL3 Class I Table 28: SSTL3_I Voltage Specifications Parameter Min Typ Max VCCO 3.0 3.3 3.6 VREF = 0.45 × VCCO 1.3 1.5 1.7 VTT = VREF 1.3 1.5 1.7 VIH = VREF + 0.2 1.5 1.7 3.9(1) VIL = VREF – 0.2 −0.3(2) 1.3 1.5 VOH = VREF + 0.6 1.9 - - VOL = VREF – 0.6 - - 1.1 IOH at VOH (mA) −8 - - IOLat VOL (mA) 8 - - Notes: 1. VIH maximum is VCCO + 0.3 2. VIL minimum does not conform to the formula SSTL2_I A sample circuit illustrating a valid termination technique for SSTL2_I appears in Figure 51. DC voltage specifications appear in Table 30. SSTL2 Class I VTT= 1.25V VCCO = 2.5V 50Ω 25Ω Z = 50 V Notes: 1. VIH maximum is VCCO + 0.3 2. VIL minimum does not conform to the formula REF = 1.25V xap133_15_011000 Figure 51: Terminated SSTL2 Class I SSTL3_II Table 30: SSTL2_I Voltage Specifications A sample circuit illustrating a valid termination technique for SSTL3_II appears in Figure 50. DC voltage specifications appear in Table 29. Parameter VCCO VREF = 0.5 × VCCO 25Ω Typ Max 2.3 2.5 2.7 1.15 1.25 1.35 N(1) 1.11 1.25 1.39 VTT= 1.5V VTT= 1.5V VIH = VREF + 0.18 1.33 1.43 3.0(2) 50Ω VIL = VREF – 0.18 −0.3(3) 1.07 1.17 VOH = VREF + 0.61 1.76 - - VOL= VREF – 0.61 - - 0.74 IOH at VOH (mA) −7.6 - - IOLat VOL (mA) 7.6 - - VTT = VREF + SSTL3 Class II VCCO = 3.3V Min 50Ω Z = 50 VREF = 1.5V x133_14_111699 Figure 50: Terminated SSTL3 Class II Notes: 1. N must be greater than or equal to -0.04 and less than or equal to 0.04. 2. VIH maximum is VCCO + 0.3. 3. VIL minimum does not conform to the formula. DS022-2 (v2.8) January 16, 2006 Production Product Specification www.xilinx.com Module 2 of 4 43 R Virtex™-E 1.8 V Field Programmable Gate Arrays SSTL2_II A sample circuit illustrating a valid termination technique for SSTL2_II appears in Figure 52. DC voltage specifications appear in Table 31. SSTL2 Class II VCCO = 2.5V 25Ω VTT= 1.25V VTT= 1.25V 50Ω 50Ω Z = 50 VREF = 1.25V x133_16_111699 Figure 52: Terminated SSTL2 Class II Table 31: SSTL2_II Voltage Specifications Parameter VCCO VREF = 0.5 × VCCO Min Typ Max 2.3 2.5 2.7 Table 32: CTT Voltage Specifications Parameter Min Typ Max VCCO 2.05(1) 3.3 3.6 VREF 1.35 1.5 1.65 VTT 1.35 1.5 1.65 VIH = VREF + 0.2 1.55 1.7 - VIL = VREF – 0.2 - 1.3 1.45 VOH = VREF + 0.4 1.75 1.9 - VOL= VREF – 0.4 - 1.1 1.25 IOH at VOH (mA) −8 - - IOLat VOL (mA) 8 - - Notes: 1. Timing delays are calculated based on VCCO min of 3.0V. 1.15 1.25 1.35 N(1) 1.11 1.25 1.39 PCI33_3 & PCI66_3 VIH = VREF + 0.18 1.33 1.43 3.0(2) VIL = VREF – 0.18 −0.3(3) PCI33_3 or PCI66_3 require no termination. DC voltage specifications appear in Table 33. 1.07 1.17 VOH = VREF + 0.8 1.95 - - VOL = VREF – 0.8 - - 0.55 IOH at VOH (mA) −15.2 - - IOLat VOL (mA) 15.2 - - VTT = VREF + Table 33: PCI33_3 and PCI66_3 Voltage Specifications Min Typ Max VCCO 3.0 3.3 3.6 VREF - - - VTT - - - VIH = 0.5 × VCCO 1.5 1.65 VCCO + 0.5 VIL = 0.3 × VCCO −0.5 0.99 1.08 VOH = 0.9 × VCCO 2.7 - - CTT VOL= 0.1 × VCCO - - 0.36 A sample circuit illustrating a valid termination technique for CTT appear in Figure 53. DC voltage specifications appear in Table 32. IOH at VOH (mA) Note 1 - - IOLat VOL (mA) Note 1 - - Notes: 1. N must be greater than or equal to -0.04 and less than or equal to 0.04. 2. VIH maximum is VCCO + 0.3. 3. VIL minimum does not conform to the formula. Parameter Notes: 1. Tested according to the relevant specification. CTT VCCO = 3.3V VTT = 1.5V 50Ω Z = 50 VREF= 1.5V x133_17_111699 Figure 53: Terminated CTT Module 2 of 4 44 www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays LVTTL LVCMOS18 LVTTL requires no termination. DC voltage specifications appears in Table 34. LVCMOS18 does not require termination. Table 36 lists DC voltage specifications. Table 34: LVTTL Voltage Specifications Table 36: LVCMOS18 Voltage Specifications Parameter Min Typ Max VCCO 3.0 3.3 3.6 VREF - - VTT - VIH Min Typ Max VCCO 1.70 1.80 1.90 - VREF - - - - - VTT - - - 2.0 - 3.6 VIH 0.65 x VCCO - 1.95 VIL −0.5 - 0.8 VIL – 0.5 - 0.2 x VCCO VOH 2.4 - - VOH VCCO – 0.4 - - VOL - - 0.4 VOL - - 0.4 IOH at VOH (mA) −24 - - IOH at VOH (mA) –8 - - IOLat VOL (mA) 24 - - IOLat VOL (mA) 8 - - Notes: 1. Note: VOLand VOH for lower drive currents sample tested. LVCMOS2 LVCMOS2 requires no termination. DC voltage specifications appear in Table 35. Parameter AGP-2X The specification for the AGP-2X standard does not document a recommended termination technique. DC voltage specifications appear in Table 37. Table 37: AGP-2X Voltage Specifications Parameter Table 35: LVCMOS2 Voltage Specifications Parameter Min Typ Max VCCO VREF = N × VCCO(1) Min Typ Max 3.0 3.3 3.6 1.17 1.32 1.48 - - - VCCO 2.3 2.5 2.7 VREF - - - VTT VTT - - - VIH = VREF + 0.2 1.37 1.52 - VIH 1.7 - 3.6 VIL = VREF – 0.2 - 1.12 1.28 VIL −0.5 - 0.7 VOH = 0.9 × VCCO 2.7 3.0 - VOH 1.9 - - VOL = 0.1 × VCCO - 0.33 0.36 VOL - - 0.4 IOH at VOH (mA) Note 2 - - IOH at VOH (mA) −12 - - IOLat VOL (mA) Note 2 - - IOLat VOL (mA) 12 - - DS022-2 (v2.8) January 16, 2006 Production Product Specification Notes: 1. N must be greater than or equal to 0.39 and less than or equal to 0.41. 2. Tested according to the relevant specification. www.xilinx.com Module 2 of 4 45 R Virtex™-E 1.8 V Field Programmable Gate Arrays LVDS LVPECL Depending on whether the device is transmitting an LVDS signal or receiving an LVDS signal, there are two different circuits used for LVDS termination. A sample circuit illustrating a valid termination technique for transmitting LVDS signals appears in Figure 54. A sample circuit illustrating a valid termination for receiving LVDS signals appears in Figure 55. Table 38 lists DC voltage specifications. Further information on the specific termination resistor packs shown can be found on Table 40. Depending on whether the device is transmitting or receiving an LVPECL signal, two different circuits are used for LVPECL termination. A sample circuit illustrating a valid termination technique for transmitting LVPECL signals appears in Figure 56. A sample circuit illustrating a valid termination for receiving LVPECL signals appears in Figure 57. Table 39 lists DC voltage specifications. Further information on the specific termination resistor packs shown can be found on Table 40. Table 39: LVPECL Voltage Specifications 1/4 of Bourns Part Number CAT16-LV4F12 Virtex-E FPGA Q 2.5V RS Parameter Z0 = 50Ω to LVDS Receiver 165 DATA Transmit RS Q RDIV 140 Z0 = 50Ω to LVDS Receiver 165 VCCO = 2.5V LVDS Output x133_19_122799 Figure 54: Transmitting LVDS Signal Circuit Q Z0 = 50Ω from LVDS Driver VIRTEX-E FPGA LVDS_IN Z0 = 50Ω Q DATA Receive – Typ Max VCCO 3.0 3.3 3.6 VREF - - - VTT - - - VIH 1.49 - 2.72 VIL 0.86 - 2.125 VOH 1.8 - - VOL - - 1.57 Notes: 1. For more detailed information, see DS022-3: Virtex-E 1.8V FPGA DC and Switching Characteristics, Module 3, LVPECL DC Specifications section. + RT 100Ω Min LVDS_IN 1/4 of Bourns Part Number CAT16-PC4F12 Virtex-E FPGA x133_29_122799 Q Figure 55: Receiving LVDS Signal Circuit 3.3V DATA Transmit Table 38: LVDS Voltage Specifications RS Q Parameter VCCO VICM(2) VOCM (1) VIDIFF (1) Min Typ Max 2.375 2.5 2.625 0.2 1.25 2.2 1.125 1.25 1.375 0.35 - 0.25 0.35 0.45 VOH(1) 1.25 - - VOL(1) - - 1.25 VODIFF to LVPECL Receiver RDIV 187 Z0 = 50Ω 100 to LVPECL Receiver LVPECL_OUT x133_20_122799 www.xilinx.com VIRTEX-E FPGA Z0 = 50Ω LVPECL_IN + from LVPECL Driver R T 100Ω Z0 = 50Ω Q Notes: 1. Measured with a 100 Ω resistor across Q and Q. 2. Measured with a differential input voltage = +/− 350 mV. Module 2 of 4 46 Z0 = 50Ω LVPECL_OUT Figure 56: Transmitting LVPECL Signal Circuit Q 0.1 (1) RS 100 – DATA Receive LVPECL_IN x133_21_122799 Figure 57: Receiving LVPECL Signal Circuit DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Termination Resistor Packs Creating LVDS Global Clock Input Buffers Resistor packs are available with the values and the configuration required for LVDS and LVPECL termination from Bourns, Inc., as listed in Table. For pricing and availability, please contact Bourns directly at http://www.bourns.com. Global clock input buffers can be combined with adjacent IOBs to form LVDS clock input buffers. P-side is the GCLKPAD location; N-side is the adjacent IO_LVDS_DLL site. Table 41: Global Clock Input Buffer Pair Locations Table 40: Bourns LVDS/LVPECL Resistor Packs I/O Standard Term. for: Pairs/ Pack Pins CAT16−LV2F6 LVDS Driver 2 8 CAT16−LV4F12 LVDS Driver 4 16 CAT16−PC2F6 LVPECL Driver 2 8 CAT16−PC4F12 LVPECL Driver 4 16 CAT16−PT2F2 LVDS/LVPECL Receiver 2 8 CAT16−PT4F4 LVDS/LVPECL Receiver 4 16 Part Number LVDS Design Guide The SelectI/O library elements have been expanded for Virtex-E devices to include new LVDS variants. At this time all of the cells might not be included in the Synthesis libraries. The 2.1i-Service Pack 2 update for Alliance and Foundation software includes these cells in the VHDL and Verilog libraries. It is necessary to combine these cells to create the P-side (positive) and N-side (negative) as described in the input, output, 3-state and bidirectional sections. IBUF_LVDS I O OBUF_LVDS I O IOBUF_LVDS T I IBUFG_LVDS I O OBUFT_LVDS T I IO O O x133_22_122299 Figure 58: LVDS elements GCLK 3 GCLK 2 GCLK 1 GCLK 0 Pkg P N P N P N P N CS144 A6 C6 A7 B7 M7 M6 K7 N8 PQ240 P213 P215 P210 P209 P89 P87 P92 P93 HQ240 P213 P215 P210 P209 P89 P87 P92 P93 BG352 D14 A15 B14 A13 AF14 AD14 AE13 AC13 BG432 D17 C17 A16 B16 AK16 AL17 AL16 AH15 BG560 A17 C18 D17 E17 AJ17 AM18 AL17 AM17 FG256 B8 A7 C9 A8 R8 T8 N8 N9 FG456 C11 B11 A11 D11 Yll AA11 W12 U12 FG676 E13 B13 C13 F14 AB13 AF13 AA14 AC14 FG680 A20 C22 D21 A19 AU22 AT22 AW19 AT21 FG860 C22 A22 B22 D22 AY22 AW21 BA22 AW20 FG900 C15 A15 E15 E16 AK16 AH16 AJ16 AF16 FG1156 E17 C17 D17 J18 Al19 AL17 AH18 AM18 HDL Instantiation Only one global clock input buffer is required to be instantiated in the design and placed on the correct GCLKPAD location. The N-side of the buffer is reserved and no other IOB is allowed to be placed on this location. In the physical device, a configuration option is enabled that routes the pad wire to the differential input buffer located in the GCLKIOB. The output of this buffer then drives the output of the GCLKIOB cell. In EPIC it appears that the second buffer is unused. Any attempt to use this location for another purpose leads to a DRC error in the software. VHDL Instantiation gclk0_p : IBUFG_LVDS port map (I=>clk_external, O=>clk_internal); Verilog Instantiation IBUFG_LVDS gclk0_p (.I(clk_external), .O(clk_internal)); Location constraints All LVDS buffers must be explicitly placed on a device. For the global clock input buffers this can be done with the following constraint in the .ucf or .ncf file. NET clk_external LOC = GCLKPAD3; GCLKPAD3 can also be replaced with the package pin name such as D17 for the BG432 package. DS022-2 (v2.8) January 16, 2006 Production Product Specification www.xilinx.com Module 2 of 4 47 R Virtex™-E 1.8 V Field Programmable Gate Arrays Optional N-side Verilog Instantiation Some designers might prefer to also instantiate the N-side buffer for the global clock buffer. This allows the top-level net list to include net connections for both PCB layout and system-level integration. In this case, only the output P-side IBUFG connection has a net connected to it. Since the N-side IBUFG does not have a connection in the EDIF net list, it is trimmed from the design in MAP. IBUF_LVDS data0_p (.I(data[0]), .O(data_int[0])); Location Constraints All LVDS buffers must be explicitly placed on a device. For the input buffers this can be done with the following constraint in the .ucf or .ncf file. NET data LOC = D28; # IO_L0P VHDL Instantiation gclk0_p : IBUFG_LVDS port map (I=>clk_p_external, O=>clk_internal); gclk0_n : IBUFG_LVDS port map (I=>clk_n_external, O=>clk_internal); Verilog Instantiation IBUFG_LVDS gclk0_p (.I(clk_p_external), .O(clk_internal)); IBUFG_LVDS gclk0_n (.I(clk_n_external), .O(clk_internal)); Location Constraints All LVDS buffers must be explicitly placed on a device. For the global clock input buffers this can be done with the following constraint in the .ucf or .ncf file. Optional N-side Some designers might prefer to also instantiate the N-side buffer for the input buffer. This allows the top-level net list to include net connections for both PCB layout and system-level integration. In this case, only the output P-side IBUF connection has a net connected to it. Since the N-side IBUF does not have a connection in the EDIF net list, it is trimmed from the design in MAP. VHDL Instantiation data0_p : IBUF_LVDS port map (I=>data_p(0), O=>data_int(0)); data0_n : IBUF_LVDS port map (I=>data_n(0), O=>open); Verilog Instantiation IBUF_LVDS data0_p (.I(data_p[0]), .O(data_int[0])); NET clk_p_external LOC = GCLKPAD3; NET clk_n_external LOC = C17; IBUF_LVDS data0_n (.I(data_n[0]), .O()); GCLKPAD3 can also be replaced with the package pin name, such as D17 for the BG432 package. Location Constraints Creating LVDS Input Buffers All LVDS buffers must be explicitly placed on a device. For the global clock input buffers this can be done with the following constraint in the .ucf or .ncf file. An LVDS input buffer can be placed in a wide number of IOB locations. The exact location is dependent on the package that is used. The Virtex-E package information lists the possible locations as IO_L#P for the P-side and IO_L#N for the N-side where # is the pair number. HDL Instantiation Only one input buffer is required to be instantiated in the design and placed on the correct IO_L#P location. The N-side of the buffer is reserved and no other IOB is allowed to be placed on this location. In the physical device, a configuration option is enabled that routes the pad wire from the IO_L#N IOB to the differential input buffer located in the IO_L#P IOB. The output of this buffer then drives the output of the IO_L#P cell or the input register in the IO_L#P IOB. In EPIC it appears that the second buffer is unused. Any attempt to use this location for another purpose leads to a DRC error in the software. VHDL Instantiation data0_p : IBUF_LVDS port map (I=>data(0), O=>data_int(0)); Module 2 of 4 48 NET data_p LOC = D28; # IO_L0P NET data_n LOC = B29; # IO_L0N Adding an Input Register All LVDS buffers can have an input register in the IOB. The input register is in the P-side IOB only. All the normal IOB register options are available (FD, FDE, FDC, FDCE, FDP, FDPE, FDR, FDRE, FDS, FDSE, LD, LDE, LDC, LDCE, LDP, LDPE). The register elements can be inferred or explicitly instantiated in the HDL code. The register elements can be packed in the IOB using the IOB property to TRUE on the register or by using the “map -pr [i|o|b]” where “i” is inputs only, “o” is outputs only and “b” is both inputs and outputs. To improve design coding times VHDL and Verilog synthesis macro libraries available to explicitly create these structures. The input library macros are listed in Table 42. The I and IB inputs to the macros are the external net connections. www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Verilog Instantiation Table 42: Input Library Macros Name OBUF_LVDS data0_p .O(data_p[0])); (.I(data_int[0]), Inputs Outputs I, IB, C Q IBUFDS_FDE_LVDS I, IB, CE, C Q IBUFDS_FDC_LVDS I, IB, C, CLR Q I, IB, CE, C, CLR Q I, IB, C, PRE Q I, IB, CE, C, PRE Q I, IB, C, R Q I, IB, CE, C, R Q NET data_p LOC = D28; # IO_L0P I, IB, C, S Q NET data_n LOC = B29; # IO_L0N I, IB, CE, C, S Q Synchronous vs. Asynchronous Outputs I, IB, G Q IBUFDS_LDE_LVDS I, IB, GE, G Q IBUFDS_LDC_LVDS I, IB, G, CLR Q I, IB, GE, G, CLR Q If the outputs are synchronous (registered in the IOB) then any IO_L#P|N pair can be used. If the outputs are asynchronous (no output register), then they must use one of the pairs that are part of the same IOB group at the end of a ROW or COLUMN in the device. I, IB, G, PRE Q I, IB, GE, G, PRE Q IBUFDS_FD_LVDS IBUFDS_FDCE_LVDS IBUFDS_FDP_LVDS IBUFDS_FDPE_LVDS IBUFDS_FDR_LVDS IBUFDS_FDRE_LVDS IBUFDS_FDS_LVDS IBUFDS_FDSE_LVDS IBUFDS_LD_LVDS IBUFDS_LDCE_LVDS IBUFDS_LDP_LVDS IBUFDS_LDPE_LVDS INV data0_inv (.I(data_int[0], .O(data_n_int[0]); OBUF_LVDS data0_n .O(data_n[0])); Location Constraints All LVDS buffers must be explicitly placed on a device. For the output buffers this can be done with the following constraint in the .ucf or .ncf file. Creating LVDS Output Buffers LVDS output buffers can be placed in a wide number of IOB locations. The exact locations are dependent on the package used. The Virtex-E package information lists the possible locations as IO_L#P for the P-side and IO_L#N for the N-side, where # is the pair number. HDL Instantiation Both output buffers are required to be instantiated in the design and placed on the correct IO_L#P and IO_L#N locations. The IOB must have the same net source the following pins, clock (C), set/reset (SR), output (O), output clock enable (OCE). In addition, the output (O) pins must be inverted with respect to each other, and if output registers are used, the INIT states must be opposite values (one HIGH and one LOW). Failure to follow these rules leads to DRC errors in software. data0_p : OBUF_LVDS port map (I=>data_int(0), O=>data_p(0)); port map O=>data_n_int(0)); data0_n : OBUF_LVDS port map (I=>data_n_int(0), O=>data_n(0)); DS022-2 (v2.8) January 16, 2006 Production Product Specification The LVDS pairs that can be used as asynchronous outputs are listed in the Virtex-E pinout tables. Some pairs are marked as asynchronous-capable for all devices in that package, and others are marked as available only for that device in the package. If the device size might change at some point in the product lifetime, then only the common pairs for all packages should be used. Adding an Output Register All LVDS buffers can have an output register in the IOB. The output registers must be in both the P-side and N-side IOBs. All the normal IOB register options are available (FD, FDE, FDC, FDCE, FDP, FDPE, FDR, FDRE, FDS, FDSE, LD, LDE, LDC, LDCE, LDP, LDPE). The register elements can be inferred or explicitly instantiated in the HDL code. Special care must be taken to insure that the D pins of the registers are inverted and that the INIT states of the registers are opposite. The clock pin (C), clock enable (CE) and set/reset (CLR/PRE or S/R) pins must connect to the same source. Failure to do this leads to a DRC error in the software. The register elements can be packed in the IOB using the IOB property to TRUE on the register or by using the “map -pr [i|o|b]” where “i” is inputs only, “o” is outputs only and “b” is both inputs and outputs. VHDL Instantiation data0_inv: INV (I=>data_int(0), (.I(data_n_int[0]), To improve design coding times VHDL and Verilog synthesis macro libraries have been developed to explicitly create these structures. The output library macros are listed in Table 43. The O and OB inputs to the macros are the external net connections. www.xilinx.com Module 2 of 4 49 R Virtex™-E 1.8 V Field Programmable Gate Arrays VHDL Instantiation Table 43: Output Library Macros Name data0_p: OBUFT_LVDS port map (I=>data_int(0), T=>data_tri, O=>data_p(0)); Inputs Outputs D, C O, OB OBUFDS_FDE_LVDS DD, CE, C O, OB OBUFDS_FDC_LVDS D, C, CLR O, OB D, CE, C, CLR O, OB D, C, PRE O, OB D, CE, C, PRE O, OB D, C, R O, OB D, CE, C, R O, OB D, C, S O, OB D, CE, C, S O, OB D, G O, OB OBUFDS_LDE_LVDS D, GE, G O, OB OBUFDS_LDC_LVDS D, G, CLR O, OB D, GE, G, CLR O, OB D, G, PRE O, OB Synchronous vs. Asynchronous 3-State Outputs D, GE, G, PRE O, OB If the outputs are synchronous (registered in the IOB), then any IO_L#P|N pair can be used. If the outputs are asynchronous (no output register), then they must use one of the pairs that are part of the same IOB group at the end of a ROW or COLUMN in the device. This applies for either the 3-state pin or the data out pin. OBUFDS_FD_LVDS OBUFDS_FDCE_LVDS OBUFDS_FDP_LVDS OBUFDS_FDPE_LVDS OBUFDS_FDR_LVDS OBUFDS_FDRE_LVDS OBUFDS_FDS_LVDS OBUFDS_FDSE_LVDS OBUFDS_LD_LVDS OBUFDS_LDCE_LVDS OBUFDS_LDP_LVDS OBUFDS_LDPE_LVDS Creating LVDS Output 3-State Buffers LVDS output 3-state buffers can be placed in a wide number of IOB locations. The exact locations are dependent on the package used. The Virtex-E package information lists the possible locations as IO_L#P for the P-side and IO_L#N for the N-side, where # is the pair number. HDL Instantiation Both output 3-state buffers are required to be instantiated in the design and placed on the correct IO_L#P and IO_L#N locations. The IOB must have the same net source the following pins, clock (C), set/reset (SR), 3-state (T), 3-state clock enable (TCE), output (O), output clock enable (OCE). In addition, the output (O) pins must be inverted with respect to each other, and if output registers are used, the INIT states must be opposite values (one High and one Low). If 3-state registers are used, they must be initialized to the same state. Failure to follow these rules leads to DRC errors in the software. data0_inv: INV port map (I=>data_int(0), O=>data_n_int(0)); data0_n: OBUFT_LVDS port map (I=>data_n_int(0), T=>data_tri, O=>data_n(0)); Verilog Instantiation OBUFT_LVDS data0_p (.I(data_int[0]), .T(data_tri), .O(data_p[0])); INV data0_inv (.I(data_int[0], .O(data_n_int[0]); OBUFT_LVDS data0_n (.I(data_n_int[0]), .T(data_tri), .O(data_n[0])); Location Constraints All LVDS buffers must be explicitly placed on a device. For the output buffers this can be done with the following constraint in the .ucf or .ncf file. NET data_p LOC = D28; # IO_L0P NET data_n LOC = B29; # IO_L0N LVDS pairs that can be used as asynchronous outputs are listed in the Virtex-E pinout tables. Some pairs are marked as “asynchronous capable” for all devices in that package, and others are marked as available only for that device in the package. If the device size might be changed at some point in the product lifetime, then only the common pairs for all packages should be used. Adding Output and 3-State Registers All LVDS buffers can have an output register in the IOB. The output registers must be in both the P-side and N-side IOBs. All the normal IOB register options are available (FD, FDE, FDC, FDCE, FDP, FDPE, FDR, FDRE, FDS, FDSE, LD, LDE, LDC, LDCE, LDP, LDPE). The register elements can be inferred or explicitly instantiated in the HDL code. Special care must be taken to insure that the D pins of the registers are inverted and that the INIT states of the registers are opposite. The 3-state (T), 3-state clock enable (CE), clock pin (C), output clock enable (CE) and set/reset (CLR/PRE or S/R) pins must connect to the same source. Failure to do this leads to a DRC error in the software. Module 2 of 4 50 www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays The register elements can be packed in the IOB using the IOB property to TRUE on the register or by using the “map -pr [i|o|b]” where “i” is inputs only, “o” is outputs only and “b” is both inputs and outputs. To improve design coding times VHDL and Verilog synthesis macro libraries have been developed to explicitly create these structures. The input library macros are listed below. The 3-state is configured to be 3-stated at GSR and when the PRE,CLR,S or R is asserted and shares it's clock enable with the output register. If this is not desirable then the library can be updated by the user for the desired functionality. The O and OB inputs to the macros are the external net connections. Creating a LVDS Bidirectional Buffer LVDS bidirectional buffers can be placed in a wide number of IOB locations. The exact locations are dependent on the package used. The Virtex-E package information lists the possible locations as IO_L#P for the P-side and IO_L#N for the N-side, where # is the pair number. HDL Instantiation Both bidirectional buffers are required to be instantiated in the design and placed on the correct IO_L#P and IO_L#N locations. The IOB must have the same net source the following pins, clock (C), set/reset (SR), 3-state (T), 3-state clock enable (TCE), output (O), output clock enable (OCE). In addition, the output (O) pins must be inverted with respect to each other, and if output registers are used, the INIT states must be opposite values (one HIGH and one LOW). If 3-state registers are used, they must be initialized to the same state. Failure to follow these rules leads to DRC errors in the software. VHDL Instantiation data0_p: IOBUF_LVDS port map (I=>data_out(0), T=>data_tri, IO=>data_p(0), O=>data_int(0)); data0_inv: INV (I=>data_out(0), port map O=>data_n_out(0)); data0_n : IOBUF_LVDS port map (I=>data_n_out(0), T=>data_tri, IO=>data_n(0), O=>open); Verilog Instantiation IOBUF_LVDS data0_p(.I(data_out[0]), .T(data_tri), .IO(data_p[0]), .O(data_int[0]); INV data0_inv (.I(data_out[0], .O(data_n_out[0]); IOBUF_LVDS data0_n(.I(data_n_out[0]),.T(data_tri),. IO(data_n[0]).O()); DS022-2 (v2.8) January 16, 2006 Production Product Specification Location Constraints All LVDS buffers must be explicitly placed on a device. For the output buffers this can be done with the following constraint in the .ucf or .ncf file. NET data_p LOC = D28; # IO_L0P NET data_n LOC = B29; # IO_L0N Synchronous vs. Asynchronous Bidirectional Buffers If the output side of the bidirectional buffers are synchronous (registered in the IOB), then any IO_L#P|N pair can be used. If the output side of the bidirectional buffers are asynchronous (no output register), then they must use one of the pairs that is a part of the asynchronous LVDS IOB group. This applies for either the 3-state pin or the data out pin. The LVDS pairs that can be used as asynchronous bidirectional buffers are listed in the Virtex-E pinout tables. Some pairs are marked as asynchronous capable for all devices in that package, and others are marked as available only for that device in the package. If the device size might change at some point in the product’s lifetime, then only the common pairs for all packages should be used. Adding Output and 3-State Registers All LVDS buffers can have an output and input registers in the IOB. The output registers must be in both the P-side and N-side IOBs, the input register is only in the P-side. All the normal IOB register options are available (FD, FDE, FDC, FDCE, FDP, FDPE, FDR, FDRE, FDS, FDSE, LD, LDE, LDC, LDCE, LDP, LDPE). The register elements can be inferred or explicitly instantiated in the HDL code. Special care must be taken to insure that the D pins of the registers are inverted and that the INIT states of the registers are opposite. The 3-state (T), 3-state clock enable (CE), clock pin (C), output clock enable (CE), and set/reset (CLR/PRE or S/R) pins must connect to the same source. Failure to do this leads to a DRC error in the software. The register elements can be packed in the IOB using the IOB property to TRUE on the register or by using the “map -pr [i|o|b]” where “i” is inputs only, “o” is outputs only and “b” is both inputs and outputs. To improve design coding times VHDL and Verilog synthesis macro libraries have been developed to explicitly create these structures. The bidirectional I/O library macros are listed in Table 44. The 3-state is configured to be 3-stated at GSR and when the PRE,CLR,S or R is asserted and shares its clock enable with the output and input register. If this is not desirable then the library can be updated be the user for the desired functionality. The I/O and IOB inputs to the macros are the external net connections. www.xilinx.com Module 2 of 4 51 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 44: Bidirectional I/O Library Macros Name Inputs Bidirectional Outputs D, T, C IO, IOB Q IOBUFDS_FDE_LVDS D, T, CE, C IO, IOB Q IOBUFDS_FDC_LVDS D, T, C, CLR IO, IOB Q D, T, CE, C, CLR IO, IOB Q D, T, C, PRE IO, IOB Q D, T, CE, C, PRE IO, IOB Q D, T, C, R IO, IOB Q D, T, CE, C, R IO, IOB Q D, T, C, S IO, IOB Q D, T, CE, C, S IO, IOB Q D, T, G IO, IOB Q IOBUFDS_LDE_LVDS D, T, GE, G IO, IOB Q IOBUFDS_LDC_LVDS D, T, G, CLR IO, IOB Q D, T, GE, G, CLR IO, IOB Q D, T, G, PRE IO, IOB Q D, T, GE, G, PRE IO, IOB Q IOBUFDS_FD_LVDS IOBUFDS_FDCE_LVDS IOBUFDS_FDP_LVDS IOBUFDS_FDPE_LVDS IOBUFDS_FDR_LVDS IOBUFDS_FDRE_LVDS IOBUFDS_FDS_LVDS IOBUFDS_FDSE_LVDS IOBUFDS_LD_LVDS IOBUFDS_LDCE_LVDS IOBUFDS_LDP_LVDS IOBUFDS_LDPE_LVDS Revision History The following table shows the revision history for this document. Date Version 12/7/99 1.0 Initial Xilinx release. 1/10/00 1.1 Re-released with spd.txt v. 1.18, FG860/900/1156 package information, and additional DLL, Select RAM and SelectI/O information. 1/28/00 1.2 Added Delay Measurement Methodology table, updated SelectI/O section, Figures 30, 54, & 55, text explaining Table 5, TBYP values, buffered Hex Line info, p. 8, I/O Timing Measurement notes, notes for Tables 15, 16, and corrected F1156 pinout table footnote references. 2/29/00 1.3 Updated pinout tables, VCC page 20, and corrected Figure 20. 5/23/00 1.4 Correction to table on p. 22. 7/10/00 1.5 • • • Numerous minor edits. Data sheet upgraded to Preliminary. Preview -8 numbers added to Virtex-E Electrical Characteristics tables. 8/1/00 1.6 • • Reformatted entire document to follow new style guidelines. Changed speed grade values in tables on pages 35-37. Module 2 of 4 52 Revision www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Date Version 9/20/00 1.7 Revision • • • • • • • 11/20/00 1.8 • • • • • 2/12/01 1.9 Min values added to Virtex-E Electrical Characteristics tables. XCV2600E and XCV3200E numbers added to Virtex-E Electrical Characteristics tables (Module 3). Corrected user I/O count for XCV100E device in Table 1 (Module 1). Changed several pins to “No Connect in the XCV100E“ and removed duplicate VCCINT pins in Table ~ (Module 4). Changed pin J10 to “No connect in XCV600E” in Table 74 (Module 4). Changed pin J30 to “VREF option only in the XCV600E” in Table 74 (Module 4). Corrected pair 18 in Table 75 (Module 4) to be “AO in the XCV1000E, XCV1600E“. Upgraded speed grade -8 numbers in Virtex-E Electrical Characteristics tables to Preliminary. Updated minimums in Table 13 and added notes to Table 14. Added to note 2 to Absolute Maximum Ratings. Changed speed grade -8 numbers for TSHCKO32, TREG, TBCCS, and TICKOF. • Changed all minimum hold times to –0.4 under Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Revised maximum TDLLPW in -6 speed grade for DLL Timing Parameters. • Changed GCLK0 to BA22 for FG860 package in Table 46. • • • Revised footnote for Table 14. Added numbers to Virtex-E Electrical Characteristics tables for XCV1000E and XCV2000E devices. Updated Table 27 and Table 78 to include values for XCV400E and XCV600E devices. Revised Table 62 to include pinout information for the XCV400E and XCV600E devices in the BG560 package. Updated footnotes 1 and 2 for Table 76 to include XCV2600E and XCV3200E devices. • • 4/02/01 2.0 • • Updated numerous values in Virtex-E Switching Characteristics tables. Converted data sheet to modularized format. See the Virtex-E Data Sheet section. 4/19/01 2.1 • Modified Figure 30 "DLL Generation of 4x Clock in Virtex-E Devices." 07/23/01 2.2 • • Made minor edits to text under Configuration. Added CLB column locations for XCV2600E anbd XCV3200E devices in Table 3. 11/09/01 2.3 • Added warning under Configuration section that attempting to load an incorrect bitstream causes configuration to fail and can damage the device. 07/17/02 2.4 • Data sheet designation upgraded from Preliminary to Production. 09/10/02 2.5 • Added clarification to the Input/Output Block, Configuration, Boundary Scan Mode, and Block SelectRAM sections. Revised Figure 18, Table 11, and Table 36. 11/19/02 2.6 • • Added clarification in the Boundary Scan section. Removed last sentence regarding deactivation of duty-cycle correction in Duty Cycle Correction Property section. 06/15/04 2.6.1 • Updated clickable web addresses. 01/12/06 2.7 • Updated the Slave-Serial Mode and the Master-Serial Mode sections. 01/16/06 2.8 • Made minor updates to Table 8. DS022-2 (v2.8) January 16, 2006 Production Product Specification www.xilinx.com Module 2 of 4 53 R Virtex™-E 1.8 V Field Programmable Gate Arrays Virtex-E Data Sheet The Virtex-E Data Sheet contains the following modules: • DS022-1, Virtex-E 1.8V FPGAs: • Introduction and Ordering Information (Module 1) • DS022-2, Virtex-E 1.8V FPGAs: Functional Description (Module 2) Module 2 of 4 54 DS022-3, Virtex-E 1.8V FPGAs: DC and Switching Characteristics (Module 3) • DS022-4, Virtex-E 1.8V FPGAs: Pinout Tables (Module 4) www.xilinx.com DS022-2 (v2.8) January 16, 2006 Production Product Specification 0 Virtex™-E 1.8 V Field Programmable Gate Arrays R DS022-3 (v2.9.2) March 14, 2003 0 0 Production Product Specification Virtex-E Electrical Characteristics Definition of Terms Electrical and switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows: Advance: These speed files are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur. Preliminary: These speed files are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data. Production: These speed files are released once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications. Contact the factory for design considerations requiring more detailed information. Table 1 correlates the current status of each Virtex-E device with a corresponding speed file designation. Table 1: Virtex-E Device Speed Grade Designations Speed Grade Designations Device Advance Preliminary Production XCV50E –8, –7, –6 XCV100E –8, –7, –6 XCV200E –8, –7, –6 XCV300E –8, –7, –6 XCV400E –8, –7, –6 XCV600E –8, –7, –6 XCV1000E –8, –7, –6 XCV1600E –8, –7, –6 XCV2000E –8, –7, –6 XCV2600E –8, –7, –6 XCV3200E –8, –7, –6 All specifications are subject to change without notice. © 2000-2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice. DS022-3 (v2.9.2) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 3 of 4 1 R Virtex™-E 1.8 V Field Programmable Gate Arrays DC Characteristics Absolute Maximum Ratings Description(1) Symbol VCCINT Units Internal Supply voltage relative to GND –0.5 to 2.0 V VCCO Supply voltage relative to GND –0.5 to 4.0 V VREF Input Reference Voltage –0.5 to 4.0 V –0.5 to VCCO +0.5 V –0.5 to 4.0 V 50 ms –65 to +150 °C +125 °C VIN (3) Input voltage relative to GND VTS Voltage applied to 3-state output VCC Longest Supply Voltage Rise Time from 0 V - 1.71 V TSTG Storage temperature (ambient) TJ Junction temperature (2) Plastic packages Notes: 1. Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time can affect device reliability. 2. For soldering guidelines and thermal considerations, see the device packaging information on www.xilinx.com. 3. Inputs configured as PCI are fully PCI compliant. This statement takes precedence over any specification that would imply that the device is not PCI compliant. Recommended Operating Conditions Symbol VCCINT VCCO TIN Description Internal Supply voltage relative to GND, TJ = 0 °C to +85 °C Internal Supply voltage relative to GND, TJ = –40 °C to +100 °C Supply voltage relative to GND, TJ = 0 °C to +85 °C Supply voltage relative to GND, TJ = –40 °C to +100 °C Input signal transition time Module 3 of 4 2 www.xilinx.com 1-800-255-7778 Min Max Units Commercial 1.8 – 5% 1.8 + 5% V Industrial 1.8 – 5% 1.8 + 5% V Commercial 1.2 3.6 V Industrial 1.2 3.6 V 250 ns DS022-3 (v2.9.2) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays DC Characteristics Over Recommended Operating Conditions Symbol VDRINT VDRIO ICCINTQ ICCOQ IL Description Data Retention VCCINT Voltage (below which configuration data might be lost) Data Retention VCCO Voltage (below which configuration data might be lost) Quiescent VCCINT supply current (Note 1) Quiescent VCCO supply current (Note 1) Input or output leakage current Device Min All 1.5 V All 1.2 V Input capacitance (sample tested) IRPU Pad pull-up (when selected) @ Vin = 0 V, VCCO = 3.3 V (sample tested) IRPD Pad pull-down (when selected) @ Vin = 3.6 V (sample tested) BGA, PQ, HQ, packages Units XCV50E 200 mA XCV100E 200 mA XCV200E 300 mA XCV300E 300 mA XCV400E 300 mA XCV600E 400 mA XCV1000E 500 mA XCV1600E 500 mA XCV2000E 500 mA XCV2600E 500 mA XCV3200E 500 mA XCV50E 2 mA XCV100E 2 mA XCV200E 2 mA XCV300E 2 mA XCV400E 2 mA XCV600E 2 mA XCV1000E 2 mA XCV1600E 2 mA XCV2000E 2 mA XCV2600E 2 mA XCV3200E 2 mA +10 μA 8 pF Note 2 0.25 mA Note 2 0.25 mA All CIN Max –10 All All Notes: 1. With no output current loads, no active input pull-up resistors, all I/O pins 3-stated and floating. 2. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors do not guarantee valid logic levels when input pins are connected to other circuits. DS022-3 (v2.9.2) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 3 of 4 3 R Virtex™-E 1.8 V Field Programmable Gate Arrays Power-On Power Supply Requirements Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device operation. The actual current consumed depends on the power-on ramp rate of the power supply. This is the time required to reach the nominal power supply voltage of the device1 from 0V. The fastest ramp rate is 0V to nominal voltage in 2 ms, and the slowest allowed ramp rate is 0V to nominal voltage in 50 ms. For more details on power supply requirements, see XAPP158 on www.xilinx.com. Product (Commercial Grade) Description(2) Current Requirement(3) XCV50E - XCV600E Minimum required current supply 500 mA XCV812E - XCV2000E Minimum required current supply 1A XCV2600E - XCV3200E Minimum required current supply 1.2 A Virtex-E Family, Industrial Grade Minimum required current supply 2A Notes: 1. Ramp rate used for this specification is from 0 - 1.8 V DC. Peak current occurs on or near the internal power-on reset threshold and lasts for less than 3 ms. 2. Devices are guaranteed to initialize properly with the minimum current available from the power supply as noted above. 3. Larger currents might result if ramp rates are forced to be faster. DC Input and Output Levels Values for VIL and VIH are recommended input voltages. Values for IOL and IOH are guaranteed over the recommended operating conditions at the VOL and VOH test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at minimum VCCO with the respective VOL and VOH voltage levels shown. Other standards are sample tested. Input/Output Standard VIH VIL VOL VOH IOL IOH V, Min V, Max V, Min V, Max V, Max V, Min mA mA LVTTL(1) – 0.5 0.8 2.0 3.6 0.4 2.4 24 – 24 LVCMOS2 – 0.5 0.7 1.7 2.7 0.4 1.9 12 – 12 LVCMOS18 – 0.5 35% VCCO 65% VCCO 1.95 0.4 VCCO – 0.4 8 –8 PCI, 3.3 V – 0.5 30% VCCO 50% VCCO VCCO + 0.5 10% VCCO 90% VCCO Note 2 Note 2 GTL – 0.5 VREF – 0.05 VREF + 0.05 3.6 0.4 n/a 40 n/a GTL+ – 0.5 VREF – 0.1 VREF + 0.1 3.6 0.6 n/a 36 n/a HSTL I(3) – 0.5 VREF – 0.1 VREF + 0.1 3.6 0.4 VCCO – 0.4 8 –8 HSTL III – 0.5 VREF – 0.1 VREF + 0.1 3.6 0.4 VCCO – 0.4 24 –8 HSTL IV – 0.5 VREF – 0.1 VREF + 0.1 3.6 0.4 VCCO – 0.4 48 –8 SSTL3 I – 0.5 VREF – 0.2 VREF + 0.2 3.6 VREF – 0.6 VREF + 0.6 8 –8 SSTL3 II – 0.5 VREF – 0.2 VREF + 0.2 3.6 VREF – 0.8 VREF + 0.8 16 –16 SSTL2 I – 0.5 VREF – 0.2 VREF + 0.2 3.6 VREF – 0.61 VREF + 0.61 7.6 –7.6 SSTL2 II – 0.5 VREF – 0.2 VREF + 0.2 3.6 VREF – 0.80 VREF + 0.80 15.2 –15.2 Module 3 of 4 4 www.xilinx.com 1-800-255-7778 DS022-3 (v2.9.2) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Input/Output Standard VIL VIH VOL VOH IOL IOH V, Min V, Max V, Min V, Max V, Max V, Min mA mA CTT – 0.5 VREF – 0.2 VREF + 0.2 3.6 VREF – 0.4 VREF + 0.4 8 –8 AGP – 0.5 VREF – 0.2 VREF + 0.2 3.6 10% VCCO 90% VCCO Note 2 Note 2 Notes: 1. VOL and VOH for lower drive currents are sample tested. 2. Tested according to the relevant specifications. 3. DC input and output levels for HSTL18 (HSTL I/O standard with VCCO of 1.8 V) are provided in an HSTL white paper on www.xilinx.com. LVDS DC Specifications DC Parameter Supply Voltage Symbol Conditions VCCO Min Typ Max Units 2.375 2.5 2.625 V Output High Voltage for Q and Q VOH RT = 100 Ω across Q and Q signals 1.25 1.425 1.6 V Output Low Voltage for Q and Q VOL RT = 100 Ω across Q and Q signals 0.9 1.075 1.25 V VODIFF RT = 100 Ω across Q and Q signals 250 350 450 mV VOCM RT = 100 Ω across Q and Q signals 1.125 1.25 1.375 V VIDIFF Common-mode input voltage = 1.25 V 100 350 NA mV VICM Differential input voltage = ±350 mV 0.2 1.25 2.2 V Differential Output Voltage (Q – Q), Q = High (Q – Q), Q = High Output Common-Mode Voltage Differential Input Voltage (Q – Q), Q = High (Q – Q), Q = High Input Common-Mode Voltage Note: Refer to the Design Consideration section for termination schematics. LVPECL DC Specifications These values are valid at the output of the source termination pack shown under LVPECL, with a 100 Ω differential load only. The VOH levels are 200 mV below standard LVPECL levels and are compatible with devices tolerant of lower common-mode ranges. The following table summarizes the DC output specifications of LVPECL. DC Parameter Min VCCO Max Min 3.0 Max Min 3.3 Max 3.6 Units V VOH 1.8 2.11 1.92 2.28 2.13 2.41 V VOL 0.96 1.27 1.06 1.43 1.30 1.57 V VIH 1.49 2.72 1.49 2.72 1.49 2.72 V VIL 0.86 2.125 0.86 2.125 0.86 2.125 V Differential Input Voltage 0.3 - 0.3 - 0.3 - V DS022-3 (v2.9.2) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 3 of 4 5 R Virtex™-E 1.8 V Field Programmable Gate Arrays Virtex-E Switching Characteristics All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation net list. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Virtex-E devices unless otherwise noted. IOB Input Switching Characteristics Input delays associated with the pad are specified for LVTTL levels in Table 2. For other standards, adjust the delays with the values shown in IOB Input Switching Characteristics Standard Adjustments, page 8. Table 2: IOB Input Switching Characteristics Speed Grade(1) Description(2) Symbol Device Min -8 -7 -6 Units Pad to I output, no delay TIOPI All 0.43 0.8 0.8 0.8 ns, max Pad to I output, with delay TIOPID XCV50E 0.51 1.0 1.0 1.0 ns, max XCV100E 0.51 1.0 1.0 1.0 ns, max XCV200E 0.51 1.0 1.0 1.0 ns, max XCV300E 0.51 1.0 1.0 1.0 ns, max XCV400E 0.51 1.0 1.0 1.0 ns, max XCV600E 0.51 1.0 1.0 1.0 ns, max XCV1000E 0.55 1.1 1.1 1.1 ns, max XCV1600E 0.55 1.1 1.1 1.1 ns, max XCV2000E 0.55 1.1 1.1 1.1 ns, max XCV2600E 0.55 1.1 1.1 1.1 ns, max XCV3200E 0.55 1.1 1.1 1.1 ns, max Propagation Delays Pad to output IQ via transparent latch, no delay TIOPLI All 0.8 1.4 1.5 1.6 ns, max Pad to output IQ via transparent latch, with delay TIOPLID XCV50E 1.31 2.9 3.0 3.1 ns, max XCV100E 1.31 2.9 3.0 3.1 ns, max XCV200E 1.39 3.1 3.2 3.3 ns, max XCV300E 1.39 3.1 3.2 3.3 ns, max XCV400E 1.43 3.2 3.3 3.4 ns, max XCV600E 1.55 3.5 3.6 3.7 ns, max XCV1000E 1.55 3.5 3.6 3.7 ns, max XCV1600E 1.59 3.6 3.7 3.8 ns, max XCV2000E 1.59 3.6 3.7 3.8 ns, max XCV2600E 1.59 3.6 3.7 3.8 ns, max XCV3200E 1.59 3.6 3.7 3.8 ns, max Module 3 of 4 6 www.xilinx.com 1-800-255-7778 DS022-3 (v2.9.2) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 2: IOB Input Switching Characteristics (Continued) Speed Grade(1) Description(2) Symbol Device Min -8 -7 -6 Units Minimum Pulse Width, High TCH All 0.56 1.2 1.3 1.4 ns, min Minimum Pulse Width, Low TCL 0.56 1.2 1.3 1.4 ns, min TIOCKIQ 0.18 0.4 0.7 0.7 ns, max All 0.69 / 0 1.3 / 0 1.4 / 0 1.5 / 0 ns, min XCV50E 1.25 / 0 2.8 / 0 2.9 / 0 2.9 / 0 ns, min XCV100E 1.25 / 0 2.8 / 0 2.9 / 0 2.9 / 0 ns, min XCV200E 1.33 / 0 3.0 / 0 3.1 / 0 3.1 / 0 ns, min XCV300E 1.33 / 0 3.0 / 0 3.1 / 0 3.1 / 0 ns, min XCV400E 1.37 / 0 3.1 / 0 3.2 / 0 3.2 / 0 ns, min XCV600E 1.49 / 0 3.4 / 0 3.5 / 0 3.5 / 0 ns, min XCV1000E 1.49 / 0 3.4 / 0 3.5 / 0 3.5 / 0 ns, min XCV1600E 1.53 / 0 3.5 / 0 3.6 / 0 3.6 / 0 ns, min XCV2000E 1.53 / 0 3.5 / 0 3.6 / 0 3.6 / 0 ns, min XCV2600E 1.53 / 0 3.5 / 0 3.6 / 0 3.6 / 0 ns, min XCV3200E 1.53 / 0 3.5 / 0 3.6 / 0 3.6 / 0 ns, min Sequential Delays Clock CLK Clock CLK to output IQ Setup and Hold Times with respect to Clock at IOB Input Register Pad, no delay TIOPICK/ TIOICKP Pad, with delay TIOPICKD/ TIOICKPD ICE input TIOICECK/ TIOCKICE All 0.28 / 0.0 0.55 / 0.01 0.7 / 0.01 0.7 / 0.01 ns, min SR input (IFF, synchronous) TIOSRCKI All 0.38 0.8 0.9 1.0 ns, min SR input to IQ (asynchronous) TIOSRIQ All 0.54 1.1 1.2 1.4 ns, max GSR to output IQ TGSRQ All 3.88 7.6 8.5 9.7 ns, max Set/Reset Delays Notes: 1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. 2. Input timing i for LVTTL is measured at 1.4 V. For other I/O standards, see Table 4. DS022-3 (v2.9.2) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 3 of 4 7 R Virtex™-E 1.8 V Field Programmable Gate Arrays IOB Input Switching Characteristics Standard Adjustments Speed Grade(1) Description Symbol Standard Min -8 -7 -6 Units TILVTTL LVTTL 0.0 0.0 0.0 0.0 ns TILVCMOS2 LVCMOS2 –0.02 0.0 0.0 0.0 ns TILVCMOS18 LVCMOS18 0.12 +0.20 +0.20 +0.20 ns TILVDS LVDS 0.00 +0.15 +0.15 +0.15 ns TILVPECL LVPECL 0.00 +0.15 +0.15 +0.15 ns TIPCI33_3 PCI, 33 MHz, 3.3 V –0.05 +0.08 +0.08 +0.08 ns TIPCI66_3 PCI, 66 MHz, 3.3 V –0.05 –0.11 –0.11 –0.11 ns TIGTL GTL +0.10 +0.14 +0.14 +0.14 ns TIGTLPLUS GTL+ +0.06 +0.14 +0.14 +0.14 ns TIHSTL HSTL +0.02 +0.04 +0.04 +0.04 ns TISSTL2 SSTL2 –0.04 +0.04 +0.04 +0.04 ns TISSTL3 SSTL3 –0.02 +0.04 +0.04 +0.04 ns TICTT CTT +0.01 +0.10 +0.10 +0.10 ns TIAGP AGP –0.03 +0.04 +0.04 +0.04 ns Data Input Delay Adjustments Standard-specific data input delay adjustments Notes: 1. Input timing i for LVTTL is measured at 1.4 V. For other I/O standards, see Table 4. T TCE D Q CE Weak Keeper SR O OCE PAD D Q CE OBUFT SR I IQ Q D CE Programmable Delay IBUF Vref SR SR CLK ICE ds022_02_091300 Figure 1: Virtex-E Input/Output Block (IOB) Module 3 of 4 8 www.xilinx.com 1-800-255-7778 DS022-3 (v2.9.2) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays IOB Output Switching Characteristics, Figure 1 Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust the delays with the values shown in IOB Output Switching Characteristics Standard Adjustments, page 10. Speed Grade (1) Description (2) Symbol Min -8 -7 -6 Units O input to Pad TIOOP 1.04 2.5 2.7 2.9 ns, max O input to Pad via transparent latch TIOOLP 1.24 2.9 3.1 3.4 ns, max T input to Pad high-impedance (Note 2) TIOTHZ 0.73 1.5 1.7 1.9 ns, max T input to valid data on Pad TIOTON 1.13 2.7 2.9 3.1 ns, max T input to Pad high-impedance via transparent latch (Note 2) TIOTLPHZ 0.86 1.8 2.0 2.2 ns, max T input to valid data on Pad via transparent latch TIOTLPON 1.26 3.0 3.2 3.4 ns, max TGTS 1.94 4.1 4.6 4.9 ns, max Minimum Pulse Width, High TCH 0.56 1.2 1.3 1.4 ns, min Minimum Pulse Width, Low TCL 0.56 1.2 1.3 1.4 ns, min Clock CLK to Pad TIOCKP 0.97 2.4 2.8 2.9 ns, max Clock CLK to Pad high-impedance (synchronous) (Note 2) TIOCKHZ 0.77 1.6 2.0 2.2 ns, max Clock CLK to valid data on Pad (synchronous) TIOCKON 1.17 2.8 3.2 3.4 ns, max TIOOCK / TIOCKO 0.43 / 0 0.9 / 0 1.0 / 0 1.1 / 0 ns, min OCE input TIOOCECK / TIOCKOCE 0.28 / 0 0.55 / 0.01 0.7 / 0 0.7 / 0 ns, min SR input (OFF) TIOSRCKO / TIOCKOSR 0.40 / 0 0.8 / 0 0.9 / 0 1.0 / 0 ns, min TIOTCK / TIOCKT 0.26 / 0 0.51 / 0 0.6 / 0 0.7 / 0 ns, min 3-State Setup Times, TCE input TIOTCECK / TIOCKTCE 0.30 / 0 0.6 / 0 0.7 / 0 0.8 / 0 ns, min 3-State Setup Times, SR input (TFF) TIOSRCKT / TIOCKTSR 0.38 / 0 0.8 / 0 0.9 / 0 1.0 / 0 ns, min SR input to Pad (asynchronous) TIOSRP 1.30 3.1 3.3 3.5 ns, max SR input to Pad high-impedance (asynchronous) (Note 2) TIOSRHZ 1.08 2.2 2.4 2.7 ns, max SR input to valid data on Pad (asynchronous) TIOSRON 1.48 3.4 3.7 3.9 ns, max GSR to Pad TIOGSRQ 3.88 7.6 8.5 9.7 ns, max Propagation Delays 3-State Delays GTS to Pad high impedance (Note 2) Sequential Delays Clock CLK Setup and Hold Times before/after Clock CLK O input 3-State Setup Times, T input Set/Reset Delays Notes: 1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. 2. 3-state turn-off delays should not be adjusted. DS022-3 (v2.9.2) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 3 of 4 9 R Virtex™-E 1.8 V Field Programmable Gate Arrays IOB Output Switching Characteristics Standard Adjustments Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust the delays by the values shown. Speed Grade Description Symbol Standard Min -8 -7 -6 Units TOLVTTL_S2 LVTTL, Slow, 2 mA 4.2 +14.7 +14.7 +14.7 ns TOLVTTL_S4 4 mA 2.5 +7.5 +7.5 +7.5 ns TOLVTTL_S6 6 mA 1.8 +4.8 +4.8 +4.8 ns TOLVTTL_S8 8 mA 1.2 +3.0 +3.0 +3.0 ns TOLVTTL_S12 12 mA 1.0 +1.9 +1.9 +1.9 ns TOLVTTL_S16 16 mA 0.9 +1.7 +1.7 +1.7 ns TOLVTTL_S24 24 mA 0.8 +1.3 +1.3 +1.3 ns TOLVTTL_F2 LVTTL, Fast, 2 mA 1.9 +13.1 +13.1 +13.1 ns TOLVTTL_F4 4 mA 0.7 +5.3 +5.3 +5.3 ns TOLVTTL_F6 6 mA 0.20 +3.1 +3.1 +3.1 ns TOLVTTL_F8 8 mA 0.10 +1.0 +1.0 +1.0 ns TOLVTTL_F12 12 mA 0.0 0.0 0.0 0.0 ns TOLVTTL_F16 16 mA –0.10 –0.05 –0.05 –0.05 ns TOLVTTL_F24 24 mA –0.10 –0.20 –0.20 –0.20 ns TOLVCMOS_2 LVCMOS2 0.10 +0.09 +0.09 +0.09 ns TOLVCMOS_18 LVCMOS18 0.10 +0.7 +0.7 +0.7 ns TOLVDS LVDS –0.39 –1.2 –1.2 –1.2 ns TOLVPECL LVPECL –0.20 –0.41 –0.41 –0.41 ns TOPCI33_3 PCI, 33 MHz, 3.3 V 0.50 +2.3 +2.3 +2.3 ns TOPCI66_3 PCI, 66 MHz, 3.3 V 0.10 –0.41 –0.41 –0.41 ns TOGTL GTL 0.6 +0.49 +0.49 +0.49 ns TOGTLP GTL+ 0.7 +0.8 +0.8 +0.8 ns TOHSTL_I HSTL I 0.10 –0.51 –0.51 –0.51 ns TOHSTL_III HSTL III –0.10 –0.91 –0.91 –0.91 ns TOHSTL_IV HSTL IV –0.20 –1.01 –1.01 –1.01 ns TOSSTL2_I SSTL2 I –0.10 –0.51 –0.51 –0.51 ns TOSSTL2_II SSTL2 II –0.20 –0.91 –0.91 –0.91 ns TOSSTL3_I SSTL3 I –0.20 –0.51 –0.51 –0.51 ns TOSSTL3_II SSTL3 II –0.30 –1.01 –1.01 –1.01 ns TOCTT CTT 0.0 –0.61 –0.61 –0.61 ns TOAGP AGP –0.1 –0.91 –0.91 –0.91 ns Output Delay Adjustments Standard-specific adjustments for output delays terminating at pads (based on standard capacitive load, Csl) Module 3 of 4 10 www.xilinx.com 1-800-255-7778 DS022-3 (v2.9.2) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Calculation of Tioop as a Function of Capacitance Tioop is the propagation delay from the O Input of the IOB to the pad. The values for Tioop are based on the standard capacitive load (Csl) for each I/O standard as listed in Table 3. For other capacitive loads, use the formulas below to calculate the corresponding Tioop: Tioop = Tioop + Topadjust + (Cload – Csl) * fl where: Table 3: Constants for Use in Calculation of Tioop Standard Csl (pF) fl (ns/pF) LVTTL Fast Slew Rate, 2mA drive 35 0.41 LVTTL Fast Slew Rate, 4mA drive 35 0.20 LVTTL Fast Slew Rate, 6mA drive 35 0.13 LVTTL Fast Slew Rate, 8mA drive 35 0.079 LVTTL Fast Slew Rate, 12mA drive 35 0.044 LVTTL Fast Slew Rate, 16mA drive 35 0.043 LVTTL Fast Slew Rate, 24mA drive 35 0.033 LVTTL Slow Slew Rate, 2mA drive 35 0.41 LVTTL Slow Slew Rate, 4mA drive 35 0.20 LVTTL Slow Slew Rate, 6mA drive 35 0.10 LVTTL Slow Slew Rate, 8mA drive 35 0.086 LVTTL Slow Slew Rate, 12mA drive 35 0.058 LVTTL Slow Slew Rate, 16mA drive 35 0.050 LVTTL Slow Slew Rate, 24mA drive 35 0.048 LVCMOS2 35 0.041 LVCMOS18 35 PCI 33 MHZ 3.3 V Topadjust is reported above in the Output Delay Adjustment section. Cload is the capacitive load for the design. Table 4: Delay Measurement Methodology VL1 VH1 Meas. Point VREF (Typ)2 LVTTL 0 3 1.4 - LVCMOS2 0 2.5 1.125 - Standard PCI33_3 Per PCI Spec - PCI66_3 Per PCI Spec - GTL VREF –0.2 VREF +0.2 VREF 0.80 GTL+ VREF –0.2 VREF +0.2 VREF 1.0 HSTL Class I VREF –0.5 VREF +0.5 VREF 0.75 HSTL Class III VREF –0.5 VREF +0.5 VREF 0.90 HSTL Class IV VREF –0.5 VREF +0.5 VREF 0.90 SSTL3 I & II VREF –1.0 VREF +1.0 VREF 1.5 0.050 SSTL2 I & II VREF –0.75 VREF +0.75 VREF 1.25 10 0.050 CTT VREF –0.2 VREF +0.2 VREF 1.5 PCI 66 MHz 3.3 V 10 0.033 AGP VREF – VREF + VREF GTL 0 0.014 (0.2xVCCO) (0.2xVCCO) Per AGP Spec GTL+ 0 0.017 1.2 –0.125 1.2 + 0.125 1.2 HSTL Class I 20 0.022 1.6 –0.3 1.6 + 0.3 1.6 HSTL Class III 20 0.016 HSTL Class IV 20 0.014 SSTL2 Class I 30 0.028 SSTL2 Class II 30 0.016 SSTL3 Class I 30 0.029 SSTL3 Class II 30 0.016 CTT 20 0.035 AGP 10 0.037 LVDS LVPECL Notes: 1. Input waveform switches between VLand VH. 2. Measurements are made at VREF (Typ), Maximum, and Minimum. Worst-case values are reported. I/O parameter measurements are made with the capacitance values shown in Table 3. See the application examples (in Module 2 of this data sheet) for appropriate terminations. I/O standard measurements are reflected in the IBIS model information except where the IBIS format precludes it. Notes: 1. I/O parameter measurements are made with the capacitance values shown above. See the application examples (in Module 2 of this data sheet) for appropriate terminations. 2. I/O standard measurements are reflected in the IBIS model information except where the IBIS format precludes it. DS022-3 (v2.9.2) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 3 of 4 11 R Virtex™-E 1.8 V Field Programmable Gate Arrays Clock Distribution Switching Characteristics Speed Grade Description Symbol Min -8 -7 -6 Units Global Clock PAD to output. TGPIO 0.38 0.7 0.7 0.7 ns, max Global Clock Buffer I input to O output TGIO 0.11 0.20 0.45 0.50 ns, max GCLK IOB and Buffer I/O Standard Global Clock Input Adjustments Speed Grade Description Symbol(1) Standard Min -8 -7 -6 Units TGPLVTTL LVTTL 0.0 0.0 0.0 0.0 ns, max TGPLVCMOS2 LVCMOS2 –0.02 0.0 0.0 0.0 ns, max TGPLVCMOS18 LVCMOS18 0.12 0.20 0.20 0.20 ns, max TGLVDS LVDS 0.23 0.38 0.38 0.38 ns, max TGLVPECL LVPECL 0.23 0.38 0.38 0.38 ns, max TGPPCI33_3 PCI, 33 MHz, 3.3 V –0.05 0.08 0.08 0.08 ns, max TGPPCI66_3 PCI, 66 MHz, 3.3 V –0.05 –0.11 –0.11 –0.11 ns, max TGPGTL GTL 0.20 0.37 0.37 0.37 ns, max TGPGTLP GTL+ 0.20 0.37 0.37 0.37 ns, max TGPHSTL HSTL 0.18 0.27 0.27 0.27 ns, max TGPSSTL2 SSTL2 0.21 0.27 0.27 0.27 ns, max TGPSSTL3 SSTL3 0.18 0.27 0.27 0.27 ns, max TGPCTT CTT 0.22 0.33 0.33 0.33 ns, max TGPAGP AGP 0.21 0.27 0.27 0.27 ns, max Data Input Delay Adjustments Standard-specific global clock input delay adjustments Notes: 1. Input timing for GPLVTTL is measured at 1.4 V. For other I/O standards, see Table 4. Module 3 of 4 12 www.xilinx.com 1-800-255-7778 DS022-3 (v2.9.2) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays CLB Switching Characteristics Delays originating at F/G inputs vary slightly according to the input used, see Figure 2. The values listed below are worst-case. Precise values are provided by the timing analyzer. Speed Grade (1) Description Symbol Min -8 -7 -6 Units 4-input function: F/G inputs to X/Y outputs TILO 0.19 0.40 0.42 0.47 ns, max 5-input function: F/G inputs to F5 output TIF5 0.36 0.76 0.8 0.9 ns, max 5-input function: F/G inputs to X output TIF5X 0.35 0.74 0.8 0.9 ns, max 6-input function: F/G inputs to Y output via F6 MUX TIF6Y 0.35 0.74 0.9 1.0 ns, max 6-input function: F5IN input to Y output TF5INY 0.04 0.11 0.20 0.22 ns, max Incremental delay routing through transparent latch to XQ/YQ outputs TIFNCTL 0.27 0.63 0.7 0.8 ns, max TBYYB 0.19 0.38 0.46 0.51 ns, max FF Clock CLK to XQ/YQ outputs TCKO 0.34 0.78 0.9 1.0 ns, max Latch Clock CLK to XQ/YQ outputs TCKLO 0.40 0.77 0.9 1.0 ns, max 4-input function: F/G Inputs TICK / TCKI 0.39 / 0 0.9 / 0 1.0 / 0 1.1 / 0 ns, min 5-input function: F/G inputs TIF5CK / TCKIF5 0.55 / 0 1.3 / 0 1.4 / 0 1.5 / 0 ns, min 6-input function: F5IN input TF5INCK / TCKF5IN 0.27 / 0 0.6 / 0 0.8 / 0 0.8 / 0 ns, min 6-input function: F/G inputs via F6 MUX TIF6CK / TCKIF6 0.58 / 0 1.3 / 0 1.5 / 0 1.6 / 0 ns, min BX/BY inputs TDICK / TCKDI 0.25 / 0 0.6 / 0 0.7 / 0 0.8 / 0 ns, min CE input TCECK / TCKCE 0.28 / 0 0.55 / 0 0.7 / 0 0.7 / 0 ns, min SR/BY inputs (synchronous) TRCK / TCKR 0.24 / 0 0.46 / 0 0.52 / 0 0.6 / 0 ns, min Minimum Pulse Width, High TCH 0.56 1.2 1.3 1.4 ns, min Minimum Pulse Width, Low TCL 0.56 1.2 1.3 1.4 ns, min TRPW 0.94 1.9 2.1 2.4 ns, min Delay from SR/BY inputs to XQ/YQ outputs (asynchronous) TRQ 0.39 0.8 0.9 1.0 ns, max Toggle Frequency (MHz) (for export control) FTOG - 416 400 357 MHz Combinatorial Delays BY input to YB output Sequential Delays Setup and Hold Times before/after Clock CLK Clock CLK Set/Reset Minimum Pulse Width, SR/BY inputs Notes: 1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. DS022-3 (v2.9.2) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 3 of 4 13 R Virtex™-E 1.8 V Field Programmable Gate Arrays COUT YB CY G4 G3 G2 G1 I3 I2 I1 I0 Y O LUT DI WE 0 INIT D Q CE 1 REV YQ BY XB F5IN F6 CY CK WE A4 BY DG WSO WSH BX X DI INIT DQ CE BX F4 F3 F2 F1 I3 I2 I1 I0 F5 F5 WE XQ DI REV O LUT 0 1 SR CLK CE CIN ds022_05_092000 Figure 2: Detailed View of Virtex-E Slice Module 3 of 4 14 www.xilinx.com 1-800-255-7778 DS022-3 (v2.9.2) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays CLB Arithmetic Switching Characteristics Setup times not listed explicitly can be approximated by decreasing the combinatorial delays by the setup time adjustment listed. Precise values are provided by the timing analyzer. Speed Grade(1) Description Symbol Min -8 -7 -6 Units F operand inputs to X via XOR TOPX 0.32 0.68 0.8 0.8 ns, max F operand input to XB output TOPXB 0.35 0.65 0.8 0.9 ns, max F operand input to Y via XOR TOPY 0.59 1.07 1.4 1.5 ns, max F operand input to YB output TOPYB 0.48 0.89 1.1 1.3 ns, max F operand input to COUT output TOPCYF 0.37 0.71 0.9 1.0 ns, max G operand inputs to Y via XOR TOPGY 0.34 0.72 0.8 0.9 ns, max G operand input to YB output TOPGYB 0.47 0.78 1.2 1.3 ns, max G operand input to COUT output TOPCYG 0.36 0.60 0.9 1.0 ns, max BX initialization input to COUT TBXCY 0.19 0.36 0.51 0.57 ns, max CIN input to X output via XOR TCINX 0.27 0.50 0.6 0.7 ns, max CIN input to XB TCINXB 0.02 0.04 0.07 0.08 ns, max CIN input to Y via XOR TCINY 0.26 0.45 0.7 0.7 ns, max CIN input to YB TCINYB 0.16 0.28 0.38 0.43 ns, max TBYP 0.05 0.10 0.14 0.15 ns, max F1/2 operand inputs to XB output via AND TFANDXB 0.10 0.30 0.35 0.39 ns, max F1/2 operand inputs to YB output via AND TFANDYB 0.28 0.56 0.7 0.8 ns, max F1/2 operand inputs to COUT output via AND TFANDCY 0.17 0.38 0.46 0.51 ns, max G1/2 operand inputs to YB output via AND TGANDYB 0.20 0.46 0.55 0.7 ns, max G1/2 operand inputs to COUT output via AND TGANDCY 0.09 0.28 0.30 0.34 ns, max CIN input to FFX TCCKX/TCKCX 0.47 / 0 1.0 / 0 1.2 / 0 1.3 / 0 ns, min CIN input to FFY TCCKY/TCKCY 0.49 / 0 0.92 / 0 1.2 / 0 1.3 / 0 ns, min Combinatorial Delays CIN input to COUT output Multiplier Operation Setup and Hold Times before/after Clock CLK Notes: 1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. DS022-3 (v2.9.2) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 3 of 4 15 R Virtex™-E 1.8 V Field Programmable Gate Arrays CLB Distributed RAM Switching Characteristics Speed Grade(1) Description Symbol Min -8 -7 -6 Units Clock CLK to X/Y outputs (WE active) 16 x 1 mode TSHCKO16 0.67 1.38 1.5 1.7 ns, max Clock CLK to X/Y outputs (WE active) 32 x 1 mode TSHCKO32 0.84 1.66 1.9 2.1 ns, max TREG 1.25 2.39 2.9 3.2 ns, max F/G address inputs TAS/TAH 0.19 / 0 0.38 / 0 0.42 / 0 0.47 / 0 ns, min BX/BY data inputs (DIN) TDS/TDH 0.44 / 0 0.87 / 0 0.97 / 0 1.09 / 0 ns, min SR input (WE) TWS/TWH 0.29 / 0 0.57 / 0 0.7 / 0 0.8 / 0 ns, min Minimum Pulse Width, High TWPH 0.96 1.9 2.1 2.4 ns, min Minimum Pulse Width, Low TWPL 0.96 1.9 2.1 2.4 ns, min Minimum clock period to meet address write cycle time TWC 1.92 3.8 4.2 4.8 ns, min Minimum Pulse Width, High TSRPH 1.0 1.9 2.1 2.4 ns, min Minimum Pulse Width, Low TSRPL 1.0 1.9 2.1 2.4 ns, min Sequential Delays Shift-Register Mode Clock CLK to X/Y outputs Setup and Hold Times before/after Clock CLK Clock CLK Shift-Register Mode Notes: 1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. RAMB4_S#_S# WEA ENA RSTA CLKA ADDRA[#:0] DIA[#:0] WEB ENB RSTB CLKB ADDRB[#:0] DIB[#:0] DOA[#:0] DOB[#:0] ds022_06_121699 Figure 3: Dual-Port Block SelectRAM Module 3 of 4 16 www.xilinx.com 1-800-255-7778 DS022-3 (v2.9.2) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Block RAM Switching Characteristics Speed Grade(1) Description Symbol Min -8 -7 -6 Units TBCKO 0.63 2.46 3.1 3.5 ns, max ADDR inputs TBACK/TBCKA 0.42 / 0 0.9 / 0 1.0 / 0 1.1 / 0 ns, min DIN inputs TBDCK/TBCKD 0.42 / 0 0.9 / 0 1.0 / 0 1.1 / 0 ns, min EN input TBECK/TBCKE 0.97 / 0 2.0 / 0 2.2 / 0 2.5 / 0 ns, min RST input TBRCK/TBCKR 0.9 / 0 1.8 / 0 2.1 / 0 2.3 / 0 ns, min WEN input TBWCK/TBCKW 0.86 / 0 1.7 / 0 2.0 / 0 2.2 / 0 ns, min Minimum Pulse Width, High TBPWH 0.6 1.2 1.35 1.5 ns, min Minimum Pulse Width, Low TBPWL 0.6 1.2 1.35 1.5 ns, min CLKA -> CLKB setup time for different ports TBCCS 1.2 2.4 2.7 3.0 ns, min Sequential Delays Clock CLK to DOUT output Setup and Hold Times before Clock CLK Clock CLK Notes: 1. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. TBUF Switching Characteristics Speed Grade Description Symbol Min -8 -7 -6 Units TIO 0.0 0.0 0.0 0 .0 ns, max TRI input to OUT output high-impedance TOFF 0.05 0.092 0.10 0.11 ns, max TRI input to valid data on OUT output TON 0.05 0.092 0.10 0.11 ns, max Combinatorial Delays IN input to OUT output JTAG Test Access Port Switching Characteristics Description Symbol Value Units TMS and TDI Setup times before TCK TTAPTK 4.0 ns, min TMS and TDI Hold times after TCK TTCKTAP 2.0 ns, min Output delay from clock TCK to output TDO TTCKTDO 11.0 ns, max FTCK 33 MHz, max Maximum TCK clock frequency DS022-3 (v2.9.2) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 3 of 4 17 R Virtex™-E 1.8 V Field Programmable Gate Arrays Virtex-E Pin-to-Pin Output Parameter Guidelines All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted. Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, with DLL Speed Grade(2, 3) Description(1) Symbol Device Min -8 -7 -6 Units LVTTL Global Clock Input to Output Delay using Output Flip-flop, 12 mA, Fast Slew Rate, with DLL. For data output with different standards, adjust the delays with the values shown in IOB Output Switching Characteristics Standard Adjustments, page 10. TICKOFDLL XCV50E 1.0 3.1 3.1 3.1 ns XCV100E 1.0 3.1 3.1 3.1 ns XCV200E 1.0 3.1 3.1 3.1 ns XCV300E 1.0 3.1 3.1 3.1 ns XCV400E 1.0 3.1 3.1 3.1 ns XCV600E 1.0 3.1 3.1 3.1 ns XCV1000E 1.0 3.1 3.1 3.1 ns XCV1600E 1.0 3.1 3.1 3.1 ns XCV2000E 1.0 3.1 3.1 3.1 ns XCV2600E 1.0 3.1 3.1 3.1 ns XCV3200E 1.0 3.1 3.1 3.1 ns Notes: 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. 2. Output timing is measured at 50% VCC threshold with 35 pF external capacitive load. For other I/O standards and different loads, see Table 3 and Table 4. 3. DLL output jitter is already included in the timing calculation. Module 3 of 4 18 www.xilinx.com 1-800-255-7778 DS022-3 (v2.9.2) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, without DLL Speed Grade(2) Description(1) Symbol Device Min -8 -7 -6 Units LVTTL Global Clock Input to Output Delay using Output Flip-flop, 12 mA, Fast Slew Rate, without DLL. For data output with different standards, adjust the delays with the values shown in IOB Output Switching Characteristics Standard Adjustments, page 10. TICKOF XCV50E 1.5 4.2 4.4 4.6 ns XCV100E 1.5 4.2 4.4 4.6 ns XCV200E 1.5 4.3 4.5 4.7 ns XCV300E 1.5 4.3 4.5 4.7 ns XCV400E 1.5 4.4 4.6 4.8 ns XCV600E 1.6 4.5 4.7 4.9 ns XCV1000E 1.7 4.6 4.8 5.0 ns XCV1600E 1.8 4.7 4.9 5.1 ns XCV2000E 1.8 4.8 5.0 5.2 ns XCV2600E 2.0 5.0 5.2 5.4 ns XCV3200E 2.2 5.2 5.4 5.6 ns Notes: 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. 2. Output timing is measured at 50% VCC threshold with 35 pF external capacitive load. For other I/O standards and different loads, see Table 3 and Table 4. DS022-3 (v2.9.2) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 3 of 4 19 R Virtex™-E 1.8 V Field Programmable Gate Arrays Virtex-E Pin-to-Pin Input Parameter Guidelines All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted Global Clock Set-Up and Hold for LVTTL Standard, with DLL Speed Grade(2, 3) Description(1) Symbol Device Min -8 -7 -6 Units XCV50E 1.5 / –0.4 1.5 / –0.4 1.6 / –0.4 1.7 / –0.4 ns XCV100E 1.5 / –0.4 1.5 / –0.4 1.6 / –0.4 1.7 / –0.4 ns XCV200E 1.5 / –0.4 1.5 / –0.4 1.6 / –0.4 1.7 / –0.4 ns XCV300E 1.5 / –0.4 1.5 / –0.4 1.6 / –0.4 1.7 / –0.4 ns XCV400E 1.5 / –0.4 1.5 / –0.4 1.6 / –0.4 1.7 / –0.4 ns XCV600E 1.5 / –0.4 1.5 / –0.4 1.6 / –0.4 1.7 / –0.4 ns XCV1000E 1.5 / –0.4 1.5 / –0.4 1.6 / –0.4 1.7 / –0.4 ns XCV1600E 1.5 / –0.4 1.5 / –0.4 1.6 / –0.4 1.7 / –0.4 ns XCV2000E 1.5 / –0.4 1.5 / –0.4 1.6 / –0.4 1.7 / –0.4 ns XCV2600E 1.5 / –0.4 1.5 / –0.4 1.6 / –0.4 1.7 / –0.4 ns XCV3200E 1.5 / –0.4 1.5 / –0.4 1.6 / –0.4 1.7 / –0.4 ns Input Setup and Hold Time Relative to Global Clock Input Signal for LVTTL Standard. For data input with different standards, adjust the setup time delay by the values shown in IOB Input Switching Characteristics Standard Adjustments, page 8. No Delay Global Clock and IFF, with DLL TPSDLL/TPHDLL Notes: 1. IFF = Input Flip-Flop or Latch 2. Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load. 3. DLL output jitter is already included in the timing calculation. Module 3 of 4 20 www.xilinx.com 1-800-255-7778 DS022-3 (v2.9.2) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Global Clock Set-Up and Hold for LVTTL Standard, without DLL Speed Grade(2, 3) Description(1) Symbol Device Min -8 -7 -6 Units XCV50E 1.8 / 0 1.8 / 0 1.8 / 0 1.8 / 0 ns XCV100E 1.8 / 0 1.8 / 0 1.8 / 0 1.8 / 0 ns XCV200E 1.9 / 0 1.9 / 0 1.9 / 0 1.9 / 0 ns XCV300E 2.0 / 0 2.0 / 0 2.0 / 0 2.0 / 0 ns XCV400E 2.0 / 0 2.0 / 0 2.0 / 0 2.0 / 0 ns XCV600E 2.1 / 0 2.1 / 0 2.1 / 0 2.1 / 0 ns XCV1000E 2.3 / 0 2.3 / 0 2.3 / 0 2.3 / 0 ns XCV1600E 2.5 / 0 2.5 / 0 2.5 / 0 2.5 / 0 ns XCV2000E 2.5 / 0 2.5 / 0 2.5 / 0 2.5 / 0 ns XCV2600E 2.7 / 0 2.7 / 0 2.7 / 0 2.7 / 0 ns XCV3200E 2.8 / 0 2.8 / 0 2.8 / 0 2.8 / 0 ns Input Setup and Hold Time Relative to Global Clock Input Signal for LVTTL Standard. For data input with different standards, adjust the setup time delay by the values shown in IOB Input Switching Characteristics Standard Adjustments, page 8. Full Delay Global Clock and IFF, without DLL TPSFD/TPHFD Notes: 1. IFF = Input Flip-Flop or Latch 2. Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load. 3. A Zero “0” Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed “best-case”, but if a “0” is listed, there is no positive hold time. DS022-3 (v2.9.2) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 3 of 4 21 R Virtex™-E 1.8 V Field Programmable Gate Arrays DLL Timing Parameters All devices are 100 percent functionally tested. Because of the difficulty in directly measuring many internal timing parameters, those parameters are derived from benchmark timing patterns. The following guidelines reflect worst-case values across the recommended operating conditions. Speed Grade -8 Description Symbol Input Clock Frequency (CLKDLLHF) FCLKIN -7 -6 Min Max Min Max Min Max Units FCLKINHF 60 350 60 320 60 275 MHz Input Clock Frequency (CLKDLL) FCLKINLF 25 160 25 160 25 135 MHz Input Clock Low/High Pulse Width TDLLPW ≥2 5 MHz 5.0 5.0 5.0 ns ≥ 50 MHz 3.0 3.0 3.0 ns ≥100 MHz 2.4 2.4 2.4 ns ≥ 150 MHz 2.0 2.0 2.0 ns ≥ 200 MHz 1.8 1.8 1.8 ns ≥ 250 MHz 1.5 1.5 1.5 ns ≥ 300 MHz 1.3 1.3 NA ns Period Tolerance: the allowed input clock period change in nanoseconds. TCLKIN + _ TIPTOL TCLKIN Output Jitter: the difference between an ideal reference clock edge and the actual design. Phase Offset and Maximum Phase Difference Ideal Period Actual Period + Jitter +/- Jitter + Maximum Phase Difference + Phase Offset ds022_24_091200 Figure 4: DLL Timing Waveforms Module 3 of 4 22 www.xilinx.com 1-800-255-7778 DS022-3 (v2.9.2) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays DLL Clock Tolerance, Jitter, and Phase Information All DLL output jitter and phase specifications determined through statistical measurement at the package pins using a clock mirror configuration and matched drivers. CLKDLLHF Description Symbol FCLKIN CLKDLL Min Max Min Max Units Input Clock Period Tolerance TIPTOL - 1.0 - 1.0 ns Input Clock Jitter Tolerance (Cycle to Cycle) TIJITCC - ± 150 - ± 300 ps Time Required for DLL to Acquire Lock(6) TLOCK > 60 MHz - 20 - 20 μs 50 - 60 MHz - - - 25 μs 40 - 50 MHz - - - 50 μs 30 - 40 MHz - - - 90 μs 25 - 30 MHz - - - 120 μs TOJITCC ± 60 ± 60 ps Phase Offset between CLKIN and CLKO(2) TPHIO ± 100 ± 100 ps Phase Offset between Clock Outputs on the DLL(3) TPHOO ± 140 ± 140 ps Maximum Phase Difference between CLKIN and CLKO(4) TPHIOM ± 160 ± 160 ps Maximum Phase Difference between Clock Outputs on the DLL(5) TPHOOM ± 200 ± 200 ps Output Jitter (cycle-to-cycle) for any DLL Clock Output(1) Notes: 1. Output Jitter is cycle-to-cycle jitter measured on the DLL output clock and is based on a maximum tap delay resolution, excluding input clock jitter. 2. Phase Offset between CLKIN and CLKO is the worst-case fixed time difference between rising edges of CLKIN and CLKO, excluding Output Jitter and input clock jitter. 3. Phase Offset between Clock Outputs on the DLL is the worst-case fixed time difference between rising edges of any two DLL outputs, excluding Output Jitter and input clock jitter. 4. Maximum Phase Difference between CLKIN an CLKO is the sum of Output Jitter and Phase Offset between CLKIN and CLKO, or the greatest difference between CLKIN and CLKO rising edges due to DLL alone (excluding input clock jitter). 5. Maximum Phase DIfference between Clock Outputs on the DLL is the sum of Output JItter and Phase Offset between any DLL clock outputs, or the greatest difference between any two DLL output rising edges sue to DLL alone (excluding input clock jitter). 6. Add 30% to the value for industrial grade parts. DS022-3 (v2.9.2) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 3 of 4 23 R Virtex™-E 1.8 V Field Programmable Gate Arrays Revision History The following table shows the revision history for this document. Date Version Revision 12/7/99 1.0 Initial Xilinx release. 1/10/00 1.1 Re-released with spd.txt v. 1.18, FG860/900/1156 package information, and additional DLL, Select RAM and SelectI/O information. 1/28/00 1.2 Added Delay Measurement Methodology table, updated SelectI/O section, Figures 30, 54, & 55, text explaining Table 5, TBYP values, buffered Hex Line info, p. 8, I/O Timing Measurement notes, notes for Tables 15, 16, and corrected F1156 pinout table footnote references. 2/29/00 1.3 Updated pinout tables, VCC page 20, and corrected Figure 20. 5/23/00 1.4 Correction to table on p. 22. 7/10/00 1.5 8/1/00 1.6 9/20/00 1.7 • • • • • • • • • 11/20/00 1.8 • • • • • • • • 2/12/01 1.9 • • • • • • 4/02/01 2.0 4/19/01 2.1 Module 3 of 4 24 • • • • Numerous minor edits. Data sheet upgraded to Preliminary. Preview -8 numbers added to Virtex-E Electrical Characteristics tables. Reformatted entire document to follow new style guidelines. Changed speed grade values in tables on pages 35-37. Min values added to Virtex-E Electrical Characteristics tables. XCV2600E and XCV3200E numbers added to Virtex-E Electrical Characteristics tables (Module 3). Corrected user I/O count for XCV100E device in Table 1 (Module 1). Changed several pins to “No Connect in the XCV100E“ and removed duplicate VCCINT pins in Table ~ (Module 4). Changed pin J10 to “No connect in XCV600E” in Table 74 (Module 4). Changed pin J30 to “VREF option only in the XCV600E” in Table 74 (Module 4). Corrected pair 18 in Table 75 (Module 4) to be “AO in the XCV1000E, XCV1600E“. Upgraded speed grade -8 numbers in Virtex-E Electrical Characteristics tables to Preliminary. Updated minimums in Table 13 and added notes to Table 14. Added to note 2 to Absolute Maximum Ratings. Changed speed grade -8 numbers for TSHCKO32, TREG, TBCCS, and TICKOF. Changed all minimum hold times to –0.4 under Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Revised maximum TDLLPW in -6 speed grade for DLL Timing Parameters. Changed GCLK0 to BA22 for FG860 package in Table 46. Revised footnote for Table 14. Added numbers to Virtex-E Electrical Characteristics tables for XCV1000E and XCV2000E devices. Updated Table 27 and Table 78 to include values for XCV400E and XCV600E devices. Revised Table 62 to include pinout information for the XCV400E and XCV600E devices in the BG560 package. Updated footnotes 1 and 2 for Table 76 to include XCV2600E and XCV3200E devices. Updated numerous values in Virtex-E Switching Characteristics tables. Converted data sheet to modularized format. See the Virtex-E Data Sheet section. Updated values in Virtex-E Switching Characteristics tables. www.xilinx.com 1-800-255-7778 DS022-3 (v2.9.2) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Date Version Revision 07/23/01 2.2 • • 07/26/01 2.3 • Under Absolute Maximum Ratings, changed (TSOL) to 220 °C. Changes made to SSTL symbol names in IOB Input Switching Characteristics Standard Adjustments table. Removed TSOL parameter and added footnote to Absolute Maximum Ratings table. 9/18/01 2.4 • Reworded power supplies footnote to Absolute Maximum Ratings table. 10/25/01 2.5 • Updated the speed grade designations used in data sheets, and added Table 1, which shows the current speed grade designation for each device. Added XCV2600E and XCV3200E values to DC Characteristics Over Recommended Operating Conditions and Power-On Power Supply Requirements tables. Updated the Power-On Power Supply Requirements table. • 11/09/01 2.6 • 02/01/02 2.7 • 07/17/02 2.8 09/10/02 2.9 • • • • • 12/22/02 03/14/03 2.9.1 • 2.9.2 • • Updated footnotes to the DC Input and Output Levels and DLL Clock Tolerance, Jitter, and Phase Information tables. Data sheet designation upgraded from Preliminary to Production. Removed mention of MIL-M-38510/605 specification. Added link to XAPP158 from the Power-On Power Supply Requirements section. Revised VIN in Absolute Maximum Ratings table. Added Clock CLK switching characteristics to Table 2, “IOB Input Switching Characteristics,” on page 6 and IOB Output Switching Characteristics, Figure 1. Added footnote regarding VIN PCI compliance to Absolute Maximum Ratings table. The fastest ramp rate is 0V to nominal voltage in 2 ms Under Power-On Power Supply Requirements, the fastest ramp rate is no longer a "suggested" rate. Virtex-E Data Sheet The Virtex-E Data Sheet contains the following modules: • DS022-1, Virtex-E 1.8V FPGAs: • Introduction and Ordering Information (Module 1) • DS022-2, Virtex-E 1.8V FPGAs: Functional Description (Module 2) DS022-3 (v2.9.2) March 14, 2003 Production Product Specification DS022-3, Virtex-E 1.8V FPGAs: DC and Switching Characteristics (Module 3) • DS022-4, Virtex-E 1.8V FPGAs: Pinout Tables (Module 4) www.xilinx.com 1-800-255-7778 Module 3 of 4 25 R Virtex™-E 1.8 V Field Programmable Gate Arrays Module 3 of 4 26 www.xilinx.com 1-800-255-7778 DS022-3 (v2.9.2) March 14, 2003 Production Product Specification 0 Virtex™-E 1.8 V Field Programmable Gate Arrays R DS022-4 (v2.5) March 14, 2003 0 0 Production Product Specification Virtex-E Pin Definitions Pin Name Dedicated Pin Direction GCK0, GCK1, GCK2, GCK3 Yes Input Clock input pins that connect to Global Clock Buffers. M0, M1, M2 Yes Input Mode pins are used to specify the configuration mode. CCLK Yes Input or Output Description The configuration Clock I/O pin: it is an input for SelectMAP and slave-serial modes, and output in master-serial mode. After configuration, it is input only, logic level = Don’t Care. PROGRAM Yes Input DONE Yes Bidirectional Indicates that configuration loading is complete, and that the start-up sequence is in progress. The output can be open drain. INIT No Bidirectional When Low, indicates that the configuration memory is being cleared. The pin becomes a user I/O after configuration. (Open-drain) BUSY/DOUT No Output Initiates a configuration sequence when asserted Low. In SelectMAP mode, BUSY controls the rate at which configuration data is loaded. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. In bit-serial modes, DOUT provides preamble and configuration data to downstream devices in a daisy-chain. The pin becomes a user I/O after configuration. D0/DIN, No Input or Output D1, D2, D3, D4, In SelectMAP mode, D0-7 are configuration data pins. These pins become user I/Os after configuration unless the SelectMAP port is retained. In bit-serial modes, DIN is the single data input. This pin becomes a user I/O after configuration. D5, D6, D7 WRITE No Input In SelectMAP mode, the active-low Write Enable signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. CS No Input In SelectMAP mode, the active-low Chip Select signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. TDI, TDO, Yes Mixed Boundary-scan Test-Access-Port pins, as defined in IEEE1149.1. DXN, DXP Yes N/A Temperature-sensing diode pins. (Anode: DXP, cathode: DXN) VCCINT Yes Input Power-supply pins for the internal core logic. VCCO Yes Input Power-supply pins for the output drivers (subject to banking rules) VREF No Input Input threshold voltage pins. Become user I/Os when an external threshold voltage is not needed (subject to banking rules). GND Yes Input Ground TMS, TCK © 2000-2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice. DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 1 R Virtex™-E 1.8 V Field Programmable Gate Arrays Pinout Differences Between Virtex and Virtex-E Families The same device in the same package for the Virtex-E and Virtex families are pin-compatible with some minor exceptions, listed in Table 1. XCV200E Device, FG456 Package The Virtex-E XCV200E has two I/O pins swapped with the Virtex XCV200 to accommodate differential clock pairing. XCV400E Device, FG676 Package The Virtex-E XCV400E has two I/O pins swapped with the Virtex XCV400 to accommodate differential clock pairing. All Devices, PQ240 and HQ240 Packages The Virtex devices in PQ240 and HQ240 packages do not have VCCO banking, but Virtex-E devices do. To achieve this, eight Virtex I/O pins (P232, P207, P176, P146, P116, P85, P55, and P25) are now VCCO pins in the Virtex-E family. This change also requires one Virtex I/O or VREF pin to be swapped with a standard I/O pin. Additionally, accommodating differential clock input pairs in Virtex-E caused some IO_VREF differences in the XCV400E and XCV600E devices only. Virtex IO_VREF pins P215 and P87 are Virtex-E IO_VREF pins P216 and P86, respectively. Virtex-E pins P215 and P87 are IO_DLL. Table 1: Pinout Differences Summary Part XCV200 XCV400 XCV400/600 All Module 4 of 4 2 Package FG456 FG676 PQ240/HQ240 PQ240/HQ240 Pins Virtex Virtex-E E11, U11 I/O No Connect B11, AA11 No Connect IO_LVDS_DLL D13, Y13 I/O No Connect B13, AF13 No Connect IO_LVDS_DLL P215, P87 IO_VREF IO_LVDS_DLL P216, P86 I/O IO_VREF P232, P207, P176, P146, P116, P85, P55, and P25 I/O VCCO P231 I/O IO_VREF www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Low Voltage Differential Signals Table 2: LVDS Pin Pairs The Virtex-E family incorporates low-voltage signalling (LVDS and LVPECL). Two pins are utilized for these signals to be connected to a Virtex-E device. These are known as differential pin pairs. Each differential pin pair has a Positive (P) and a Negative (N) pin. These pairs are labeled in the following manner. Pin Name IO_L#[P/N] Example: IO_L22N IO_L#[P/N] where IO_L#[P/N]_Y L = LVDS or LVPECL pin # = Pin Pair Number P = Positive N = Negative Example: IO_L22N_Y I/O pins for differential signals can either be synchronous or asynchronous, input or output. The pin pairs can be used for synchronous input and output signals as well as asynchronous input signals. However, only some of the low-voltage pairs can be used for asynchronous output signals. IO_L#[P/N]_YY DIfferential signals require the pins of a pair to switch almost simultaneously. If the signals driving the pins are from IOB flip-flops, they are synchronous. If the signals driving the pins are from internal logic, they are asynchronous. Table 2 defines the names and function of the different types of low-voltage pin pairs in the Virtex-E family. IO_LVDS_DLL_L#[P/N] Example: O_L22N_YY Example: IO_LVDS_DLL_L16N Description Represents a general IO or a synchronous input/output differential signal. When used as a differential signal, N means Negative I/O and P means Positive I/O. Represents a general IO or a synchronous input/output differential signal, or a part-dependent asynchronous output differential signal. Represents a general IO or a synchronous input/output differential signal, or an asynchronous output differential signal. Represents a general IO or a synchronous input/output differential signal, a differential clock input signal, or a DLL input. When used as a differential clock input, this pin is paired with the adjacent GCK pin. The GCK pin is always the positive input in the differential clock input configuration. Virtex-E Package Pinouts The Virtex-E family of FPGAs is available in 12 popular packages, including chip-scale, plastic and high heat-dissipation quad flat packs, and ball grid and fine-pitch ball grid arrays. Family members have footprint compatibility across devices provided in the same package. The pinout tables in DS022-4 (v2.5) March 14, 2003 Production Product Specification this section indicate function, pin, and bank information for each package/device combination. Following each pinout table is an additional table summarizing information specific to differential pin pairs for all devices provided in that package. www.xilinx.com 1-800-255-7778 Module 4 of 4 3 R Virtex™-E 1.8 V Field Programmable Gate Arrays CS144 Chip-Scale Package XCV50E, XCV100E, XCV200E, XCV300E and XCV400E devices in CS144 Chip-scale packages have footprint compatibility. In the CS144 package, bank pairs that share a side are internally interconnected, permitting four choices for VCCO. See Table 3. Table 3: I/O Bank Pairs and Shared Vcco Pins Table 4: CS144 — XCV50E, XCV100E, XCV200E Bank Pin Description Pin # 1 IO_VREF A10 1 IO_VREF B8 1 IO_VREF B101 Paired Banks Shared VCCO Pins Banks 0 & 1 A2, A13, D7 2 IO D12 Banks 2 & 3 B12, G11, M13 2 IO F12 Banks 4 & 5 N1, N7, N13 2 IO_DOUT_BUSY_L6P_YY C11 Banks 6 & 7 B2, G2, M2 2 IO_DIN_D0_L6N_YY C12 2 IO_D1_L7N E10 Pins labeled I0_VREF can be used as either in all parts unless device-dependent, as indicated in the footnotes. If the pin is not used as VREF, it can be used as general I/O. Immediately following Table 4, see Table 5 is Differential Pair information. 2 IO_VREF_L7P D132 2 IO_L8N_YY E13 2 IO_D2_L8P_YY E12 2 IO_D3_L9N F11 Table 4: CS144 — XCV50E, XCV100E, XCV200E 2 IO_VREF_L9P F10 Bank Pin Description Pin # 2 IO_L10P F13 0 GCK3 A6 2 IO_VREF C131 0 IO B3 2 IO_VREF D11 0 IO_VREF_L0N_YY B42 0 IO_L0P_YY A4 3 IO H13 0 IO_L1N_YY B5 3 IO K13 0 IO_L1P_YY A5 3 IO_L10N G13 0 IO_LVDS_DLL_L2N C6 3 IO_VREF_L11N H11 0 IO_VREF A31 3 IO_D4_L11P H12 0 IO_VREF C4 3 IO_D5_L12N_YY J13 0 IO_VREF D6 3 IO_L12P_YY H10 3 IO_VREF_L13N J102 1 GCK2 A7 3 IO_D6_L13P J11 1 IO A8 3 IO_INIT_L14N_YY L13 1 IO_LVDS_DLL_L2P B7 3 IO_D7_L14P_YY K10 1 IO_L3N_YY C8 3 IO_VREF K111 1 IO_L3P_YY D8 3 IO_VREF K12 1 IO_L4N_YY C9 1 IO_VREF_L4P_YY D92 4 GCK0 K7 1 IO_WRITE_L5N_YY C10 4 IO M8 1 IO_CS_L5P_YY D10 4 IO M10 Module 4 of 4 4 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 4: CS144 — XCV50E, XCV100E, XCV200E Table 4: CS144 — XCV50E, XCV100E, XCV200E Bank Pin Description Pin # Bank Pin Description Pin # 4 IO_L15N_YY M11 6 IO_L26N G1 4 IO_L15P_YY L11 4 IO_L16N_YY K9 7 IO C2 4 IO_VREF_L16P_YY N102 7 IO D3 4 IO_L17N_YY K8 7 IO F3 4 IO_L17P_YY N9 7 IO_L26P F2 4 IO_LVDS_DLL_L18P N8 7 IO_L27N F4 4 IO_VREF L8 7 IO_VREF_L27P E1 4 IO_VREF L10 7 IO_L28N_YY E2 4 IO_VREF N111 7 IO_L28P_YY E3 7 IO_L29N D1 5 GCK1 M7 7 IO_VREF_L29P D22 5 IO M4 7 IO_VREF C11 5 IO_LVDS_DLL_L18N M6 7 IO_VREF D4 5 IO_L19N_YY N5 5 IO_L19P_YY K6 2 CCLK B13 5 IO_VREF_L20N_YY N42 3 DONE M12 5 IO_L20P_YY K5 NA M0 M1 5 IO_L21N_YY M3 NA M1 L2 5 IO_L21P_YY N3 NA M2 N2 5 IO_VREF K41 NA PROGRAM L12 5 IO_VREF L4 NA TDI A11 5 IO_VREF L6 NA TCK C3 2 TDO A12 NA TMS B1 6 IO G4 6 IO J4 6 IO_L25P H1 NA VCCINT A9 6 IO_VREF_L25N H2 NA VCCINT B6 6 IO_L24P_YY H3 NA VCCINT C5 6 IO_L24N_YY H4 NA VCCINT G3 6 IO_L23P J2 NA VCCINT G12 6 IO_VREF_L23N J32 NA VCCINT M5 6 IO_VREF K1 NA VCCINT M9 6 IO_VREF K21 NA VCCINT N6 6 IO_L22N_YY L1 6 IO_L22P_YY K3 0 VCCO A2 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 5 R Virtex™-E 1.8 V Field Programmable Gate Arrays CS144 Differential Pin Pairs Table 4: CS144 — XCV50E, XCV100E, XCV200E Bank Pin Description Pin # 1 VCCO A13 1 VCCO D7 2 VCCO B12 3 VCCO G11 3 VCCO M13 4 VCCO N13 5 VCCO N1 5 VCCO N7 6 VCCO M2 7 VCCO B2 7 VCCO G2 Virtex-E devices have differential pin pairs that can also provide other functions when not used as a differential pair. A √ in the AO column indicates that the pin pair can be used as an asynchronous output for all devices provided in this package. Pairs with a note number in the AO column are device dependent. They can have asynchronous outputs if the pin pair are in the same CLB row and column in the device. Numbers in this column refer to footnotes that indicate which devices have pin pairs than can be asynchronous outputs. The Other Functions column indicates alternative function(s) not available when the pair is used as a differential pair or differential clock. Table 5: CS144 Differential Pin Pair Summary XCV50E, XCV100E, XCV200E Pair Bank P N Pin Pin Other AO Functions Global Differential Clock NA GND A1 0 4 K7 N8 NA IO_DLL_L18P NA GND B9 1 5 M7 M6 NA IO_DLL_L18N NA GND B11 2 1 A7 B7 NA IO_DLL_L2P NA GND C7 3 0 A6 C6 NA IO_DLL_L2N NA GND D5 IO LVDS NA GND E4 Total Pairs: 30, Asynchronous Output Pairs: 18 NA GND E11 0 0 A4 B4 √ VREF NA GND F1 1 0 A5 B5 √ - NA GND G10 2 1 B7 C6 NA IO_LVDS_DLL NA GND J1 3 1 D8 C8 √ - NA GND J12 4 1 D9 C9 √ VREF NA GND L3 5 1 D10 C10 √ CS, WRITE NA GND L5 6 2 C11 C12 √ DIN, D0 NA GND L7 7 2 D13 E10 1 D1, VREF NA GND L9 8 2 E12 E13 √ D2 NA GND N12 9 2 F10 F11 1 D3, VREF 10 3 F13 G13 NA - 11 3 H12 H11 1 D4, VREF 12 3 H10 J13 √ D5 13 3 J11 J10 1 D6, VREF 14 3 K10 L13 √ INIT 15 4 L11 M11 √ - 16 4 N10 K9 √ VREF 17 4 N9 K8 √ - Notes: 1. VREF or I/O option only in the XCV200E; otherwise, I/O option only. 2. VREF or I/O option only in the XCV100E, 200E; otherwise, I/O option only. Module 4 of 4 6 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 5: CS144 Differential Pin Pair Summary XCV50E, XCV100E, XCV200E P N Table 6: PQ240 — XCV50E, XCV100E, XCV200E, XCV300E, XCV400E Other Pin # Pin Description Bank Pair Bank Pin Pin AO Functions P222 IO 0 18 5 N8 M6 NA IO_LVDS_DLL P221 IO_L4N_Y 0 19 5 K6 N5 √ - P220 IO_L4P_Y 0 20 5 K5 N4 √ VREF P218 IO_VREF_L5N_Y 0 21 5 N3 M3 √ - P217 IO_L5P_Y 0 22 6 K3 L1 √ - P2163 IO_VREF 0 23 6 J2 J3 1 VREF P215 IO_LVDS_DLL_L6N 0 24 6 H3 H4 √ - P213 GCK3 0 25 6 H1 H2 1 VREF 26 7 F2 G1 NA - P210 GCK2 1 27 7 E1 F4 1 VREF P209 IO_LVDS_DLL_L6P 1 28 7 E3 E2 √ - P2083 IO_VREF 1 29 7 D2 D1 1 VREF P206 IO_L7N_Y 1 P205 IO_VREF_L7P_Y 1 P203 IO_L8N_Y 1 P202 IO_L8P_Y 1 P201 IO 1 P200 IO_L9N_YY 1 P199 IO_L9P_YY 1 P195 IO_L10N_YY 1 P1941 IO_VREF_L10P_YY 1 P193 IO 1 P192 IO_L11N_YY 1 Note 1: AO in the XCV50E PQ240 Plastic Quad Flat-Pack Packages XCV50E, XCV100E, XCV200E, XCV300E and XCV400E devices in PQ240 Plastic Flat-pack packages have footprint compatibility. Pins labeled I0_VREF can be used as either in all parts unless device-dependent as indicated in the footnotes. If the pin is not used as VREF, it can be used as general I/O. Immediately following Table 6, see Table 7 for Differential Pair information. Table 6: PQ240 — XCV50E, XCV100E, XCV200E, XCV300E, XCV400E Pin # Pin Description Bank P191 IO_VREF_L11P_YY 1 P238 IO 0 P189 IO_L12N_YY 1 P237 IO_L0N_Y 0 P188 IO_L12P_YY 1 P2362 IO_VREF_L0P_Y 0 P1872 IO_VREF_L13N_Y 1 P235 IO_L1N_YY 0 P186 IO_L13P_Y 1 P234 IO_L1P_YY 0 P185 IO_WRITE_L14N_YY 1 P231 IO_VREF 0 P184 IO_CS_L14P_YY 1 P230 IO 0 P2291 IO_VREF_L2N_YY 0 P178 IO_DOUT_BUSY_L15P_YY 2 P228 IO_L2P_YY 0 P177 IO_DIN_D0_L15N_YY 2 P224 IO_L3N_YY 0 P1752 IO_VREF 2 P223 IO_L3P_YY 0 P174 IO_L16P_Y 2 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 7 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 6: PQ240 — XCV50E, XCV100E, XCV200E, XCV300E, XCV400E Table 6: PQ240 — XCV50E, XCV100E, XCV200E, XCV300E, XCV400E Pin # Pin Description Bank Pin # Pin Description Bank P173 IO_L16N_Y 2 P125 IO_L30N_Y 3 P171 IO_VREF_L17P_Y 2 P124 IO_D7_L31P_YY 3 P170 IO_L17N_Y 2 P123 IO_INIT_L31N_YY 3 P169 IO 2 P1681 IO_VREF_L18P_Y 2 P118 IO_L32P_YY 4 P167 IO_D1_L18N_Y 2 P117 IO_L32N_YY 4 P163 IO_D2_L19P_YY 2 P1152 IO_VREF 4 P162 IO_L19N_YY 2 P114 IO_L33P_YY 4 P161 IO 2 P113 IO_L33N_YY 4 P160 IO_L20P_Y 2 P111 IO_VREF_L34P_YY 4 P159 IO_L20N_Y 2 P110 IO_L34N_YY 4 P157 IO_VREF_L21P_Y 2 P109 IO 4 P156 IO_D3_L21N_Y 2 P1081 IO_VREF_L35P_YY 4 P155 IO_L22P_Y 2 P107 IO_L35N_YY 4 P1543 IO_VREF_L22N_Y 2 P103 IO_L36P_YY 4 P153 IO_L23P_YY 2 P102 IO_L36N_YY 4 P152 IO_L23N_YY 2 P101 IO 4 P100 IO_L37P_Y 4 P149 IO 3 P99 IO_L37N_Y 4 P1473 IO_VREF 3 P97 IO_VREF_L38P_Y 4 P145 IO_D4_L24P_Y 3 P96 IO_L38N_Y 4 P144 IO_VREF_L24N_Y 3 P95 IO_L39P_Y 4 P142 IO_L25P_Y 3 P943 IO_VREF_L39N_Y 4 P141 IO_L25N_Y 3 P93 IO_LVDS_DLL_L40P 4 P140 IO 3 P92 GCK0 4 P139 IO_L26P_YY 3 P138 IO_D5_L26N_YY 3 P89 GCK1 5 P134 IO_D6_L27P_Y 3 P87 IO_LVDS_DLL_L40N 5 P1331 IO_VREF_L27N_Y 3 P863 IO_VREF 5 P132 IO 3 P84 IO_VREF_L41P_Y 5 P131 IO_L28P_Y 3 P82 IO_L41N_Y 5 P130 IO_VREF_L28N_Y 3 P81 IO 5 P128 IO_L29P_Y 3 P80 IO 5 P127 IO_L29N_Y 3 P79 IO_L42P_YY 5 P1262 IO_VREF_L30P_Y 3 P78 IO_L42N_YY 5 Module 4 of 4 8 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 6: PQ240 — XCV50E, XCV100E, XCV200E, XCV300E, XCV400E Table 6: PQ240 — XCV50E, XCV100E, XCV200E, XCV300E, XCV400E Pin # Pin Description Bank Pin # Pin Description Bank P74 IO_L43P_YY 5 P263 IO_VREF 7 P731 IO_VREF_L43N_YY 5 P24 IO_L57N_Y 7 P72 IO 5 P23 IO_VREF_L57P_Y 7 P71 IO_L44P_YY 5 P21 IO_L58N_Y 7 P70 IO_VREF_L44N_YY 5 P20 IO_L58P_Y 7 P68 IO_L45P_YY 5 P19 IO 7 P67 IO_L45N_YY 5 P18 IO_L59N_YY 7 P662 IO_VREF_L46P_Y 5 P17 IO_L59P_YY 7 P65 IO_L46N_Y 5 P13 IO_L60N_Y 7 P64 IO_L47P_YY 5 P121 IO_VREF_L60P_Y 7 P63 IO_L47N_YY 5 P11 IO 7 P10 IO_L61N_Y 7 P57 IO_L48N_YY 6 P9 IO_VREF_L61P_Y 7 P56 IO_L48P_YY 6 P7 IO_L62N_Y 7 P542 IO_VREF 6 P6 IO_L62P_Y 7 P53 IO_L49N_Y 6 P52 IO_VREF_L63N_Y 7 P52 IO_L49P_Y 6 P4 IO_L63P_Y 7 P50 IO_VREF_L50N_Y 6 P3 IO 7 P49 IO_L50P_Y 6 P48 IO 6 P179 CCLK 2 P471 IO_VREF_L51N_Y 6 P120 DONE 3 P46 IO_L51P_Y 6 P60 M0 NA P42 IO_L52N_YY 6 P58 M1 NA P41 IO_L52P_YY 6 P62 M2 NA P40 IO 6 P122 PROGRAM NA P39 IO_L53N_Y 6 P183 TDI NA P38 IO_L53P_Y 6 P239 TCK NA P36 IO_VREF_L54N_Y 6 P181 TDO 2 P35 IO_L54P_Y 6 P2 TMS NA P34 IO_L55N_Y 6 P333 IO_VREF_L55P_Y 6 P225 VCCINT NA P31 IO 6 P214 VCCINT NA P198 VCCINT NA P28 IO_L56N_YY 7 P164 VCCINT NA P27 IO_L56P_YY 7 P148 VCCINT NA DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 9 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 6: PQ240 — XCV50E, XCV100E, XCV200E, XCV300E, XCV400E Table 6: PQ240 — XCV50E, XCV100E, XCV200E, XCV300E, XCV400E Pin # Pin Description Bank Pin # Pin Description Bank P137 VCCINT NA P219 GND NA P104 VCCINT NA P211 GND NA P88 VCCINT NA P204 GND NA P77 VCCINT NA P196 GND NA P43 VCCINT NA P190 GND NA P32 VCCINT NA P182 GND NA P16 VCCINT NA P172 GND NA P166 GND NA P240 VCCO 7 P158 GND NA P232 VCCO 0 P151 GND NA P226 VCCO 0 P143 GND NA P212 VCCO 0 P135 GND NA P207 VCCO 1 P129 GND NA P197 VCCO 1 P119 GND NA P180 VCCO 1 P112 GND NA P176 VCCO 2 P106 GND NA P165 VCCO 2 P98 GND NA P150 VCCO 2 P91 GND NA P146 VCCO 3 P83 GND NA P136 VCCO 3 P75 GND NA P121 VCCO 3 P69 GND NA P116 VCCO 4 P59 GND NA P105 VCCO 4 P51 GND NA P90 VCCO 4 P45 GND NA P85 VCCO 5 P37 GND NA P76 VCCO 5 P29 GND NA P61 VCCO 5 P22 GND NA P55 VCCO 6 P14 GND NA P44 VCCO 6 P8 GND NA P30 VCCO 6 P1 GND NA P25 VCCO 7 P15 VCCO 7 P233 GND NA P227 GND NA Module 4 of 4 10 Notes: 1. VREF or I/O option only in the XCV100E, 200E, 300E, 400E; otherwise, I/O option only. 2. VREF or I/O option only in the XCV200E, 300E, 400E; otherwise, I/O option only. 3. VREF or I/O option only in the XCV400E; otherwise, I/O option only. www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays PQ240 Differential Pin Pairs Virtex-E devices have differential pin pairs that can also provide other functions when not used as a differential pair. A √ in the AO column indicates that the pin pair can be used as an asynchronous output for all devices provided in this package. Pairs with a note number in the AO column are device dependent. They can have asynchronous outputs if the pin pair are in the same CLB row and column in the device. Numbers in this column refer to footnotes that indicate which devices have pin pairs than can be asynchronous outputs. The Other Functions column indicates alternative function(s) not available when the pair is used as a differential pair or differential clock. . Table 7: PQ240 Differential Pin Pair Summary XCV50E, XCV100E, XCV200E, XCV300E, XCV400E Other Pair Bank P Pin N Pin AO Functions Global Differential Clock Table 7: PQ240 Differential Pin Pair Summary XCV50E, XCV100E, XCV200E, XCV300E, XCV400E Other Pair Bank P Pin N Pin AO Functions 16 2 P174 P173 2 - 17 2 P171 P170 3 VREF 18 2 P168 P167 4 D1, VREF 19 2 P163 P162 √ D2 20 2 P160 P159 2 - 21 2 P157 P156 4 D3, VREF 22 2 P155 P154 5 VREF 23 2 P153 P152 √ - 24 3 P145 P144 4 D4, VREF 25 3 P142 P141 2 - 0 4 P92 P93 NA IO_DLL_L40P 26 3 P139 P138 √ D5 1 5 P89 P87 NA IO_DLL_L40N 27 3 P134 P133 4 VREF 2 1 P210 P209 NA IO_DLL_L6P 28 3 P131 P130 3 VREF 3 0 P213 P215 NA IO_DLL_L6N 29 3 P128 P127 2 - IO LVDS 30 3 P126 P125 6 VREF Total Pairs: 64, Asynchronous Outputs Pairs: 27 31 3 P124 P123 √ INIT 0 0 P236 P237 1 VREF 32 4 P118 P117 √ - 1 0 P234 P235 √ - 33 4 P114 P113 √ - 2 0 P228 P229 √ VREF 34 4 P111 P110 √ VREF 3 0 P223 P224 √ - 35 4 P108 P107 √ VREF 4 0 P220 P221 3 - 36 4 P103 P102 √ - 5 0 P217 P218 3 VREF 37 4 P100 P99 3 - 6 1 P209 P215 NA IO_LVDS_DLL 38 4 P97 P96 3 VREF 7 1 P205 P206 3 VREF 39 4 P95 P94 7 VREF 8 1 P202 P203 3 - 40 5 P93 P87 NA IO_LVDS_DLL 9 1 P199 P200 √ - 41 5 P84 P82 8 VREF 10 1 P194 P195 √ VREF 42 5 P79 P78 √ - 11 1 P191 P192 √ VREF 43 5 P74 P73 √ VREF 12 1 P188 P189 √ - 44 5 P71 P70 √ VREF 13 1 P186 P187 1 VREF 45 5 P68 P67 √ - 14 1 P184 P185 √ CS 46 5 P66 P65 1 VREF 15 2 P178 P177 √ DIN, D0 47 5 P64 P63 √ - DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 11 R Virtex™-E 1.8 V Field Programmable Gate Arrays HQ240 High-Heat Quad Flat-Pack Packages Table 7: PQ240 Differential Pin Pair Summary XCV50E, XCV100E, XCV200E, XCV300E, XCV400E Other Pair Bank P Pin N Pin AO Functions 48 6 P56 P57 √ - 49 6 P52 P53 2 - 50 6 P49 P50 3 VREF 51 6 P46 P47 4 VREF 52 6 P41 P42 √ - 53 6 P38 P39 2 - 54 6 P35 P36 4 VREF 55 6 P33 P34 5 VREF 56 7 P27 P28 √ 57 7 P23 P24 58 7 P20 59 7 60 XCV600E and XCV1000E devices in High-heat dissipation Quad Flat-pack packages have footprint compatibility. Pins labeled I0_VREF can be used as either in all parts unless device-dependent as indicated in the footnotes. If the pin is not used as VREF, it can be used as general I/O. Immediately following Table 8, see Table 9 for Differential Pair information. Table 8: HQ240 — XCV600E, XCV1000E Pin # Pin Description Bank P240 VCCO 7 P239 TCK NA P238 IO 0 P237 IO_L0N 0 - P236 IO_VREF_L0P 0 4 VREF P235 IO_L1N_YY 0 P21 2 - P234 IO_L1P_YY 0 P17 P18 √ - P233 GND NA 7 P12 P13 4 VREF P232 VCCO 0 61 7 P9 P10 3 VREF P231 IO_VREF 0 62 7 P6 P7 2 - P230 IO_VREF 0 63 7 P4 P5 6 VREF P229 IO_VREF_L2N_YY 0 P228 IO_L2P_YY 0 P227 GND NA P226 VCCO 0 P225 VCCINT NA P224 IO_L3N_YY 0 P223 IO_L3P_YY 0 P222 IO_VREF 01 P221 IO_L4N_Y 0 P220 IO_L4P_Y 0 P219 GND NA P218 IO_VREF_L5N_Y 0 P217 IO_L5P_Y 0 P216 IO_VREF 0 P215 IO_LVDS_DLL_L6N 0 P214 VCCINT NA P213 GCK3 0 P212 VCCO 0 P211 GND NA Notes: 1. AO in the XCV50E. 2. AO in the XCV50E, 100E, 200E, 300E. 3. AO in the XCV50E, 200E, 300E, 400E. 4. AO in the XCV50E, 300E, 400E. 5. AO in the XCV100E, 200E, 400E. 6. AO in the XCV100E, 400E. 7. AO in the XCV50E, 200E, 400E. 8. AO in the XCV100E. Module 4 of 4 12 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 8: HQ240 — XCV600E, XCV1000E Table 8: HQ240 — XCV600E, XCV1000E Pin # Pin Description Bank Pin # Pin Description Bank P210 GCK2 1 P174 IO_L16P_Y 2 P209 IO_LVDS_DLL_L6P 1 P173 IO_L16N_Y 2 P208 IO_VREF 1 P172 GND NA P207 VCCO 1 P171 IO_VREF_L17P_Y 2 P206 IO_L7N_Y 1 P170 IO_L17N_Y 2 P205 IO_VREF_L7P_Y 1 P169 IO_VREF 2 P204 GND NA P168 IO_VREF_L18P_Y 2 P203 IO_L8N_Y 1 P167 IO_D1_L18N_Y 2 P202 IO_L8P_Y 1 P166 GND NA P2011 IO_VREF 1 P165 VCCO 2 P200 IO_L9N_YY 1 P164 VCCINT NA P199 IO_L9P_YY 1 P163 IO_D2_L19P_YY 2 P198 VCCINT NA P162 IO_L19N_YY 2 P197 VCCO 1 P1611 IO_VREF 2 P196 GND NA P160 IO_L20P_Y 2 P195 IO_L10N_YY 1 P159 IO_L20N_Y 2 P194 IO_VREF_L10P_YY 1 P158 GND NA P193 IO_VREF 1 P157 IO_VREF_L21P_Y 2 P192 IO_L11N_YY 1 P156 IO_D3_L21N_Y 2 P191 IO_VREF_L11P_YY 1 P155 IO_L22P_Y 2 P190 GND NA P154 IO_VREF_L22N_Y 2 P189 IO_L12N_YY 1 P153 IO_L23P_YY 2 P188 IO_L12P_YY 1 P152 IO_L23N_YY 2 P187 IO_VREF_L13N 1 P151 GND NA P186 IO_L13P 1 P150 VCCO 2 P185 IO_WRITE_L14N_YY 1 P149 IO 3 P184 IO_CS_L14P_YY 1 P148 VCCINT NA P183 TDI NA P147 IO_VREF 3 P182 GND NA P146 VCCO 3 P181 TDO 2 P145 IO_D4_L24P_Y 3 P180 VCCO 1 P144 IO_VREF_L24N_Y 3 P179 CCLK 2 P143 GND NA P178 IO_DOUT_BUSY_L15P_YY 2 P142 IO_L25P_Y 3 P177 IO_DIN_D0_L15N_YY 2 P141 IO_L25N_Y 3 P176 VCCO 2 P1401 IO_VREF 3 P175 IO_VREF 2 P139 IO_L26P_YY 3 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 13 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 8: HQ240 — XCV600E, XCV1000E Table 8: HQ240 — XCV600E, XCV1000E Pin # Pin Description Bank Pin # Pin Description Bank P138 IO_D5_L26N_YY 3 P102 IO_L36N_YY 4 P137 VCCINT NA P1011 IO_VREF 4 P136 VCCO 3 P100 IO_L37P_Y 4 P135 GND NA P99 IO_L37N_Y 4 P134 IO_D6_L27P_Y 3 P98 GND NA P133 IO_VREF_L27N_Y 3 P97 IO_VREF_L38P_Y 4 P132 IO_VREF 3 P96 IO_L38N_Y 4 P131 IO_L28P_Y 3 P95 IO_L39P 4 P130 IO_VREF_L28N_Y 3 P94 IO_VREF_L39N 4 P129 GND NA P93 IO_LVDS_DLL_L40P 4 P128 IO_L29P_Y 3 P92 GCK0 4 P127 IO_L29N_Y 3 P91 GND NA P126 IO_VREF_L30P_Y 3 P90 VCCO 4 P125 IO_L30N_Y 3 P89 GCK1 5 P124 IO_D7_L31P_YY 3 P88 VCCINT NA P123 IO_INIT_L31N_YY 3 P87 IO_LVDS_DLL_L40N 5 P122 PROGRAM NA P86 IO_VREF 5 P121 VCCO 3 P85 VCCO 5 P120 DONE 3 P84 IO_VREF_L41P 5 P119 GND NA P83 GND NA P118 IO_L32P_YY 4 P82 IO_L41N 5 P117 IO_L32N_YY 4 P81 IO 5 P116 VCCO 4 P801 IO_VREF 5 P115 IO_VREF 4 P79 IO_L42P_YY 5 P114 IO_L33P_YY 4 P78 IO_L42N_YY 5 P113 IO_L33N_YY 4 P77 VCCINT NA P112 GND NA P76 VCCO 5 P111 IO_VREF_L34P_YY 4 P75 GND NA P110 IO_L34N_YY 4 P74 IO_L43P_YY 5 P109 IO_VREF 4 P73 IO_VREF_L43N_YY 5 P108 IO_VREF_L35P_YY 4 P72 IO_VREF 5 P107 IO_L35N_YY 4 P71 IO_L44P_YY 5 P106 GND NA P70 IO_VREF_L44N_YY 5 P105 VCCO 4 P69 GND NA P104 VCCINT NA P68 IO_L45P_YY 5 P103 IO_L36P_YY 4 P67 IO_L45N_YY 5 Module 4 of 4 14 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 8: HQ240 — XCV600E, XCV1000E Table 8: HQ240 — XCV600E, XCV1000E Pin # Pin Description Bank Pin # Pin Description Bank P66 IO_VREF_L46P 5 P30 VCCO 6 P65 IO_L46N 5 P29 GND NA P64 IO_L47P_YY 5 P28 IO_L56N_YY 7 P63 IO_L47N_YY 5 P27 IO_L56P_YY 7 P62 M2 NA P26 IO_VREF 7 P61 VCCO 5 P25 VCCO 7 P60 M0 NA P24 IO_L57N_Y 7 P59 GND NA P23 IO_VREF_L57P_Y 7 P58 M1 NA P22 GND NA P57 IO_L48N_YY 6 P21 IO_L58N_Y 7 P56 IO_L48P_YY 6 P20 IO_L58P_Y 7 P55 VCCO 6 P191 IO_VREF 7 P54 IO_VREF 6 P18 IO_L59N_YY 7 P53 IO_L49N_Y 6 P17 IO_L59P_YY 7 P52 IO_L49P_Y 6 P16 VCCINT NA P51 GND NA P15 VCCO 7 P50 IO_VREF_L50N_Y 6 P14 GND NA P49 IO_L50P_Y 6 P13 IO_L60N_Y 7 P48 IO_VREF 6 P12 IO_VREF_L60P_Y 7 P47 IO_VREF_L51N_Y 6 P11 IO_VREF 7 P46 IO_L51P_Y 6 P10 IO_L61N_Y 7 P45 GND NA P9 IO_VREF_L61P_Y 7 P44 VCCO 6 P8 GND NA P43 VCCINT NA P7 IO_L62N_Y 7 P42 IO_L52N_YY 6 P6 IO_L62P_Y 7 P41 IO_L52P_YY 6 P5 IO_VREF_L63N_Y 7 P401 IO_VREF 6 P4 IO_L63P_Y 7 P39 IO_L53N_Y 6 P3 IO 7 P38 IO_L53P_Y 6 P2 TMS NA P37 GND NA P1 GND NA P36 IO_VREF_L54N_Y 6 P35 IO_L54P_Y 6 P34 IO_L55N_Y 6 P33 IO_VREF_L55P_Y 6 P32 VCCINT NA P31 IO 6 DS022-4 (v2.5) March 14, 2003 Production Product Specification Notes: 1. VREF or I/O option only in the XCV1000E; otherwise, I/O option only. www.xilinx.com 1-800-255-7778 Module 4 of 4 15 R Virtex™-E 1.8 V Field Programmable Gate Arrays HQ240 Differential Pin Pairs Virtex-E devices have differential pin pairs that can also provide other functions when not used as a differential pair. A √ in the AO column indicates that the pin pair can be used as an asynchronous output for all devices provided in this package. Pairs with a note number in the AO column are device dependent. They can have asynchronous outputs if the pin pair are in the same CLB row and column in the device. Numbers in this column refer to footnotes that indicate which devices have pin pairs than can be asynchronous outputs. The Other Functions column indicates alternative function(s) not available when the pair is used as a differential pair or differential clock. Table 9: HQ240 Differential Pin Pair Summary XCV600E, XCV1000E Pair Bank P N Pin Pin Other AO Functions Global Differential Clock Table 9: HQ240 Differential Pin Pair Summary XCV600E, XCV1000E P N Other Pair Bank Pin Pin AO Functions 16 2 P174 P173 √ - 17 2 P171 P170 √ VREF 18 2 P168 P167 √ D1 19 2 P163 P162 √ D2 20 2 P160 P159 √ - 21 2 P157 P156 √ D3 22 2 P155 P154 1 VREF 23 2 P153 P152 √ - 24 3 P145 P144 √ D4, VREF 25 3 P142 P141 √ - 0 4 P92 P93 NA IO _DLL_L40P 26 3 P139 P138 √ D5 1 5 P89 P87 NA IO _DLL_L40N 27 3 P134 P133 √ VREF 2 1 P210 P209 NA IO _DLL_L6P 28 3 P131 P130 √ VREF 3 0 P213 P215 NA IO _DLL_L6N 29 3 P128 P127 √ - IO LVDS 30 3 P126 P125 1 VREF Total Pairs: 64, Asynchronous Output Pairs: 53 31 3 P124 P123 √ INIT 0 0 P236 P237 NA VREF 32 4 P118 P117 √ - 1 0 P234 P235 √ - 33 4 P114 P113 √ - 2 0 P228 P229 √ VREF 34 4 P111 P110 √ VREF 3 0 P223 P224 √ - 35 4 P108 P107 √ VREF 4 0 P220 P221 √ - 36 4 P103 P102 √ - 5 0 P217 P218 √ VREF 37 4 P100 P99 √ - 6 1 P209 P215 NA IO_LVDS_DLL 38 4 P97 P96 √ VREF 7 1 P205 P206 √ VREF 39 4 P95 P94 NA VREF 8 1 P202 P203 √ - 40 5 P93 P87 NA IO_LVDS_DLL 9 1 P199 P200 √ - 41 5 P84 P82 NA VREF 10 1 P194 P195 √ VREF 42 5 P79 P78 √ - 11 1 P191 P192 √ VREF 43 5 P74 P73 √ VREF 12 1 P188 P189 √ - 44 5 P71 P70 √ VREF 13 1 P186 P187 NA VREF 45 5 P68 P67 √ - 14 1 P184 P185 √ CS 46 5 P66 P65 NA VREF 15 2 P178 P177 √ DIN, D0 47 5 P64 P63 √ - Module 4 of 4 16 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays BG352 Ball Grid Array Packages Table 9: HQ240 Differential Pin Pair Summary XCV600E, XCV1000E P N Other Pair Bank Pin Pin AO Functions 48 6 P56 P57 √ - 49 6 P52 P53 √ - 50 6 P49 P50 √ VREF 51 6 P46 P47 √ VREF 52 6 P41 P42 √ - 53 6 P38 P39 √ - 54 6 P35 P36 √ VREF 55 6 P33 P34 1 VREF 56 7 P27 P28 √ - 57 7 P23 P24 √ VREF 58 7 P20 P21 √ - 59 7 P17 P18 √ - 60 7 P12 P13 √ VREF 61 7 P9 P10 √ VREF 62 7 P6 P7 √ - 63 7 P4 P5 1 VREF Note 1: AO in the XCV600E. DS022-4 (v2.5) March 14, 2003 Production Product Specification XCV100E, XCV200E, and XCV300E devices in BG352 Ball Grid Array packages have footprint compatibility. Pins labeled I0_VREF can be used as either in all parts unless device-dependent as indicated in the footnotes. If the pin is not used as VREF, it can be used as general I/O. Immediately following Table 10, see Table 11 for Differential Pair information. Table 10: BG352 — XCV100E, XCV200E, XCV300E Bank Pin Description Pin # 0 IO D22 0 IO C231 0 IO B241 0 IO C22 0 IO_VREF_0_L0N_YY D212 0 IO_L0P_YY B23 0 IO A241 0 IO_L1N_YY A23 0 IO_L1P_YY D20 0 IO_VREF_0_L2N_YY C21 0 IO_L2P_YY B22 0 IO B211 0 IO C201 0 IO_L3N B20 0 IO_L3P A21 0 IO D18 0 IO_VREF_0_L4N_YY C19 0 IO_L4P_YY B19 0 IO_L5N_YY D17 0 IO_L5P_YY C18 0 IO B181 0 IO_L6N C17 0 IO_L6P A18 0 IO D161 0 IO_L7N_Y B17 0 IO_L7P_Y C16 0 IO_VREF_0_L8N_Y A16 0 IO_L8P_Y D15 www.xilinx.com 1-800-255-7778 Module 4 of 4 17 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 10: BG352 — XCV100E, XCV200E, XCV300E Table 10: BG352 — XCV100E, XCV200E, XCV300E Bank Pin Description Pin # Bank Pin Description Pin # 0 IO C15 1 IO B4 0 IO B151 1 IO C51 0 IO_LVDS_DLL_L9N A15 1 IO A31 0 GCK3 D14 1 IO_WRITE_L20N_YY D5 1 IO_CS_L20P_YY C4 1 GCK2 B14 1 IO_LVDS_DLL_L9P A13 2 IO_DOUT_BUSY_L21P_YY E4 1 IO B131 2 IO_DIN_D0_L21N_YY D3 1 IO_L10N C13 2 IO C21 1 IO_L10P A12 2 IO E31 1 IO_L11N_Y B12 2 IO F4 1 IO_VREF_1_L11P_Y C12 2 IO_VREF_2_L22P_YY D22 1 IO_L12N_Y A11 2 IO_L22N_YY C1 1 IO_L12P_Y B11 2 IO D11 1 IO B101 2 IO_L23P_YY G4 1 IO_L13N C11 2 IO_L23N_YY F3 1 IO_L13P D11 2 IO_VREF_2_L24P_Y E2 1 IO A91 2 IO_L24N_Y F2 1 IO_L14N_YY B9 2 IO G31 1 IO_L14P_YY C10 2 IO G21 1 IO_L15N_YY B8 2 IO_L25P F1 1 IO_VREF_1_L15P_YY C9 2 IO_L25N J4 1 IO_L16N _Y D9 2 IO H3 1 IO_L16P _Y A7 2 IO_VREF_2_L26P _Y H2 1 IO B7 2 IO_D1_L26N _Y G1 1 IO C81 2 IO_D2_L27P_YY J3 1 IO D81 2 IO_L27N_YY J2 1 IO_L17N_YY A6 2 IO K31 1 IO_VREF_1_L17P_YY B6 2 IO_L28P J1 1 IO_L18N_YY C7 2 IO_L28N L4 1 IO_L18P_YY A4 2 IO K21 1 IO B51 2 IO_L29P_YY L3 1 IO_L19N_YY C6 2 IO_L29N_YY L2 1 IO_VREF_1_L19P_YY D62 2 IO_VREF_2_L30P _Y M4 Module 4 of 4 18 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 10: BG352 — XCV100E, XCV200E, XCV300E Table 10: BG352 — XCV100E, XCV200E, XCV300E Bank Pin Description Pin # Bank Pin Description Pin # 2 IO_D3_L30N _Y M3 3 IO_VREF_3_L42N_YY AC22 2 IO_L31P M2 3 IO AB3 2 IO_L31N M1 3 IO AD11 2 IO N31 3 IO AB41 2 IO_L32P_YY N4 3 IO_D7_L43P_YY AC3 2 IO_L32N_YY N2 3 IO_INIT_L43N_YY AD2 3 IO P1 4 IO_L44P_YY AC5 3 IO P31 4 IO_L44N_YY AD4 3 IO_L33P R1 4 IO AE31 3 IO_L33N R2 4 IO AD51 3 IO_D4_L34P _Y R3 4 IO AC6 3 IO_VREF_3_L34N _Y R4 4 IO_VREF_4_L45P_YY AE42 3 IO_L35P_YY T2 4 IO_L45N_YY AF3 3 IO_L35N_YY U2 4 IO AF41 3 IO T31 4 IO_L46P_YY AC7 3 IO_L36P T4 4 IO_L46N_YY AD6 3 IO_L36N V1 4 IO_VREF_4_L47P_YY AE5 3 IO V21 4 IO_L47N_YY AE6 3 IO_L37P_YY U3 4 IO AD71 3 IO_D5_L37N_YY U4 4 IO AE71 3 IO_D6_L38P _Y V3 4 IO_L48P AF6 3 IO_VREF_3_L38N _Y V4 4 IO_L48N AC9 3 IO_L39P _Y Y1 4 IO AD8 3 IO_L39N _Y Y2 4 IO_VREF_4_L49P_YY AE8 3 IO W3 4 IO_L49N_YY AF7 3 IO W41 4 IO_L50P_YY AD9 3 IO AA11 4 IO_L50N_YY AE9 3 IO_L40P_Y AA2 4 IO AD101 3 IO_VREF_3_L40N_Y Y3 4 IO_L51P AF9 3 IO_L41P_YY AC1 4 IO_L51N AC11 3 IO_L41N_YY AB2 4 IO AE101 3 IO AA31 4 IO_L52P_Y AD11 3 IO_L42P_YY AA4 4 IO_L52N_Y AE11 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 19 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 10: BG352 — XCV100E, XCV200E, XCV300E Table 10: BG352 — XCV100E, XCV200E, XCV300E Bank Pin Description Pin # Bank Pin Description Pin # 4 IO_VREF_4_L53P_Y AC12 5 IO_L64P_YY AC21 4 IO_L53N_Y AD12 5 IO_VREF_5_L64N_YY AE232 4 IO_L54P AE12 5 IO AD22 4 IO_L54N AF12 5 IO AF241 4 IO AD131 5 IO AC221 4 IO_LVDS_DLL_L55P AC13 4 GCK0 AE13 6 IO_L65N_YY AC24 6 IO_L65P_YY AD25 5 GCK1 AF14 6 IO AB241 5 IO_LVDS_DLL_L55N AD14 6 IO AA231 5 IO AF151 6 IO AC25 5 IO AE15 6 IO_VREF_6_L66N_YY AD262 5 IO_L56P_Y AD15 6 IO_L66P_YY AC26 5 IO_VREF_5_L56N_Y AC15 6 IO Y231 5 IO_L57P_Y AE16 6 IO_L67N_YY AA24 5 IO_L57N_Y AE17 6 IO_L67P_YY AB25 5 IO AD161 6 IO_VREF_6_L68N_Y AA25 5 IO_L58P AC16 6 IO_L68P_Y Y24 5 IO_L58N AF18 6 IO Y251 5 IO AE181 6 IO AA261 5 IO_L59P_YY AD17 6 IO_L69N V23 5 IO_L59N_YY AC17 6 IO_L69P W24 5 IO_L60P_YY AD18 6 IO W25 5 IO_VREF_5_L60N_YY AC18 6 IO_VREF_6_L70N _Y Y26 5 IO_L61P _Y AF20 6 IO_L70P _Y U23 5 IO_L61N _Y AE20 6 IO_L71N_YY V25 5 IO AD19 6 IO_L71P_YY U24 5 IO AC191 6 IO V261 5 IO AF211 6 IO_L72N T23 5 IO_L62P_YY AE21 6 IO_L72P U25 5 IO_VREF_5_L62N_YY AD20 6 IO T241 5 IO_L63P_YY AF23 6 IO_L73N_YY T25 5 IO_L63N_YY AE22 6 IO_L73P_YY T26 5 IO AD211 6 IO_VREF_6_L74N _Y R24 Module 4 of 4 20 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 10: BG352 — XCV100E, XCV200E, XCV300E Table 10: BG352 — XCV100E, XCV200E, XCV300E Bank Pin Description Pin # Bank Pin Description Pin # 6 IO_L74P _Y R25 7 IO_VREF_7_L86P_YY E242 6 IO_L75N R26 7 IO C26 6 IO_L75P P24 7 IO E231 6 IO P231 7 IO D241 6 IO N26 7 IO C25 7 IO_L76N_YY N25 NA TDI B3 7 IO_L76P_YY N24 NA TDO D4 7 IO M261 NA CCLK C3 7 IO_L77N M25 NA TCK C24 7 IO_L77P M24 NA TMS D23 7 IO_L78N _Y M23 NA PROGRAM AC4 7 IO_VREF_7_L78P _Y L26 NA DONE AD3 7 IO_L79N_YY K25 NA DXN AD23 7 IO_L79P_YY L24 NA DXP AE24 7 IO L231 NA M2 AC23 7 IO_L80N J26 NA M0 AD24 7 IO_L80P J25 NA M1 AB23 7 IO K241 7 IO_L81N_YY K23 NA VCCINT A20 7 IO_L81P_YY H25 NA VCCINT B16 7 IO_L82N _Y J23 NA VCCINT C14 7 IO_VREF_7_L82P _Y G26 NA VCCINT D12 7 IO_L83N _Y G25 NA VCCINT D10 7 IO_L83P _Y H24 NA VCCINT K4 7 IO H23 NA VCCINT L1 7 IO F261 NA VCCINT P2 7 IO F251 NA VCCINT T1 7 IO_L84N_Y G24 NA VCCINT W2 7 IO_VREF_7_L84P_Y D26 NA VCCINT AC10 7 IO_L85N_YY E25 NA VCCINT AF11 7 IO_L85P_YY F24 NA VCCINT AE14 7 IO F231 NA VCCINT AF16 7 IO_L86N_YY D25 NA VCCINT AE19 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 21 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 10: BG352 — XCV100E, XCV200E, XCV300E Table 10: BG352 — XCV100E, XCV200E, XCV300E Bank Pin Description Pin # Bank Pin Description Pin # NA VCCINT V24 NA GND A19 NA VCCINT R23 NA GND A14 NA VCCINT P25 NA GND A8 NA VCCINT L25 NA GND A5 NA VCCINT J24 NA GND A2 NA GND A1 0 VCCO D19 NA GND B26 0 VCCO B25 NA GND B1 0 VCCO A17 NA GND E26 1 VCCO D13 NA GND E1 1 VCCO D7 NA GND H26 1 VCCO A10 NA GND H1 2 VCCO K1 NA GND N1 2 VCCO H4 NA GND P26 2 VCCO B2 NA GND W26 3 VCCO Y4 NA GND W1 3 VCCO U1 NA GND AB26 3 VCCO P4 NA GND AB1 4 VCCO AF10 NA GND AE26 4 VCCO AE2 NA GND AE1 4 VCCO AC8 NA GND AF26 5 VCCO AF17 NA GND AF25 5 VCCO AC20 NA GND AF22 5 VCCO AC14 NA GND AF19 6 VCCO AE25 NA GND AF13 6 VCCO W23 NA GND AF8 6 VCCO U26 NA GND AF5 7 VCCO N23 NA GND AF2 7 VCCO K26 NA GND AF1 7 VCCO G23 NA GND A26 NA GND A25 NA GND A22 Module 4 of 4 22 Notes: 1. No Connect in the XCV100E. 2. VREF or I/O option only in the XCV200E and XCV300E; otherwise, I/O option only. www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays BG352 Differential Pin Pairs Virtex-E devices have differential pin pairs that can also provide other functions when not used as a differential pair. A check (√) in the AO column indicates that the pin pair can be used as an asynchronous output for all devices provided in this package. Pairs with a note number in the AO column are device dependent. They can have asynchronous outputs if the pin pair are in the same CLB row and column in the device. Numbers in this column refer to footnotes that indicate which devices have pin pairs than can be asynchronous outputs. The Other Functions column indicates alternative function(s) not available when the pair is used as a differential pair or differential clock Pair Bank N Pin Pin AO P N Other Pair Bank Pin Pin AO Functions 19 1 D6 C6 √ VREF_1 20 1 C4 D5 √ CS 21 2 E4 D3 √ DIN_D0 22 2 D2 C1 √ VREF_2 23 2 G4 F3 √ - 24 2 E2 F2 √ VREF_2 25 2 F1 J4 2 - 26 2 H2 G1 √ D1 Other 27 2 J3 J2 √ D2 Functions 28 2 J1 L4 1 - 29 2 L3 L2 √ - Table 11: BG352 Differential Pin Pair Summary XCV100E, XCV200E, XCV300E P Table 11: BG352 Differential Pin Pair Summary XCV100E, XCV200E, XCV300E Global Differential Clock 0 4 AE13 AC13 NA IO LVDS 55 30 2 M4 M3 √ D3 1 5 AF14 AD14 NA IO LVDS 55 31 2 M2 M1 2 - 2 1 B14 A13 NA IO LVDS 9 32 2 N4 N2 √ - 3 0 D14 A15 NA IO LVDS 9 33 3 R1 R2 2 - IO LVDS 34 3 R3 R4 √ VREF_3 Total Outputs: 87, Asynchronous Output Pairs: 43 35 3 T2 U2 √ - 0 0 B23 D21 √ VREF_0 36 3 T4 V1 1 - 1 0 D20 A23 √ - 37 3 U3 U4 √ D5 2 0 B22 C21 √ VREF_0 38 3 V3 V4 √ VREF_3 3 0 A21 B20 2 - 39 3 Y1 Y2 1 - 4 0 B19 C19 √ VREF_0 40 3 AA2 Y3 √ VREF_3 5 0 C18 D17 √ - 41 3 AC1 AB2 √ - 6 0 A18 C17 2 - 42 3 AA4 AC2 √ VREF_3 7 0 C16 B17 √ - 43 3 AC3 AD2 √ INIT 8 0 D15 A16 √ VREF_0 44 4 AC5 AD4 √ - 9 1 A13 A15 √ GCLK LVDS 3/2 45 4 AE4 AF3 √ VREF_4 10 1 A12 C13 2 - 46 4 AC7 AD6 √ - 11 1 C12 B12 √ VREF_1 47 4 AE5 AE6 √ VREF_4 12 1 B11 A11 √ - 48 4 AF6 AC9 2 - 13 1 D11 C11 2 - 49 4 AE8 AF7 √ VREF_4 14 1 C10 B9 √ - 50 4 AD9 AE9 √ - 15 1 C9 B8 √ VREF_1 51 4 AF9 AC11 2 - 16 1 A7 D9 1 - 52 4 AD11 AE11 √ - 17 1 B6 A6 √ VREF_1 53 4 AC12 AD12 √ VREF_4 18 1 A4 C7 √ - 54 4 AE12 AF12 2 - DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 23 R Virtex™-E 1.8 V Field Programmable Gate Arrays BG432 Ball Grid Array Packages Table 11: BG352 Differential Pin Pair Summary XCV100E, XCV200E, XCV300E P N Other XCV300E, XCV400E, and XCV600E devices in BG432 Ball Grid Array packages have footprint compatibility. Pins labeled I0_VREF can be used as either in all parts unless device-dependent as indicated in the footnotes. If the pin is not used as VREF, it can be used as general I/O. Immediately following Table 12, see Table 13 for Differential Pair information. Pair Bank Pin Pin AO Functions 55 5 AC13 AD14 √ GCLK LVDS 1/0 56 5 AD15 AC15 √ VREF_5 57 5 AE16 AE17 √ - 58 5 AC16 AF18 2 - 59 5 AD17 AC17 √ - Bank Pin Description Pin # 60 5 AD18 AC18 √ VREF_5 0 GCK3 D17 61 5 AF20 AE20 1 - 0 IO A22 62 5 AE21 AD20 √ VREF_5 0 IO A26 63 5 AF23 AE22 √ - 0 IO B20 64 5 AC21 AE23 √ VREF_5 0 IO C23 65 6 AD25 AC24 √ - 0 IO C28 66 6 AC26 AD26 √ VREF_6 0 IO_L0N_Y B29 67 6 AB25 AA24 √ - 0 IO_L0P_Y D27 68 6 Y24 AA25 √ VREF_6 0 IO_L1N_YY B28 69 6 W24 V23 2 - 0 IO_L1P_YY C27 70 6 U23 Y26 √ VREF_6 0 IO_VREF_L2N_YY D26 71 6 U24 V25 √ - 0 IO_L2P_YY A28 72 6 U25 T23 1 - IO_L3N_Y B27 6 T26 T25 √ 0 73 - IO_L3P_Y C26 6 R25 R24 √ 0 74 VREF_6 0 IO_L4N_YY D25 75 6 P24 R26 2 - IO_L4P_YY A27 7 N24 N25 √ 0 76 - 77 7 M24 M25 2 - 0 IO_VREF_L5N_YY D24 78 7 L26 M23 √ VREF_7 0 IO_L5P_YY C25 79 7 L24 K25 √ - 0 IO_L6N_Y B25 80 7 J25 J26 1 - 0 IO_L6P_Y D23 81 7 H25 K23 √ - 0 IO_VREF_L7N_Y C241 82 7 G26 J23 √ VREF_7 0 IO_L7P_Y B24 83 7 H24 G25 1 - 0 IO_VREF_L8N_YY D22 84 7 D26 G24 √ VREF_7 0 IO_L8P_YY A24 85 7 F24 E25 √ - 0 IO_L9N_YY C22 86 7 E24 D25 √ VREF_7 0 IO_L9P_YY B22 0 IO_L10N_YY C21 0 IO_L10P_YY D20 0 IO_L11N_YY B21 0 IO_L11P_YY C20 Notes: 1. AO in the XCV100E. 2. AO in the XCV200E. Module 4 of 4 24 Table 12: BG432 — XCV300E, XCV400E, XCV600E www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 12: BG432 — XCV300E, XCV400E, XCV600E Table 12: BG432 — XCV300E, XCV400E, XCV600E Bank Pin Description Pin # Bank Pin Description Pin # 0 IO_L12N_YY A20 1 IO_L26P_Y B8 0 IO_L12P_YY D19 1 IO_L27N_YY C8 0 IO_VREF_L13N_YY B19 1 IO_VREF_L27P_YY B7 0 IO_L13P_YY A19 1 IO_L28N_YY D8 0 IO_L14N_Y B18 1 IO_L28P_YY A6 0 IO_L14P_Y D18 1 IO_L29N_Y B6 0 IO_VREF_L15N_Y C182 1 IO_L29P_Y D7 0 IO_L15P_Y B17 1 IO_L30N_YY A5 0 IO_LVDS_DLL_L16N C17 1 IO_VREF_L30P_YY C6 1 IO_L31N_YY B5 1 GCK2 A16 1 IO_L31P_YY D6 1 IO A12 1 IO_L32N_Y A4 1 IO B9 1 IO_L32P_Y C5 1 IO B11 1 IO_WRITE_L33N_YY B4 1 IO C16 1 IO_CS_L33P_YY D5 1 IO D9 1 IO_LVDS_DLL_L16P B16 2 IO H4 1 IO_L17N_Y A15 2 IO J3 1 IO_VREF_L17P_Y B152 2 IO L3 1 IO_L18N_Y C15 2 IO M1 1 IO_L18P_Y D15 2 IO R2 1 IO_L19N_YY B14 2 IO_DOUT_BUSY_L34P_YY D3 1 IO_VREF_L19P_YY A13 2 IO_DIN_D0_L34N_YY C2 1 IO_L20N_YY B13 2 IO_L35P D2 1 IO_L20P_YY D14 2 IO_L35N E4 1 IO_L21N_YY C13 2 IO_L36P_Y D1 1 IO_L21P_YY B12 2 IO_L36N_Y E3 1 IO_L22N_YY D13 2 IO_VREF_L37P_Y E2 1 IO_L22P_YY C12 2 IO_L37N_Y F4 1 IO_L23N_YY D12 2 IO_L38P E1 1 IO_L23P_YY C11 2 IO_L38N F3 1 IO_L24N_YY B10 2 IO_L39P_Y F2 1 IO_VREF_L24P_YY C10 2 IO_L39N_Y G4 1 IO_L25N_Y C9 2 IO_VREF_L40P_YY G3 1 IO_VREF_L25P_Y D101 2 IO_L40N_YY G2 1 IO_L26N_Y A8 2 IO_L41P_Y H3 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 25 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 12: BG432 — XCV300E, XCV400E, XCV600E Table 12: BG432 — XCV300E, XCV400E, XCV600E Bank Pin Description Pin # Bank Pin Description Pin # 2 IO_L41N_Y H2 3 IO_L56N_Y Y3 2 IO_VREF_L42P_Y H11 3 IO_L57P_Y Y4 2 IO_L42N_Y J4 3 IO_L57N_Y Y2 2 IO_VREF_L43P_YY J2 3 IO_L58P_YY AA3 2 IO_D1_L43N_YY K4 3 IO_D5_L58N_YY AB1 2 IO_D2_L44P_YY K2 3 IO_D6_L59P_YY AB3 2 IO_L44N_YY K1 3 IO_VREF_L59N_YY AB4 2 IO_L45P_Y L2 3 IO_L60P_Y AD1 2 IO_L45N_Y M4 3 IO_VREF_L60N_Y AC31 2 IO_L46P_Y M3 3 IO_L61P_Y AC4 2 IO_L46N_Y M2 3 IO_L61N_Y AD2 2 IO_L47P_Y N4 3 IO_L62P_YY AD3 2 IO_L47N_Y N3 3 IO_VREF_L62N_YY AD4 2 IO_VREF_L48P_YY N1 3 IO_L63P_Y AF2 2 IO_D3_L48N_YY P4 3 IO_L63N_Y AE3 2 IO_L49P_Y P3 3 IO_L64P AE4 2 IO_L49N_Y P2 3 IO_L64N AG1 2 IO_VREF_L50P_Y R32 3 IO_L65P_Y AG2 2 IO_L50N_Y R4 3 IO_VREF_L65N_Y AF3 2 IO_L51P_YY R1 3 IO_L66P_Y AF4 2 IO_L51N_YY T3 3 IO_L66N_Y AH1 3 IO_L67P AH2 3 IO AA2 3 IO_L67N AG3 3 IO AC2 3 IO_D7_L68P_YY AG4 3 IO AE2 3 IO_INIT_L68N_YY AJ2 3 IO U3 3 IO T2 3 IO W1 3 IO_L52P_Y U4 4 GCK0 AL16 3 IO_VREF_L52N_Y U22 4 IO AH10 3 IO_L53P_Y U1 4 IO AJ11 3 IO_L53N_Y V3 4 IO AK7 3 IO_D4_L54P_YY V4 4 IO AL12 3 IO_VREF_L54N_YY V2 4 IO AL15 3 IO_L55P_Y W3 4 IO_L69P_YY AJ4 3 IO_L55N_Y W4 4 IO_L69N_YY AK3 3 IO_L56P_Y Y1 4 IO_L70P_Y AH5 Module 4 of 4 26 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 12: BG432 — XCV300E, XCV400E, XCV600E Table 12: BG432 — XCV300E, XCV400E, XCV600E Bank Pin Description Pin # Bank Pin Description Pin # 4 IO_L70N_Y AK4 5 IO AJ23 4 IO_L71P_YY AJ5 5 IO AJ24 4 IO_L71N_YY AH6 5 IO_LVDS_DLL_L86N AL17 4 IO_VREF_L72P_YY AL4 5 IO_L87P_Y AK17 4 IO_L72N_YY AK5 5 IO_VREF_L87N_Y AJ172 4 IO_L73P_Y AJ6 5 IO_L88P_Y AH17 4 IO_L73N_Y AH7 5 IO_L88N_Y AK18 4 IO_L74P_YY AL5 5 IO_L89P_YY AL19 4 IO_L74N_YY AK6 5 IO_VREF_L89N_YY AJ18 4 IO_VREF_L75P_YY AJ7 5 IO_L90P_YY AH18 4 IO_L75N_YY AL6 5 IO_L90N_YY AL20 4 IO_L76P_Y AH9 5 IO_L91P_YY AK20 4 IO_L76N_Y AJ8 5 IO_L91N_YY AH19 4 IO_VREF_L77P_Y AK81 5 IO_L92P_YY AJ20 4 IO_L77N_Y AJ9 5 IO_L92N_YY AK21 4 IO_VREF_L78P_YY AL8 5 IO_L93P_YY AJ21 4 IO_L78N_YY AK9 5 IO_L93N_YY AL22 4 IO_L79P_YY AK10 5 IO_L94P_YY AJ22 4 IO_L79N_YY AL10 5 IO_VREF_L94N_YY AK23 4 IO_L80P_YY AH12 5 IO_L95P_Y AH22 4 IO_L80N_YY AK11 5 IO_VREF_L95N_Y AL241 4 IO_L81P_YY AJ12 5 IO_L96P_Y AK24 4 IO_L81N_YY AK12 5 IO_L96N_Y AH23 4 IO_L82P_YY AH13 5 IO_L97P_YY AK25 4 IO_L82N_YY AJ13 5 IO_VREF_L97N_YY AJ25 4 IO_VREF_L83P_YY AL13 5 IO_L98P_YY AL26 4 IO_L83N_YY AK14 5 IO_L98N_YY AK26 4 IO_L84P_Y AH14 5 IO_L99P_Y AH25 4 IO_L84N_Y AJ14 5 IO_L99N_Y AL27 4 IO_VREF_L85P_Y AK152 5 IO_L100P_YY AJ26 4 IO_L85N_Y AJ15 5 IO_VREF_L100N_YY AK27 4 IO_LVDS_DLL_L86P AH15 5 IO_L101P_YY AH26 5 IO_L101N_YY AL28 5 GCK1 AK16 5 IO_L102P_Y AJ27 5 IO AH20 5 IO_L102N_Y AK28 5 IO AJ19 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 27 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 12: BG432 — XCV300E, XCV400E, XCV600E Table 12: BG432 — XCV300E, XCV400E, XCV600E Bank Pin Description Pin # Bank Pin Description Pin # 6 IO AA30 6 IO_L118P_Y U29 6 IO AC30 6 IO_VREF_L119N_Y U282 6 IO AD29 6 IO_L119P_Y U30 6 IO U31 6 IO T30 6 IO W28 6 IO_L103N_YY AJ30 7 IO C30 6 IO_L103P_YY AH30 7 IO H29 6 IO_L104N AG28 7 IO H31 6 IO_L104P AH31 7 IO L29 6 IO_L105N_Y AG29 7 IO M31 6 IO_L105P_Y AG30 7 IO R28 6 IO_VREF_L106N_Y AF28 7 IO_L120N_YY T31 6 IO_L106P_Y AG31 7 IO_L120P_YY R29 6 IO_L107N AF29 7 IO_L121N_Y R30 6 IO_L107P AF30 7 IO_VREF_L121P_Y R312 6 IO_L108N_Y AE28 7 IO_L122N_Y P29 6 IO_L108P_Y AF31 7 IO_L122P_Y P28 6 IO_VREF_L109N_YY AE30 7 IO_L123N_YY P30 6 IO_L109P_YY AD28 7 IO_VREF_L123P_YY N30 6 IO_L110N_Y AD30 7 IO_L124N_Y N28 6 IO_L110P_Y AD31 7 IO_L124P_Y N31 6 IO_VREF_L111N_Y AC281 7 IO_L125N_Y M29 6 IO_L111P_Y AC29 7 IO_L125P_Y M28 6 IO_VREF_L112N_YY AB28 7 IO_L126N_Y M30 6 IO_L112P_YY AB29 7 IO_L126P_Y L30 6 IO_L113N_YY AB31 7 IO_L127N_YY K31 6 IO_L113P_YY AA29 7 IO_L127P_YY K30 6 IO_L114N_Y Y28 7 IO_L128N_YY K28 6 IO_L114P_Y Y29 7 IO_VREF_L128P_YY J30 6 IO_L115N_Y Y30 7 IO_L129N_Y J29 6 IO_L115P_Y Y31 7 IO_VREF_L129P_Y J281 6 IO_L116N_Y W29 7 IO_L130N_Y H30 6 IO_L116P_Y W30 7 IO_L130P_Y G30 6 IO_VREF_L117N_YY V28 7 IO_L131N_YY H28 6 IO_L117P_YY V29 7 IO_VREF_L131P_YY F31 6 IO_L118N_Y V30 7 IO_L132N_Y G29 Module 4 of 4 28 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 12: BG432 — XCV300E, XCV400E, XCV600E Table 12: BG432 — XCV300E, XCV400E, XCV600E Bank Pin Description Pin # Bank Pin Description Pin # 7 IO_L132P_Y G28 NA VCCINT T1 7 IO_L133N E31 NA VCCINT T29 7 IO_L133P E30 NA VCCINT W2 7 IO_L134N_Y F29 NA VCCINT W31 7 IO_VREF_L134P_Y F28 NA VCCINT AB2 7 IO_L135N_Y D31 NA VCCINT AB30 7 IO_L135P_Y D30 NA VCCINT AE29 7 IO_L136N E29 NA VCCINT AF1 7 IO_L136P E28 NA VCCINT AH8 NA VCCINT AH24 2 CCLK D4 NA VCCINT AJ10 3 DONE AH4 NA VCCINT AJ16 NA DXN AH27 NA VCCINT AK22 NA DXP AK29 NA VCCINT AK13 NA M0 AH28 NA VCCINT AK19 NA M1 AH29 NA M2 AJ28 0 VCCO A21 NA PROGRAM AH3 0 VCCO C29 NA TCK D28 0 VCCO D21 NA TDI B3 1 VCCO A1 2 TDO C4 1 VCCO A11 NA TMS D29 1 VCCO D11 2 VCCO C3 NA VCCINT A10 2 VCCO L4 NA VCCINT A17 2 VCCO L1 NA VCCINT B23 3 VCCO AA1 NA VCCINT B26 3 VCCO AA4 NA VCCINT C7 3 VCCO AJ3 NA VCCINT C14 4 VCCO AH11 NA VCCINT C19 4 VCCO AL1 NA VCCINT F1 4 VCCO AL11 NA VCCINT F30 5 VCCO AH21 NA VCCINT K3 5 VCCO AL21 NA VCCINT K29 5 VCCO AJ29 NA VCCINT N2 6 VCCO AA28 NA VCCINT N29 6 VCCO AA31 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 29 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 12: BG432 — XCV300E, XCV400E, XCV600E Table 12: BG432 — XCV300E, XCV400E, XCV600E Bank Pin Description Pin # Bank Pin Description Pin # 6 VCCO AL31 NA GND AH16 7 VCCO A31 NA GND AJ1 7 VCCO L28 NA GND AJ31 7 VCCO L31 NA GND AK1 NA GND AK2 NA GND A2 NA GND AK30 NA GND A3 NA GND AK31 NA GND A7 NA GND AL2 NA GND A9 NA GND AL3 NA GND A14 NA GND AL7 NA GND A18 NA GND AL9 NA GND A23 NA GND AL14 NA GND A25 NA GND AL18 NA GND A29 NA GND AL23 NA GND A30 NA GND AL25 NA GND B1 NA GND AL29 NA GND B2 NA GND AL30 NA GND B30 NA GND B31 NA GND C1 NA GND C31 NA GND D16 NA GND G1 NA GND G31 NA GND J1 NA GND J31 NA GND P1 NA GND P31 NA GND T4 NA GND T28 NA GND V1 NA GND V31 NA GND AC1 NA GND AC31 NA GND AE1 NA GND AE31 Module 4 of 4 30 Notes: 1. VREF or I/O option only in the XCV600E; otherwise, I/O option only. 2. VREF or I/O option only in the XCV400E, XCV600E; otherwise, I/O option only. www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays BG432 Differential Pin Pairs Virtex-E devices have differential pin pairs that can also Virtex-E devices have differential pin pairs that can also provide other functions when not used as a differential pair. A √ in the AO column indicates that the pin pair can be used as an asynchronous output for all devices provided in this package. Pairs with a note number in the AO column are device dependent. They can have asynchronous outputs if the pin pair are in the same CLB row and column in the device. Numbers in this column refer to footnotes that indicate which devices have pin pairs than can be asynchronous outputs. The Other Functions column indicates alternative function(s) not available when the pair is used as a differential pair or differential clock. Table 13: BG432 Differential Pin Pair Summary XCV300E, XCV400E, XC600E Pair Bank P N Pin Pin AO Other Functions Global Differential Clock 0 4 AL16 AH15 NA IO_DLL_L86P 1 5 AK16 AL17 NA IO_DLL_L86N 2 1 A16 B16 NA IO_DLL_L16P 3 0 D17 C17 NA IO_DLL_L16N IO LVDS Total Outputs: 137, Asynchronous Output Pairs: 63 0 0 D27 B29 1 - 1 0 C27 B28 √ - 2 0 A28 D26 √ VREF 3 0 C26 B27 2 - 4 0 A27 D25 √ - 5 0 C25 D24 √ VREF 6 0 D23 B25 1 - 7 0 B24 C24 1 VREF 8 0 A24 D22 √ VREF 9 0 B22 C22 √ - 10 0 D20 C21 √ - 11 0 C20 B21 √ - 12 0 D19 A20 √ - 13 0 A19 B19 √ VREF 14 0 D18 B18 1 - 15 0 B17 C18 1 VREF DS022-4 (v2.5) March 14, 2003 Production Product Specification Table 13: BG432 Differential Pin Pair Summary XCV300E, XCV400E, XC600E Pair Bank P N Pin Pin AO Other Functions 16 1 B16 C17 NA IO_LVDS_DLL 17 1 B15 A15 1 VREF 18 1 D15 C15 1 - 19 1 A13 B14 √ VREF 20 1 D14 B13 √ - 21 1 B12 C13 √ - 22 1 C12 D13 √ - 23 1 C11 D12 √ - 24 1 C10 B10 √ VREF 25 1 D10 C9 1 VREF 26 1 B8 A8 1 - 27 1 B7 C8 √ VREF 28 1 A6 D8 √ - 29 1 D7 B6 2 - 30 1 C6 A5 √ VREF 31 1 D6 B5 √ - 32 1 C5 A4 1 - 33 1 D5 B4 √ CS, WRITE 34 2 D3 C2 √ DIN, D0, BUSY 35 2 D2 E4 3 - 36 2 D1 E3 4 - 37 2 E2 F4 1 VREF 38 2 E1 F3 5 - 39 2 F2 G4 1 - 40 2 G3 G2 √ VREF 41 2 H3 H2 4 - 42 2 H1 J4 1 VREF 43 2 J2 K4 √ D1 44 2 K2 K1 √ D2 45 2 L2 M4 4 - 46 2 M3 M2 1 - 47 2 N4 N3 1 - www.xilinx.com 1-800-255-7778 Module 4 of 4 31 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 13: BG432 Differential Pin Pair Summary XCV300E, XCV400E, XC600E Pair Bank P N Pin Pin AO Table 13: BG432 Differential Pin Pair Summary XCV300E, XCV400E, XC600E Other Pair Bank Functions P N Pin Pin AO Other Functions 48 2 N1 P4 √ D3 80 4 AH12 AK11 √ - 49 2 P3 P2 4 - 81 4 AJ12 AK12 √ - 50 2 R3 R4 1 VREF 82 4 AH13 AJ13 √ - 51 2 R1 T3 √ - 83 4 AL13 AK14 √ VREF 52 3 U4 U2 1 VREF 84 4 AH14 AJ14 1 - 53 3 U1 V3 4 - 85 4 AK15 AJ15 1 VREF 54 3 V4 V2 √ VREF 86 5 AH15 AL17 NA IO_LVDS_DLL 55 3 W3 W4 1 - 87 5 AK17 AJ17 1 VREF 56 3 Y1 Y3 1 - 88 5 AH17 AK18 1 - 57 3 Y4 Y2 4 - 89 5 AL19 AJ18 √ VREF 58 3 AA3 AB1 √ D5 90 5 AH18 AL20 √ - 59 3 AB3 AB4 √ VREF 91 5 AK20 AH19 √ - 60 3 AD1 AC3 1 VREF 92 5 AJ20 AK21 √ - 61 3 AC4 AD2 4 - 93 5 AJ21 AL22 √ - 62 3 AD3 AD4 √ VREF 94 5 AJ22 AK23 √ VREF 63 3 AF2 AE3 1 - 95 5 AH22 AL24 1 VREF 64 3 AE4 AG1 5 - 96 5 AK24 AH23 1 - 65 3 AG2 AF3 1 VREF 97 5 AK25 AJ25 √ VREF 66 3 AF4 AH1 4 - 98 5 AL26 AK26 √ - 67 3 AH2 AG3 3 - 99 5 AH25 AL27 2 - 68 3 AG4 AJ2 √ INIT 100 5 AJ26 AK27 √ VREF 69 4 AJ4 AK3 √ - 101 5 AH26 AL28 √ - 70 4 AH5 AK4 1 - 102 5 AJ27 AK28 1 - 71 4 AJ5 AH6 √ - 103 6 AH30 AJ30 √ - 72 4 AL4 AK5 √ VREF 104 6 AH31 AG28 3 - 73 4 AJ6 AH7 2 - 105 6 AG30 AG29 4 - 74 4 AL5 AK6 √ - 106 6 AG31 AF28 1 VREF 75 4 AJ7 AL6 √ VREF 107 6 AF30 AF29 5 - 76 4 AH9 AJ8 1 - 108 6 AF31 AE28 1 - 77 4 AK8 AJ9 1 VREF 109 6 AD28 AE30 √ VREF 78 4 AL8 AK9 √ VREF 110 6 AD31 AD30 4 - 79 4 AK10 AL10 √ - 111 6 AC29 AC28 1 VREF Module 4 of 4 32 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays BG560 Ball Grid Array Packages Table 13: BG432 Differential Pin Pair Summary XCV300E, XCV400E, XC600E Pair Bank P N Pin Pin AO Other Functions XCV1000E, XCV1600E, and XCV2000E devices in BG560 Ball Grid Array packages have footprint compatibility. Pins labeled I0_VREF can be used as either in all parts unless device-dependent as indicated in the footnotes. If the pin is not used as VREF, it can be used as general I/O. Immediately following Table 14, see Table 15 for Differential Pair information. 112 6 AB29 AB28 √ VREF 113 6 AA29 AB31 √ - 114 6 Y29 Y28 4 - 115 6 Y31 Y30 1 - 116 6 W30 W29 1 - Bank Pin Description Pin# 117 6 V29 V28 √ VREF 0 GCK3 A17 118 6 U29 V30 4 - 0 IO A27 119 6 U30 U28 1 VREF 0 IO B25 120 7 R29 T31 √ - 0 IO C28 121 7 R31 R30 1 VREF 0 IO C30 122 7 P28 P29 4 - 0 IO D30 123 7 N30 P30 √ VREF 0 IO_L0N E28 124 7 N31 N28 1 - 0 IO_VREF_L0P D29 125 7 M28 M29 1 - 0 IO_L1N_YY D28 126 7 L30 M30 4 - 0 IO_L1P_YY A31 IO_VREF_L2N_YY E27 7 K30 K31 √ 0 127 - IO_L2P_YY C29 7 J30 K28 √ 0 128 VREF 0 IO_L3N_Y B30 129 7 J28 J29 1 VREF 0 IO_L3P_Y D27 130 7 G30 H30 4 - 0 IO_L4N_YY E26 131 7 F31 H28 √ VREF 0 IO_L4P_YY B29 132 7 G28 G29 1 - 0 IO_VREF_L5N_YY D26 133 7 E30 E31 5 - 0 IO_L5P_YY C27 134 7 F28 F29 1 VREF 0 IO_L6N_Y E25 135 7 D30 D31 4 - 0 IO_VREF_L6P_Y A28 136 7 E28 E29 3 - 0 IO_L7N_Y D25 0 IO_L7P_Y C26 0 IO_VREF_L8N_Y E24 0 IO_L8P_Y B26 0 IO_L9N_Y C25 0 IO_L9P_Y D24 0 IO_VREF_L10N_YY E23 0 IO_L10P_YY A25 0 IO_L11N_YY D23 Notes: 1. AO in the XCV300E, 600E. 2. AO in the XCV300E. 3. AO in the XCV400E, 600E. 4. AO in the XCV300E, 400E. 5. AO in the XCV600E. DS022-4 (v2.5) March 14, 2003 Production Product Specification Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E www.xilinx.com 1-800-255-7778 See Note 3 1 4 Module 4 of 4 33 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin# 0 IO_L11P_YY 0 See Note Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin# B24 1 IO_L25P_Y C15 IO_L12N_Y E22 1 IO_L26N_YY D15 0 IO_L12P_Y C23 1 IO_VREF_L26P_YY E15 0 IO_L13N_YY A23 1 IO_L27N_YY C14 0 IO_L13P_YY D22 1 IO_L27P_YY D14 0 IO_VREF_L14N_YY E21 1 IO_L28N_Y A13 0 IO_L14P_YY B22 1 IO_L28P_Y E14 0 IO_L15N_Y D21 1 IO_L29N_YY C13 0 IO_L15P_Y C21 1 IO_VREF_L29P_YY D13 0 IO_L16N_YY B21 1 IO_L30N_YY C12 0 IO_L16P_YY E20 1 IO_L30P_YY E13 0 IO_VREF_L17N_YY D20 1 IO_L31N_Y A11 0 IO_L17P_YY C20 1 IO_L31P_Y D12 0 IO_L18N_Y B20 1 IO_L32N_YY B11 0 IO_L18P_Y E19 1 IO_L32P_YY C11 0 IO_L19N_Y D19 1 IO_L33N_YY B10 0 IO_L19P_Y C19 1 IO_VREF_L33P_YY D11 0 IO_VREF_L20N_Y A19 1 IO_L34N_Y C10 0 IO_L20P_Y D18 1 IO_L34P_Y A9 0 IO_LVDS_DLL_L21N C18 1 IO_L35N_Y C9 0 IO_VREF E18 1 IO_VREF_L35P_Y D10 1 IO_L36N_Y A8 3 2 1 GCK2 D17 1 IO_L36P_Y B8 1 IO A3 1 IO_L37N_Y E10 1 IO D9 1 IO_VREF_L37P_Y C8 1 IO E8 1 IO_L38N_YY B7 1 IO E11 1 IO_VREF_L38P_YY A6 1 IO_LVDS_DLL_L21P E17 1 IO_L39N_YY C7 1 IO_VREF_L22N_Y C17 1 IO_L39P_YY D8 1 IO_L22P_Y B17 1 IO_L40N_Y A5 1 IO_L23N_Y B16 1 IO_L40P_Y B5 1 IO_VREF_L23P_Y D16 1 IO_L41N_YY C6 1 IO_L24N_Y E16 1 IO_VREF_L41P_YY D7 1 IO_L24P_Y C16 1 IO_L42N_YY A4 1 IO_L25N_Y A15 1 IO_L42P_YY B4 Module 4 of 4 34 2 www.xilinx.com 1-800-255-7778 See Note 3 4 1 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin# 1 IO_L43N_Y C5 1 IO_VREF_L43P_Y E7 1 IO_WRITE_L44N_YY 1 IO_CS_L44P_YY See Note Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin# 2 IO_L58P_Y M5 2 IO_L58N_Y L3 D6 2 IO_L59P_Y L1 A2 2 IO_L59N_Y M4 2 IO_VREF_L60P_Y N5 3 2 IO D3 2 IO_L60N_Y M2 2 IO F3 2 IO_L61P_Y N4 2 IO G1 2 IO_L61N_Y N3 2 IO J2 2 IO_L62P_Y N2 2 IO_DOUT_BUSY_L45P_YY D4 2 IO_L62N_Y P5 2 IO_DIN_D0_L45N_YY E4 2 IO_VREF_L63P_YY P4 2 IO_L46P_Y F5 2 IO_D3_L63N_YY P3 2 IO_VREF_L46N_Y B3 2 IO_L64P_Y P2 2 IO_L47P_Y F4 2 IO_L64N_Y R5 2 IO_L47N_Y C1 2 IO_L65P_Y R4 2 IO_VREF_L48P_Y G5 2 IO_L65N_Y R3 2 IO_L48N_Y E3 2 IO_VREF_L66P_Y R1 2 IO_L49P_Y D2 2 IO_L66N_Y T4 2 IO_L49N_Y G4 2 IO_L67P_Y T5 2 IO_L50P_Y H5 2 IO_VREF_L67N_Y T3 2 IO_L50N_Y E2 2 IO_L68P_YY T2 2 IO_VREF_L51P_YY H4 2 IO_L68N_YY U3 2 IO_L51N_YY G3 2 IO_L52P_Y J5 3 IO AE3 2 IO_VREF_L52N_Y F1 3 IO AF3 2 IO_L53P_Y J4 3 IO AH3 2 IO_L53N_Y H3 3 IO AK3 2 IO_VREF_L54P_Y K5 3 IO_VREF_L69P_Y U1 2 IO_L54N_Y H2 3 IO_L69N_Y U2 2 IO_L55P_Y J3 3 IO_L70P_Y V2 2 IO_L55N_Y K4 3 IO_VREF_L70N_Y V4 2 IO_VREF_L56P_YY L5 3 IO_L71P_Y V5 2 IO_D1_L56N_YY K3 3 IO_L71N_Y V3 2 IO_D2_L57P_YY L4 3 IO_L72P_Y W1 2 IO_L57N_YY K2 3 IO_L72N_Y W3 DS022-4 (v2.5) March 14, 2003 Production Product Specification 3 1 4 www.xilinx.com 1-800-255-7778 See Note 3 2 2 Module 4 of 4 35 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin# 3 IO_D4_L73P_YY 3 Bank Pin Description Pin# See Note W4 3 IO_VREF_L90N_Y AH4 3 IO_VREF_L73N_YY W5 3 IO_D7_L91P_YY AJ4 3 IO_L74P_Y Y3 3 IO_INIT_L91N_YY AH5 3 IO_L74N_Y Y4 3 IO U4 3 IO_L75P_Y AA1 3 IO_L75N_Y Y5 4 GCK0 AL17 3 IO_L76P_Y AA3 4 IO AJ8 3 IO_VREF_L76N_Y AA4 4 IO AJ11 3 IO_L77P_Y AB3 4 IO AK6 3 IO_L77N_Y AA5 4 IO AK9 3 IO_L78P_Y AC1 4 IO_L92P_YY AL4 3 IO_L78N_Y AB4 4 IO_L92N_YY AJ6 3 IO_L79P_YY AC3 4 IO_L93P_Y AK5 3 IO_D5_L79N_YY AB5 4 IO_VREF_L93N_Y AN3 3 IO_D6_L80P_YY AC4 4 IO_L94P_YY AL5 3 IO_VREF_L80N_YY AD3 4 IO_L94N_YY AJ7 3 IO_L81P_Y AE1 4 IO_VREF_L95P_YY AM4 3 IO_L81N_Y AC5 4 IO_L95N_YY AM5 3 IO_L82P_Y AD4 4 IO_L96P_Y AK7 3 IO_VREF_L82N_Y AF1 4 IO_L96N_Y AL6 3 IO_L83P_Y AF2 4 IO_L97P_YY AM6 3 IO_L83N_Y AD5 4 IO_L97N_YY AN6 3 IO_L84P_Y AG2 4 IO_VREF_L98P_YY AL7 3 IO_VREF_L84N_Y AE4 4 IO_L98N_YY AJ9 3 IO_L85P_YY AH1 4 IO_L99P_Y AN7 3 IO_VREF_L85N_YY AE5 4 IO_VREF_L99N_Y AL8 3 IO_L86P_Y AF4 4 IO_L100P_Y AM8 3 IO_L86N_Y AJ1 4 IO_L100N_Y AJ10 3 IO_L87P_Y AJ2 4 IO_VREF_L101P_Y AL9 3 IO_L87N_Y AF5 4 IO_L101N_Y AM9 3 IO_L88P_Y AG4 4 IO_L102P_Y AK10 3 IO_VREF_L88N_Y AK2 4 IO_L102N_Y AN9 3 IO_L89P_Y AJ3 4 IO_VREF_L103P_YY AL10 3 IO_L89N_Y AG5 4 IO_L103N_YY AM10 3 IO_L90P_Y AL1 4 IO_L104P_YY AL11 Module 4 of 4 36 See Note Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E 3 4 1 www.xilinx.com 1-800-255-7778 3 1 4 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin# 4 IO_L104N_YY 4 See Note Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin# AJ12 5 IO_L118N_Y AM20 IO_L105P_Y AN11 5 IO_L119P_YY AJ19 4 IO_L105N_Y AK12 5 IO_VREF_L119N_YY AL20 4 IO_L106P_YY AL12 5 IO_L120P_YY AN21 4 IO_L106N_YY AM12 5 IO_L120N_YY AL21 4 IO_VREF_L107P_YY AK13 5 IO_L121P_Y AJ20 4 IO_L107N_YY AL13 5 IO_L121N_Y AM22 4 IO_L108P_Y AM13 5 IO_L122P_YY AK21 4 IO_L108N_Y AN13 5 IO_VREF_L122N_YY AN23 4 IO_L109P_YY AJ14 5 IO_L123P_YY AJ21 4 IO_L109N_YY AK14 5 IO_L123N_YY AM23 4 IO_VREF_L110P_YY AM14 5 IO_L124P_Y AK22 4 IO_L110N_YY AN15 5 IO_L124N_Y AM24 4 IO_L111P_Y AJ15 5 IO_L125P_YY AL23 4 IO_L111N_Y AK15 5 IO_L125N_YY AJ22 4 IO_L112P_Y AL15 5 IO_L126P_YY AK23 4 IO_L112N_Y AM16 5 IO_VREF_L126N_YY AL24 4 IO_VREF_L113P_Y AL16 5 IO_L127P_Y AN26 4 IO_L113N_Y AJ16 5 IO_L127N_Y AJ23 4 IO_L114P_Y AK16 5 IO_L128P_Y AK24 4 IO_VREF_L114N_Y AN17 5 IO_VREF_L128N_Y AM26 4 IO_LVDS_DLL_L115P AM17 5 IO_L129P_Y AM27 5 IO_L129N_Y AJ24 3 2 5 GCK1 AJ17 5 IO_L130P_Y AL26 5 IO AL25 5 IO_VREF_L130N_Y AK25 5 IO AL28 5 IO_L131P_YY AN29 5 IO AL30 5 IO_VREF_L131N_YY AJ25 5 IO AN28 5 IO_L132P_YY AK26 5 IO_LVDS_DLL_L115N AM18 5 IO_L132N_YY AM29 5 IO_VREF AL18 5 IO_L133P_Y AM30 5 IO_L116P_Y AK18 5 IO_L133N_Y AJ26 5 IO_VREF_L116N_Y AJ18 5 IO_L134P_YY AK27 5 IO_L117P_Y AN19 5 IO_VREF_L134N_YY AL29 5 IO_L117N_Y AL19 5 IO_L135P_YY AN31 5 IO_L118P_Y AK19 5 IO_L135N_YY AJ27 DS022-4 (v2.5) March 14, 2003 Production Product Specification 2 www.xilinx.com 1-800-255-7778 See Note 3 4 1 Module 4 of 4 37 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin# 5 IO_L136P_Y AM31 5 IO_VREF_L136N_Y AK28 See Note 3 Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin# 6 IO_L151N_Y AB31 6 IO_L151P_Y AA29 6 IO_VREF_L152N_Y AA30 6 IO AE33 6 IO_L152P_Y AA31 6 IO AF31 6 IO_L153N_Y AA32 6 IO AJ32 6 IO_L153P_Y Y29 6 IO AL33 6 IO_L154N_Y AA33 6 IO_L137N_YY AH29 6 IO_L154P_Y Y30 6 IO_L137P_YY AJ30 6 IO_VREF_L155N_YY Y32 6 IO_L138N_Y AK31 6 IO_L155P_YY W29 6 IO_VREF_L138P_Y AH30 6 IO_L156N_Y W30 6 IO_L139N_Y AG29 6 IO_L156P_Y W31 6 IO_L139P_Y AJ31 6 IO_L157N_Y W33 6 IO_VREF_L140N_Y AK32 6 IO_L157P_Y V30 6 IO_L140P_Y AG30 6 IO_VREF_L158N_Y V29 6 IO_L141N_Y AH31 6 IO_L158P_Y V31 6 IO_L141P_Y AF29 6 IO_L159N_Y V32 6 IO_L142N_Y AH32 6 IO_VREF_L159P_Y U33 6 IO_L142P_Y AF30 6 IO U29 6 IO_VREF_L143N_YY AE29 6 IO_L143P_YY AH33 7 IO E30 6 IO_L144N_Y AG33 7 IO F29 6 IO_VREF_L144P_Y AE30 7 IO F33 6 IO_L145N_Y AD29 7 IO G30 6 IO_L145P_Y AF32 7 IO K30 6 IO_VREF_L146N_Y AE31 7 IO_L160N_YY U31 6 IO_L146P_Y AD30 7 IO_L160P_YY U32 6 IO_L147N_Y AE32 7 IO_VREF_L161N_Y T32 6 IO_L147P_Y AC29 7 IO_L161P_Y T30 6 IO_VREF_L148N_YY AD31 7 IO_L162N_Y T29 6 IO_L148P_YY AC30 7 IO_VREF_L162P_Y T31 6 IO_L149N_YY AB29 7 IO_L163N_Y R33 6 IO_L149P_YY AC31 7 IO_L163P_Y R31 6 IO_L150N_Y AC33 7 IO_L164N_Y R30 6 IO_L150P_Y AB30 7 IO_L164P_Y R29 Module 4 of 4 38 3 1 4 www.xilinx.com 1-800-255-7778 See Note 3 2 2 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin# 7 IO_L165N_YY P32 7 IO_VREF_L165P_YY P31 7 IO_L166N_Y 7 Bank Pin Description Pin# See Note 7 IO_VREF_L182P_Y D31 3 P30 2 CCLK C4 IO_L166P_Y P29 3 DONE AJ5 7 IO_L167N_Y M32 NA DXN AK29 7 IO_L167P_Y N31 NA DXP AJ28 7 IO_L168N_Y N30 NA M0 AJ29 7 IO_VREF_L168P_Y L33 NA M1 AK30 7 IO_L169N_Y M31 NA M2 AN32 7 IO_L169P_Y L32 NA PROGRAM AM1 7 IO_L170N_Y M30 NA TCK E29 7 IO_L170P_Y L31 NA TDI D5 7 IO_L171N_YY M29 2 TDO E6 7 IO_L171P_YY J33 NA TMS B33 7 IO_L172N_YY L30 7 IO_VREF_L172P_YY K31 NA NC C31 7 IO_L173N_Y L29 NA NC AC2 7 IO_L173P_Y H33 NA NC AK4 7 IO_L174N_Y J31 NA NC AL3 7 IO_VREF_L174P_Y H32 7 IO_L175N_Y K29 NA VCCINT A21 7 IO_L175P_Y H31 NA VCCINT B12 7 IO_L176N_Y J30 NA VCCINT B14 7 IO_VREF_L176P_Y G32 NA VCCINT B18 7 IO_L177N_YY J29 NA VCCINT B28 7 IO_VREF_L177P_YY G31 NA VCCINT C22 7 IO_L178N_Y E33 NA VCCINT C24 7 IO_L178P_Y E32 NA VCCINT E9 7 IO_L179N_Y H29 NA VCCINT E12 7 IO_L179P_Y F31 NA VCCINT F2 7 IO_L180N_Y D32 NA VCCINT H30 7 IO_VREF_L180P_Y E31 NA VCCINT J1 7 IO_L181N_Y G29 NA VCCINT K32 7 IO_L181P_Y C33 NA VCCINT M3 7 IO_L182N_Y F30 NA VCCINT N1 DS022-4 (v2.5) March 14, 2003 Production Product Specification See Note Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E 3 4 1 www.xilinx.com 1-800-255-7778 Module 4 of 4 39 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin# NA VCCINT NA See Note Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin# N29 2 VCCO M1 VCCINT N33 2 VCCO R2 NA VCCINT U5 3 VCCO V1 NA VCCINT U30 3 VCCO AA2 NA VCCINT Y2 3 VCCO AD1 NA VCCINT Y31 3 VCCO AK1 NA VCCINT AB2 3 VCCO AL2 NA VCCINT AB32 4 VCCO AN4 NA VCCINT AD2 4 VCCO AN8 NA VCCINT AD32 4 VCCO AN12 NA VCCINT AG3 4 VCCO AM2 NA VCCINT AG31 4 VCCO AM15 NA VCCINT AJ13 5 VCCO AL31 NA VCCINT AK8 5 VCCO AM21 NA VCCINT AK11 5 VCCO AN18 NA VCCINT AK17 5 VCCO AN24 NA VCCINT AK20 5 VCCO AN30 NA VCCINT AL14 6 VCCO W32 NA VCCINT AL22 6 VCCO AB33 NA VCCINT AL27 6 VCCO AF33 NA VCCINT AN25 6 VCCO AK33 6 VCCO AM32 0 VCCO A22 7 VCCO C32 0 VCCO A26 7 VCCO D33 0 VCCO A30 7 VCCO K33 0 VCCO B19 7 VCCO N32 0 VCCO B32 7 VCCO T33 1 VCCO A10 1 VCCO A16 NA GND A1 1 VCCO B13 NA GND A7 1 VCCO C3 NA GND A12 1 VCCO E5 NA GND A14 2 VCCO B2 NA GND A18 2 VCCO D1 NA GND A20 2 VCCO H1 NA GND A24 Module 4 of 4 40 www.xilinx.com 1-800-255-7778 See Note DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin# NA GND NA Bank Pin Description Pin# A29 NA GND AL32 GND A32 NA GND AM3 NA GND A33 NA GND AM7 NA GND B1 NA GND AM11 NA GND B6 NA GND AM19 NA GND B9 NA GND AM25 NA GND B15 NA GND AM28 NA GND B23 NA GND AM33 NA GND B27 NA GND AN1 NA GND B31 NA GND AN2 NA GND C2 NA GND AN5 NA GND E1 NA GND AN10 NA GND F32 NA GND AN14 NA GND G2 NA GND AN16 NA GND G33 NA GND AN20 NA GND J32 NA GND AN22 NA GND K1 NA GND AN27 NA GND L2 NA GND AN33 NA GND M33 NA GND P1 NA GND P33 NA GND R32 NA GND T1 NA GND V33 NA GND W2 NA GND Y1 NA GND Y33 NA GND AB1 NA GND AC32 NA GND AD33 NA GND AE2 NA GND AG1 NA GND AG32 NA GND AH2 NA GND AJ33 DS022-4 (v2.5) March 14, 2003 Production Product Specification See Note Table 14: BG560 — XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E See Note Notes: 1. VREF or I/O option only in the XCV2000E; otherwise, I/O option only. 2. VREF or I/O option only in the XCV1600E & 2000E; otherwise, I/O option only. 3. VREF or I/O option only in the XCV1000E, 1600E, & 2000E; otherwise, I/O option only. 4. VREF or I/O option only in the XCV600E, 1000E, 1600E, & 2000E; otherwise, I/O option only. www.xilinx.com 1-800-255-7778 Module 4 of 4 41 R Virtex™-E 1.8 V Field Programmable Gate Arrays BG560 Differential Pin Pairs Virtex-E devices have differential pin pairs that can also provide other functions when not used as a differential pair. A √ in the AO column indicates that the pin pair can be used as an asynchronous output for all devices provided in this package. Pairs with a note number in the AO column are device dependent. They can have asynchronous outputs if the pin pair are in the same CLB row and column in the device. Numbers in this column refer to footnotes that indicate which devices have pin pairs than can be asynchronous outputs. The Other Functions column indicates alternative function(s) not available when the pair is used as a differential pair or differential clock. Pair Bank N Pin Pin AO P N Other Pair Bank Pin Pin AO Functions 16 0 E20 B21 √ - 17 0 C20 D20 √ VREF 18 0 E19 B20 9 - 19 0 C19 D19 7 - 20 0 D18 A19 7 VREF 21 1 E17 C18 NA IO_LVDS_DLL 22 1 B17 C17 2 VREF Other 23 1 D16 B16 7 VREF Functions 24 1 C16 E16 7 - 25 1 C15 A15 9 - Table 15: BG560 Differential Pin Pair Summary XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E P Table 15: BG560 Differential Pin Pair Summary XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Global Differential Clock 0 4 AL17 AM17 NA IO_DLL_L15P 26 1 E15 D15 √ VREF 1 5 AJ17 AM18 NA IO_DLL_L15N 27 1 D14 C14 √ - 2 1 D17 E17 NA IO_DLL_L21P 28 1 E14 A13 3 - 3 0 A17 C18 NA IO_DLL_L21N 29 1 D13 C13 √ VREF 30 1 E13 C12 √ - 31 1 D12 A11 8 - 32 1 C11 B11 √ - 33 1 D11 B10 √ VREF 34 1 A9 C10 10 - 35 1 D10 C9 7 VREF 36 1 B8 A8 7 - 37 1 C8 E10 5 VREF 38 1 A6 B7 √ VREF 39 1 D8 C7 √ - 40 1 B5 A5 11 - 41 1 D7 C6 √ VREF 42 1 B4 A4 √ - 43 1 E7 C5 12 VREF 44 1 A2 D6 √ CS 45 2 D4 E4 √ DIN, D0 46 2 F5 B3 17 VREF IO LVDS Total Outputs: 183, Asynchronous Outputs: 87 0 0 D29 E28 8 VREF 1 0 A31 D28 √ - 2 0 C29 E27 √ VREF 3 0 D27 B30 3 - 4 0 B29 E26 √ - 5 0 C27 D26 √ VREF 6 0 A28 E25 9 VREF 7 0 C26 D25 7 - 8 0 B26 E24 7 VREF 9 0 D24 C25 2 - 10 0 A25 E23 √ VREF 11 0 B24 D23 √ - 12 0 C23 E22 8 - 13 0 D22 A23 √ - 14 0 B22 E21 √ VREF 15 0 C21 D21 3 - Module 4 of 4 42 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 15: BG560 Differential Pin Pair Summary XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E P N Table 15: BG560 Differential Pin Pair Summary XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 47 2 F4 C1 14 - 78 3 AC1 AB4 17 - 48 2 G5 E3 15 VREF 79 3 AC3 AB5 √ D5 49 2 D2 G4 16 - 80 3 AC4 AD3 √ VREF 50 2 H5 E2 15 - 81 3 AE1 AC5 4 - 51 2 H4 G3 √ VREF 82 3 AD4 AF1 18 VREF 52 2 J5 F1 17 VREF 83 3 AF2 AD5 14 - 53 2 J4 H3 14 - 84 3 AG2 AE4 20 VREF 54 2 K5 H2 18 VREF 85 3 AH1 AE5 √ VREF 55 2 J3 K4 19 - 86 3 AF4 AJ1 15 - 56 2 L5 K3 √ D1 87 3 AJ2 AF5 14 - 57 2 L4 K2 √ D2 88 3 AG4 AK2 15 VREF 58 2 M5 L3 17 - 89 3 AJ3 AG5 14 - 59 2 L1 M4 14 - 90 3 AL1 AH4 14 VREF 60 2 N5 M2 15 VREF 91 3 AJ4 AH5 √ INIT 61 2 N4 N3 16 - 92 4 AL4 AJ6 √ - 62 2 N2 P5 15 - 93 4 AK5 AN3 8 VREF 63 2 P4 P3 √ D3 94 4 AL5 AJ7 √ - 64 2 P2 R5 17 - 95 4 AM4 AM5 √ VREF 65 2 R4 R3 14 - 96 4 AK7 AL6 3 - 66 2 R1 T4 18 VREF 97 4 AM6 AN6 √ - 67 2 T5 T3 19 VREF 98 4 AL7 AJ9 √ VREF 68 2 T2 U3 √ - 99 4 AN7 AL8 9 VREF 69 3 U1 U2 19 VREF 100 4 AM8 AJ10 7 - 70 3 V2 V4 18 VREF 101 4 AL9 AM9 7 VREF 71 3 V5 V3 14 - 102 4 AK10 AN9 2 - 72 3 W1 W3 17 - 103 4 AL10 AM10 √ VREF 73 3 W4 W5 √ VREF 104 4 AL11 AJ12 √ - 74 3 Y3 Y4 15 - 105 4 AN11 AK12 8 - 75 3 AA1 Y5 16 - 106 4 AL12 AM12 √ - 76 3 AA3 AA4 15 VREF 107 4 AK13 AL13 √ VREF 77 3 AB3 AA5 14 - 108 4 AM13 AN13 3 - DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 43 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 15: BG560 Differential Pin Pair Summary XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E P N Table 15: BG560 Differential Pin Pair Summary XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 109 4 AJ14 AK14 √ - 140 6 AG30 AK32 15 VREF 110 4 AM14 AN15 √ VREF 141 6 AF29 AH31 16 - 111 4 AJ15 AK15 1 - 142 6 AF30 AH32 15 - 112 4 AL15 AM16 7 - 143 6 AH33 AE29 √ VREF 113 4 AL16 AJ16 7 VREF 144 6 AE30 AG33 17 VREF 114 4 AK16 AN17 2 VREF 145 6 AF32 AD29 14 - 115 5 AM17 AM18 NA IO_LVDS_DLL 146 6 AD30 AE31 18 VREF 116 5 AK18 AJ18 7 VREF 147 6 AC29 AE32 19 - 117 5 AN19 AL19 7 - 148 6 AC30 AD31 √ VREF 118 5 AK19 AM20 9 - 149 6 AC31 AB29 √ - 119 5 AJ19 AL20 √ VREF 150 6 AB30 AC33 17 - 120 5 AN21 AL21 √ - 151 6 AA29 AB31 14 - 121 5 AJ20 AM22 3 - 152 6 AA31 AA30 15 VREF 122 5 AK21 AN23 √ VREF 153 6 Y29 AA32 16 - 123 5 AJ21 AM23 √ - 154 6 Y30 AA33 15 - 124 5 AK22 AM24 8 - 155 6 W29 Y32 √ VREF 125 5 AL23 AJ22 √ - 156 6 W31 W30 17 - 126 5 AK23 AL24 √ VREF 157 6 V30 W33 14 - 127 5 AN26 AJ23 13 - 158 6 V31 V29 18 VREF 128 5 AK24 AM26 7 VREF 159 6 U33 V32 19 VREF 129 5 AM27 AJ24 7 - 160 7 U32 U31 √ - 130 5 AL26 AK25 5 VREF 161 7 T30 T32 19 VREF 131 5 AN29 AJ25 √ VREF 162 7 T31 T29 18 VREF 132 5 AK26 AM29 √ - 163 7 R31 R33 14 - 133 5 AM30 AJ26 11 - 164 7 R29 R30 17 - 134 5 AK27 AL29 √ VREF 165 7 P31 P32 √ VREF 135 5 AN31 AJ27 √ - 166 7 P29 P30 15 - 136 5 AM31 AK28 12 VREF 167 7 N31 M32 16 - 137 6 AJ30 AH29 √ - 168 7 L33 N30 15 VREF 138 6 AH30 AK31 17 VREF 169 7 L32 M31 14 - 139 6 AJ31 AG29 14 - 170 7 L31 M30 17 - Module 4 of 4 44 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 15: BG560 Differential Pin Pair Summary XCV400E, XCV600E, XCV1000E, XCV1600E, XCV2000E P N Other FG256 Fine-Pitch Ball Grid Array Packages XCV50E, XCV100E, XCV200E, and XCV300E devices in FG256 fine-pitch Ball Grid Array packages have footprint compatibility. Pins labeled I0_VREF can be used as either in all parts unless device-dependent as indicated in the footnotes. If the pin is not used as VREF, it can be used as general I/O. Immediately following Table 16, see Table 17 for Differential Pair information. Pair Bank Pin Pin AO Functions 171 7 J33 M29 √ - 172 7 K31 L30 √ VREF 173 7 H33 L29 4 - 174 7 H32 J31 18 VREF 175 7 H31 K29 14 - Bank Pin Description Pin # 176 7 G32 J30 20 VREF 0 GCK3 B8 177 7 G31 J29 √ VREF 0 IO B3 178 7 E32 E33 15 - 0 IO E7 179 7 F31 H29 14 - 0 IO D8 0 IO_L0N_Y C5 180 7 E31 D32 15 VREF 0 IO_VREF_L0P_Y A32 181 7 C33 G29 14 - 0 IO_L1N_YY D5 182 7 D31 F30 14 VREF 0 IO_L1P_YY E6 0 IO_VREF_L2N_YY B4 0 IO_L2P_YY A4 0 IO_L3N_Y D6 0 IO_L3P_Y B5 0 IO_VREF_L4N_YY C61 0 IO_L4P_YY A5 0 IO_L5N_YY B6 0 IO_L5P_YY C7 0 IO_L6N_Y D7 0 IO_L6P_Y C8 0 IO_VREF_L7N_Y B7 0 IO_L7P_Y A6 0 IO_LVDS_DLL_L8N A7 1 GCK2 C9 1 IO B10 1 IO_LVDS_DLL_L8P A8 1 IO_L9N_Y D9 1 IO_L9P_Y A9 1 IO_L10N_Y E10 1 IO_VREF_L10P_Y B9 Notes: 1. AO in the XCV1600E. 2. AO in the XCV2000E. 3. AO in the XCV1600E, 2000E. 4. AO in the XCV1000E, 1600E. 5. AO in the XCV1000E, 2000E. 6. AO in the XCV1000E. 7. AO in the XCV1000E, 1600E, 2000E. 8. AO in the XCV600E, 1600E. 9. AO in the XCV400E, 600E, 1600E. 10. AO in the XCV400E, 600E, 1000E, 2000E. 11. AO in the XCV400E, 600E, 1000E. 12. AO in the XCV400E, 1000E, 2000E. 13. AO in the XCV400E, 600E, 1000E, 1600E. 14. AO in the XCV400E, 1000E, 1600E. 15. AO in the XCV600E, 1000E, 2000E. 16. AO in the XCV600E, 2000E. 17. AO in the XCV400E, 600E, 1600E, 2000E. 18. AO in the XCV600E, 1000E, 1600E, 2000E. 19. AO in the XCV400E, 600E, 2000E. 20. AO in the XCV400E, 1000E. DS022-4 (v2.5) March 14, 2003 Production Product Specification Table 16: FG256 Package — XCV50E, XCV100E, XCV200E, XCV300E www.xilinx.com 1-800-255-7778 Module 4 of 4 45 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 16: FG256 Package — XCV50E, XCV100E, XCV200E, XCV300E Table 16: FG256 Package — XCV50E, XCV100E, XCV200E, XCV300E Bank Pin Description Pin # Bank Pin Description Pin # 1 IO_L11N_Y A10 2 IO_VREF_L28P_Y H13 1 IO_L11P_Y D10 2 IO_D3_L28N_Y G16 1 IO_L12N_YY C10 2 IO_L29P J13 1 IO_L12P_YY A11 2 IO_L29N H15 1 IO_L13N_YY B11 2 IO_L30P_YY H14 1 IO_VREF_L13P_YY E111 2 IO_L30N_YY H16 1 IO_L14N_Y A12 1 IO_L14P_Y D11 3 IO J15 1 IO_L15N_YY A13 3 IO_L31P K15 1 IO_VREF_L15P_YY C11 3 IO_L31N J14 1 IO_L16N_YY B12 3 IO_D4_L32P_Y J16 1 IO_L16P_YY D12 3 IO_VREF_L32N_Y K16 1 IO_VREF_L17N_Y A142 3 IO_L33P_YY K12 1 IO_L17P_Y C12 3 IO_L33N_YY L15 1 IO_WRITE_L18N_YY C13 3 IO_L34P K13 1 IO_CS_L18P_YY B13 3 IO_L34N L16 3 IO_L35P_YY K14 2 IO_DOUT_BUSY_L19P_YY C15 3 IO_D5_L35N_YY M16 2 IO_DIN_D0_L19N_YY D14 3 IO_D6_L36P_Y N16 2 IO_L20P B16 3 IO_VREF_L36N_Y L131 2 IO_VREF_L20N E132 3 IO_L37P P16 2 IO_L21P_YY C16 3 IO_L37N L12 2 IO_L21N_YY E14 3 IO_L38P_Y M15 2 IO_VREF_L22P_Y F13 3 IO_VREF_L38N_Y L14 2 IO_L22N_Y E15 3 IO_L39P_YY M14 2 IO_L23P F12 3 IO_L39N_YY R16 2 IO_L23N D16 3 IO_VREF_L40P M132 2 IO_VREF_L24P_Y F141 3 IO_L40N T15 2 IO_D1_L24N_Y E16 3 IO_D7_L41P_YY N14 2 IO_D2_L25P_YY F15 3 IO_INIT_L41N_YY N15 2 IO_L25N_YY G13 2 IO_L26P F16 4 GCK0 N8 2 IO_L26N G12 4 IO P10 2 IO_L27P_YY G15 4 IO_L42P_YY T14 2 IO_L27N_YY G14 4 IO_L42N_YY P13 Module 4 of 4 46 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 16: FG256 Package — XCV50E, XCV100E, XCV200E, XCV300E Table 16: FG256 Package — XCV50E, XCV100E, XCV200E, XCV300E Bank Pin Description Pin # Bank Pin Description Pin # 4 IO_L43P_Y P12 5 IO_VREF_L58N_YY T4 4 IO_VREF_L43N_Y R132 5 IO_L59P_YY T3 4 IO_L44P_YY N12 5 IO_L59N_YY P5 4 IO_L44N_YY T13 5 IO_VREF_L60P_Y T22 4 IO_VREF_L45P_YY T12 5 IO_L60N_Y N5 4 IO_L45N_YY P11 4 IO_L46P_Y R12 6 IO_L61N_YY M3 4 IO_L46N_Y N11 6 IO_L61P_YY R1 4 IO_VREF_L47P_YY T111 6 IO_L62N M4 4 IO_L47N_YY M11 6 IO_VREF_L62P N22 4 IO_L48P_YY R11 6 IO_L63N_YY L5 4 IO_L48N_YY T10 6 IO_L63P_YY P1 4 IO_L49P_Y R10 6 IO_VREF_L64N_Y N1 4 IO_L49N_Y M10 6 IO_L64P_Y L3 4 IO_VREF_L50P_Y P9 6 IO_L65N M2 4 IO_L50N_Y T9 6 IO_L65P L4 4 IO_L51P_Y N10 6 IO_VREF_L66N_Y M11 4 IO_L51N_Y R9 6 IO_L66P_Y K4 4 IO_LVDS_DLL_L52P N9 6 IO_L67N_YY L2 6 IO_L67P_YY L1 5 GCK1 R8 6 IO_L68N K3 5 IO N7 6 IO_L68P K1 5 IO T7 6 IO_L69N_YY K2 5 IO_LVDS_DLL_L52N T8 6 IO_L69P_YY K5 5 IO_L53P_Y R7 6 IO_VREF_L70N_Y J3 5 IO_VREF_L53N_Y P8 6 IO_L70P_Y J1 5 IO_L54P_Y P7 6 IO_L71N J4 5 IO_L54N_Y T6 6 IO_L71P H1 5 IO_L55P_YY M7 6 IO J2 5 IO_L55N_YY R6 5 IO_L56P_YY P6 7 IO C2 5 IO_VREF_L56N_YY R51 7 IO_L72N_YY G1 5 IO_L57P_Y N6 7 IO_L72P_YY H4 5 IO_L57N_Y T5 7 IO_L73N G5 5 IO_L58P_YY M6 7 IO_L73P H2 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 47 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 16: FG256 Package — XCV50E, XCV100E, XCV200E, XCV300E Table 16: FG256 Package — XCV50E, XCV100E, XCV200E, XCV300E Bank Pin Description Pin # Bank Pin Description Pin # 7 IO_L74N_Y G4 NA VCCINT D13 7 IO_VREF_L74P_Y H3 NA VCCINT E5 7 IO_L75N_YY G2 NA VCCINT E12 7 IO_L75P_YY F5 NA VCCINT M5 7 IO_L76N F4 NA VCCINT M12 7 IO_L76P F1 NA VCCINT N4 7 IO_L77N_YY G3 NA VCCINT N13 7 IO_L77P_YY F2 NA VCCINT P3 7 IO_L78N_Y E1 NA VCCINT P14 7 IO_VREF_L78P_Y D11 7 IO_L79N E4 0 VCCO F8 7 IO_L79P E2 0 VCCO E8 7 IO_L80N_Y F3 1 VCCO F9 7 IO_VREF_L80P_Y C1 1 VCCO E9 7 IO_L81N_YY D2 2 VCCO H12 7 IO_L81P_YY E3 2 VCCO H11 7 IO_VREF_L82N B12 3 VCCO J12 7 IO_L82P A2 3 VCCO J11 4 VCCO M9 2 CCLK D15 4 VCCO L9 3 DONE R14 5 VCCO M8 NA DXN R4 5 VCCO L8 NA DXP P4 6 VCCO J6 NA M0 N3 6 VCCO J5 NA M1 P2 7 VCCO H6 NA M2 R3 7 VCCO H5 NA PROGRAM P15 NA TCK C4 NA GND T16 NA TDI A15 NA GND T1 2 TDO B14 NA GND R15 NA TMS D3 NA GND R2 NA GND L11 NA VCCINT C3 NA GND L10 NA VCCINT C14 NA GND L7 NA VCCINT D4 NA GND L6 Module 4 of 4 48 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays FG256 Differential Pin Pairs Table 16: FG256 Package — XCV50E, XCV100E, XCV200E, XCV300E Virtex-E devices have differential pin pairs that can also provide other functions when not used as a differential pair. A √ in the AO column indicates that the pin pair can be used as an asynchronous output for all devices provided in this package. Pairs with a note number in the AO column are device dependent. They can have asynchronous outputs if the pin pair are in the same CLB row and column in the device. Numbers in this column refer to footnotes that indicate which devices have pin pairs than can be asynchronous outputs. The Other Functions column indicates alternative function(s) not available when the pair is used as a differential pair or differential clock. Bank Pin Description Pin # NA GND K11 NA GND K10 NA GND K9 NA GND K8 NA GND K7 NA GND K6 NA GND J10 NA GND J9 NA GND J8 NA GND J7 NA GND H10 NA GND H9 NA GND H8 NA GND H7 NA GND G11 NA GND G10 IO LVDS NA GND G9 Total Pairs: 83, Asynchronous Outputs: 35 NA GND G8 0 0 A3 C5 7 VREF NA GND G7 1 0 E6 D5 √ - NA GND G6 2 0 A4 B4 √ VREF NA GND F11 3 0 B5 D6 2 - NA GND F10 4 0 A5 C6 √ VREF NA GND F7 5 0 C7 B6 √ - NA GND F6 6 0 C8 D7 1 - NA GND B15 7 0 A6 B7 1 VREF NA GND B2 8 1 A8 A7 NA IO_LVDS_DLL NA GND A16 9 1 A9 D9 2 - NA GND A1 10 1 B9 E10 1 VREF 11 1 D10 A10 1 - 12 1 A11 C10 √ - 13 1 E11 B11 √ VREF 14 1 D11 A12 2 - 15 1 C11 A13 √ VREF 16 1 D12 B12 √ - 17 1 C12 A14 7 VREF 18 1 B13 C13 √ CS Table 17: FG256 Differential Pin Pair Summary XCV50E, XCV100E, XCV200E, XCV300E Pair Notes: 1. VREF or I/O option only in the XCV100E, 200E, 300E; otherwise, I/O option only. 2. VREF or I/O option only in the XCV200E, 300E; otherwise, I/O option only. DS022-4 (v2.5) March 14, 2003 Production Product Specification Bank P N Pin Pin Other AO Functions Global Differential Clock 0 4 N8 N9 NA IO_DLL_L52P 1 5 R8 T8 NA IO_DLL_L52N 2 1 C9 A8 NA IO_DLL_L8P 3 0 B8 A7 NA IO_DLL_L8N www.xilinx.com 1-800-255-7778 Module 4 of 4 49 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 17: FG256 Differential Pin Pair Summary XCV50E, XCV100E, XCV200E, XCV300E P N Table 17: FG256 Differential Pin Pair Summary XCV50E, XCV100E, XCV200E, XCV300E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 19 2 C15 D14 √ DIN, D0 55 5 M7 R6 √ - 20 2 B16 E13 6 VREF 56 5 P6 R5 √ VREF 21 2 C16 E14 √ - 57 5 N6 T5 2 - 22 2 F13 E15 1 VREF 58 5 M6 T4 √ VREF 23 2 F12 D16 5 - 59 5 T3 P5 √ - 24 2 F14 E16 3 D1 60 5 T2 N5 7 VREF 25 2 F15 G13 √ D2 61 6 R1 M3 √ - 26 2 F16 G12 6 - 62 6 N2 M4 6 VREF 27 2 G15 G14 √ - 63 6 P1 L5 √ - 28 2 H13 G16 3 D3 64 6 L3 N1 1 VREF 29 2 J13 H15 4 - 65 6 L4 M2 5 - 30 2 H14 H16 √ - 66 6 K4 M1 3 VREF 31 3 K15 J14 4 - 67 6 L1 L2 √ - 32 3 J16 K16 3 VREF 68 6 K1 K3 6 - 33 3 K12 L15 √ - 69 6 K5 K2 √ - 34 3 K13 L16 6 - 70 6 J1 J3 3 VREF 35 3 K14 M16 √ D5 71 6 H1 J4 4 - 36 3 N16 L13 3 VREF 72 7 H4 G1 √ - 37 3 P16 L12 5 - 73 7 H2 G5 4 - 38 3 M15 L14 1 VREF 74 7 H3 G4 3 VREF 39 3 M14 R16 √ - 75 7 F5 G2 √ - 40 3 M13 T15 6 VREF 76 7 F1 F4 6 - 41 3 N14 N15 √ INIT 77 7 F2 G3 √ - 42 4 T14 P13 √ - 78 7 D1 E1 3 VREF 43 4 P12 R13 7 VREF 79 7 E2 E4 5 - 44 4 N12 T13 √ - 80 7 C1 F3 1 VREF 45 4 T12 P11 √ VREF 81 7 E3 D2 √ - 46 4 R12 N11 2 - 82 7 A2 B1 6 VREF 47 4 T11 M11 √ VREF 48 4 R11 T10 √ - 49 4 R10 M10 1 - 50 4 P9 T9 1 VREF 51 4 N10 R9 1 - 52 5 N9 T8 NA IO_LVDS_DLL 53 5 R7 P8 1 VREF 54 5 P7 T6 1 - Module 4 of 4 50 Notes: 1. AO in the XCV50E, 200E, 300E. 2. AO in the XCV50E, 200E. 3. AO in the XCV50E, 300E. 4. AO in the XCV100E, 200E. 5. AO in the XCV200E. 6. AO in the XCV100E. 7. AO in the XCV50E. www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays FG456 Fine-Pitch Ball Grid Array Packages XCV200E and XCV300E devices in FG456 fine-pitch Ball Grid Array packages have footprint compatibility. Pins labeled I0_VREF can be used as either in both devices provided in this package. If the pin is not used as VREF, it can be used as general I/O. Immediately following Table 18, see Table 19 for Differential Pair information. Table 18: FG456 — XCV200E and XCV300E Bank Pin Description Pin # 0 GCK3 C11 0 IO A21 0 IO A3 0 IO A61 0 IO A10 0 IO B5 0 IO B9 0 IO C5 0 IO D8 0 IO D10 0 IO E111 0 IO_L0N D5 0 IO_L0P B3 0 IO_VREF_L1N_YY B4 0 IO_L1P_YY E6 0 IO_L2N A4 0 IO_L2P E7 0 IO_VREF_L3N_YY C6 0 IO_L3P_YY D6 0 IO_L4N_Y A5 0 IO_L4P_Y B6 0 IO_L5N_Y D7 0 IO_L5P_Y C7 0 IO_VREF_L6N_YY E8 0 IO_L6P_YY B7 0 IO_L7N_YY A7 0 IO_L7P_YY E9 0 IO_L8N_Y C8 0 IO_L8P_Y B8 0 IO_L9N_Y D9 0 IO_L9P_Y A8 DS022-4 (v2.5) March 14, 2003 Production Product Specification Table 18: FG456 — XCV200E and XCV300E Bank Pin Description Pin # 0 IO_L10N C9 0 IO_L10P E10 0 IO_VREF_L11N_YY A9 0 IO_L11P_YY C10 0 IO_L12N_Y F11 0 IO_L12P_Y B10 0 IO_LVDS_DLL_L13N B11 1 GCK2 A11 1 IO A121 1 IO A14 1 IO B161 1 IO B19 1 IO E13 1 IO E15 1 IO E16 1 IO E171 1 IO_LVDS_DLL_L13P D11 1 IO_L14N_Y C12 1 IO_L14P_Y D12 1 IO_L15N_Y B12 1 IO_L15P_Y A13 1 IO_L16N_YY E12 1 IO_VREF_L16P_YY B13 1 IO_L17N_YY C13 1 IO_L17P_YY D13 1 IO_L18N_Y B14 1 IO_L18P_Y C14 1 IO_L19N_Y F12 1 IO_L19P_Y A15 1 IO_L20N_YY B15 1 IO_L20P_YY C15 1 IO_L21N_YY A16 1 IO_VREF_L21P_YY E14 1 IO_L22N_Y D14 1 IO_L22P_Y C16 1 IO_L23N_Y D15 www.xilinx.com 1-800-255-7778 Module 4 of 4 51 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 18: FG456 — XCV200E and XCV300E Table 18: FG456 — XCV200E and XCV300E Bank Pin Description Pin # Bank Pin Description Pin # 1 IO_L23P_Y A17 2 IO_D2_L37P_YY H20 1 IO_L24N_YY B17 2 IO_L37N_YY H19 1 IO_VREF_L24P_YY A18 2 IO_L38P_YY H21 1 IO_L25N_YY D16 2 IO_L38N_YY J19 1 IO_L25P_YY C17 2 IO_L39P_YY J18 1 IO_L26N_YY B18 2 IO_L39N_YY J20 1 IO_VREF_L26P_YY A19 2 IO_L40P_Y K18 1 IO_L27N_YY D17 2 IO_L40N_Y J21 1 IO_L27P_YY C18 2 IO_L41P K22 1 IO_WRITE_L28N_YY A20 2 IO_VREF_L41N K21 1 IO_CS_L28P_YY C19 2 IO_L42P_Y K19 2 IO_L42N_Y L22 2 IO D181 2 IO_L43P_YY L21 2 IO E191 2 IO_L43N_YY L18 2 IO E20 2 IO_L44P_YY L17 2 IO F20 2 IO_L44N_YY L20 2 IO G21 2 IO G221 3 IO M211 2 IO J22 3 IO P22 2 IO L191 3 IO R201 2 IO_D3 K20 3 IO R22 2 IO_DOUT_BUSY_L29P_YY C21 3 IO T19 2 IO_DIN_D0_L29N_YY D20 3 IO U181 2 IO_L30P_YY C22 3 IO V20 2 IO_L30N_YY D21 3 IO V21 2 IO_VREF_L31P_YY D22 3 IO Y221 2 IO_L31N_YY E21 3 IO_L45P_YY M18 2 IO_L32P_YY E22 3 IO_L45N_YY M20 2 IO_L32N_YY F18 3 IO_L46P_Y M19 2 IO_VREF_L33P_YY F21 3 IO_L46N_Y M17 2 IO_L33N_YY F19 3 IO_D4_L47P_Y N22 2 IO_L34P_Y F22 3 IO_VREF_L47N_Y N21 2 IO_L34N_Y G19 3 IO_L48P_YY N20 2 IO_L35P_Y G20 3 IO_L48N_YY N18 2 IO_L35N_Y G18 3 IO_L49P_YY N19 2 IO_VREF_L36P_Y H18 3 IO_L49N_YY P21 2 IO_D1_L36N_Y H22 3 IO_L50P_YY P20 Module 4 of 4 52 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 18: FG456 — XCV200E and XCV300E Table 18: FG456 — XCV200E and XCV300E Bank Pin Description Pin # Bank Pin Description Pin # 3 IO_L50N_YY P19 4 IO_L63N V16 3 IO_L51P_YY P18 4 IO_VREF_L64P_YY AB19 3 IO_D5_L51N_YY R21 4 IO_L64N_YY AB18 3 IO_D6_L52P_Y T22 4 IO_L65P_Y W16 3 IO_VREF_L52N_Y R19 4 IO_L65N_Y AA17 3 IO_L53P_Y U22 4 IO_L66P_Y Y16 3 IO_L53N_Y R18 4 IO_L66N_Y V15 3 IO_L54P_YY T21 4 IO_VREF_L67P_YY AB16 3 IO_L54N_YY V22 4 IO_L67N_YY Y15 3 IO_L55P_YY T20 4 IO_L68P_YY AA15 3 IO_VREF_L55N_YY U21 4 IO_L68N_YY AB15 3 IO_L56P_YY W22 4 IO_L69P_Y W15 3 IO_L56N_YY T18 4 IO_L69N_Y Y14 3 IO_L57P_YY U19 4 IO_L70P_Y V14 3 IO_VREF_L57N_YY U20 4 IO_L70N_Y AA14 3 IO_L58P_YY W21 4 IO_L71P AB14 3 IO_L58N_YY AA22 4 IO_L71N V13 3 IO_D7_L59P_YY Y21 4 IO_VREF_L72P_YY AA13 3 IO_INIT_L59N_YY V19 4 IO_L72N_YY AB13 3 IO M22 4 IO_L73P_Y W13 4 IO_L73N_Y AA12 4 GCK0 W12 4 IO_L74P_Y Y12 4 IO W14 4 IO_L74N_Y V12 4 IO Y13 4 IO_LVDS_DLL_L75P U12 4 IO Y17 4 IO AA161 5 IO U111 4 IO AA19 5 IO V8 4 IO AB121 5 IO W5 4 IO AB17 5 IO AA31 4 IO AB211 5 IO AA9 4 IO_L60P_YY W18 5 IO AA10 4 IO_L60N_YY AA20 5 IO AB4 4 IO_L61P Y18 5 IO AB71 4 IO_L61N V17 5 IO AB8 4 IO_VREF_L62P_YY AB20 5 GCK1 Y11 4 IO_L62N_YY W17 5 IO_LVDS_DLL_L75N AA11 4 IO_L63P AA18 5 IO_L76P_Y AB11 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 53 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 18: FG456 — XCV200E and XCV300E Table 18: FG456 — XCV200E and XCV300E Bank Pin Description Pin # Bank Pin Description Pin # 5 IO_L76N_Y W11 6 IO_L90N_YY V4 5 IO_L77P_YY V11 6 IO_L90P_YY V3 5 IO_VREF_L77N_YY Y10 6 IO_VREF_L91N_YY Y1 5 IO_L78P_YY AB10 6 IO_L91P_YY U4 5 IO_L78N_YY W10 6 IO_L92N_YY V2 5 IO_L79P_Y V10 6 IO_L92P_YY W1 5 IO_L79N_Y Y9 6 IO_VREF_L93N_YY T3 5 IO_L80P_Y AB9 6 IO_L93P_YY U2 5 IO_L80N_Y W9 6 IO_L94N_Y T5 5 IO_L81P_YY V9 6 IO_L94P_Y V1 5 IO_L81N_YY AA8 6 IO_L95N_Y R5 5 IO_L82P_YY Y8 6 IO_L95P_Y U1 5 IO_VREF_L82N_YY W8 6 IO_VREF_L96N_Y R4 5 IO_L83P_Y W7 6 IO_L96P_Y T1 5 IO_L83N_Y AA7 6 IO_L97N_YY R2 5 IO_L84P_Y AB6 6 IO_L97P_YY P3 5 IO_L84N_Y AA6 6 IO_L98N_YY P5 5 IO_L85P_YY AB5 6 IO_L98P_YY R1 5 IO_VREF_L85N_YY AA5 6 IO_L99N_YY P2 5 IO_L86P_YY Y7 6 IO_L99P_YY N5 5 IO_L86N_YY W6 6 IO_L100N_Y P1 5 IO_L87P_YY AA4 6 IO_L100P_Y N4 5 IO_VREF_L87N_YY Y6 6 IO_L101N N3 5 IO_L88P_YY V7 6 IO_VREF_L101P N2 5 IO_L88N_YY AB3 6 IO_L102N_Y N1 6 IO_L102P_Y M4 6 IO M21 6 IO_L103N_YY M3 6 IO M5 6 IO_L103P_YY M6 6 IO P4 6 IO M1 6 IO R31 6 IO T2 7 IO B1 6 IO T4 7 IO C21 6 IO U31 7 IO D11 6 IO W2 7 IO E4 6 IO AA11 7 IO F4 6 IO_L89N_YY W3 7 IO G21 6 IO_L89P_YY Y2 7 IO G4 Module 4 of 4 54 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 18: FG456 — XCV200E and XCV300E Table 18: FG456 — XCV200E and XCV300E Bank Pin Description Pin # Bank Pin Description Pin # 7 IO J1 NA DXP V6 7 IO J4 NA M0 AB2 7 IO L21 NA M1 U5 7 IO_L104N_YY L3 NA M2 Y4 7 IO_L104P_YY L4 NA PROGRAM W20 7 IO_L105N_YY L5 NA TCK C4 7 IO_L105P_YY L1 NA TDI B20 7 IO_L106N_Y L6 2 TDO A21 7 IO_L106P_Y K2 NA TMS D3 7 IO_L107N_Y K4 7 IO_VREF_L107P_Y K3 NA NC W19 7 IO_L108N_YY K1 NA NC W4 7 IO_L108P_YY K5 NA NC D19 7 IO_L109N_YY J3 NA NC D4 7 IO_L109P_YY J2 7 IO_L110N_YY J5 NA VCCINT E5 7 IO_L110P_YY H1 NA VCCINT E18 7 IO_L111N_YY H2 NA VCCINT F6 7 IO_L111P_YY H3 NA VCCINT F17 7 IO_L112N_Y G1 NA VCCINT G7 7 IO_VREF_L112P_Y H4 NA VCCINT G8 7 IO_L113N_Y F1 NA VCCINT G9 7 IO_L113P_Y F2 NA VCCINT G14 7 IO_L114N_YY H5 NA VCCINT G15 7 IO_L114P_YY G3 NA VCCINT H7 7 IO_L115N_YY E1 NA VCCINT G16 7 IO_VREF_L115P_YY E2 NA VCCINT H16 7 IO_L116N_YY F3 NA VCCINT J7 7 IO_L116P_YY G5 NA VCCINT J16 7 IO_L117N_YY E3 NA VCCINT P7 7 IO_VREF_L117P_YY D2 NA VCCINT P16 7 IO_L118N_YY F5 NA VCCINT R7 7 IO_L118P_YY C1 NA VCCINT R16 NA VCCINT T7 2 CCLK B22 NA VCCINT T8 3 DONE Y19 NA VCCINT T9 NA DXN Y5 NA VCCINT T14 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 55 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 18: FG456 — XCV200E and XCV300E Table 18: FG456 — XCV200E and XCV300E Bank Pin Description Pin # Bank Pin Description Pin # NA VCCINT T15 NA VCCO_2 K17 NA VCCINT T16 NA VCCO_2 J17 NA VCCINT U6 NA VCCO_2 H17 NA VCCINT U17 NA VCCO_2 G17 NA VCCINT V5 NA VCCO_2 L16 NA VCCINT V18 NA VCCO_2 K16 NA VCCO_1 G13 NA VCCO_7 L7 NA VCCO_1 G12 NA VCCO_7 K7 NA VCCO_1 F16 NA VCCO_7 K6 NA VCCO_1 F15 NA VCCO_7 J6 NA VCCO_1 F14 NA VCCO_7 H6 NA VCCO_1 F13 NA VCCO_7 G6 NA VCCO_0 G11 NA VCCO_6 N7 NA VCCO_0 G10 NA VCCO_6 M7 NA VCCO_0 F10 NA VCCO_6 T6 NA VCCO_0 F9 NA VCCO_6 R6 NA VCCO_0 F8 NA VCCO_6 P6 NA VCCO_0 F7 NA VCCO_6 N6 NA VCCO_5 U10 NA GND AB22 NA VCCO_5 U9 NA GND AB1 NA VCCO_5 U8 NA GND AA21 NA VCCO_5 U7 NA GND AA2 NA VCCO_5 T11 NA GND Y20 NA VCCO_5 T10 NA GND Y3 NA VCCO_4 U16 NA GND P14 NA VCCO_4 U15 NA GND P13 NA VCCO_4 U14 NA GND P12 NA VCCO_4 U13 NA GND P11 NA VCCO_4 T13 NA GND P10 NA VCCO_4 T12 NA GND P9 NA VCCO_3 T17 NA GND N14 NA VCCO_3 R17 NA GND N13 NA VCCO_3 P17 NA GND N12 NA VCCO_3 N17 NA GND N11 NA VCCO_3 N16 NA GND N10 NA VCCO_3 M16 NA GND N9 Module 4 of 4 56 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays FG456 Differential Pin Pairs Table 18: FG456 — XCV200E and XCV300E Bank Pin Description Pin # NA GND M14 NA GND M13 NA GND M12 NA GND M11 NA GND M10 NA GND M9 NA GND L14 NA GND L13 NA GND L12 NA GND L11 NA GND L10 NA GND L9 NA GND K14 NA GND K13 NA GND K12 NA GND K11 NA GND K10 NA GND K9 NA GND J14 NA GND J13 NA GND J12 NA GND J11 NA GND J10 NA GND J9 NA GND C20 NA GND C3 NA GND B21 NA GND B2 NA GND A22 NA GND A1 Note 1: NC in the XCV200E device. DS022-4 (v2.5) March 14, 2003 Production Product Specification Virtex-E devices have differential pin pairs that can also provide other functions when not used as a differential pair. A √ in the AO column indicates that the pin pair can be used as an asynchronous output for all devices provided in this package. Pairs with a note number in the AO column are device dependent. They can have asynchronous outputs if the pin pair are in the same CLB row and column in the device. Numbers in this column refer to footnotes that indicate which devices have pin pairs than can be asynchronous outputs. The Other Functions column indicates alternative function(s) not available when the pair is used as a differential pair or differential clock. Table 19: FG456 Differential Pin Pair Summary XCV200E, XCV300E Pair Bank P N Pin Pin AO Other Functions Global Differential Clock 0 4 W12 U12 NA IO_DLL_L75P 1 5 Y11 AA11 NA IO_DLL_L75N 2 1 A11 D11 NA IO_DLL_L13P 3 0 C11 B11 NA IO_DLL_L13N IO LVDS Total Pairs: 119, Asynchronous Output Pairs: 69 0 0 B3 D5 NA - 1 0 E6 B4 √ VREF 2 0 E7 A4 NA - 3 0 D6 C6 √ VREF 4 0 B6 A5 1 - 5 0 C7 D7 1 - 6 0 B7 E8 √ VREF 7 0 E9 A7 √ - 8 0 B8 C8 1 - 9 0 A8 D9 1 - 10 0 E10 C9 NA - 11 0 C10 A9 √ VREF 12 0 B10 F11 2 - 13 1 D11 B11 NA IO_LVDS_DLL 14 1 D12 C12 2 - 15 1 A13 B12 2 - 16 1 B13 E12 √ VREF 17 1 D13 C13 √ - www.xilinx.com 1-800-255-7778 Module 4 of 4 57 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 19: FG456 Differential Pin Pair Summary XCV200E, XCV300E P N Table 19: FG456 Differential Pin Pair Summary XCV200E, XCV300E P N Bank Pin Pin AO Other Functions Pair Bank Pin Pin AO Other Functions 18 1 C14 B14 2 - 53 3 U22 R18 2 - 19 1 A15 F12 2 - 54 3 T21 V22 √ - 20 1 C15 B15 √ - 55 3 T20 U21 √ VREF 21 1 E14 A16 √ VREF 56 3 W22 T18 √ - 22 1 C16 D14 2 - 57 3 U19 U20 √ VREF 23 1 A17 D15 2 - 58 3 W21 AA22 √ - 24 1 A18 B17 √ VREF 59 3 Y21 V19 √ INIT 25 1 C17 D16 √ - 60 4 W18 AA20 √ - 26 1 A19 B18 √ VREF 61 4 Y18 V17 NA - 27 1 C18 D17 √ - 62 4 AB20 W17 √ VREF 28 1 C19 A20 √ CS 63 4 AA18 V16 NA - 29 2 C21 D20 √ DIN, D0 64 4 AB19 AB18 √ VREF 30 2 C22 D21 √ - 65 4 W16 AA17 1 - 31 2 D22 E21 √ VREF 66 4 Y16 V15 1 - 32 2 E22 F18 √ - 67 4 AB16 Y15 √ VREF 33 2 F21 F19 √ VREF 68 4 AA15 AB15 √ - 34 2 F22 G19 2 - 69 4 W15 Y14 1 - 35 2 G20 G18 1 - 70 4 V14 AA14 1 - 36 2 H18 H22 2 D1, VREF 71 4 AB14 V13 NA - 37 2 H20 H19 √ D2 72 4 AA13 AB13 √ VREF 38 2 H21 J19 √ - 73 4 W13 AA12 2 - 39 2 J18 J20 √ - 74 4 Y12 V12 2 - 40 2 K18 J21 2 - 75 5 U12 AA11 NA IO_LVDS_DLL 41 2 K22 K21 1 VREF 76 5 AB11 W11 1 - 42 2 K19 L22 2 - 77 5 V11 Y10 √ VREF 43 2 L21 L18 √ - 78 5 AB10 W10 √ - 44 2 L17 L20 √ - 79 5 V10 Y9 2 - 45 3 M18 M20 √ - 80 5 AB9 W9 2 - 46 3 M19 M17 2 - 81 5 V9 AA8 √ - 47 3 N22 N21 2 VREF 82 5 Y8 W8 √ VREF 48 3 N20 N18 √ - 83 5 W7 AA7 2 - 49 3 N19 P21 √ - 84 5 AB6 AA6 2 - 50 3 P20 P19 √ - 85 5 AB5 AA5 √ VREF 51 3 P18 R21 √ D5 86 5 Y7 W6 √ - 52 3 T22 R19 2 VREF 87 5 AA4 Y6 √ VREF Module 4 of 4 58 Pair www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays FG676 Fine-Pitch Ball Grid Array Package Table 19: FG456 Differential Pin Pair Summary XCV200E, XCV300E P N XCV400E and XCV600E devices in the FG676 fine-pitch Ball Grid Array package have footprint compatibility. Pins labeled I0_VREF can be used as either in all parts unless device-dependent as indicated in the footnotes. If the pin is not used as VREF, it can be used as general I/O. Immediately following Table 20, see Table 21 for Differential Pair information. Pair Bank Pin Pin AO Other Functions 88 5 V7 AB3 √ - 89 6 Y2 W3 √ - 90 6 V3 V4 √ - 91 6 U4 Y1 √ VREF 92 6 W1 V2 √ - Bank Pin Description Pin # 93 6 U2 T3 √ VREF 0 GCK3 E13 94 6 V1 T5 2 - 0 IO A6 95 6 U1 R5 1 - 0 IO A91 96 6 T1 R4 2 VREF 0 IO A101 97 6 P3 R2 √ - 0 IO B3 98 6 R1 P5 √ - 0 IO B41 99 6 N5 P2 √ - 0 IO B121 100 6 N4 P1 2 - 0 IO C6 101 6 N2 N3 1 VREF 0 IO C8 102 6 M4 N1 2 - 0 IO D5 103 6 M6 M3 √ - 0 IO D131 104 7 L4 L3 √ - 0 IO G13 105 7 L1 L5 √ - 0 IO_L0N_Y C4 106 7 K2 L6 2 - 0 IO_L0P_Y F7 107 7 K3 K4 2 VREF 0 IO_L1N_YY G8 108 7 K5 K1 √ - 0 IO_L1P_YY C5 109 7 J2 J3 √ - 0 IO_VREF_L2N_YY D6 110 7 H1 J5 √ - 0 IO_L2P_YY E7 111 7 H3 H2 √ - 0 IO_L3N A4 112 7 H4 G1 2 VREF 0 IO_L3P F8 113 7 F2 F1 2 - 0 IO_L4N B5 114 7 G3 H5 √ - 0 IO_L4P D7 115 7 E2 E1 √ VREF 0 IO_VREF_L5N_YY E8 116 7 G5 F3 √ - 0 IO_L5P_YY G9 117 7 D2 E3 √ VREF 0 IO_L6N_YY A5 118 7 C1 F5 √ - 0 IO_L6P_YY F9 0 IO_L7N_Y D8 0 IO_L7P_Y C7 0 IO_VREF_L8N_Y B72 0 IO_L8P_Y E9 Notes: 1. AO in the XCV200E. 2. AO in the XCV300E. DS022-4 (v2.5) March 14, 2003 Production Product Specification Table 20: FG676 — XCV400E, XCV600E www.xilinx.com 1-800-255-7778 Module 4 of 4 59 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 20: FG676 — XCV400E, XCV600E Table 20: FG676 — XCV400E, XCV600E Bank Pin Description Pin # Bank Pin Description Pin # 0 IO_L9N A7 1 IO_L22N E14 0 IO_L9P D9 1 IO_L22P F13 0 IO_L10N B8 1 IO_L23N_Y D14 0 IO_VREF_L10P G10 1 IO_VREF_L23P_Y A14 0 IO_L11N_YY C9 1 IO_L24N_Y C14 0 IO_L11P_YY F10 1 IO_L24P_Y H14 0 IO_L12N_Y A8 1 IO_L25N_YY G14 0 IO_L12P_Y E10 1 IO_L25P_YY C15 0 IO_L13N_YY G11 1 IO_L26N_YY E15 0 IO_L13P_YY D10 1 IO_VREF_L26P_YY D15 0 IO_L14N_YY B10 1 IO_L27N_YY C16 0 IO_L14P_YY F11 1 IO_L27P_YY F15 0 IO_L15N C10 1 IO_L28N G15 0 IO_L15P E11 1 IO_L28P D16 0 IO_L16N_YY G12 1 IO_L29N_YY E16 0 IO_L16P_YY D11 1 IO_L29P_YY A17 0 IO_VREF_L17N_YY C11 1 IO_L30N_YY C17 0 IO_L17P_YY F12 1 IO_L30P_YY E17 0 IO_L18N_YY A11 1 IO_L31N_Y F16 0 IO_L18P_YY E12 1 IO_L31P_Y D17 0 IO_L19N_Y D12 1 IO_L32N_YY F17 0 IO_L19P_Y C12 1 IO_L32P_YY C18 0 IO_VREF_L20N_Y A12 1 IO_L33N_YY A18 0 IO_L20P_Y H13 1 IO_VREF_L33P_YY G16 0 IO_LVDS_DLL_L21N B13 1 IO_L34N_YY C19 1 IO_L34P_YY G17 1 GCK2 C13 1 IO_L35N_Y D18 1 IO A131 1 IO_VREF_L35P_Y B192 1 IO A161 1 IO_L36N_Y D19 1 IO A19 1 IO_L36P_Y E18 1 IO A20 1 IO_L37N_YY F18 1 IO A22 1 IO_L37P_YY B20 1 IO A241 1 IO_L38N_YY G19 1 IO B151 1 IO_VREF_L38P_YY C20 1 IO B171 1 IO_L39N_YY G18 1 IO B23 1 IO_L39P_YY E19 1 IO_LVDS_DLL_L21P F14 1 IO_L40N_YY A21 Module 4 of 4 60 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 20: FG676 — XCV400E, XCV600E Table 20: FG676 — XCV400E, XCV600E Bank Pin Description Pin # Bank Pin Description Pin # 1 IO_L40P_YY D20 2 IO_VREF_L54P_Y G262 1 IO_L41N_YY F19 2 IO_L54N_Y J22 1 IO_VREF_L41P_YY C21 2 IO_L55P_YY H24 1 IO_L42N_YY B22 2 IO_L55N_YY J23 1 IO_L42P_YY E20 2 IO_L56P_YY J24 1 IO_L43N_Y A23 2 IO_VREF_L56N_YY K20 1 IO_L43P_Y D21 2 IO_D2_L57P_YY K22 1 IO_WRITE_L44N_YY C22 2 IO_L57N_YY K21 1 IO_CS_L44P_YY E21 2 IO_L58P_YY H25 2 IO_L58N_YY K23 2 IO D251 2 IO_L59P_Y L20 2 IO D26 2 IO_L59N_Y J26 2 IO E26 2 IO_L60P_Y K25 2 IO F26 2 IO_L60N_Y L22 2 IO H261 2 IO_L61P_Y L21 2 IO K261 2 IO_L61N_Y L23 2 IO M251 2 IO_L62P_Y M20 2 IO N261 2 IO_L62N_Y L24 2 IO_D1 K24 2 IO_VREF_L63P_YY M23 2 IO_DOUT_BUSY_L45P_YY E23 2 IO_D3_L63N_YY M22 2 IO_DIN_D0_L45N_YY F22 2 IO_L64P_YY L26 2 IO_L46P_YY E24 2 IO_L64N_YY M21 2 IO_L46N_YY F20 2 IO_L65P_Y N19 2 IO_L47P_Y G21 2 IO_L65N_Y M24 2 IO_L47N_Y G22 2 IO_VREF_L66P_Y M26 2 IO_VREF_L48P_Y F24 2 IO_L66N_Y N20 2 IO_L48N_Y H20 2 IO_L67P_YY N24 2 IO_L49P_Y E25 2 IO_L67N_YY N21 2 IO_L49N_Y H21 2 IO_L68P_YY N23 2 IO_L50P_YY F23 2 IO_L68N_YY N22 2 IO_L50N_YY G23 2 IO_VREF_L51P_YY H23 3 IO P24 2 IO_L51N_YY J20 3 IO P261 2 IO_L52P_YY G24 3 IO R261 2 IO_L52N_YY H22 3 IO T261 2 IO_L53P_Y J21 3 IO U261 2 IO_L53N_Y G25 3 IO W25 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 61 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 20: FG676 — XCV400E, XCV600E Table 20: FG676 — XCV400E, XCV600E Bank Pin Description Pin # Bank Pin Description Pin # 3 IO Y26 3 IO_VREF_L85N_YY W23 3 IO AB25 3 IO_L86P_Y AA24 3 IO AC251 3 IO_L86N_Y Y23 3 IO AC26 3 IO_L87P_Y AB26 3 IO_L69P_YY P21 3 IO_L87N_Y W21 3 IO_L69N_YY P23 3 IO_L88P_Y Y22 3 IO_L70P_Y P22 3 IO_VREF_L88N_Y W22 3 IO_VREF_L70N_Y R25 3 IO_L89P_Y AA23 3 IO_L71P_Y P19 3 IO_L89N_Y AB24 3 IO_L71N_Y P20 3 IO_L90P_YY W20 3 IO_L72P_YY R21 3 IO_L90N_YY AC24 3 IO_L72N_YY R22 3 IO_D7_L91P_YY AB23 3 IO_D4_L73P_YY R24 3 IO_INIT_L91N_YY Y21 3 IO_VREF_L73N_YY R23 3 IO_L74P_Y T24 4 GCK0 AA14 3 IO_L74N_Y R20 4 IO AC18 3 IO_L75P_Y T22 4 IO AE151 3 IO_L75N_Y U24 4 IO AE20 3 IO_L76P_Y T23 4 IO AE23 3 IO_L76N_Y U25 4 IO AF141 3 IO_L77P_Y T21 4 IO AF161 3 IO_L77N_Y U20 4 IO AF181 3 IO_L78P_YY U22 4 IO AF21 3 IO_L78N_YY V26 4 IO AF231 3 IO_L79P_YY T20 4 IO_L92P_YY AC22 3 IO_D5_L79N_YY U23 4 IO_L92N_YY AD26 3 IO_D6_L80P_YY V24 4 IO_L93P_Y AD23 3 IO_VREF_L80N_YY U21 4 IO_L93N_Y AA20 3 IO_L81P_YY V23 4 IO_L94P_YY Y19 3 IO_L81N_YY W24 4 IO_L94N_YY AC21 3 IO_L82P_Y V22 4 IO_VREF_L95P_YY AD22 3 IO_VREF_L82N_Y W262 4 IO_L95N_YY AB20 3 IO_L83P_Y Y25 4 IO_L96P AE22 3 IO_L83N_Y V21 4 IO_L96N Y18 3 IO_L84P_YY V20 4 IO_L97P AF22 3 IO_L84N_YY AA26 4 IO_L97N AA19 3 IO_L85P_YY Y24 4 IO_VREF_L98P_YY AD21 Module 4 of 4 62 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 20: FG676 — XCV400E, XCV600E Table 20: FG676 — XCV400E, XCV600E Bank Pin Description Pin # Bank Pin Description Pin # 4 IO_L98N_YY AB19 5 IO AD7 4 IO_L99P_YY AC20 5 IO AD13 4 IO_L99N_YY AA18 5 IO AE4 4 IO_L100P_Y AC19 5 IO AE7 4 IO_L100N_Y AD20 5 IO AE121 4 IO_VREF_L101P_Y AF202 5 IO AF31 4 IO_L101N_Y AB18 5 IO AF5 4 IO_L102P AD19 5 IO AF101 4 IO_L102N Y17 5 IO AF111 4 IO_L103P AE19 5 IO_LVDS_DLL_L115N AF13 4 IO_VREF_L103N AD18 5 IO_L116P_Y AA13 4 IO_L104P_YY AF19 5 IO_VREF_L116N_Y AF12 4 IO_L104N_YY AA17 5 IO_L117P_Y AC13 4 IO_L105P_Y AC17 5 IO_L117N_Y W13 4 IO_L105N_Y AB17 5 IO_L118P_YY AA12 4 IO_L106P_YY Y16 5 IO_L118N_YY AD12 4 IO_L106N_YY AE17 5 IO_L119P_YY AC12 4 IO_L107P_YY AF17 5 IO_VREF_L119N_YY AB12 4 IO_L107N_YY AA16 5 IO_L120P_YY AD11 4 IO_L108P AD17 5 IO_L120N_YY Y12 4 IO_L108N AB16 5 IO_L121P AB11 4 IO_L109P_YY AC16 5 IO_L121N AD10 4 IO_L109N_YY AD16 5 IO_L122P_YY AC11 4 IO_VREF_L110P_YY AC15 5 IO_L122N_YY AE10 4 IO_L110N_YY Y15 5 IO_L123P_YY AC10 4 IO_L111P_YY AD15 5 IO_L123N_YY AA11 4 IO_L111N_YY AA15 5 IO_L124P_Y Y11 4 IO_L112P_Y W14 5 IO_L124N_Y AD9 4 IO_L112N_Y AB15 5 IO_L125P_YY AB10 4 IO_VREF_L113P_Y AF15 5 IO_L125N_YY AF9 4 IO_L113N_Y Y14 5 IO_L126P_YY AD8 4 IO_L114P AD14 5 IO_VREF_L126N_YY AA10 4 IO_L114N AB14 5 IO_L127P_YY AE8 4 IO_LVDS_DLL_L115P AC14 5 IO_L127N_YY Y10 5 IO_L128P_Y AC9 5 GCK1 AB13 5 IO_VREF_L128N_Y AF82 5 IO Y131 5 IO_L129P_Y AF7 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 63 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 20: FG676 — XCV400E, XCV600E Table 20: FG676 — XCV400E, XCV600E Bank Pin Description Pin # Bank Pin Description Pin # 5 IO_L129N_Y AB9 6 IO_L142P_YY Y4 5 IO_L130P_YY AA9 6 IO_VREF_L143N_YY V5 5 IO_L130N_YY AF6 6 IO_L143P_YY W5 5 IO_L131P_YY AC8 6 IO_L144N_YY AA1 5 IO_VREF_L131N_YY AC7 6 IO_L144P_YY V6 5 IO_L132P_YY AD6 6 IO_L145N_Y W4 5 IO_L132N_YY Y9 6 IO_L145P_Y Y3 5 IO_L133P_YY AE5 6 IO_VREF_L146N_Y Y12 5 IO_L133N_YY AA8 6 IO_L146P_Y U7 5 IO_L134P_YY AC6 6 IO_L147N_YY W1 5 IO_VREF_L134N_YY AB8 6 IO_L147P_YY V4 5 IO_L135P_YY AD5 6 IO_L148N_YY W2 5 IO_L135N_YY AA7 6 IO_VREF_L148P_YY U6 5 IO_L136P_Y AF4 6 IO_L149N_YY V3 5 IO_L136N_Y AC5 6 IO_L149P_YY T5 6 IO_L150N_YY U5 6 IO P3 6 IO_L150P_YY U4 6 IO AA3 6 IO_L151N_Y T7 6 IO AC11 6 IO_L151P_Y U3 6 IO P11 6 IO_L152N_Y U2 6 IO R21 6 IO_L152P_Y T6 6 IO T11 6 IO_L153N_Y U1 6 IO V11 6 IO_L153P_Y T4 6 IO W3 6 IO_L154N_Y R7 6 IO Y2 6 IO_L154P_Y T3 6 IO Y6 6 IO_VREF_L155N_YY R4 6 IO_L137N_YY AA5 6 IO_L155P_YY R6 6 IO_L137P_YY AC3 6 IO_L156N_YY R3 6 IO_L138N_YY AC2 6 IO_L156P_YY R5 6 IO_L138P_YY AB4 6 IO_L157N_Y P8 6 IO_L139N_Y W6 6 IO_L157P_Y P7 6 IO_L139P_Y AA4 6 IO_VREF_L158N_Y R1 6 IO_VREF_L140N_Y AB3 6 IO_L158P_Y P6 6 IO_L140P_Y Y5 6 IO_L159N_YY P5 6 IO_L141N_Y AB2 6 IO_L159P_YY P4 6 IO_L141P_Y V7 6 IO_L142N_YY AB1 7 IO D11 Module 4 of 4 64 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 20: FG676 — XCV400E, XCV600E Table 20: FG676 — XCV400E, XCV600E Bank Pin Description Pin # Bank Pin Description Pin # 7 IO D2 7 IO_L174N_Y J5 7 IO D3 7 IO_VREF_L174P_Y H12 7 IO E1 7 IO_L175N_Y G2 7 IO G1 7 IO_L175P_Y J6 7 IO H2 7 IO_L176N_YY J7 7 IO J11 7 IO_L176P_YY F1 7 IO L11 7 IO_L177N_YY H4 7 IO M11 7 IO_VREF_L177P_YY G4 7 IO N11 7 IO_L178N_Y F3 7 IO_L160N_YY N5 7 IO_L178P_Y H5 7 IO_L160P_YY N8 7 IO_L179N_Y E2 7 IO_L161N_YY N6 7 IO_L179P_Y H6 7 IO_L161P_YY N3 7 IO_L180N_Y G5 7 IO_L162N_Y N4 7 IO_VREF_L180P_Y F4 7 IO_VREF_L162P_Y M2 7 IO_L181N_Y H7 7 IO_L163N_Y N7 7 IO_L181P_Y G6 7 IO_L163P_Y M7 7 IO_L182N_YY E3 7 IO_L164N_YY M6 7 IO_L182P_YY E4 7 IO_L164P_YY M3 7 IO_L165N_YY M4 2 CCLK D24 7 IO_VREF_L165P_YY M5 3 DONE AB21 7 IO_L166N_Y L3 NA DXN AB7 7 IO_L166P_Y L7 NA DXP Y8 7 IO_L167N_Y L6 NA M0 AD4 7 IO_L167P_Y K2 NA M1 W7 7 IO_L168N_Y L4 NA M2 AB6 7 IO_L168P_Y K1 NA PROGRAM AA22 7 IO_L169N_Y K3 NA TCK E6 7 IO_L169P_Y L5 NA TDI D22 7 IO_L170N_YY K5 2 TDO C23 7 IO_L170P_YY J3 NA TMS F5 7 IO_L171N_YY K4 7 IO_L171P_YY J4 NA NC T25 7 IO_L172N_YY H3 NA NC T2 7 IO_VREF_L172P_YY K6 NA NC P2 7 IO_L173N_YY K7 NA NC N25 7 IO_L173P_YY G3 NA NC L25 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 65 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 20: FG676 — XCV400E, XCV600E Table 20: FG676 — XCV400E, XCV600E Bank Pin Description Pin # Bank Pin Description Pin # NA NC L2 NA NC A2 NA NC F6 NA NC A15 NA NC F25 NA NC F21 NA VCCINT G7 NA NC F2 NA VCCINT G20 NA NC C26 NA VCCINT H8 NA NC C25 NA VCCINT H19 NA NC C2 NA VCCINT J9 NA NC C1 NA VCCINT J10 NA NC B6 NA VCCINT J11 NA NC B26 NA VCCINT J16 NA NC B24 NA VCCINT J17 NA NC B21 NA VCCINT J18 NA NC B16 NA VCCINT K9 NA NC B11 NA VCCINT K18 NA NC B1 NA VCCINT L9 NA NC AF25 NA VCCINT L18 NA NC AF24 NA VCCINT T9 NA NC AF2 NA VCCINT T18 NA NC AE6 NA VCCINT U9 NA NC AE3 NA VCCINT U18 NA NC AE26 NA VCCINT V9 NA NC AE24 NA VCCINT V10 NA NC AE21 NA VCCINT V11 NA NC AE16 NA VCCINT V16 NA NC AE14 NA VCCINT V17 NA NC AE11 NA VCCINT V18 NA NC AE1 NA VCCINT Y7 NA NC AD25 NA VCCINT Y20 NA NC AD2 NA VCCINT W8 NA NC AD1 NA VCCINT W19 NA NC AA6 NA NC AA25 0 VCCO J13 NA NC AA21 0 VCCO J12 NA NC AA2 0 VCCO H9 NA NC A3 0 VCCO H12 NA NC A25 0 VCCO H11 Module 4 of 4 66 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 20: FG676 — XCV400E, XCV600E Table 20: FG676 — XCV400E, XCV600E Bank Pin Description Pin # Bank Pin Description Pin # 0 VCCO H10 7 VCCO N9 1 VCCO J15 7 VCCO M9 1 VCCO J14 7 VCCO M8 1 VCCO H18 7 VCCO L8 1 VCCO H17 7 VCCO K8 1 VCCO H16 7 VCCO J8 1 VCCO H15 2 VCCO N18 NA GND V25 2 VCCO M19 NA GND V2 2 VCCO M18 NA GND U17 2 VCCO L19 NA GND U16 2 VCCO K19 NA GND U15 2 VCCO J19 NA GND U14 3 VCCO V19 NA GND U13 3 VCCO U19 NA GND U12 3 VCCO T19 NA GND U11 3 VCCO R19 NA GND U10 3 VCCO R18 NA GND T17 3 VCCO P18 NA GND T16 4 VCCO W18 NA GND T15 4 VCCO W17 NA GND T14 4 VCCO W16 NA GND T13 4 VCCO W15 NA GND T12 4 VCCO V15 NA GND T11 4 VCCO V14 NA GND T10 5 VCCO W9 NA GND R17 5 VCCO W12 NA GND R16 5 VCCO W11 NA GND R15 5 VCCO W10 NA GND R14 5 VCCO V13 NA GND R13 5 VCCO V12 NA GND R12 6 VCCO V8 NA GND R11 6 VCCO U8 NA GND R10 6 VCCO T8 NA GND P25 6 VCCO R9 NA GND P17 6 VCCO R8 NA GND P16 6 VCCO P9 NA GND P15 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 67 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 20: FG676 — XCV400E, XCV600E Table 20: FG676 — XCV400E, XCV600E Bank Pin Description Pin # Bank Pin Description Pin # NA GND P14 NA GND K10 NA GND P13 NA GND J25 NA GND P12 NA GND J2 NA GND P11 NA GND E5 NA GND P10 NA GND E22 NA GND N2 NA GND D4 NA GND N17 NA GND D23 NA GND N16 NA GND C3 NA GND N15 NA GND C24 NA GND N14 NA GND B9 NA GND N13 NA GND B25 NA GND N12 NA GND B2 NA GND N11 NA GND B18 NA GND N10 NA GND B14 NA GND M17 NA GND AF26 NA GND M16 NA GND AF1 NA GND M15 NA GND AE9 NA GND M14 NA GND AE25 NA GND M13 NA GND AE2 NA GND M12 NA GND AE18 NA GND M11 NA GND AE13 NA GND M10 NA GND AD3 NA GND L17 NA GND AD24 NA GND L16 NA GND AC4 NA GND L15 NA GND AC23 NA GND L14 NA GND AB5 NA GND L13 NA GND AB22 NA GND L12 NA GND A26 NA GND L11 NA GND A1 NA GND L10 NA GND K17 NA GND K16 NA GND K15 NA GND K14 NA GND K13 NA GND K12 NA GND K11 Module 4 of 4 68 Notes: 1. NC in the XCV400E. 2. VREF or I/O option only in the XCV600E; otherwise, I/O option only. www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays FG676 Differential Pin Pairs Virtex-E devices have differential pin pairs that can also provide other functions when not used as a differential pair. A √ in the AO column indicates that the pin pair can be used as an asynchronous output for all devices provided in this package. Pairs with a note number in the AO column are device dependent. They can have asynchronous outputs if the pin pair are in the same CLB row and column in the device. Numbers in this column refer to footnotes that indicate which devices have pin pairs than can be asynchronous outputs. The Other Functions column indicates alternative function(s) not available when the pair is used as a differential pair or differential clock. Table 21: FG676 Differential Pin Pair Summary XCV400E, XCV600E Pair Ban k P N Pin Pin Other AO Functions Global Differential Clock 3 0 E13 B13 NA IO_DLL_L21N 2 1 C13 F14 NA IO_DLL_L21P 1 5 AB13 AF13 NA IO_DLL_L115N 0 4 AA14 AC14 NA IO_DLL_L115P IOLVDS Total Pairs: 183, Asynchronous Output Pairs: 97 0 0 F7 C4 1 - 1 0 C5 G8 √ - 2 0 E7 D6 √ VREF 3 0 F8 A4 NA - 4 0 D7 B5 NA - 5 0 G9 E8 √ VREF 6 0 F9 A5 √ - 7 0 C7 D8 1 - 8 0 E9 B7 1 VREF 9 0 D9 A7 NA - 10 0 G10 B8 NA VREF 11 0 F10 C9 √ - 12 0 E10 A8 1 - 13 0 D10 G11 √ - 14 0 F11 B10 √ - 15 0 E11 C10 NA - 16 0 D11 G12 √ - 17 0 F12 C11 √ VREF DS022-4 (v2.5) March 14, 2003 Production Product Specification Table 21: FG676 Differential Pin Pair Summary XCV400E, XCV600E P N Pair Ban k Pin Pin AO Functions 18 0 E12 A11 √ - 19 0 C12 D12 1 - 20 0 H13 A12 1 VREF 21 1 F14 B13 NA IO_LVDS_DLL 22 1 F13 E14 NA - 23 1 A14 D14 1 VREF 24 1 H14 C14 1 - 25 1 C15 G14 √ - 26 1 D15 E15 √ VREF 27 1 F15 C16 √ - 28 1 D16 G15 - - 29 1 A17 E16 √ - 30 1 E17 C17 √ - 31 1 D17 F16 1 - 32 1 C18 F17 √ - 33 1 G16 A18 √ VREF 34 1 G17 C19 √ - 35 1 B19 D18 1 VREF 36 1 E18 D19 1 - 37 1 B20 F18 √ - 38 1 C20 G19 √ VREF 39 1 E19 G18 √ - 40 1 D20 A21 √ - 41 1 C21 F19 √ VREF 42 1 E20 B22 √ - 43 1 D21 A23 2 - 44 1 E21 C22 √ CS 45 2 E23 F22 √ DIN, D0 46 2 E24 F20 √ - 47 2 G21 G22 2 - 48 2 F24 H20 1 VREF 49 2 E25 H21 1 - 50 2 F23 G23 √ - 51 2 H23 J20 √ VREF www.xilinx.com 1-800-255-7778 Other Module 4 of 4 69 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 21: FG676 Differential Pin Pair Summary XCV400E, XCV600E Table 21: FG676 Differential Pin Pair Summary XCV400E, XCV600E P N Pair Ban k P N Pair Ban k Pin Pin AO Functions Pin Pin AO Functions 52 2 G24 H22 √ - 86 3 AA24 Y23 1 - 53 2 J21 G25 2 - 87 3 AB26 W21 2 - 54 2 G26 J22 1 VREF 88 3 Y22 W22 1 VREF 55 2 H24 J23 √ - 89 3 AA23 AB24 2 - 56 2 J24 K20 √ VREF 90 3 W20 AC24 √ - 57 2 K22 K21 √ D2 91 3 AB23 Y21 √ INIT 58 2 H25 K23 √ - 92 4 AC22 AD26 √ - 59 2 L20 J26 2 - 93 4 AD23 AA20 1 - 60 2 K25 L22 1 - 94 4 Y19 AC21 √ - 61 2 L21 L23 1 - 95 4 AD22 AB20 √ VREF 62 2 M20 L24 1 - 96 4 AE22 Y18 NA - 63 2 M23 M22 √ D3 97 4 AF22 AA19 NA - 64 2 L26 M21 √ - 98 4 AD21 AB19 √ VREF 65 2 N19 M24 2 - 99 4 AC20 AA18 √ - 66 2 M26 N20 1 VREF 100 4 AC19 AD20 1 - 67 2 N24 N21 √ - 101 4 AF20 AB18 1 VREF 68 2 N23 N22 √ - 102 4 AD19 Y17 NA - 69 3 P21 P23 √ - 103 4 AE19 AD18 NA VREF 70 3 P22 R25 1 VREF 104 4 AF19 AA17 √ - 71 3 P19 P20 2 - 105 4 AC17 AB17 1 - 72 3 R21 R22 √ - 106 4 Y16 AE17 √ - 73 3 R24 R23 √ VREF 107 4 AF17 AA16 √ - 74 3 T24 R20 1 - 108 4 AD17 AB16 NA - 75 3 T22 U24 1 - 109 4 AC16 AD16 √ - 76 3 T23 U25 1 - 110 4 AC15 Y15 √ VREF 77 3 T21 U20 2 - 111 4 AD15 AA15 √ - 78 3 U22 V26 √ - 112 4 W14 AB15 1 - 79 3 T20 U23 √ D5 113 4 AF15 Y14 1 VREF 80 3 V24 U21 √ VREF 114 4 AD14 AB14 NA - 81 3 V23 W24 √ - 115 5 AC14 AF13 NA IO_LVDS_DLL 82 3 V22 W26 1 VREF 116 5 AA13 AF12 1 VREF 83 3 Y25 V21 2 - 117 5 AC13 W13 1 - 84 3 V20 AA26 √ - 118 5 AA12 AD12 √ - 85 3 Y24 W23 √ VREF 119 5 AC12 AB12 √ VREF Module 4 of 4 70 Other www.xilinx.com 1-800-255-7778 Other DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 21: FG676 Differential Pin Pair Summary XCV400E, XCV600E Table 21: FG676 Differential Pin Pair Summary XCV400E, XCV600E P N Pair Ban k Other Pin Pin AO Functions 120 5 AD11 Y12 √ 121 5 AB11 AD10 122 5 AC11 123 5 124 P N Pair Ban k Pin Pin AO Functions - 154 6 T3 R7 1 - NA - 155 6 R6 R4 √ VREF AE10 √ - 156 6 R5 R3 √ - AC10 AA11 √ - 157 6 P7 P8 2 - 5 Y11 AD9 1 - 158 6 P6 R1 1 VREF 125 5 AB10 AF9 √ - 159 6 P4 P5 √ - 126 5 AD8 AA10 √ VREF 160 7 N8 N5 √ - 127 5 AE8 Y10 √ - 161 7 N3 N6 √ - 128 5 AC9 AF8 1 VREF 162 7 M2 N4 1 VREF 129 5 AF7 AB9 1 - 163 7 M7 N7 2 - 130 5 AA9 AF6 √ - 164 7 M3 M6 √ - 131 5 AC8 AC7 √ VREF 165 7 M5 M4 √ VREF 132 5 AD6 Y9 √ - 166 7 L7 L3 1 - 133 5 AE5 AA8 √ - 167 7 K2 L6 1 - 134 5 AC6 AB8 √ VREF 168 7 K1 L4 1 - 135 5 AD5 AA7 √ - 169 7 L5 K3 2 - 136 5 AF4 AC5 2 - 170 7 J3 K5 √ - 137 6 AC3 AA5 √ - 171 7 J4 K4 √ - 138 6 AB4 AC2 √ - 172 7 K6 H3 √ VREF 139 6 AA4 W6 2 - 173 7 G3 K7 √ - 140 6 Y5 AB3 1 VREF 174 7 H1 J5 1 VREF 141 6 V7 AB2 1 - 175 7 J6 G2 2 - 142 6 Y4 AB1 √ - 176 7 F1 J7 √ - 143 6 W5 V5 √ VREF 177 7 G4 H4 √ VREF 144 6 V6 AA1 √ - 178 7 H5 F3 1 - 145 6 Y3 W4 2 - 179 7 H6 E2 2 - 146 6 U7 Y1 1 VREF 180 7 F4 G5 1 VREF 147 6 V4 W1 √ - 181 7 G6 H7 2 - 148 6 U6 W2 √ VREF 182 7 E4 E3 √ - 149 6 T5 V3 √ - 150 6 U4 U5 √ - 151 6 U3 T7 2 - 152 6 T6 U2 1 - 153 6 T4 U1 1 - DS022-4 (v2.5) March 14, 2003 Production Product Specification Other Notes: 1. AO in the XCV600E. 2. AO in the XCV400E. www.xilinx.com 1-800-255-7778 Module 4 of 4 71 R Virtex™-E 1.8 V Field Programmable Gate Arrays FG680 Fine-Pitch Ball Grid Array Package Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E XCV600E, XCV1000E, XCV1600E, and XCV2000E devices in the FG680 fine-pitch Ball Grid Array package have footprint compatibility. Pins labeled I0_VREF can be used as either in all parts unless device-dependent as indicated in the footnotes. If the pin is not used as VREF, it can be used as general I/O. Immediately following Table 22, see Table 23 for Differential Pair information. Bank Pin Description Pin # 0 IO_L13N_Y A29 0 IO_L13P_Y B29 0 IO_VREF_L14N_YY B28 0 IO_L14P_YY A28 Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E 0 IO_L15N_YY C28 Bank Pin Description Pin # 0 IO_L15P_YY B27 0 GCK3 A20 0 IO_L16N_Y D27 0 IO D35 0 IO_L16P_Y A27 0 IO B36 0 IO_L17N_Y C27 0 IO_L0N_Y C35 0 IO_L17P_Y B26 0 IO_L0P_Y A36 0 IO_L18N_YY D26 0 IO_VREF_L1N_Y D341 0 IO_L18P_YY C26 0 IO_L1P_Y B35 0 IO_VREF_L19N_YY A261 0 IO_L2N_YY C34 0 IO_L19P_YY D25 0 IO_L2P_YY A35 0 IO_L20N_Y B25 0 IO_VREF_L3N_YY D33 0 IO_L20P_Y C25 0 IO_L3P_YY B34 0 IO_L21N_Y A25 0 IO_L4N C33 0 IO_L21P_Y D24 0 IO_L4P A34 0 IO_L22N_YY A24 0 IO_L5N_Y D32 0 IO_L22P_YY B23 0 IO_L5P_Y B33 0 IO_VREF_L23N_YY C24 0 IO_L6N_YY C32 0 IO_L23P_YY A23 0 IO_L6P_YY D31 0 IO_L24N_Y B24 0 IO_VREF_L7N_YY A33 0 IO_L24P_Y B22 0 IO_L7P_YY C31 0 IO_L25N_Y E23 0 IO_L8N_Y B32 0 IO_L25P_Y A22 0 IO_L8P_Y B31 0 IO_L26N_YY D23 0 IO_VREF_L9N_Y A323 0 IO_L26P_YY B21 0 IO_L9P_Y D30 0 IO_VREF_L27N_YY C23 0 IO_L10N_YY A31 0 IO_L27P_YY A21 0 IO_L10P_YY C30 0 IO_L28N_Y E22 0 IO_VREF_L11N_YY B30 0 IO_L28P_Y B20 0 IO_L11P_YY D29 0 IO_LVDS_DLL_L29N C22 0 IO_L12N_Y A30 0 IO_VREF D222 0 IO_L12P_Y C29 1 GCK2 D21 Module 4 of 4 72 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # 1 IO C5 1 IO_L47N_Y B11 1 IO_LVDS_DLL_L29P A19 1 IO_L47P_Y C11 1 IO_L30N_Y C21 1 IO_L48N_YY A10 1 IO_VREF_L30P_Y B192 1 IO_VREF_L48P_YY D11 1 IO_L31N_Y C19 1 IO_L49N_YY B10 1 IO_L31P_Y A18 1 IO_L49P_YY C10 1 IO_L32N_YY D19 1 IO_L50N_Y A9 1 IO_VREF_L32P_YY B18 1 IO_VREF_L50P_Y D103 1 IO_L33N_YY C18 1 IO_L51N_Y B9 1 IO_L33P_YY A17 1 IO_L51P_Y C9 1 IO_L34N_Y D18 1 IO_L52N_YY A8 1 IO_L34P_Y B17 1 IO_VREF_L52P_YY B8 1 IO_L35N_Y E18 1 IO_L53N_YY D9 1 IO_L35P_Y A16 1 IO_L53P_YY A7 1 IO_L36N_YY C17 1 IO_L54N_Y C8 1 IO_VREF_L36P_YY D17 1 IO_L54P_Y B7 1 IO_L37N_YY B16 1 IO_L55N_Y D8 1 IO_L37P_YY E17 1 IO_L55P_Y A6 1 IO_L38N_Y A15 1 IO_L56N_YY C7 1 IO_L38P_Y C16 1 IO_VREF_L56P_YY B6 1 IO_L39N_Y B15 1 IO_L57N_YY D7 1 IO_L39P_Y D16 1 IO_L57P_YY A5 1 IO_L40N_YY A14 1 IO_L58N_Y C6 1 IO_VREF_L40P_YY B141 1 IO_VREF_L58P_Y B51 1 IO_L41N_YY C15 1 IO_L59N_Y D6 1 IO_L41P_YY A13 1 IO_L59P_Y A4 1 IO_L42N_Y D15 1 IO_WRITE_L60N_YY B4 1 IO_L42P_Y B13 1 IO_CS_L60P_YY D5 1 IO_L43N_Y C14 1 IO_L43P_Y A12 2 IO D1 1 IO_L44N_YY D14 2 IO F4 1 IO_L44P_YY C13 2 IO_DOUT_BUSY_L61P_YY E3 1 IO_L45N_YY B12 2 IO_DIN_D0_L61N_YY C2 1 IO_VREF_L45P_YY D13 2 IO_L62P_Y D3 1 IO_L46N_Y A11 2 IO_L62N_Y F3 1 IO_L46P_Y C12 2 IO_VREF_L63P D21 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 73 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # 2 IO_L63N G4 2 IO_L81N_Y T3 2 IO_L64P G3 2 IO_L82P_YY P2 2 IO_L64N E2 2 IO_L82N_YY U5 2 IO_VREF_L65P_Y H4 2 IO_L83P P1 2 IO_L65N_Y E1 2 IO_L83N U4 2 IO_L66P_YY H3 2 IO_L84P_Y R2 2 IO_L66N_YY F2 2 IO_L84N_Y U3 2 IO_L67P J4 2 IO_VREF_L85P_YY V5 2 IO_L67N F1 2 IO_D3_L85N_YY R1 2 IO_L68P_Y J3 2 IO_L86P_YY V4 2 IO_L68N_Y G2 2 IO_L86N_YY T2 2 IO_VREF_L69P_YY G1 2 IO_L87P V3 2 IO_L69N_YY K4 2 IO_L87N T1 2 IO_L70P_YY H2 2 IO_L88P W4 2 IO_L70N_YY K3 2 IO_L88N U2 2 IO_VREF_L71P H13 2 IO_VREF_L89P_YY W3 2 IO_L71N L4 2 IO_L89N_YY U1 2 IO_L72P J2 2 IO_L90P_YY AA3 2 IO_L72N L3 2 IO_L90N_YY V2 2 IO_VREF_L73P_YY J1 2 IO_VREF_L91P AA42 2 IO_L73N_YY M3 2 IO_L91N V1 2 IO_L74P_YY K2 2 IO_L92P_YY AB2 2 IO_L74N_YY N4 2 IO_L92N_YY W2 2 IO_L75P K1 2 IO_L75N N3 3 IO AP3 2 IO_VREF_L76P_YY L2 3 IO AT3 2 IO_D1_L76N_YY P4 3 IO AB3 2 IO_D2_L77P_YY P3 3 IO_L93P AB4 2 IO_L77N_YY L1 3 IO_VREF_L93N W12 2 IO_L78P_Y R4 3 IO_L94P_YY AB5 2 IO_L78N_Y M2 3 IO_L94N_YY Y2 2 IO_L79P R3 3 IO_L95P_YY AC2 2 IO_L79N M1 3 IO_VREF_L95N_YY Y1 2 IO_L80P T4 3 IO_L96P AC3 2 IO_L80N N2 3 IO_L96N AA1 2 IO_VREF_L81P_Y N11 3 IO_L97P AC4 Module 4 of 4 74 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # 3 IO_L97N AA2 3 IO_VREF_L115N_YY AL4 3 IO_L98P_YY AC5 3 IO_L116P_Y AM3 3 IO_L98N_YY AB1 3 IO_L116N_Y AN1 3 IO_D4_L99P_YY AD3 3 IO_L117P AM4 3 IO_VREF_L99N_YY AC1 3 IO_L117N AP1 3 IO_L100P_Y AD1 3 IO_L118P_YY AN2 3 IO_L100N_Y AD4 3 IO_L118N_YY AP2 3 IO_L101P AD2 3 IO_L119P_Y AN3 3 IO_L101N AE3 3 IO_VREF_L119N_Y AR1 3 IO_L102P_YY AE1 3 IO_L120P AN4 3 IO_L102N_YY AE4 3 IO_L120N AT1 3 IO_L103P_Y AE2 3 IO_L121P AR2 3 IO_VREF_L103N_Y AF31 3 IO_VREF_L121N AP41 3 IO_L104P AF4 3 IO_L122P_Y AT2 3 IO_L104N AF1 3 IO_L122N_Y AR3 3 IO_L105P AG3 3 IO_D7_L123P_YY AR4 3 IO_L105N AF2 3 IO_INIT_L123N_YY AU2 3 IO_L106P_Y AG4 3 IO_L106N_Y AG1 4 GCK0 AW19 3 IO_L107P_YY AH3 4 IO AV3 3 IO_D5_L107N_YY AG2 4 IO_L124P_YY AU4 3 IO_D6_L108P_YY AH1 4 IO_L124N_YY AV5 3 IO_VREF_L108N_YY AJ2 4 IO_L125P_Y AT6 3 IO_L109P AH2 4 IO_L125N_Y AV4 3 IO_L109N AJ3 4 IO_VREF_L126P_Y AU61 3 IO_L110P_YY AJ1 4 IO_L126N_Y AW4 3 IO_L110N_YY AJ4 4 IO_L127P_YY AT7 3 IO_L111P_YY AK1 4 IO_L127N_YY AW5 3 IO_VREF_L111N_YY AK3 4 IO_VREF_L128P_YY AU7 3 IO_L112P AK2 4 IO_L128N_YY AV6 3 IO_L112N AK4 4 IO_L129P_Y AT8 3 IO_L113P AL1 4 IO_L129N_Y AW6 3 IO_VREF_L113N AL23 4 IO_L130P_Y AU8 3 IO_L114P_YY AM1 4 IO_L130N_Y AV7 3 IO_L114N_YY AL3 4 IO_L131P_YY AT9 3 IO_L115P_YY AM2 4 IO_L131N_YY AW7 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 75 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # 4 IO_VREF_L132P_YY AV8 4 IO_L150P_Y AT18 4 IO_L132N_YY AU9 4 IO_L150N_Y AV17 4 IO_L133P_Y AW8 4 IO_L151P_YY AU18 4 IO_L133N_Y AT10 4 IO_L151N_YY AW17 4 IO_VREF_L134P_Y AV93 4 IO_VREF_L152P_YY AT19 4 IO_L134N_Y AU10 4 IO_L152N_YY AV18 4 IO_L135P_YY AW9 4 IO_L153P_Y AU19 4 IO_L135N_YY AT11 4 IO_L153N_Y AW18 4 IO_VREF_L136P_YY AV10 4 IO_VREF_L154P AU212 4 IO_L136N_YY AU11 4 IO_L154N AV19 4 IO_L137P_Y AW10 4 IO_LVDS_DLL_L155P AT21 4 IO_L137N_Y AU12 4 IO_L138P_Y AV11 5 GCK1 AU22 4 IO_L138N_Y AT13 5 IO AT34 4 IO_VREF_L139P_YY AW11 5 IO AW20 4 IO_L139N_YY AU13 5 IO_LVDS_DLL_L155N AT22 4 IO_L140P_YY AT14 5 IO_VREF_L156P_Y AV202 4 IO_L140N_YY AV12 5 IO_L156N_Y AR22 4 IO_L141P_Y AU14 5 IO_L157P_YY AV23 4 IO_L141N_Y AW12 5 IO_VREF_L157N_YY AW21 4 IO_L142P_Y AT15 5 IO_L158P_YY AU23 4 IO_L142N_Y AV13 5 IO_L158N_YY AV21 4 IO_L143P_YY AU15 5 IO_L159P_Y AT23 4 IO_L143N_YY AW13 5 IO_L159N_Y AW22 4 IO_VREF_L144P_YY AV141 5 IO_L160P_Y AR23 4 IO_L144N_YY AT16 5 IO_L160N_Y AV22 4 IO_L145P_Y AW14 5 IO_L161P_YY AV24 4 IO_L145N_Y AU16 5 IO_VREF_L161N_YY AW23 4 IO_L146P_Y AV15 5 IO_L162P_YY AW24 4 IO_L146N_Y AR17 5 IO_L162N_YY AU24 4 IO_L147P_YY AW15 5 IO_L163P_Y AW25 4 IO_L147N_YY AT17 5 IO_L163N_Y AT24 4 IO_VREF_L148P_YY AU17 5 IO_L164P_Y AV25 4 IO_L148N_YY AV16 5 IO_L164N_Y AU25 4 IO_L149P_Y AR18 5 IO_L165P_YY AW26 4 IO_L149N_Y AW16 5 IO_VREF_L165N_YY AT251 Module 4 of 4 76 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # 5 IO_L166P_YY AV26 5 IO_L184P_Y AU34 5 IO_L166N_YY AW27 5 IO_L184N_Y AU36 5 IO_L167P_Y AU26 5 IO_L167N_Y AV27 6 IO W39 5 IO_L168P_Y AT26 6 IO AR37 5 IO_L168N_Y AW28 6 IO AR39 5 IO_L169P_YY AU27 6 IO_L185N_YY AR36 5 IO_L169N_YY AV28 6 IO_L185P_YY AT38 5 IO_L170P_YY AW29 6 IO_L186N_Y AR38 5 IO_VREF_L170N_YY AT27 6 IO_L186P_Y AP36 5 IO_L171P_Y AW30 6 IO_VREF_L187N AT391 5 IO_L171N_Y AU28 6 IO_L187P AP37 5 IO_L172P_Y AV30 6 IO_L188N AP38 5 IO_L172N_Y AV29 6 IO_L188P AP39 5 IO_L173P_YY AW31 6 IO_VREF_L189N_Y AN36 5 IO_VREF_L173N_YY AU29 6 IO_L189P_Y AN38 5 IO_L174P_YY AV31 6 IO_L190N_YY AN37 5 IO_L174N_YY AT29 6 IO_L190P_YY AN39 5 IO_L175P_Y AW32 6 IO_L191N AM36 5 IO_VREF_L175N_Y AU303 6 IO_L191P AM38 5 IO_L176P_Y AW33 6 IO_L192N_Y AM37 5 IO_L176N_Y AT30 6 IO_L192P_Y AL36 5 IO_L177P_YY AV33 6 IO_VREF_L193N_YY AM39 5 IO_VREF_L177N_YY AU31 6 IO_L193P_YY AL37 5 IO_L178P_YY AT31 6 IO_L194N_YY AL38 5 IO_L178N_YY AW34 6 IO_L194P_YY AK36 5 IO_L179P_Y AV32 6 IO_VREF_L195N AL393 5 IO_L179N_Y AV34 6 IO_L195P AK37 5 IO_L180P_Y AU32 6 IO_L196N AK38 5 IO_L180N_Y AW35 6 IO_L196P AJ36 5 IO_L181P_YY AT32 6 IO_VREF_L197N_YY AK39 5 IO_VREF_L181N_YY AV35 6 IO_L197P_YY AJ37 5 IO_L182P_YY AU33 6 IO_L198N_YY AJ38 5 IO_L182N_YY AW36 6 IO_L198P_YY AH37 5 IO_L183P_Y AT33 6 IO_L199N AJ39 5 IO_VREF_L183N_Y AV361 6 IO_L199P AH38 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 77 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # 6 IO_VREF_L200N_YY AH39 7 IO_L216N_YY AA37 6 IO_L200P_YY AG38 7 IO_L216P_YY W38 6 IO_L201N_YY AG36 7 IO_L217N W37 6 IO_L201P_YY AG39 7 IO_VREF_L217P V392 6 IO_L202N_Y AG37 7 IO_L218N_YY W36 6 IO_L202P_Y AF39 7 IO_L218P_YY U39 6 IO_L203N AF36 7 IO_L219N_YY V38 6 IO_L203P AE38 7 IO_VREF_L219P_YY U38 6 IO_L204N AF37 7 IO_L220N V37 6 IO_L204P AF38 7 IO_L220P T39 6 IO_VREF_L205N_Y AE391 7 IO_L221N V36 6 IO_L205P_Y AE36 7 IO_L221P T38 6 IO_L206N_YY AD38 7 IO_L222N_YY V35 6 IO_L206P_YY AE37 7 IO_L222P_YY R39 6 IO_L207N AD39 7 IO_L223N_YY U37 6 IO_L207P AD36 7 IO_VREF_L223P_YY U36 6 IO_L208N_Y AC38 7 IO_L224N_Y R38 6 IO_L208P_Y AC39 7 IO_L224P_Y U35 6 IO_VREF_L209N_YY AD37 7 IO_L225N P39 6 IO_L209P_YY AB38 7 IO_L225P T37 6 IO_L210N_YY AC35 7 IO_L226N_YY P38 6 IO_L210P_YY AB39 7 IO_L226P_YY T36 6 IO_L211N AC36 7 IO_L227N_Y N39 6 IO_L211P AA38 7 IO_VREF_L227P_Y N381 6 IO_L212N AC37 7 IO_L228N R37 6 IO_L212P AA39 7 IO_L228P M39 6 IO_VREF_L213N_YY AB35 7 IO_L229N R36 6 IO_L213P_YY Y38 7 IO_L229P M38 6 IO_L214N_YY AB36 7 IO_L230N_Y P37 6 IO_L214P_YY Y39 7 IO_L230P_Y L39 6 IO_VREF_L215N AB372 7 IO_L231N_YY P36 6 IO_L215P AA36 7 IO_L231P_YY N37 7 IO_L232N_YY L38 7 IO C38 7 IO_VREF_L232P_YY N36 7 IO B37 7 IO_L233N K39 7 IO F37 7 IO_L233P M37 Module 4 of 4 78 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # 7 IO_L234N_YY K38 NA TDI B3 7 IO_L234P_YY L37 2 TDO C4 7 IO_L235N_YY J39 NA TMS E36 7 IO_VREF_L235P_YY L36 7 IO_L236N J38 NA VCCINT E8 7 IO_L236P K37 NA VCCINT E9 7 IO_L237N H39 NA VCCINT E15 7 IO_VREF_L237P K363 NA VCCINT E16 7 IO_L238N_YY H38 NA VCCINT E24 7 IO_L238P_YY J37 NA VCCINT E25 7 IO_L239N_YY G39 NA VCCINT E31 7 IO_VREF_L239P_YY G38 NA VCCINT E32 7 IO_L240N_Y J36 NA VCCINT H5 7 IO_L240P_Y F39 NA VCCINT H35 7 IO_L241N H37 NA VCCINT J5 7 IO_L241P F38 NA VCCINT J35 7 IO_L242N_YY H36 NA VCCINT R5 7 IO_L242P_YY E39 NA VCCINT R35 7 IO_L243N_Y G37 NA VCCINT T5 7 IO_VREF_L243P_Y E38 NA VCCINT T35 7 IO_L244N G36 NA VCCINT AD5 7 IO_L244P D39 NA VCCINT AD35 7 IO_L245N D38 NA VCCINT AE5 7 IO_VREF_L245P F361 NA VCCINT AE35 7 IO_L246N_Y D37 NA VCCINT AL5 7 IO_L246P_Y E37 NA VCCINT AL35 NA VCCINT AM5 2 CCLK E4 NA VCCINT AM35 3 DONE AU5 NA VCCINT AR8 NA DXN AV37 NA VCCINT AR9 NA DXP AU35 NA VCCINT AR15 NA M0 AT37 NA VCCINT AR16 NA M1 AU38 NA VCCINT AR24 NA M2 AT35 NA VCCINT AR25 NA PROGRAM AT5 NA VCCINT AR31 NA TCK C36 NA VCCINT AR32 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 79 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # 5 VCCO AR26 0 VCCO E34 6 VCCO AP35 0 VCCO E33 6 VCCO AN35 0 VCCO E30 6 VCCO AK35 0 VCCO E29 6 VCCO AJ35 0 VCCO E27 6 VCCO AG35 0 VCCO E26 6 VCCO AF35 1 VCCO E10 7 VCCO P35 1 VCCO E11 7 VCCO N35 1 VCCO E13 7 VCCO L35 1 VCCO E14 7 VCCO K35 1 VCCO E6 7 VCCO G35 1 VCCO E7 7 VCCO F35 2 VCCO P5 2 VCCO N5 NA GND Y5 2 VCCO L5 NA GND Y4 2 VCCO K5 NA GND Y37 2 VCCO G5 NA GND Y36 2 VCCO F5 NA GND Y35 3 VCCO AP5 NA GND Y3 3 VCCO AN5 NA GND W5 3 VCCO AK5 NA GND W35 3 VCCO AJ5 NA GND M5 3 VCCO AG5 NA GND M4 3 VCCO AF5 NA GND M36 4 VCCO AR10 NA GND M35 4 VCCO AR11 NA GND E5 4 VCCO AR13 NA GND E35 4 VCCO AR14 NA GND E28 4 VCCO AR6 NA GND E21 4 VCCO AR7 NA GND E20 5 VCCO AR34 NA GND E19 5 VCCO AR33 NA GND E12 5 VCCO AR30 NA GND D4 5 VCCO AR29 NA GND D36 5 VCCO AR27 NA GND D28 Module 4 of 4 80 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Table 22: FG680 - XCV600E, XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # NA GND D20 NA GND AR19 NA GND D12 NA GND AR12 NA GND C39 NA GND AH5 NA GND C37 NA GND AH4 NA GND C3 NA GND AH36 NA GND C20 NA GND AH35 NA GND C1 NA GND AA5 NA GND B39 NA GND AA35 NA GND B38 NA GND A39 NA GND B2 NA GND A38 NA GND B1 NA GND A37 NA GND AW39 NA GND A3 NA GND AW38 NA GND A2 NA GND AW37 NA GND A1 NA GND AW3 NA GND AW2 NA GND AW1 NA GND AV39 NA GND AV38 NA GND AV2 NA GND AV1 NA GND AU39 NA GND AU37 NA GND AU3 NA GND AU20 NA GND AU1 NA GND AT4 NA GND AT36 NA GND AT28 NA GND AT20 NA GND AT12 NA GND AR5 NA GND AR35 NA GND AR28 NA GND AR21 NA GND AR20 DS022-4 (v2.5) March 14, 2003 Production Product Specification Notes: 1. VREF or I/O option only in the XCV1000E, 1600E, 2000E; otherwise, I/O option only. 2. VREF or I/O option only in the XCV1600E, 2000E; otherwise, I/O option only. 3. VREF or I/O option only in the XCV2000E; otherwise, I/O option only. www.xilinx.com 1-800-255-7778 Module 4 of 4 81 R Virtex™-E 1.8 V Field Programmable Gate Arrays FG680 Differential Pin Pairs Virtex-E devices have differential pin pairs that can also provide other functions when not used as a differential pair. A √ in the AO column indicates that the pin pair can be used as an asynchronous output for all devices provided in this package. Pairs with a note number in the AO column are device dependent. They can have asynchronous outputs if the pin pair are in the same CLB row and column in the device. Numbers in this column refer to footnotes that indicate which devices have pin pairs than can be asynchronous outputs. The Other Functions column indicates alternative function(s) not available when the pair is used as a differential pair or differential clock. Table 23: FG680 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E, XCV2000E Pair Bank P N Pin Pin Other AO Functions GCLK LVDS 3 0 A20 C22 NA IO_DLL_L29N 2 1 D21 A19 NA IO_DLL_L29P 1 5 AU22 AT22 NA IO_DLL_L155N 0 4 AW19 AT21 NA IO_DLL_L155P IO LVDS Total Pairs: 247, Asynchronous Output Pairs: 111 0 0 A36 C35 5 - 1 0 B35 D34 5 VREF 2 0 A35 C34 √ - 3 0 B34 D33 √ VREF 4 0 A34 C33 3 - 5 0 B33 D32 3 - 6 0 D31 C32 √ - 7 0 C31 A33 √ VREF 8 0 B31 B32 5 - 9 0 D30 A32 5 VREF 10 0 C30 A31 √ - 11 0 D29 B30 √ VREF 12 0 C29 A30 2 - 13 0 B29 A29 2 - 14 0 A28 B28 √ VREF 15 0 B27 C28 √ - 16 0 A27 D27 5 - 17 0 B26 C27 5 - Module 4 of 4 82 Table 23: FG680 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E, XCV2000E P N Other Pair Bank Pin Pin AO Functions 18 0 C26 D26 √ - 19 0 D25 A26 √ VREF 20 0 C25 B25 3 - 21 0 D24 A25 3 - 22 0 B23 A24 √ - 23 0 A23 C24 √ VREF 24 0 B22 B24 5 - 25 0 A22 E23 5 - 26 0 B21 D23 √ - 27 0 A21 C23 √ VREF 28 0 B20 E22 2 - 29 1 A19 C22 NA IO_LVDS_DLL 30 1 B19 C21 2 VREF 31 1 A18 C19 2 - 32 1 B18 D19 √ VREF 33 1 A17 C18 √ - 34 1 B17 D18 5 - 35 1 A16 E18 5 - 36 1 D17 C17 √ VREF 37 1 E17 B16 √ - 38 1 C16 A15 3 - 39 1 D16 B15 3 - 40 1 B14 A14 √ VREF 41 1 A13 C15 √ - 42 1 B13 D15 5 - 43 1 A12 C14 5 - 44 1 C13 D14 √ - 45 1 D13 B12 √ VREF 46 1 C12 A11 2 - 47 1 C11 B11 2 - 48 1 D11 A10 √ VREF 49 1 C10 B10 √ - 50 1 D10 A9 5 VREF 51 1 C9 B9 5 - www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 23: FG680 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E, XCV2000E P N Table 23: FG680 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E, XCV2000E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 52 1 B8 A8 √ VREF 86 2 V4 T2 √ - 53 1 A7 D9 √ - 87 2 V3 T1 7 - 54 1 B7 C8 3 - 88 2 W4 U2 4 - 55 1 A6 D8 3 - 89 2 W3 U1 √ VREF 56 1 B6 C7 √ VREF 90 2 AA3 V2 √ - 57 1 A5 D7 √ - 91 2 AA4 V1 4 VREF 58 1 B5 C6 5 VREF 92 2 AB2 W2 √ - 59 1 A4 D6 5 - 93 3 AB4 W1 4 VREF 60 1 D5 B4 √ CS 94 3 AB5 Y2 √ - 61 2 E3 C2 √ DIN, D0 95 3 AC2 Y1 √ VREF 62 2 D3 F3 6 - 96 3 AC3 AA1 4 - 63 2 D2 G4 4 VREF 97 3 AC4 AA2 7 - 64 2 G3 E2 4 - 98 3 AC5 AB1 √ - 65 2 H4 E1 6 VREF 99 3 AD3 AC1 √ VREF 66 2 H3 F2 √ - 100 3 AD1 AD4 6 - 67 2 J4 F1 4 - 101 3 AD2 AE3 4 - 68 2 J3 G2 6 - 102 3 AE1 AE4 √ - 69 2 G1 K4 √ VREF 103 3 AE2 AF3 6 VREF 70 2 H2 K3 √ - 104 3 AF4 AF1 4 - 71 2 H1 L4 7 VREF 105 3 AG3 AF2 4 - 72 2 J2 L3 4 - 106 3 AG4 AG1 6 - 73 2 J1 M3 √ VREF 107 3 AH3 AG2 √ D5 74 2 K2 N4 √ - 108 3 AH1 AJ2 √ VREF 75 2 K1 N3 4 - 109 3 AH2 AJ3 4 - 76 2 L2 P4 √ D1 110 3 AJ1 AJ4 √ - 77 2 P3 L1 √ D2 111 3 AK1 AK3 √ VREF 78 2 R4 M2 6 - 112 3 AK2 AK4 4 - 79 2 R3 M1 4 - 113 3 AL1 AL2 7 VREF 80 2 T4 N2 4 - 114 3 AM1 AL3 √ - 81 2 N1 T3 6 VREF 115 3 AM2 AL4 √ VREF 82 2 P2 U5 √ - 116 3 AM3 AN1 6 - 83 2 P1 U4 4 - 117 3 AM4 AP1 4 - 84 2 R2 U3 6 - 118 3 AN2 AP2 √ - 85 2 V5 R1 √ D3 119 3 AN3 AR1 6 VREF DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 83 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 23: FG680 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E, XCV2000E P N Table 23: FG680 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E, XCV2000E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 120 3 AN4 AT1 4 - 154 4 AU21 AV19 2 VREF 121 3 AR2 AP4 4 VREF 155 5 AT21 AT22 NA IO_LVDS_DLL 122 3 AT2 AR3 6 - 156 5 AV20 AR22 8 VREF 123 3 AR4 AU2 √ INIT 157 5 AV23 AW21 √ VREF 124 4 AU4 AV5 √ - 158 5 AU23 AV21 √ - 125 4 AT6 AV4 5 - 159 5 AT23 AW22 5 - 126 4 AU6 AW4 5 VREF 160 5 AR23 AV22 5 - 127 4 AT7 AW5 √ - 161 5 AV24 AW23 √ VREF 128 4 AU7 AV6 √ VREF 162 5 AW24 AU24 √ - 129 4 AT8 AW6 3 - 163 5 AW25 AT24 3 - 130 4 AU8 AV7 3 - 164 5 AV25 AU25 3 - 131 4 AT9 AW7 √ - 165 5 AW26 AT25 √ VREF 132 4 AV8 AU9 √ VREF 166 5 AV26 AW27 √ - 133 4 AW8 AT10 5 - 167 5 AU26 AV27 5 - 134 4 AV9 AU10 5 VREF 168 5 AT26 AW28 5 - 135 4 AW9 AT11 √ - 169 5 AU27 AV28 √ - 136 4 AV10 AU11 √ VREF 170 5 AW29 AT27 √ VREF 137 4 AW10 AU12 2 - 171 5 AW30 AU28 2 - 138 4 AV11 AT13 2 - 172 5 AV30 AV29 2 - 139 4 AW11 AU13 √ VREF 173 5 AW31 AU29 √ VREF 140 4 AT14 AV12 √ - 174 5 AV31 AT29 √ - 141 4 AU14 AW12 5 - 175 5 AW32 AU30 5 VREF 142 4 AT15 AV13 5 - 176 5 AW33 AT30 5 - 143 4 AU15 AW13 √ - 177 5 AV33 AU31 √ VREF 144 4 AV14 AT16 √ VREF 178 5 AT31 AW34 √ - 145 4 AW14 AU16 3 - 179 5 AV32 AV34 3 - 146 4 AV15 AR17 3 - 180 5 AU32 AW35 3 - 147 4 AW15 AT17 √ - 181 5 AT32 AV35 √ VREF 148 4 AU17 AV16 √ VREF 182 5 AU33 AW36 √ - 149 4 AR18 AW16 5 - 183 5 AT33 AV36 5 VREF 150 4 AT18 AV17 5 - 184 5 AU34 AU36 5 - 151 4 AU18 AW17 √ - 185 6 AT38 AR36 √ - 152 4 AT19 AV18 √ VREF 186 6 AP36 AR38 6 - 153 4 AU19 AW18 2 - 187 6 AP37 AT39 4 VREF Module 4 of 4 84 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 23: FG680 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E, XCV2000E P N Table 23: FG680 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E, XCV2000E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 188 6 AP39 AP38 4 - 222 7 R39 V35 √ - 189 6 AN38 AN36 6 VREF 223 7 U36 U37 √ VREF 190 6 AN39 AN37 √ - 224 7 U35 R38 6 - 191 6 AM38 AM36 4 - 225 7 T37 P39 4 - 192 6 AL36 AM37 6 - 226 7 T36 P38 √ - 193 6 AL37 AM39 √ VREF 227 7 N38 N39 6 VREF 194 6 AK36 AL38 √ - 228 7 M39 R37 4 - 195 6 AK37 AL39 7 VREF 229 7 M38 R36 4 - 196 6 AJ36 AK38 4 - 230 7 L39 P37 6 - 197 6 AJ37 AK39 √ VREF 231 7 N37 P36 √ - 198 6 AH37 AJ38 √ - 232 7 N36 L38 √ VREF 199 6 AH38 AJ39 4 - 233 7 M37 K39 4 - 200 6 AG38 AH39 √ VREF 234 7 L37 K38 √ - 201 6 AG39 AG36 √ - 235 7 L36 J39 √ VREF 202 6 AF39 AG37 6 - 236 7 K37 J38 4 - 203 6 AE38 AF36 4 - 237 7 K36 H39 √ VREF 204 6 AF38 AF37 4 - 238 7 J37 H38 √ - 205 6 AE36 AE39 6 VREF 239 7 G38 G39 √ VREF 206 6 AE37 AD38 √ - 240 7 F39 J36 6 - 207 6 AD36 AD39 4 - 241 7 F38 H37 4 - 208 6 AC39 AC38 6 - 242 7 E39 H36 √ - 209 6 AB38 AD37 √ VREF 243 7 E38 G37 6 VREF 210 6 AB39 AC35 √ - 244 7 D39 G36 4 - 211 6 AA38 AC36 7 - 245 7 F36 D38 4 VREF 212 6 AA39 AC37 4 - 246 7 E37 D37 6 - 213 6 Y38 AB35 √ VREF 214 6 Y39 AB36 √ - 215 6 AA36 AB37 4 VREF 216 7 W38 AA37 √ - 217 7 V39 W37 4 VREF 218 7 U39 W36 √ - 219 7 U38 V38 √ VREF 220 7 T39 V37 4 - 221 7 T38 V36 7 - DS022-4 (v2.5) March 14, 2003 Production Product Specification Notes: 1. AO in the XCV1000E, 1600E, 2000E. 2. AO in the XCV600E, 1000E, 1600E. 3. AO in the XCV600E, 1000E. 4. AO in the XCV1000E, 1600E. 5. AO in the XCV1000E, 2000E. 6. AO in the XCV600E, 1000E, 2000E. 7. AO in the XCV1000E. 8. AO in the XCV2000E. www.xilinx.com 1-800-255-7778 Module 4 of 4 85 R Virtex™-E 1.8 V Field Programmable Gate Arrays FG860 Fine-Pitch Ball Grid Array Package XCV1000E, XCV1600E, and XCV2000E devices in the FG680 fine-pitch Ball Grid Array package have footprint compatibility. Pins labeled I0_VREF can be used as either in all parts unless device-dependent as indicated in the footnotes. If the pin is not used as VREF, it can be used as general I/O. Immediately following Table 24, see Table 25 for Differential Pair information. Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # 0 GCK3 C22 0 IO A26 0 IO B31 0 IO B34 0 IO C24 0 IO C29 0 IO C34 0 IO D24 0 IO D36 0 IO D40 0 IO E26 0 IO E28 0 IO E35 0 IO_L0N_Y A38 0 IO_L0P_Y D38 0 IO_L1N_Y B37 0 IO_L1P_Y E37 0 IO_VREF_L2N_Y A37 0 IO_L2P_Y C39 0 IO_L3N_Y B36 0 IO_L3P_Y C38 0 IO_L4N_YY A36 0 IO_L4P_YY B35 0 IO_VREF_L5N_YY A35 0 IO_L5P_YY D37 0 IO_L6N_Y C37 0 IO_L6P_Y A34 0 IO_L7N_Y E36 0 IO_L7P_Y B33 0 IO_L8N_YY A33 Module 4 of 4 86 Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # 0 IO_L8P_YY C32 0 IO_VREF_L9N_YY C36 0 IO_L9P_YY B32 0 IO_L10N_Y A32 0 IO_L10P_Y D35 0 IO_VREF_L11N_Y C312 0 IO_L11P_Y C35 0 IO_L12N_YY E34 0 IO_L12P_YY A31 0 IO_VREF_L13N_YY D34 0 IO_L13P_YY C30 0 IO_L14N_Y B30 0 IO_L14P_Y E33 0 IO_L15N_Y A30 0 IO_L15P_Y D33 0 IO_VREF_L16N_YY C33 0 IO_L16P_YY B29 0 IO_L17N_YY E32 0 IO_L17P_YY A29 0 IO_L18N_Y D32 0 IO_L18P_Y C28 0 IO_L19N_Y E31 0 IO_L19P_Y B28 0 IO_L20N_Y D31 0 IO_L20P_Y A28 0 IO_L21N_Y D30 0 IO_L21P_Y C27 0 IO_L22N_YY E29 0 IO_L22P_YY B27 0 IO_VREF_L23N_YY D29 0 IO_L23P_YY A27 0 IO_L24N_Y C26 0 IO_L24P_Y D28 0 IO_L25N_Y B26 0 IO_L25P_Y F27 0 IO_L26N_YY E27 0 IO_L26P_YY C25 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # 0 IO_VREF_L27N_YY D27 1 IO_L38P_YY E19 0 IO_L27P_YY B25 1 IO_L39N_Y D18 0 IO_L28N_Y A25 1 IO_L39P_Y A19 0 IO_L28P_Y D26 1 IO_L40N_Y E18 0 IO_L29N_Y A24 1 IO_L40P_Y C19 0 IO_L29P_Y E25 1 IO_L41N_YY B19 0 IO_L30N_YY D25 1 IO_VREF_L41P_YY E17 0 IO_L30P_YY B24 1 IO_L42N_YY A18 0 IO_VREF_L31N_YY E24 1 IO_L42P_YY D16 0 IO_L31P_YY A23 1 IO_L43N_Y E16 0 IO_L32N_Y C23 1 IO_L43P_Y B18 0 IO_L32P_Y E23 1 IO_L44N_Y F16 0 IO_VREF_L33N_Y B231 1 IO_L44P_Y A17 0 IO_L33P_Y D23 1 IO_L45N_YY C17 0 IO_LVDS_DLL_L34N A22 1 IO_VREF_L45P_YY E15 1 IO_L46N_YY B17 1 GCK2 B22 1 IO_L46P_YY D14 1 IO A14 1 IO_L47N_Y A16 1 IO A20 1 IO_L47P_Y E14 1 IO B11 1 IO_L48N_Y C16 1 IO B13 1 IO_L48P_Y D13 1 IO C8 1 IO_L49N_Y B16 1 IO C18 1 IO_L49P_Y D12 1 IO C21 1 IO_L50N_Y A15 1 IO D7 1 IO_L50P_Y E12 1 IO D10 1 IO_L51N_YY C15 1 IO D15 1 IO_L51P_YY C11 1 IO D17 1 IO_L52N_YY B15 1 IO E20 1 IO_VREF_L52P_YY D11 1 IO_LVDS_DLL_L34P D22 1 IO_L53N_Y E11 1 IO_L35N_Y D21 1 IO_L53P_Y C14 1 IO_VREF_L35P_Y B211 1 IO_L54N_Y C10 1 IO_L36N_Y D20 1 IO_L54P_Y B14 1 IO_L36P_Y A21 1 IO_L55N_YY A13 1 IO_L37N_YY C20 1 IO_VREF_L55P_YY E10 1 IO_VREF_L37P_YY D19 1 IO_L56N_YY C13 1 IO_L38N_YY B20 1 IO_L56P_YY C9 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 87 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # 1 IO_L57N_Y D9 2 IO Y3 1 IO_VREF_L57P_Y A122 2 IO AA3 1 IO_L58N_Y E9 2 IO_DOUT_BUSY_L70P_YY F5 1 IO_L58P_Y C12 2 IO_DIN_D0_L70N_YY D2 1 IO_L59N_YY B12 2 IO_L71P_Y E4 1 IO_VREF_L59P_YY D8 2 IO_L71N_Y E2 1 IO_L60N_YY A11 2 IO_L72P_Y D3 1 IO_L60P_YY E8 2 IO_L72N_Y F2 1 IO_L61N_Y C7 2 IO_VREF_L73P_Y E1 1 IO_L61P_Y A10 2 IO_L73N_Y F4 1 IO_L62N_Y C6 2 IO_L74P G2 1 IO_L62P_Y B10 2 IO_L74N E3 1 IO_L63N_YY A9 2 IO_L75P_Y F1 1 IO_VREF_L63P_YY B9 2 IO_L75N_Y G5 1 IO_L64N_YY A8 2 IO_VREF_L76P_Y G1 1 IO_L64P_YY E7 2 IO_L76N_Y F3 1 IO_L65N_Y B8 2 IO_L77P_YY G4 1 IO_L65P_Y C5 2 IO_L77N_YY H1 1 IO_L66N_Y A7 2 IO_L78P_Y J2 1 IO_VREF_L66P_Y A6 2 IO_L78N_Y G3 1 IO_L67N_Y B7 2 IO_L79P_Y H5 1 IO_L67P_Y D6 2 IO_L79N_Y K2 1 IO_L68N_Y A5 2 IO_VREF_L80P_YY H4 1 IO_L68P_Y C4 2 IO_L80N_YY K1 1 IO_WRITE_L69N_YY B6 2 IO_L81P_YY L2 1 IO_CS_L69P_YY E6 2 IO_L81N_YY L3 2 IO_VREF_L82P_Y L12 2 IO H2 2 IO_L82N_Y J5 2 IO H3 2 IO_L83P_Y J4 2 IO J1 2 IO_L83N_Y M3 2 IO K5 2 IO_VREF_L84P_YY J3 2 IO M2 2 IO_L84N_YY M1 2 IO N1 2 IO_L85P_YY N2 2 IO R5 2 IO_L85N_YY K4 2 IO U1 2 IO_L86P_Y N3 2 IO U4 2 IO_L86N_Y K3 2 IO W3 2 IO_VREF_L87P_YY L5 Module 4 of 4 88 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # P3 3 IO AB4 IO_L88N_YY L4 3 IO AC2 2 IO_L89P_Y P1 3 IO AD1 2 IO_L89N_Y R2 3 IO AE3 2 IO_L90P_Y M5 3 IO AF4 2 IO_L90N_Y R3 3 IO AH5 2 IO_L91P_Y M4 3 IO AJ2 2 IO_L91N_Y R1 3 IO AL1 2 IO_L92P N4 3 IO AM3 2 IO_L92N T2 3 IO AP3 2 IO_L93P_Y P5 3 IO AR5 2 IO_L93N_Y T3 3 IO AU4 2 IO_VREF_L94P_Y P4 3 IO AB2 2 IO_L94N_Y T1 3 IO_L106P_Y AB3 2 IO_L95P_YY U2 3 IO_VREF_L106N_Y AC41 2 IO_L95N_YY R4 3 IO_L107P_YY AB1 2 IO_L96P_Y U3 3 IO_L107N_YY AC5 2 IO_L96N_Y T5 3 IO_L108P_YY AD4 2 IO_L97P_Y T4 3 IO_VREF_L108N_YY AC3 2 IO_L97N_Y V2 3 IO_L109P_Y AC1 2 IO_VREF_L98P_YY U5 3 IO_L109N_Y AD5 2 IO_D3_L98N_YY V3 3 IO_L110P_Y AE4 2 IO_L99P_YY V1 3 IO_L110N_Y AD3 2 IO_L99N_YY V5 3 IO_L111P_YY AE5 2 IO_L100P_Y W2 3 IO_L111N_YY AD2 2 IO_L100N_Y V4 3 IO_D4_L112P_YY AE1 2 IO_L101P_Y W5 3 IO_VREF_L112N_YY AF5 2 IO_L101N_Y W1 3 IO_L113P_Y AE2 2 IO_VREF_L102P_YY Y2 3 IO_L113N_Y AG4 2 IO_L102N_YY W4 3 IO_L114P_Y AG5 2 IO_L103P_YY Y1 3 IO_L114N_Y AF1 2 IO_L103N_YY Y5 3 IO_L115P_YY AH4 2 IO_VREF_L104P_Y AA11 3 IO_L115N_YY AF2 2 IO_L104N_Y Y4 3 IO_L116P_Y AF3 2 IO_L105P_YY AA4 3 IO_VREF_L116N_Y AJ4 2 IO_L105N_YY AA2 3 IO_L117P_Y AG1 Bank Pin Description Pin # 2 IO_D1_L87N_YY P2 2 IO_D2_L88P_YY 2 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 89 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # 3 IO_L117N_Y AJ5 3 IO_L136P AR2 3 IO_L118P AG2 3 IO_L136N AT1 3 IO_L118N AK4 3 IO_L137P_Y AV4 3 IO_L119P_Y AG3 3 IO_VREF_L137N_Y AT2 3 IO_L119N_Y AL4 3 IO_L138P_Y AU1 3 IO_L120P_Y AH1 3 IO_L138N_Y AU5 3 IO_L120N_Y AL5 3 IO_L139P_Y AU2 3 IO_L121P_Y AH2 3 IO_L139N_Y AW3 3 IO_L121N_Y AM4 3 IO_D7_L140P_YY AV1 3 IO_L122P_YY AH3 3 IO_INIT_L140N_YY AW5 3 IO_D5_L122N_YY AM5 3 IO_D6_L123P_YY AJ1 4 GCK0 BA22 3 IO_VREF_L123N_YY AN3 4 IO AV17 3 IO_L124P_Y AN4 4 IO AY11 3 IO_L124N_Y AJ3 4 IO AY12 3 IO_L125P_YY AN5 4 IO AY13 3 IO_L125N_YY AK1 4 IO AY14 3 IO_L126P_YY AK2 4 IO BA8 3 IO_VREF_L126N_YY AP4 4 IO BA17 3 IO_L127P_Y AK3 4 IO BA19 3 IO_L127N_Y AP5 4 IO BA20 3 IO_L128P_Y AR3 4 IO BA21 3 IO_VREF_L128N_Y AL22 4 IO BB9 3 IO_L129P_YY AR4 4 IO BB18 3 IO_L129N_YY AL3 4 IO_L141P_YY AV6 3 IO_L130P_YY AM1 4 IO_L141N_YY BA4 3 IO_VREF_L130N_YY AT3 4 IO_L142P_Y AY4 3 IO_L131P_Y AM2 4 IO_L142N_Y BA5 3 IO_L131N_Y AT4 4 IO_L143P_Y AW6 3 IO_L132P_Y AT5 4 IO_L143N_Y BB5 3 IO_L132N_Y AN1 4 IO_VREF_L144P_Y BA6 3 IO_L133P_YY AU3 4 IO_L144N_Y AY5 3 IO_L133N_YY AN2 4 IO_L145P_Y BB6 3 IO_L134P_Y AP1 4 IO_L145N_Y AY6 3 IO_VREF_L134N_Y AP2 4 IO_L146P_YY BA7 3 IO_L135P_Y AR1 4 IO_L146N_YY AV7 3 IO_L135N_Y AV3 4 IO_VREF_L147P_YY BB7 Module 4 of 4 90 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # 4 IO_L147N_YY AW7 4 IO_L166P_Y AY17 4 IO_L148P_Y AY7 4 IO_L166N_Y AW15 4 IO_L148N_Y BB8 4 IO_L167P_Y BB17 4 IO_L149P_Y BA9 4 IO_L167N_Y AU16 4 IO_L149N_Y AV8 4 IO_L168P_YY AV16 4 IO_L150P_YY AW8 4 IO_L168N_YY AY18 4 IO_L150N_YY BA10 4 IO_VREF_L169P_YY AW16 4 IO_VREF_L151P_YY BB10 4 IO_L169N_YY BA18 4 IO_L151N_YY AY8 4 IO_L170P_Y BB19 4 IO_L152P_Y AV9 4 IO_L170N_Y AW17 4 IO_L152N_Y BA11 4 IO_L171P_Y AY19 4 IO_VREF_L153P_Y BB112 4 IO_L171N_Y AV18 4 IO_L153N_Y AW9 4 IO_L172P_YY AW18 4 IO_L154P_YY AY9 4 IO_L172N_YY BB20 4 IO_L154N_YY BA12 4 IO_VREF_L173P_YY AY20 4 IO_VREF_L155P_YY BB12 4 IO_L173N_YY AV19 4 IO_L155N_YY AV10 4 IO_L174P_Y BB21 4 IO_L156P_Y BA13 4 IO_L174N_Y AW19 4 IO_L156N_Y AW10 4 IO_VREF_L175P_Y AY211 4 IO_L157P_Y BB13 4 IO_L175N_Y AV20 4 IO_L157N_Y AY10 4 IO_LVDS_DLL_L176P AW20 4 IO_VREF_L158P_YY AV11 4 IO_L158N_YY BA14 5 GCK1 AY22 4 IO_L159P_YY AW11 5 IO AV24 4 IO_L159N_YY BB14 5 IO AV34 4 IO_L160P_Y AV12 5 IO AW27 4 IO_L160N_Y BA15 5 IO AW36 4 IO_L161P_Y AW12 5 IO AY23 4 IO_L161N_Y AY15 5 IO AY31 4 IO_L162P_Y AW13 5 IO AY33 4 IO_L162N_Y BB15 5 IO BA26 4 IO_L163P_Y AV14 5 IO BA29 4 IO_L163N_Y BA16 5 IO BA33 4 IO_L164P_YY AW14 5 IO BB25 4 IO_L164N_YY AY16 5 IO_LVDS_DLL_L176N AW21 4 IO_VREF_L165P_YY BB16 5 IO_L177P_Y BB22 4 IO_L165N_YY AV15 5 IO_VREF_L177N_Y AW221 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 91 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # 5 IO_L178P_Y BB23 5 IO_L196N_Y AY30 5 IO_L178N_Y AW23 5 IO_L197P_YY BA30 5 IO_L179P_YY AV23 5 IO_VREF_L197N_YY AW33 5 IO_VREF_L179N_YY BA23 5 IO_L198P_YY BB31 5 IO_L180P_YY AW24 5 IO_L198N_YY AV33 5 IO_L180N_YY BB24 5 IO_L199P_Y AY34 5 IO_L181P_Y AY24 5 IO_VREF_L199N_Y BA312 5 IO_L181N_Y AW25 5 IO_L200P_Y AW34 5 IO_L182P_Y BA24 5 IO_L200N_Y BB32 5 IO_L182N_Y AV25 5 IO_L201P_YY BA32 5 IO_L183P_YY AW26 5 IO_VREF_L201N_YY AY35 5 IO_VREF_L183N_YY AY25 5 IO_L202P_YY BB33 5 IO_L184P_YY AV26 5 IO_L202N_YY AW35 5 IO_L184N_YY BA25 5 IO_L203P_Y AV35 5 IO_L185P_Y BB26 5 IO_L203N_Y BB34 5 IO_L185N_Y AV27 5 IO_L204P_Y AY36 5 IO_L186P_Y AY26 5 IO_L204N_Y BA34 5 IO_L186N_Y AU27 5 IO_L205P_YY BB35 5 IO_L187P_YY AW28 5 IO_VREF_L205N_YY AV36 5 IO_VREF_L187N_YY BB27 5 IO_L206P_YY BA35 5 IO_L188P_YY AY27 5 IO_L206N_YY AY37 5 IO_L188N_YY AV28 5 IO_L207P_Y BB36 5 IO_L189P_Y BA27 5 IO_L207N_Y BA36 5 IO_L189N_Y AW29 5 IO_L208P_Y AW37 5 IO_L190P_Y BB28 5 IO_VREF_L208N_Y BB37 5 IO_L190N_Y AV29 5 IO_L209P_Y BA37 5 IO_L191P_Y AY28 5 IO_L209N_Y AY38 5 IO_L191N_Y AW30 5 IO_L210P_Y BB38 5 IO_L192P_Y BA28 5 IO_L210N_Y AY39 5 IO_L192N_Y AW31 5 IO_L193P_YY BB29 6 IO AA40 5 IO_L193N_YY AV31 6 IO AB41 5 IO_L194P_YY AY29 6 IO AC42 5 IO_VREF_L194N_YY AY32 6 IO AD39 5 IO_L195P_Y AW32 6 IO AE40 5 IO_L195N_Y BB30 6 IO AF38 5 IO_L196P_Y AV32 6 IO AF40 Module 4 of 4 92 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # 6 IO AJ40 6 IO_L226P_YY AN39 6 IO AL41 6 IO_L227N_Y AK42 6 IO AN38 6 IO_L227P_Y AN40 6 IO AN42 6 IO_VREF_L228N_YY AM38 6 IO AP41 6 IO_L228P_YY AJ41 6 IO AR39 6 IO_L229N_YY AJ42 6 IO_L211N_YY AV41 6 IO_L229P_YY AM39 6 IO_L211P_YY AV42 6 IO_L230N_Y AH40 6 IO_L212N_Y AW40 6 IO_L230P_Y AH41 6 IO_L212P_Y AU41 6 IO_L231N_Y AL38 6 IO_L213N_Y AV39 6 IO_L231P_Y AH42 6 IO_L213P_Y AU42 6 IO_L232N_Y AL39 6 IO_VREF_L214N_Y AT41 6 IO_L232P_Y AG41 6 IO_L214P_Y AU38 6 IO_L233N AK39 6 IO_L215N AT42 6 IO_L233P AG40 6 IO_L215P AV40 6 IO_L234N_Y AJ38 6 IO_L216N_Y AR41 6 IO_L234P_Y AG42 6 IO_L216P_Y AU39 6 IO_VREF_L235N_Y AF42 6 IO_VREF_L217N_Y AR42 6 IO_L235P_Y AJ39 6 IO_L217P_Y AU40 6 IO_L236N_YY AF41 6 IO_L218N_YY AT38 6 IO_L236P_YY AH38 6 IO_L218P_YY AP42 6 IO_L237N_Y AE42 6 IO_L219N_Y AN41 6 IO_L237P_Y AH39 6 IO_L219P_Y AT39 6 IO_L238N_Y AG38 6 IO_L220N_Y AT40 6 IO_L238P_Y AE41 6 IO_L220P_Y AM40 6 IO_VREF_L239N_YY AG39 6 IO_VREF_L221N_YY AR38 6 IO_L239P_YY AD42 6 IO_L221P_YY AM41 6 IO_L240N_YY AD40 6 IO_L222N_YY AM42 6 IO_L240P_YY AF39 6 IO_L222P_YY AR40 6 IO_L241N_Y AD41 6 IO_VREF_L223N_Y AL402 6 IO_L241P_Y AE38 6 IO_L223P_Y AP38 6 IO_L242N_Y AE39 6 IO_L224N_Y AP39 6 IO_L242P_Y AC40 6 IO_L224P_Y AL42 6 IO_VREF_L243N_YY AD38 6 IO_VREF_L225N_YY AP40 6 IO_L243P_YY AC41 6 IO_L225P_YY AK40 6 IO_L244N_YY AB42 6 IO_L226N_YY AK41 6 IO_L244P_YY AC38 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 93 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # 6 IO_VREF_L245N_Y AB401 7 IO_L256P_YY T38 6 IO_L245P_Y AC39 7 IO_L257N_Y R39 7 IO_VREF_L257P_Y T42 7 IO F38 7 IO_L258N_Y R42 7 IO H40 7 IO_L258P_Y R38 7 IO H41 7 IO_L259N R40 7 IO J42 7 IO_L259P P39 7 IO K39 7 IO_L260N_Y R41 7 IO L42 7 IO_L260P_Y P38 7 IO N40 7 IO_L261N_Y P42 7 IO T40 7 IO_L261P_Y N39 7 IO U40 7 IO_L262N_Y P40 7 IO V38 7 IO_L262P_Y M39 7 IO W42 7 IO_L263N_YY P41 7 IO Y42 7 IO_L263P_YY M38 7 IO AA42 7 IO_L264N_YY N42 7 IO_L246N_YY AA41 7 IO_VREF_L264P_YY L39 7 IO_L246P_YY AB39 7 IO_L265N_Y L38 7 IO_L247N_Y Y41 7 IO_L265P_Y N41 7 IO_VREF_L247P_Y AA391 7 IO_L266N_YY K40 7 IO_L248N_YY Y40 7 IO_L266P_YY M42 7 IO_L248P_YY Y39 7 IO_L267N_YY M40 7 IO_L249N_YY Y38 7 IO_VREF_L267P_YY K38 7 IO_VREF_L249P_YY W41 7 IO_L268N_Y M41 7 IO_L250N_Y W40 7 IO_L268P_Y J40 7 IO_L250P_Y W39 7 IO_L269N_Y J39 7 IO_L251N_Y W38 7 IO_VREF_L269P_Y L40 7 IO_L251P_Y V41 7 IO_L270N_YY J38 7 IO_L252N_YY V39 7 IO_L270P_YY L41 7 IO_L252P_YY V40 7 IO_L271N_YY K42 7 IO_L253N_YY V42 7 IO_VREF_L271P_YY H39 7 IO_VREF_L253P_YY U39 7 IO_L272N_Y K41 7 IO_L254N_Y U41 7 IO_L272P_Y H38 7 IO_L254P_Y U38 7 IO_L273N_Y J41 7 IO_L255N_Y U42 7 IO_L273P_Y G40 7 IO_L255P_Y T39 7 IO_L274N_YY H42 7 IO_L256N_YY T41 7 IO_L274P_YY G39 Module 4 of 4 94 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # 7 IO_L275N_Y G38 NA VCCINT K37 7 IO_VREF_L275P_Y G42 NA VCCINT T6 7 IO_L276N_Y G41 NA VCCINT T37 7 IO_L276P_Y F40 NA VCCINT U6 7 IO_L277N F42 NA VCCINT U37 7 IO_L277P F41 NA VCCINT V6 7 IO_L278N_Y F39 NA VCCINT V37 7 IO_VREF_L278P_Y E42 NA VCCINT AE6 7 IO_L279N_Y E40 NA VCCINT AE37 7 IO_L279P_Y E41 NA VCCINT AF6 7 IO_L280N_Y E39 NA VCCINT AF37 7 IO_L280P_Y D41 NA VCCINT AG6 NA VCCINT AG37 2 CCLK B4 NA VCCINT AN6 3 DONE AW2 NA VCCINT AN37 NA DXN BA38 NA VCCINT AP6 NA DXP AW38 NA VCCINT AP37 NA M0 AW41 NA VCCINT AU9 NA M1 AV37 NA VCCINT AU10 NA M2 BA39 NA VCCINT AU17 NA PROGRAM AV2 NA VCCINT AU18 NA TCK B38 NA VCCINT AU25 NA TDI B5 NA VCCINT AU26 2 TDO D5 NA VCCINT AU33 NA TMS B39 NA VCCINT AU34 NA VCCINT F9 NA VCCO_0 F23 NA VCCINT F10 NA VCCO_0 F24 NA VCCINT F17 NA VCCO_0 F28 NA VCCINT F18 NA VCCO_0 F29 NA VCCINT F25 NA VCCO_0 F31 NA VCCINT F26 NA VCCO_0 F32 NA VCCINT F33 NA VCCO_0 F35 NA VCCINT F34 NA VCCO_0 F36 NA VCCINT J6 NA VCCO_1 F11 NA VCCINT J37 NA VCCO_1 F12 NA VCCINT K6 NA VCCO_1 F14 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 95 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # NA VCCO_1 F15 NA VCCO_6 AC37 NA VCCO_1 F19 NA VCCO_6 AD37 NA VCCO_1 F20 NA VCCO_6 AH37 NA VCCO_1 F7 NA VCCO_6 AJ37 NA VCCO_1 F8 NA VCCO_6 AL37 NA VCCO_2 G6 NA VCCO_6 AM37 NA VCCO_2 H6 NA VCCO_6 AR37 NA VCCO_2 L6 NA VCCO_6 AT37 NA VCCO_2 M6 NA VCCO_7 G37 NA VCCO_2 P6 NA VCCO_7 H37 NA VCCO_2 R6 NA VCCO_7 L37 NA VCCO_2 W6 NA VCCO_7 M37 NA VCCO_2 Y6 NA VCCO_7 P37 NA VCCO_3 AC6 NA VCCO_7 R37 NA VCCO_3 AD6 NA VCCO_7 W37 NA VCCO_3 AH6 NA VCCO_7 Y37 NA VCCO_3 AJ6 NA VCCO_3 AL6 NA GND N6 NA VCCO_3 AM6 NA GND N5 NA VCCO_3 AR6 NA GND N38 NA VCCO_3 AT6 NA GND N37 NA VCCO_4 AU11 NA GND F6 NA VCCO_4 AU12 NA GND F37 NA VCCO_4 AU14 NA GND F30 NA VCCO_4 AU15 NA GND F22 NA VCCO_4 AU19 NA GND F21 NA VCCO_4 AU20 NA GND F13 NA VCCO_4 AU7 NA GND E5 NA VCCO_4 AU8 NA GND E38 NA VCCO_5 AU23 NA GND E30 NA VCCO_5 AU24 NA GND E22 NA VCCO_5 AU28 NA GND E21 NA VCCO_5 AU29 NA GND E13 NA VCCO_5 AU31 NA GND D42 NA VCCO_5 AU32 NA GND D4 NA VCCO_5 AU35 NA GND D39 NA VCCO_5 AU36 NA GND D1 Module 4 of 4 96 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Table 24: FG860 — XCV1000E, XCV1600E, XCV2000E Bank Pin Description Pin # Bank Pin Description Pin # NA GND C42 NA GND AV22 NA GND C41 NA GND AV21 NA GND C40 NA GND AV13 NA GND C3 NA GND AU6 NA GND C2 NA GND AU37 NA GND C1 NA GND AU30 NA GND BB41 NA GND AU22 NA GND BB40 NA GND AU21 NA GND BB4 NA GND AU13 NA GND BB39 NA GND AK6 NA GND BB3 NA GND AK5 NA GND BB2 NA GND AK38 NA GND BA42 NA GND AK37 NA GND BA41 NA GND AB6 NA GND BA40 NA GND AB5 NA GND BA3 NA GND AB38 NA GND BA2 NA GND AB37 NA GND BA1 NA GND AA6 NA GND B42 NA GND AA5 NA GND B41 NA GND AA38 NA GND B40 NA GND AA37 NA GND B3 NA GND A41 NA GND B2 NA GND A40 NA GND B1 NA GND A4 NA GND AY42 NA GND A39 NA GND AY41 NA GND A3 NA GND AY40 NA GND A2 NA GND AY3 NA GND AY2 NA GND AY1 NA GND AW42 NA GND AW4 NA GND AW39 NA GND AW1 NA GND AV5 NA GND AV38 NA GND AV30 DS022-4 (v2.5) March 14, 2003 Production Product Specification Notes: 1. VREF or I/O option only in the XCV1600E, 2000E; otherwise, I/O option only. 2. VREF or I/O option only in the XCV2000E; otherwise, I/O option only. www.xilinx.com 1-800-255-7778 Module 4 of 4 97 R Virtex™-E 1.8 V Field Programmable Gate Arrays FG860 Differential Pin Pairs Virtex-E devices have differential pin pairs that can also provide other functions when not used as a differential pair. A √ in the AO column indicates that the pin pair can be used as an asynchronous output for all devices provided in this package. Pairs with a note number in the AO column are device dependent. They can have asynchronous outputs if the pin pair are in the same CLB row and column in the device. Numbers in this column refer to footnotes that indicate which devices have pin pairs than can be asynchronous outputs. The Other Functions column indicates alternative function(s) not available when the pair is used as a differential pair or differential clock. Table 25: FG860 Differential Pin Pair Summary XCV1000E, XCV1600E, XCV2000E Pair Bank P N Pin Pin Other AO Functions Global Differential Clock 3 0 C22 A22 NA IO_DLL_L34N 2 1 B22 D22 NA IO_DLL_L34P 1 5 AY22 AW21 NA IO_DLL_L176N 0 4 BA22 AW20 NA IO_DLL_L176P IO LVDS Total Pairs: 281, Asynchronous Output Pairs: 111 0 0 D38 A38 2 - 1 0 E37 B37 1 - 2 0 C39 A37 1 VREF 3 0 C38 B36 1 - 4 0 B35 A36 √ - 5 0 D37 A35 √ VREF 6 0 A34 C37 5 - 7 0 B33 E36 5 - 8 0 C32 A33 √ - 9 0 B32 C36 √ VREF 10 0 D35 A32 1 - 11 0 C35 C31 1 VREF 12 0 A31 E34 √ - 13 0 C30 D34 √ VREF 14 0 E33 B30 2 - 15 0 D33 A30 2 - 16 0 B29 C33 √ VREF 17 0 A29 E32 √ - Module 4 of 4 98 Table 25: FG860 Differential Pin Pair Summary XCV1000E, XCV1600E, XCV2000E P N Other Pair Bank Pin Pin AO Functions 18 0 C28 D32 2 - 19 0 B28 E31 1 - 20 0 A28 D31 1 - 21 0 C27 D30 5 - 22 0 B27 E29 √ - 23 0 A27 D29 √ VREF 24 0 D28 C26 5 - 25 0 F27 B26 5 - 26 0 C25 E27 √ - 27 0 B25 D27 √ VREF 28 0 D26 A25 1 - 29 0 E25 A24 1 - 30 0 B24 D25 √ - 31 0 A23 E24 √ VREF 32 0 E23 C23 2 - 33 0 D23 B23 2 VREF 34 1 D22 A22 NA IO_LVDS_DLL 35 1 B21 D21 2 VREF 36 1 A21 D20 2 - 37 1 D19 C20 √ VREF 38 1 E19 B20 √ - 39 1 A19 D18 1 - 40 1 C19 E18 1 - 41 1 E17 B19 √ VREF 42 1 D16 A18 √ - 43 1 B18 E16 5 - 44 1 A17 F16 5 - 45 1 E15 C17 √ VREF 46 1 D14 B17 √ - 47 1 E14 A16 5 - 48 1 D13 C16 1 - 49 1 D12 B16 1 - 50 1 E12 A15 2 - 51 1 C11 C15 √ - www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 25: FG860 Differential Pin Pair Summary XCV1000E, XCV1600E, XCV2000E P N Table 25: FG860 Differential Pin Pair Summary XCV1000E, XCV1600E, XCV2000E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 52 1 D11 B15 √ VREF 86 2 N3 K3 2 - 53 1 C14 E11 2 - 87 2 L5 P2 √ D1 54 1 B14 C10 2 - 88 2 P3 L4 √ D2 55 1 E10 A13 √ VREF 89 2 P1 R2 3 - 56 1 C9 C13 √ - 90 2 M5 R3 1 - 57 1 A12 D9 1 VREF 91 2 M4 R1 2 - 58 1 C12 E9 1 - 92 2 N4 T2 4 - 59 1 D8 B12 √ VREF 93 2 P5 T3 2 - 60 1 E8 A11 √ - 94 2 P4 T1 1 VREF 61 1 A10 C7 5 - 95 2 U2 R4 √ - 62 1 B10 C6 5 - 96 2 U3 T5 2 - 63 1 B9 A9 √ VREF 97 2 T4 V2 1 - 64 1 E7 A8 √ - 98 2 U5 V3 √ D3 65 1 C5 B8 5 - 99 2 V1 V5 √ - 66 1 A6 A7 1 VREF 100 2 W2 V4 5 - 67 1 D6 B7 1 - 101 2 W5 W1 2 - 68 1 C4 A5 2 - 102 2 Y2 W4 √ VREF 69 1 E6 B6 √ CS 103 2 Y1 Y5 √ - 70 2 F5 D2 √ DIN, D0 104 2 AA1 Y4 2 VREF 71 2 E4 E2 3 - 105 2 AA4 AA2 √ - 72 2 D3 F2 1 - 106 3 AB3 AC4 2 VREF 73 2 E1 F4 2 VREF 107 3 AB1 AC5 √ - 74 2 G2 E3 4 - 108 3 AD4 AC3 √ VREF 75 2 F1 G5 2 - 109 3 AC1 AD5 2 - 76 2 G1 F3 1 VREF 110 3 AE4 AD3 5 - 77 2 G4 H1 √ - 111 3 AE5 AD2 √ - 78 2 J2 G3 2 - 112 3 AE1 AF5 √ VREF 79 2 H5 K2 1 - 113 3 AE2 AG4 1 - 80 2 H4 K1 √ VREF 114 3 AG5 AF1 2 - 81 2 L2 L3 √ - 115 3 AH4 AF2 √ - 82 2 L1 J5 5 VREF 116 3 AF3 AJ4 1 VREF 83 2 J4 M3 2 - 117 3 AG1 AJ5 2 - 84 2 J3 M1 √ VREF 118 3 AG2 AK4 4 - 85 2 N2 K4 √ - 119 3 AG3 AL4 2 - DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 99 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 25: FG860 Differential Pin Pair Summary XCV1000E, XCV1600E, XCV2000E P N Table 25: FG860 Differential Pin Pair Summary XCV1000E, XCV1600E, XCV2000E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 120 3 AH1 AL5 1 - 154 4 AY9 BA12 √ - 121 3 AH2 AM4 3 - 155 4 BB12 AV10 √ VREF 122 3 AH3 AM5 √ D5 156 4 BA13 AW10 2 - 123 3 AJ1 AN3 √ VREF 157 4 BB13 AY10 2 - 124 3 AN4 AJ3 2 - 158 4 AV11 BA14 √ VREF 125 3 AN5 AK1 √ - 159 4 AW11 BB14 √ - 126 3 AK2 AP4 √ VREF 160 4 AV12 BA15 2 - 127 3 AK3 AP5 2 - 161 4 AW12 AY15 1 - 128 3 AR3 AL2 5 VREF 162 4 AW13 BB15 1 - 129 3 AR4 AL3 √ - 163 4 AV14 BA16 5 - 130 3 AM1 AT3 √ VREF 164 4 AW14 AY16 √ - 131 3 AM2 AT4 1 - 165 4 BB16 AV15 √ VREF 132 3 AT5 AN1 2 - 166 4 AY17 AW15 5 - 133 3 AU3 AN2 √ - 167 4 BB17 AU16 5 - 134 3 AP1 AP2 1 VREF 168 4 AV16 AY18 √ - 135 3 AR1 AV3 2 - 169 4 AW16 BA18 √ VREF 136 3 AR2 AT1 4 - 170 4 BB19 AW17 1 - 137 3 AV4 AT2 2 VREF 171 4 AY19 AV18 1 - 138 3 AU1 AU5 1 - 172 4 AW18 BB20 √ - 139 3 AU2 AW3 3 - 173 4 AY20 AV19 √ VREF 140 3 AV1 AW5 √ INIT 174 4 BB21 AW19 2 - 141 4 AV6 BA4 √ - 175 4 AY21 AV20 2 VREF 142 4 AY4 BA5 2 - 176 5 AW20 AW21 NA IO_LVDS_DLL 143 4 AW6 BB5 1 - 177 5 BB22 AW22 2 VREF 144 4 BA6 AY5 1 VREF 178 5 BB23 AW23 2 - 145 4 BB6 AY6 5 - 179 5 AV23 BA23 √ VREF 146 4 BA7 AV7 √ - 180 5 AW24 BB24 √ - 147 4 BB7 AW7 √ VREF 181 5 AY24 AW25 1 - 148 4 AY7 BB8 5 - 182 5 BA24 AV25 1 - 149 4 BA9 AV8 5 - 183 5 AW26 AY25 √ VREF 150 4 AW8 BA10 √ - 184 5 AV26 BA25 √ - 151 4 BB10 AY8 √ VREF 185 5 BB26 AV27 5 - 152 4 AV9 BA11 1 - 186 5 AY26 AU27 5 - 153 4 BB11 AW9 1 VREF 187 5 AW28 BB27 √ VREF Module 4 of 4 100 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 25: FG860 Differential Pin Pair Summary XCV1000E, XCV1600E, XCV2000E P N Table 25: FG860 Differential Pin Pair Summary XCV1000E, XCV1600E, XCV2000E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 188 5 AY27 AV28 √ - 222 6 AR40 AM42 √ - 189 5 BA27 AW29 5 - 223 6 AP38 AL40 5 VREF 190 5 BB28 AV29 1 - 224 6 AL42 AP39 2 - 191 5 AY28 AW30 1 - 225 6 AK40 AP40 √ VREF 192 5 BA28 AW31 2 - 226 6 AN39 AK41 √ - 193 5 BB29 AV31 √ - 227 6 AN40 AK42 2 - 194 5 AY29 AY32 √ VREF 228 6 AJ41 AM38 √ VREF 195 5 AW32 BB30 2 - 229 6 AM39 AJ42 √ - 196 5 AV32 AY30 2 - 230 6 AH41 AH40 3 - 197 5 BA30 AW33 √ VREF 231 6 AH42 AL38 1 - 198 5 BB31 AV33 √ - 232 6 AG41 AL39 2 - 199 5 AY34 BA31 1 VREF 233 6 AG40 AK39 4 - 200 5 AW34 BB32 1 - 234 6 AG42 AJ38 2 - 201 5 BA32 AY35 √ VREF 235 6 AJ39 AF42 1 VREF 202 5 BB33 AW35 √ - 236 6 AH38 AF41 √ - 203 5 AV35 BB34 5 - 237 6 AH39 AE42 2 - 204 5 AY36 BA34 5 - 238 6 AE41 AG38 1 - 205 5 BB35 AV36 √ VREF 239 6 AD42 AG39 √ VREF 206 5 BA35 AY37 √ - 240 6 AF39 AD40 √ - 207 5 BB36 BA36 5 - 241 6 AE38 AD41 5 - 208 5 AW37 BB37 1 VREF 242 6 AC40 AE39 2 - 209 5 BA37 AY38 1 - 243 6 AC41 AD38 √ VREF 210 5 BB38 AY39 2 - 244 6 AC38 AB42 √ - 211 6 AV42 AV41 √ - 245 6 AC39 AB40 2 VREF 212 6 AU41 AW40 3 - 246 7 AB39 AA41 √ - 213 6 AU42 AV39 1 - 247 7 AA39 Y41 2 VREF 214 6 AU38 AT41 2 VREF 248 7 Y39 Y40 √ - 215 6 AV40 AT42 4 - 249 7 W41 Y38 √ VREF 216 6 AU39 AR41 2 - 250 7 W39 W40 2 - 217 6 AU40 AR42 1 VREF 251 7 V41 W38 5 - 218 6 AP42 AT38 √ - 252 7 V40 V39 √ - 219 6 AT39 AN41 2 - 253 7 U39 V42 √ VREF 220 6 AM40 AT40 1 - 254 7 U38 U41 1 - 221 6 AM41 AR38 √ VREF 255 7 T39 U42 2 - DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 101 R Virtex™-E 1.8 V Field Programmable Gate Arrays FG900 Fine-Pitch Ball Grid Array Package Table 25: FG860 Differential Pin Pair Summary XCV1000E, XCV1600E, XCV2000E P N Other Pair Bank Pin Pin AO Functions 256 7 T38 T41 √ - 257 7 T42 R39 1 VREF 258 7 R38 R42 2 - 259 7 P39 R40 4 - 260 7 P38 R41 2 - 261 7 N39 P42 1 - 262 7 M39 P40 3 - 263 7 M38 P41 √ - 264 7 L39 N42 √ VREF 265 7 N41 L38 2 - 266 7 M42 K40 √ - 267 7 K38 M40 √ VREF 268 7 J40 M41 2 - 269 7 L40 J39 5 VREF 270 7 L41 J38 √ - 271 7 H39 K42 √ VREF 272 7 H38 K41 1 - 273 7 G40 J41 2 - 274 7 G39 H42 √ - 275 7 G42 G38 1 VREF 276 7 F40 G41 2 - 277 7 F41 F42 4 - 278 7 E42 F39 2 279 7 E41 E40 280 7 D41 E39 Notes: 1. AO in the XCV1000E, 2000E. 2. AO in the XCV1000E, 1600E. 3. AO in the XCV2000E. 4. AO in the XCV1600E. 5. AO in the XCV1000E. Module 4 of 4 102 XCV600E, XCV1000E, and XCV1600E devices in the FG900 fine-pitch Ball Grid Array package have footprint compatibility. Pins labeled I0_VREF can be used as either in all parts unless device-dependent as indicated in the footnotes. If the pin is not used as VREF, it can be used as general I/O. Immediately following Table 26, see Table 27 for Differential Pair information. Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Bank Pin Description Pin # 0 GCK3 C15 0 IO A74 0 IO A134 0 IO C54 0 IO C64 0 IO C144 0 IO D85 0 IO D10 0 IO D134 0 IO E6 0 IO E95 0 IO E145 0 IO F94 0 IO F145 0 IO G15 0 IO K115 0 IO K12 0 IO L134 VREF 0 IO_L0N_YY C44 1 - 0 IO_L0P_YY F73 3 - 0 IO_L1N_Y D5 0 IO_L1P_Y G8 0 IO_VREF_L2N_Y A31 0 IO_L2P_Y H9 0 IO_L3N_Y B44 0 IO_L3P_Y J104 0 IO_L4N_YY A4 0 IO_L4P_YY D6 0 IO_VREF_L5N_YY E7 0 IO_L5P_YY B5 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Bank Pin Description Pin # Bank Pin Description Pin # 0 IO_L6N_Y A5 0 IO_L24P_Y A11 0 IO_L6P_Y F8 0 IO_L25N_Y G13 0 IO_L7N_Y D7 0 IO_L25P_Y B12 0 IO_L7P_Y N11 0 IO_L26N_YY A12 0 IO_L8N_YY G9 0 IO_L26P_YY K13 0 IO_L8P_YY E8 0 IO_VREF_L27N_YY F13 0 IO_VREF_L9N_YY A6 0 IO_L27P_YY B13 0 IO_L9P_YY J11 0 IO_L28N_Y G14 0 IO_L10N_Y C7 0 IO_L28P_Y E13 0 IO_L10P_Y B7 0 IO_L29N_Y D14 0 IO_L11N_Y C8 0 IO_L29P_Y B14 0 IO_L11P_Y H10 0 IO_L30N_YY A14 0 IO_L12N_YY G10 0 IO_L30P_YY J14 0 IO_L12P_YY F10 0 IO_VREF_L31N_YY K14 0 IO_VREF_L13N_YY A8 0 IO_L31P_YY J15 0 IO_L13P_YY H11 0 IO_L32N B154 0 IO_L14N D94 0 IO_L32P H153 0 IO_L14P C93 0 IO_VREF_L33N_YY F152,3 0 IO_L15N_YY B9 0 IO_L33P_YY D154 0 IO_L15P_YY J12 0 IO_LVDS_DLL_L34N A15 0 IO_L16N E104 0 IO_VREF_L16P A9 1 GCK2 E15 0 IO_L17N G11 1 IO A254 0 IO_L17P B10 1 IO B174 0 IO_L18N_YY H124 1 IO B184 0 IO_L18P_YY C104 1 IO C234 0 IO_L19N_Y H13 1 IO D164 0 IO_L19P_Y F11 1 IO D175 0 IO_L20N_Y E11 1 IO D234 0 IO_L20P_Y D11 1 IO E194 0 IO_L21N_Y B114 1 IO E245 0 IO_L21P_Y G124 1 IO F224 0 IO_L22N_YY F12 1 IO G175 0 IO_L22P_YY C11 1 IO G204 0 IO_VREF_L23N_YY A101 1 IO J164 0 IO_L23P_YY D12 1 IO J174 0 IO_L24N_Y E12 1 IO J195 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 103 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Bank Pin Description Pin # Bank Pin Description Pin # 1 IO J205 1 IO_L52N_YY C21 1 IO L184 1 IO_VREF_L52P_YY A22 1 IO_LVDS_DLL_L34P E16 1 IO_L53N_YY H19 1 IO_L35N_YY B16 1 IO_L53P_YY B22 1 IO_VREF_L35P_YY F162 1 IO_L54N_YY E21 1 IO_L36N_YY A16 1 IO_L54P_YY D22 1 IO_L36P_YY H16 1 IO_L55N_YY F21 1 IO_L37N_YY C16 1 IO_VREF_L55P_YY C22 1 IO_VREF_L37P_YY K15 1 IO_L56N_YY H20 1 IO_L38N_YY K16 1 IO_L56P_YY E22 1 IO_L38P_YY G16 1 IO_L57N_Y G21 1 IO_L39N_Y A17 1 IO_L57P_Y A23 1 IO_L39P_Y E17 1 IO_L58N_Y A24 1 IO_L40N_Y F17 1 IO_L58P_Y K19 1 IO_L40P_Y C17 1 IO_L59N_YY C24 1 IO_L41N_YY E18 1 IO_VREF_L59P_YY B24 1 IO_VREF_L41P_YY A18 1 IO_L60N_YY H21 1 IO_L42N_YY D18 1 IO_L60P_YY G22 1 IO_L42P_YY A19 1 IO_L61N_Y E23 1 IO_L43N_Y B19 1 IO_L61P_Y C25 1 IO_L43P_Y G18 1 IO_L62N_Y D24 1 IO_L44N_Y D19 1 IO_L62P_Y A26 1 IO_L44P_Y H18 1 IO_L63N_YY B26 1 IO_L45N_YY F18 1 IO_VREF_L63P_YY K20 1 IO_VREF_L45P_YY F191 1 IO_L64N_YY D25 1 IO_L46N_YY B20 1 IO_L64P_YY J21 1 IO_L46P_YY K17 1 IO_L65N_Y C264 1 IO_L47N_Y D204 1 IO_L65P_Y F234 1 IO_L47P_Y A204 1 IO_L66N_Y B27 1 IO_L48N_Y G19 1 IO_VREF_L66P_Y G231 1 IO_L48P_Y C20 1 IO_L67N_Y A27 1 IO_L49N_Y K18 1 IO_L67P_Y F24 1 IO_L49P_Y E20 1 IO_L68N_YY B283 1 IO_L50N_YY B214 1 IO_L68P_YY A284 1 IO_L50P_YY D214 1 IO_WRITE_L69N_YY K21 1 IO_L51N_YY F20 1 IO_CS_L69P_YY C27 1 IO_L51P_YY A21 Module 4 of 4 104 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Bank Pin Description Pin # Bank Pin Description Pin # 2 IO D295 2 IO_L80N_YY L22 2 IO G264 2 IO_L81P_YY H27 2 IO H244 2 IO_L81N_YY G29 2 IO H254 2 IO_L82P G30 2 IO H285 2 IO_L82N M21 2 IO J254 2 IO_L83P_YY J24 2 IO J275 2 IO_L83N_YY J26 2 IO K304 2 IO_VREF_L84P_YY H30 2 IO M244 2 IO_L84N_YY L23 2 IO M254 2 IO_L85P_YY K264 2 IO N20 2 IO_L85N_YY J283 2 IO N234 2 IO_L86P_YY J29 2 IO P265 2 IO_L86N_YY K24 2 IO P275 2 IO_L87P_YY K274 2 IO P304 2 IO_VREF_L87N_YY J30 2 IO R30 2 IO_D1_L88P M22 2 IO_DOUT_BUSY_L70P_YY J22 2 IO_D2_L88N K29 2 IO_DIN_D0_L70N_YY E27 2 IO_L89P_YY K283 2 IO_L71P C294 2 IO_L89N_YY L254 2 IO_L71N D283 2 IO_L90P N21 2 IO_L72P_Y G25 2 IO_L90N K25 2 IO_L72N_Y E25 2 IO_L91P_YY L24 2 IO_VREF_L73P_YY E281 2 IO_L91N_YY L27 2 IO_L73N_YY C30 2 IO_L92P_Y L294 2 IO_L74P_Y K224 2 IO_L92N_Y M234 2 IO_L74N_Y F273 2 IO_L93P_YY L26 2 IO_L75P_YY D30 2 IO_L93N_YY L28 2 IO_L75N_YY J23 2 IO_VREF_L94P L301 2 IO_VREF_L76P_Y L21 2 IO_L94N M27 2 IO_L76N_Y F28 2 IO_L95P_YY M26 2 IO_L77P_YY G28 2 IO_L95N_YY M29 2 IO_L77N_YY E30 2 IO_L96P_YY N29 2 IO_L78P_YY G27 2 IO_L96N_YY M30 2 IO_L78N_YY E29 2 IO_L97P N25 2 IO_L79P K23 2 IO_L97N N27 2 IO_L79N H26 2 IO_VREF_L98P_YY N30 2 IO_VREF_L80P_YY F30 2 IO_D3_L98N_YY P21 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 105 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Bank Pin Description Pin # Bank Pin Description Pin # 2 IO_L99P_YY N26 3 IO_L108N_YY T28 2 IO_L99N_YY P28 3 IO_L109P_YY T21 2 IO_L100P P29 3 IO_VREF_L109N_YY T25 2 IO_L100N N24 3 IO_L110P_YY U28 2 IO_L101P_YY P22 3 IO_L110N_YY U30 2 IO_L101N_YY R26 3 IO_L111P T23 2 IO_VREF_L102P_YY P25 3 IO_L111N U27 2 IO_L102N_YY R29 3 IO_L112P_YY U25 2 IO_L103P_YY R214 3 IO_L112N_YY V27 2 IO_L103N_YY R283 3 IO_D4_L113P_YY U24 2 IO_VREF_L104P_YY R252 3 IO_VREF_L113N_YY V29 2 IO_L104N_YY T30 3 IO_L114P W30 2 IO_L105P_YY P244 3 IO_L114N U22 2 IO_L105N_YY R273 3 IO_L115P_YY U21 2 IO_L106P R24 3 IO_L115N_YY W29 3 IO_L116P_YY V26 3 IO T224 3 IO_L116N_YY W27 3 IO T244 3 IO_L117P W26 3 IO T264 3 IO_VREF_L117N Y291 3 IO T294 3 IO_L118P_YY W25 3 IO U265 3 IO_L118N_YY Y30 3 IO V234 3 IO_L119P_Y V244 3 IO V254 3 IO_L119N_Y Y284 3 IO V305 3 IO_L120P_YY AA30 3 IO Y214 3 IO_L120N_YY W24 3 IO AA264 3 IO_L121P AA29 3 IO AA234 3 IO_L121N V20 3 IO AB274 3 IO_L122P Y274 3 IO AB294 3 IO_L122N W234 3 IO AC285 3 IO_L123P_YY Y26 3 IO AD264 3 IO_D5_L123N_YY AB30 3 IO AD295 3 IO_D6_L124P_YY V21 3 IO AE275 3 IO_VREF_L124N_YY AA28 3 IO_L106N U29 3 IO_L125P_YY Y25 3 IO_L107P_YY R22 3 IO_L125N_YY AA27 3 IO_VREF_L107N_YY T272 3 IO_L126P_YY W22 3 IO_L108P_YY R23 3 IO_L126N_YY Y23 Module 4 of 4 106 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Bank Pin Description Pin # Bank Pin Description Pin # 3 IO_L127P_YY Y24 4 IO AE154 3 IO_VREF_L127N_YY AB28 4 IO AE184 3 IO_L128P_YY AC30 4 IO AE21 3 IO_L128N_YY AA25 4 IO AE245 3 IO_L129P W21 4 IO AF175 3 IO_L129N AA24 4 IO AF185 3 IO_L130P_YY AB26 4 IO AJ184 3 IO_L130N_YY AD30 4 IO AK18 3 IO_L131P_YY Y22 4 IO AK255 3 IO_VREF_L131N_YY AC27 4 IO AK274 3 IO_L132P AD28 4 IO AH234 3 IO_L132N AB25 4 IO AH245 3 IO_L133P_YY AC26 4 IO_L142P_YY AF27 3 IO_L133N_YY AE30 4 IO_L142N_YY AK28 3 IO_L134P_YY AD27 4 IO_L143P_YY AG264 3 IO_L134N_YY AF30 4 IO_L143N_YY AH273 3 IO_L135P AF29 4 IO_L144P AD23 3 IO_VREF_L135N AB24 4 IO_L144N AJ27 3 IO_L136P_YY AB23 4 IO_VREF_L145P AB211 3 IO_L136N_YY AE28 4 IO_L145N AF25 3 IO_L137P_Y AG303 4 IO_L146P AC224 3 IO_L137N_Y AC254 4 IO_L146N AH264 3 IO_L138P_YY AE26 4 IO_L147P_YY AA21 3 IO_VREF_L138N_YY AG291 4 IO_L147N_YY AG25 3 IO_L139P AH30 4 IO_VREF_L148P_YY AJ26 3 IO_L139N AC24 4 IO_L148N_YY AD22 3 IO_L140P AF283 4 IO_L149P AA20 3 IO_L140N AD254 4 IO_L149N AH25 3 IO_D7_L141P_YY AH29 4 IO_L150P AC21 3 IO_INIT_L141N_YY AA22 4 IO_L150N AF24 4 IO_L151P_YY AG24 4 GCK0 AJ16 4 IO_L151N_YY AK26 4 IO AB194 4 IO_VREF_L152P_YY AJ24 4 IO AC164 4 IO_L152N_YY AF23 4 IO AC19 4 IO_L153P AE23 4 IO AD184 4 IO_L153N AB20 IO AD214 4 IO_L154P AC20 4 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 107 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Bank Pin Description Pin # Bank Pin Description Pin # 4 IO_L154N AG23 4 IO_L173P_YY AE16 4 IO_L155P_YY AF22 4 IO_L173N_YY AE17 4 IO_L155N_YY AE22 4 IO_VREF_L174P_YY AG17 4 IO_VREF_L156P_YY AJ22 4 IO_L174N_YY AJ17 4 IO_L156N_YY AG22 4 IO_L175P AD154 4 IO_L157P AK244 4 IO_L175N AH173 4 IO_L157N AD203 4 IO_VREF_L176P_YY AG162 4 IO_L158P_YY AA19 4 IO_L176N_YY AK17 4 IO_L158N_YY AF21 4 IO_LVDS_DLL_L177P AF16 4 IO_L159P AH224 4 IO_VREF_L159N AA18 5 GCK1 AK16 4 IO_L160P AG21 5 IO AA114 4 IO_L160N AK23 5 IO AA144 4 IO_L161P_YY AH214 5 IO AD144 4 IO_L161N_YY AD194 5 IO AE75 4 IO_L162P AE20 5 IO AE85 4 IO_L162N AJ21 5 IO AE104 4 IO_L163P AG20 5 IO AF64 4 IO_L163N AF20 5 IO AF104 4 IO_L164P AC184 5 IO AG94 4 IO_L164N AF194 5 IO AG124 4 IO_L165P_YY AJ20 5 IO AG145 4 IO_L165N_YY AE19 5 IO AH84 4 IO_VREF_L166P_YY AK221 5 IO AK65 4 IO_L166N_YY AH20 5 IO AK145 4 IO_L167P AG19 5 IO AJ134 4 IO_L167N AB17 5 IO AJ154 4 IO_L168P AJ19 5 IO_LVDS_DLL_L177N AH16 4 IO_L168N AD17 5 IO_L178P_YY AC154 4 IO_L169P_YY AA16 5 IO_VREF_L178N_YY AG152,3 4 IO_L169N_YY AA17 5 IO_L179P_YY AB15 4 IO_VREF_L170P_YY AK21 5 IO_L179N_YY AF15 4 IO_L170N_YY AB16 5 IO_L180P_YY AA15 4 IO_L171P AG18 5 IO_VREF_L180N_YY AF14 4 IO_L171N AK20 5 IO_L181P_YY AH15 4 IO_L172P AK19 5 IO_L181N_YY AK15 4 IO_L172N AD16 5 IO_L182P AB14 Module 4 of 4 108 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Bank Pin Description Pin # Bank Pin Description Pin # 5 IO_L182N AF13 5 IO_L201P AC11 5 IO_L183P AH14 5 IO_L201N AG8 5 IO_L183N AJ14 5 IO_L202P_YY AK8 5 IO_L184P_YY AE14 5 IO_VREF_L202N_YY AF7 5 IO_VREF_L184N_YY AG13 5 IO_L203P_YY AG7 5 IO_L185P_YY AK13 5 IO_L203N_YY AK7 5 IO_L185N_YY AD13 5 IO_L204P AJ7 5 IO_L186P AE13 5 IO_L204N AD10 5 IO_L186N AF12 5 IO_L205P AH6 5 IO_L187P AC13 5 IO_L205N AC10 5 IO_L187N AA13 5 IO_L206P_YY AD9 5 IO_L188P_YY AA12 5 IO_VREF_L206N_YY AG6 5 IO_VREF_L188N_YY AJ121 5 IO_L207P_YY AB10 5 IO_L189P_YY AB12 5 IO_L207N_YY AJ5 5 IO_L189N_YY AE11 5 IO_L208P AD84 5 IO_L190P AK124 5 IO_L208N AK54 5 IO_L190N Y134 5 IO_L209P AC9 5 IO_L191P AG11 5 IO_VREF_L209N AJ41 5 IO_L191N AF11 5 IO_L210P AG5 5 IO_L192P AH11 5 IO_L210N AK4 5 IO_L192N AJ11 5 IO_L211P_YY AH53 5 IO_L193P_YY AE124 5 IO_L211N_YY AG34 5 IO_L193N_YY AG104 5 IO_L194P_YY AD12 6 IO T24 5 IO_L194N_YY AK11 6 IO T104 5 IO_L195P_YY AJ10 6 IO U1 5 IO_VREF_L195N_YY AC12 6 IO U45 5 IO_L196P_YY AK10 6 IO U64 5 IO_L196N_YY AD11 6 IO U74 5 IO_L197P_YY AJ9 6 IO V14 5 IO_L197N_YY AE9 6 IO V55 5 IO_L198P_YY AH10 6 IO V8 5 IO_VREF_L198N_YY AF9 6 IO Y104 5 IO_L199P_YY AH9 6 IO AA44 5 IO_L199N_YY AK9 6 IO AB55 5 IO_L200P AF8 6 IO AB74 5 IO_L200N AB11 6 IO AC35 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 109 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Bank Pin Description Pin # Bank Pin Description Pin # 6 IO AC54 6 IO_L229N_YY Y74 6 IO AD14 6 IO_VREF_L229P_YY AC1 6 IO AE55 6 IO_L230N V11 6 IO_L212N_YY AF3 6 IO_L230P AA3 6 IO_L212P_YY AC6 6 IO_L231N_YY AA23 6 IO_L213N AH24 6 IO_L231P_YY U104 6 IO_L213P AG23 6 IO_L232N W7 6 IO_L214N AB9 6 IO_L232P AA6 6 IO_L214P AE4 6 IO_L233N_YY Y6 6 IO_VREF_L215N_YY AE31 6 IO_L233P_YY Y4 6 IO_L215P_YY AH1 6 IO_L234N_Y AA14 6 IO_L216N_Y AB84 6 IO_L234P_Y V74 6 IO_L216P_Y AD63 6 IO_L235N_YY Y3 6 IO_L217N_YY AG1 6 IO_L235P_YY Y2 6 IO_L217P_YY AA10 6 IO_VREF_L236N Y51 6 IO_VREF_L218N AA9 6 IO_L236P W5 6 IO_L218P AD4 6 IO_L237N_YY W4 6 IO_L219N_YY AD5 6 IO_L237P_YY W6 6 IO_L219P_YY AD2 6 IO_L238N_YY V6 6 IO_L220N_YY AD3 6 IO_L238P_YY W2 6 IO_L220P_YY AF2 6 IO_L239N U9 6 IO_L221N AA8 6 IO_L239P V4 6 IO_L221P AA7 6 IO_VREF_L240N_YY AB2 6 IO_VREF_L222N_YY AF1 6 IO_L240P_YY T8 6 IO_L222P_YY Y9 6 IO_L241N_YY U5 6 IO_L223N_YY AB6 6 IO_L241P_YY W1 6 IO_L223P_YY AC4 6 IO_L242N Y1 6 IO_L224N AE1 6 IO_L242P T9 6 IO_L224P W8 6 IO_L243N_YY T7 6 IO_L225N_YY Y8 6 IO_L243P_YY U3 6 IO_L225P_YY AB4 6 IO_VREF_L244N_YY T5 6 IO_VREF_L226N_YY AB3 6 IO_L244P_YY V2 6 IO_L226P_YY W9 6 IO_L245N_YY R94 6 IO_L227N_YY AA54 6 IO_L245P_YY T63 6 IO_L227P_YY W103 6 IO_VREF_L246N_YY T42 6 IO_L228N_YY AB1 6 IO_L246P_YY U2 6 IO_L228P_YY V10 6 IO_L247N T1 Module 4 of 4 110 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Bank Pin Description Pin # Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Bank Pin Description Pin # 7 IO_L256P N6 7 IO E3 7 IO_L257N_YY N5 7 IO F14 7 IO_L257P_YY N1 7 IO G15 7 IO_L258N_YY M4 7 IO G45 7 IO_L258P_YY M5 7 IO H35 7 IO_L259N M2 7 IO J14 7 IO_VREF_L259P M11 7 IO J34 7 IO_L260N_YY L4 7 IO J44 7 IO_L260P_YY L2 7 IO J64 7 IO_L261N_Y M74 7 IO L104 7 IO_L261P_Y L54 7 IO_L262N_YY L1 IO N24 7 IO_L262P_YY M8 IO N84 7 IO_L263N K2 7 IO N104 7 IO_L263P M9 7 IO P35 7 IO_L264N L34 7 IO P94 7 IO_L264P M104 7 IO R15 7 IO_L265N_YY K5 7 IO T34 7 IO_L265P_YY K1 7 IO_L247P R10 7 IO_L266N_YY L6 7 IO_L248N_YY R53 7 IO_VREF_L266P_YY K3 7 IO_L248P_YY R64 7 IO_L267N_YY L7 7 IO_L249N_YY R8 7 IO_L267P_YY K4 7 IO_VREF_L249P_YY R42 7 IO_L268N_YY L8 7 IO_L250N_YY R7 7 IO_L268P_YY J5 7 IO_L250P_YY R3 7 IO_L269N_YY K6 7 IO_L251N_YY P10 7 IO_VREF_L269P_YY H4 7 IO_VREF_L251P_YY P6 7 IO_L270N_YY H1 7 IO_L252N_YY P5 7 IO_L270P_YY K7 7 IO_L252P_YY P2 7 IO_L271N J7 7 IO_L253N P7 7 IO_L271P J2 7 IO_L253P P4 7 IO_L272N_YY H5 7 IO_L254N_YY N4 7 IO_L272P_YY G2 7 IO_L254P_YY R2 7 IO_L273N_YY L9 7 IO_L255N_YY N7 7 IO_VREF_L273P_YY G5 7 IO_VREF_L255P_YY P1 7 IO_L274N F3 7 IO_L256N M6 7 IO_L274P K8 7 7 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 111 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Bank Pin Description Pin # Bank Pin Description Pin # 7 IO_L275N_YY G3 NA VCCINT M20 7 IO_L275P_YY E1 NA VCCINT N13 7 IO_L276N_YY H6 NA VCCINT N14 7 IO_L276P_YY E2 NA VCCINT N15 7 IO_L277N E4 NA VCCINT N16 7 IO_VREF_L277P K9 NA VCCINT N17 7 IO_L278N_YY J8 NA VCCINT N18 7 IO_L278P_YY F4 NA VCCINT P13 7 IO_L279N_Y D13 NA VCCINT P18 7 IO_L279P_Y H74 NA VCCINT R13 7 IO_L280N_YY G6 NA VCCINT R18 7 IO_VREF_L280P_YY C21 NA VCCINT T13 7 IO_L281N D2 NA VCCINT T18 7 IO_L281P F5 NA VCCINT U13 7 IO_L282N_YY D34 NA VCCINT U18 7 IO_L282P_YY K103 NA VCCINT V13 NA VCCINT V14 2 CCLK F26 NA VCCINT V15 3 DONE AJ28 NA VCCINT V16 NA DXN AJ3 NA VCCINT V17 NA DXP AH4 NA VCCINT V18 NA M0 AF4 NA VCCINT W11 NA M1 AC7 NA VCCINT W12 NA M2 AK3 NA VCCINT W19 NA PROGRAM AG28 NA VCCINT W20 NA TCK B3 NA VCCINT Y11 NA TDI H22 NA VCCINT Y12 2 TDO D26 NA VCCINT Y19 NA TMS C1 NA VCCINT Y20 NA VCCINT L11 NA VCCO_0 B6 NA VCCINT L12 NA VCCO_0 M15 NA VCCINT L19 NA VCCO_0 M14 NA VCCINT L20 NA VCCO_0 L15 NA VCCINT M11 NA VCCO_0 L14 NA VCCINT M12 NA VCCO_0 H14 NA VCCINT M19 NA VCCO_0 M13 Module 4 of 4 112 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Bank Pin Description Pin # Bank Pin Description Pin # NA VCCO_0 C12 NA VCCO_5 Y14 NA VCCO_1 B25 NA VCCO_5 W14 NA VCCO_1 C19 NA VCCO_5 W13 NA VCCO_1 M18 NA VCCO_5 AH12 NA VCCO_1 M17 NA VCCO_6 AE2 NA VCCO_1 L17 NA VCCO_6 V12 NA VCCO_1 H17 NA VCCO_6 U12 NA VCCO_1 L16 NA VCCO_6 T12 NA VCCO_1 M16 NA VCCO_6 U11 NA VCCO_2 F29 NA VCCO_6 T11 NA VCCO_2 M28 NA VCCO_6 U8 NA VCCO_2 P23 NA VCCO_6 W3 NA VCCO_2 R20 NA VCCO_7 F2 NA VCCO_2 P20 NA VCCO_7 R12 NA VCCO_2 R19 NA VCCO_7 P12 NA VCCO_2 N19 NA VCCO_7 N12 NA VCCO_2 P19 NA VCCO_7 R11 NA VCCO_3 AE29 NA VCCO_7 P11 NA VCCO_3 W28 NA VCCO_7 P8 NA VCCO_3 U23 NA VCCO_7 M3 NA VCCO_3 U20 NA VCCO_3 T20 NA GND Y18 NA VCCO_3 V19 NA GND AH7 NA VCCO_3 T19 NA GND AK30 NA VCCO_3 U19 NA GND AJ30 NA VCCO_4 AJ25 NA GND B30 NA VCCO_4 AH19 NA GND A30 NA VCCO_4 W18 NA GND AK29 NA VCCO_4 AC17 NA GND AJ29 NA VCCO_4 Y17 NA GND AC29 NA VCCO_4 W17 NA GND H29 NA VCCO_4 W16 NA GND B29 NA VCCO_4 Y16 NA GND A29 NA VCCO_5 AJ6 NA GND AH28 NA VCCO_5 Y15 NA GND V28 NA VCCO_5 W15 NA GND N28 NA VCCO_5 AC14 NA GND C28 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 113 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Table 26: FG900 — XCV600E, XCV1000E, XCV1600E Bank Pin Description Pin # Bank Pin Description Pin # NA GND AG27 NA GND J13 NA GND D27 NA GND C13 NA GND AF26 NA GND V9 NA GND E26 NA GND N9 NA GND F25 NA GND J9 NA GND AE25 NA GND AJ8 NA GND G24 NA GND AC8 NA GND AJ23 NA GND H8 NA GND AD24 NA GND AD7 NA GND H23 NA GND B8 NA GND B23 NA GND AE6 NA GND AC23 NA GND G7 NA GND AB22 NA GND F6 NA GND V22 NA GND AF5 NA GND N22 NA GND E5 NA GND AH18 NA GND AG4 NA GND AB18 NA GND D4 NA GND J18 NA GND V3 NA GND C18 NA GND N3 NA GND U17 NA GND C3 NA GND T17 NA GND AK2 NA GND R17 NA GND AH3 NA GND P17 NA GND AC2 NA GND U16 NA GND H2 NA GND T16 NA GND B2 NA GND R16 NA GND A2 NA GND P16 NA GND AK1 NA GND U15 NA GND AJ2 NA GND T15 NA GND AJ1 NA GND R15 NA GND A1 NA GND P15 NA GND B1 NA GND U14 NA GND T14 NA GND R14 NA GND P14 NA GND AH13 NA GND AB13 Module 4 of 4 114 Notes: 1. VREF or I/O option only in the XCV1000E and XCV1600E; otherwise, I/O option only. 2. VREF or I/O option only in the XCV1600E; otherwise, I/O option only. 3. I/O option only in the XCV600E. 4. No Connect in the XCV600E. 5. No Connect in the XCV600E, 1000E. www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays FG900 Differential Pin Pairs Virtex-E devices have differential pin pairs that can also provide other functions when not used as a differential pair. A √ in the AO column indicates that the pin pair can be used as an asynchronous output for all devices provided in this package. Pairs with a note number in the AO column are device dependent. They can have asynchronous outputs if the pin pair are in the same CLB row and column in the device. Numbers in this column refer to footnotes that indicate which devices have pin pairs than can be asynchronous outputs. The Other Functions column indicates alternative function(s) not available when the pair is used as a differential pair or differential clock. Table 27: FG900 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E Pair Bank P N Pin Pin Other AO Functions GCLK LVDS 3 0 C15 A15 NA IO_DLL_ 34N 2 1 E15 E16 NA IO_DLL_ 34P 1 5 AK16 AH16 NA IO_DLL_ 177N 0 4 AJ16 AF16 NA IO_DLL_ 177P IO LVDS Total Pairs: 283, Asynchronous Output Pairs: 168 0 0 F7 C4 4 - 1 0 G8 D5 2 - 2 0 H9 A3 2 VREF 3 0 J10 B4 2 - 4 0 D6 A4 √ - 5 0 B5 E7 √ VREF 6 0 F8 A5 1 - 7 0 N11 D7 1 - 8 0 E8 G9 √ - 9 0 J11 A6 √ VREF 10 0 B7 C7 2 - 11 0 H10 C8 2 - 12 0 F10 G10 √ - 13 0 H11 A8 √ VREF 14 0 C9 D9 NA - 15 0 J12 B9 4 - 16 0 A9 E10 NA VREF 17 0 B10 G11 NA - DS022-4 (v2.5) March 14, 2003 Production Product Specification Table 27: FG900 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E P N Other Pair Bank Pin Pin AO Functions 18 0 C10 H12 4 - 19 0 F11 H13 2 - 20 0 D11 E11 2 - 21 0 G12 B11 2 - 22 0 C11 F12 √ - 23 0 D12 A10 √ VREF 24 0 A11 E12 1 - 25 0 B12 G13 1 - 26 0 K13 A12 √ - 27 0 B13 F13 √ VREF 28 0 E13 G14 2 - 29 0 B14 D14 2 - 30 0 J14 A14 √ - 31 0 J15 K14 √ VREF 32 0 H15 B15 NA - 33 0 D15 F15 √ VREF 34 1 E16 A15 NA IO_ LVDS_DLL 35 1 F16 B16 4 VREF 36 1 H16 A16 4 - 37 1 K15 C16 √ VREF 38 1 G16 K16 √ - 39 1 E17 A17 2 - 40 1 C17 F17 2 - 41 1 A18 E18 √ VREF 42 1 A19 D18 √ - 43 1 G18 B19 1 - 44 1 H18 D19 1 - 45 1 F19 F18 √ VREF 46 1 K17 B20 √ - 47 1 A20 D20 2 - 48 1 C20 G19 2 - 49 1 E20 K18 2 - 50 1 D21 B21 4 - 51 1 A21 F20 √ - www.xilinx.com 1-800-255-7778 Module 4 of 4 115 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 27: FG900 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E P N Table 27: FG900 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 52 1 A22 C21 √ VREF 86 2 J29 K24 4 - 53 1 B22 H19 4 - 87 2 K27 J30 4 VREF 54 1 D22 E21 4 - 88 2 M22 K29 NA D2 55 1 C22 F21 √ VREF 89 2 K28 L25 4 - 56 1 E22 H20 √ - 90 2 N21 K25 1 - 57 1 A23 G21 2 - 91 2 L24 L27 4 - 58 1 K19 A24 2 - 92 2 L29 M23 3 - 59 1 B24 C24 √ VREF 93 2 L26 L28 4 - 60 1 G22 H21 √ - 94 2 L30 M27 1 VREF 61 1 C25 E23 1 - 95 2 M26 M29 √ - 62 1 A26 D24 1 - 96 2 N29 M30 4 - 63 1 K20 B26 √ VREF 97 2 N25 N27 1 - 64 1 J21 D25 √ - 98 2 N30 P21 √ D3 65 1 F23 C26 2 - 99 2 N26 P28 √ - 66 1 G23 B27 2 VREF 100 2 P29 N24 2 - 67 1 F24 A27 2 - 101 2 P22 R26 √ - 68 1 A28 B28 4 - 102 2 P25 R29 4 VREF 69 1 C27 K21 √ CS 103 2 R21 R28 4 - 70 2 J22 E27 √ DIN, D0 104 2 R25 T30 4 VREF 71 2 C29 D28 NA - 105 2 P24 R27 4 - 72 2 G25 E25 1 - 106 3 R24 U29 NA 73 2 E28 C30 4 VREF 107 3 R22 T27 4 VREF 74 2 K22 F27 3 - 108 3 R23 T28 4 - 75 2 D30 J23 4 - 109 3 T21 T25 4 VREF 76 2 L21 F28 1 VREF 110 3 U28 U30 4 - 77 2 G28 E30 √ - 111 3 T23 U27 2 - 78 2 G27 E29 4 - 112 3 U25 V27 √ - 79 2 K23 H26 1 - 113 3 U24 V29 √ VREF 80 2 F30 L22 √ VREF 114 3 W30 U22 1 - 81 2 H27 G29 √ - 115 3 U21 W29 4 - 82 2 G30 M21 2 - 116 3 V26 W27 √ - 83 2 J24 J26 4 - 117 3 W26 Y29 1 VREF 84 2 H30 L23 4 VREF 118 3 W25 Y30 4 - 85 2 K26 J28 4 - 119 3 V24 Y28 3 - Module 4 of 4 116 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 27: FG900 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E P N Table 27: FG900 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 120 3 AA30 W24 4 - 154 4 AC20 AG23 2 - 121 3 AA29 V20 1 - 155 4 AF22 AE22 √ - 122 3 Y27 W23 NA - 156 4 AJ22 AG22 √ VREF 123 3 Y26 AB30 √ D5 157 4 AK24 AD20 NA - 124 3 V21 AA28 √ VREF 158 4 AA19 AF21 4 - 125 3 Y25 AA27 4 - 159 4 AH22 AA18 NA VREF 126 3 W22 Y23 4 - 160 4 AG21 AK23 NA - 127 3 Y24 AB28 4 VREF 161 4 AH21 AD19 4 - 128 3 AC30 AA25 √ - 162 4 AE20 AJ21 2 - 129 3 W21 AA24 2 - 163 4 AG20 AF20 2 - 130 3 AB26 AD30 √ - 164 4 AC18 AF19 2 - 131 3 Y22 AC27 √ VREF 165 4 AJ20 AE19 √ - 132 3 AD28 AB25 2 - 166 4 AK22 AH20 √ VREF 133 3 AC26 AE30 4 - 167 4 AG19 AB17 1 - 134 3 AD27 AF30 √ - 168 4 AJ19 AD17 1 - 135 3 AF29 AB24 1 VREF 169 4 AA16 AA17 √ - 136 3 AB23 AE28 4 - 170 4 AK21 AB16 √ VREF 137 3 AG30 AC25 3 - 171 4 AG18 AK20 2 - 138 3 AE26 AG29 4 VREF 172 4 AK19 AD16 2 - 139 3 AH30 AC24 1 - 173 4 AE16 AE17 √ - 140 3 AF28 AD25 NA - 174 4 AG17 AJ17 √ VREF 141 3 AH29 AA22 √ INIT 175 4 AD15 AH17 NA - 142 4 AF27 AK28 √ - 176 4 AG16 AK17 4 VREF 143 4 AG26 AH27 4 - 177 5 AF16 AH16 NA IO_ LVDS_DLL 144 4 AD23 AJ27 2 - 178 5 AC15 AG15 4 VREF 145 4 AB21 AF25 2 VREF 179 5 AB15 AF15 √ - 146 4 AC22 AH26 2 - 180 5 AA15 AF14 √ VREF 147 4 AA21 AG25 √ - 181 5 AH15 AK15 √ - 148 4 AJ26 AD22 √ VREF 182 5 AB14 AF13 2 - 149 4 AA20 AH25 1 - 183 5 AH14 AJ14 2 - 150 4 AC21 AF24 1 - 184 5 AE14 AG13 √ VREF 151 4 AG24 AK26 √ - 185 5 AK13 AD13 √ - 152 4 AJ24 AF23 √ VREF 186 5 AE13 AF12 1 - 153 4 AE23 AB20 2 - 187 5 AC13 AA13 1 - DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 117 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 27: FG900 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E P N Table 27: FG900 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 188 5 AA12 AJ12 √ VREF 222 6 Y9 AF1 √ VREF 189 5 AB12 AE11 √ - 223 6 AC4 AB6 √ - 190 5 AK12 Y13 2 - 224 6 W8 AE1 2 - 191 5 AG11 AF11 2 - 225 6 AB4 Y8 4 - 192 5 AH11 AJ11 2 - 226 6 W9 AB3 4 VREF 193 5 AE12 AG10 4 - 227 6 W10 AA5 4 - 194 5 AD12 AK11 √ - 228 6 V10 AB1 4 - 195 5 AJ10 AC12 √ VREF 229 6 AC1 Y7 4 VREF 196 5 AK10 AD11 4 - 230 6 AA3 V11 NA - 197 5 AJ9 AE9 4 - 231 6 U10 AA2 4 - 198 5 AH10 AF9 √ VREF 232 6 AA6 W7 1 - 199 5 AH9 AK9 √ - 233 6 Y4 Y6 4 - 200 5 AF8 AB11 2 - 234 6 V7 AA1 3 - 201 5 AC11 AG8 2 - 235 6 Y2 Y3 4 - 202 5 AK8 AF7 √ VREF 236 6 W5 Y5 1 VREF 203 5 AG7 AK7 √ - 237 6 W6 W4 √ - 204 5 AJ7 AD10 1 - 238 6 W2 V6 4 - 205 5 AH6 AC10 1 - 239 6 V4 U9 1 - 206 5 AD9 AG6 √ VREF 240 6 T8 AB2 √ VREF 207 5 AB10 AJ5 √ - 241 6 W1 U5 √ - 208 5 AD8 AK5 2 - 242 6 T9 Y1 2 - 209 5 AC9 AJ4 2 VREF 243 6 U3 T7 4 - 210 5 AG5 AK4 2 - 244 6 V2 T5 4 VREF 211 5 AH5 AG3 4 - 245 6 T6 R9 4 - 212 6 AC6 AF3 √ - 246 6 U2 T4 4 VREF 213 6 AG2 AH2 NA - 247 7 R10 T1 NA 214 6 AE4 AB9 1 - 248 7 R6 R5 4 - 215 6 AH1 AE3 4 VREF 249 7 R4 R8 4 VREF 216 6 AD6 AB8 3 - 250 7 R3 R7 4 - 217 6 AA10 AG1 4 - 251 7 P6 P10 4 VREF 218 6 AD4 AA9 1 VREF 252 7 P2 P5 4 - 219 6 AD2 AD5 √ - 253 7 P4 P7 2 - 220 6 AF2 AD3 4 - 254 7 R2 N4 √ - 221 6 AA7 AA8 1 - 255 7 P1 N7 √ VREF Module 4 of 4 118 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays FG1156 Fine-Pitch Ball Grid Array Package Table 27: FG900 Differential Pin Pair Summary XCV600E, XCV1000E, XCV1600E P N Other Pair Bank Pin Pin AO Functions 256 7 N6 M6 1 - 257 7 N1 N5 4 - 258 7 M5 M4 √ - 259 7 M1 M2 1 VREF 260 7 L2 L4 4 - 261 7 L5 M7 3 - 262 7 M8 L1 4 - 263 7 M9 K2 1 - 264 7 M10 L3 NA - 265 7 K1 K5 √ - 266 7 K3 L6 √ VREF 267 7 K4 L7 4 - 268 7 J5 L8 4 - 269 7 H4 K6 4 VREF 270 7 K7 H1 4 - 271 7 J2 J7 2 - 272 7 G2 H5 √ - 273 7 G5 L9 √ VREF 274 7 K8 F3 1 - 275 7 E1 G3 4 - 276 7 E2 H6 √ - 277 7 K9 E4 1 278 7 F4 J8 279 7 H7 280 7 281 282 XCV1000E, XCV1600E, XCV2000E, XCV2600E, and XCV3200E devices in the FG1156 fine-pitch Ball Grid Array package have footprint compatibility. Pins labeled IO_VREF can be used as either VREF or general I/O, unless indicated in the footnotes. If the pin is not used as VREF, it can be used as general I/O. Immediately following Table 28, see Table 29 for Differential Pair information. Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # 0 GCK3 E17 0 IO B4 0 IO B9 0 IO B10 0 IO D93 0 IO D16 0 IO E73 0 IO E113 0 IO E133 0 IO E163 0 IO F173 0 IO J123 0 IO J133 0 IO J143 0 IO K113 VREF 0 IO_L0N_Y F7 4 - 0 IO_L0P_Y H9 D1 3 - 0 IO_L1N_Y C5 C2 G6 4 VREF 0 IO_L1P_Y J10 7 F5 D2 1 - 0 IO_VREF_L2N_Y E6 7 K10 D3 4 - 0 IO_L2P_Y D6 0 IO_L3N_Y A4 0 IO_L3P_Y G8 0 IO_L4N_YY C6 0 IO_L4P_YY J11 0 IO_VREF_L5N_YY G9 0 IO_L5P_YY F8 0 IO_L6N_YY A54 Notes: 1. AO in the XCV600E, 1000E. 2. AO in the XCV1000E. 3. AO in the XCV1600E. 4. AO in the XCV1000E, XCV1600E. DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 119 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # 0 IO_L6P_YY H105 0 IO_L23P_Y C12 0 IO_L7N_Y D7 0 IO_L24N_Y K15 0 IO_L7P_Y B5 0 IO_L24P_Y A12 0 IO_L8N_Y K12 0 IO_L25N_Y B12 0 IO_L8P_Y E8 0 IO_L25P_Y H14 0 IO_L9N B64 0 IO_L26N_YY D12 0 IO_L9P F95 0 IO_L26P_YY F13 0 IO_L10N_YY G10 0 IO_VREF_L27N_YY A13 0 IO_L10P_YY C7 0 IO_L27P_YY B13 0 IO_VREF_L11N_YY D8 0 IO_L28N_YY J154 0 IO_L11P_YY B7 0 IO_L28P_YY G145 0 IO_L12N H114 0 IO_L29N_Y C13 0 IO_L12P C85 0 IO_L29P_Y F14 0 IO_L13N_Y E9 0 IO_L30N_Y H15 0 IO_L13P_Y B8 0 IO_L30P_Y D13 0 IO_VREF_L14N_Y K132 0 IO_L31N A144 0 IO_L14P_Y G11 0 IO_L31P K165 0 IO_L15N A84 0 IO_L32N_YY E14 0 IO_L15P F105 0 IO_L32P_YY B14 0 IO_L16N_YY C9 0 IO_VREF_L33N_YY G15 0 IO_L16P_YY H12 0 IO_L33P_YY D14 0 IO_VREF_L17N_YY D10 0 IO_L34N J164 0 IO_L17P_YY A9 0 IO_L34P D155 0 IO_L18N_Y F11 0 IO_L35N_Y F15 0 IO_L18P_Y A10 0 IO_L35P_Y B15 0 IO_L19N_Y K14 0 IO_L36N_Y A15 0 IO_L19P_Y C10 0 IO_L36P_Y E15 0 IO_VREF_L20N_YY H13 0 IO_L37N G164 0 IO_L20P_YY G12 0 IO_L37P A165 0 IO_L21N_YY A11 0 IO_L38N_YY F16 0 IO_L21P_YY B11 0 IO_L38P_YY J17 0 IO_L22N_Y E12 0 IO_VREF_L39N_YY C16 0 IO_L22P_Y D11 0 IO_L39P_YY B16 0 IO_L23N_Y G13 0 IO_L40N_Y H17 Module 4 of 4 120 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # 0 IO_L40P_Y A17 1 IO_L49P_Y G20 0 IO_VREF_L41N_Y G171 1 IO_L50N B205 0 IO_L41P_Y B17 1 IO_L50P F204 0 IO_LVDS_DLL_L42N C17 1 IO_L51N_YY D20 1 IO_VREF_L51P_YY E20 1 GCK2 D17 1 IO_L52N_YY H20 1 IO A18 1 IO_L52P_YY A21 1 IO B183 1 IO_L53N E215 1 IO B24 1 IO_L53P J204 1 IO B25 1 IO_L54N_Y D21 1 IO E223 1 IO_L54P_Y K20 1 IO E233 1 IO_L55N_Y B21 1 IO D183 1 IO_L55P_Y H21 1 IO D19 1 IO_L56N_YY G215 1 IO D253 1 IO_L56P_YY F214 1 IO D263 1 IO_L57N_YY A22 1 IO D283 1 IO_VREF_L57P_YY B22 1 IO D293 1 IO_L58N_YY J21 1 IO G233 1 IO_L58P_YY C22 1 IO J233 1 IO_L59N_Y D22 1 IO_LVDS_DLL_L42P J18 1 IO_L59P_Y G22 1 IO_L43N_Y G18 1 IO_L60N_Y K21 1 IO_VREF_L43P_Y C181 1 IO_L60P_Y A23 1 IO_L44N_Y H18 1 IO_L61N_Y F22 1 IO_L44P_Y F18 1 IO_L61P_Y B23 1 IO_L45N_YY B19 1 IO_L62N_Y C23 1 IO_VREF_L45P_YY A19 1 IO_L62P_Y H22 1 IO_L46N_YY K19 1 IO_L63N_YY D23 1 IO_L46P_YY C19 1 IO_L63P_YY K22 1 IO_L47N F195 1 IO_L64N_YY A24 1 IO_L47P E194 1 IO_VREF_L64P_YY J22 1 IO_L48N_Y G19 1 IO_L65N_Y H23 1 IO_L48P_Y J19 1 IO_L65P_Y D24 1 IO_L49N_Y A20 1 IO_L66N_Y A25 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 121 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # 1 IO_L66P_Y E24 1 IO_L83P_Y B30 1 IO_L67N_YY A26 1 IO_L84N B31 1 IO_VREF_L67P_YY C25 1 IO_L84P E29 1 IO_L68N_YY F24 1 IO_WRITE_L85N_YY A31 1 IO_L68P_YY B26 1 IO_CS_L85P_YY D30 1 IO_L69N K235 1 IO_L69P F254 2 IO F313 1 IO_L70N_Y C26 2 IO J32 1 IO_VREF_L70P_Y H242 2 IO K273 1 IO_L71N_Y G24 2 IO K313 1 IO_L71P_Y A27 2 IO L283 1 IO_L72N B275 2 IO L303 1 IO_L72P G254 2 IO M323 1 IO_L73N_YY E26 2 IO N26 1 IO_VREF_L73P_YY C27 2 IO N283 1 IO_L74N_YY J24 2 IO P253 1 IO_L74P_YY B28 2 IO U263 1 IO_L75N K245 2 IO U30 1 IO_L75P H254 2 IO U323 1 IO_L76N_Y D27 2 IO U34 1 IO_L76P_Y F26 2 IO_D2 M30 1 IO_L77N_Y G26 2 IO_DOUT_BUSY_L86P_YY D32 1 IO_L77P_Y C28 2 IO_DIN_D0_L86N_YY J27 1 IO_L78N_YY E275 2 IO_L87P_Y E31 1 IO_L78P_YY J254 2 IO_L87N_Y F30 1 IO_L79N_YY A30 2 IO_L88P_Y G29 1 IO_VREF_L79P_YY H26 2 IO_L88N_Y F32 1 IO_L80N_YY G27 2 IO_VREF_L89P_Y E32 1 IO_L80P_YY B29 2 IO_L89N_Y G30 1 IO_L81N_Y F27 2 IO_L90P M25 1 IO_L81P_Y C29 2 IO_L90N G31 1 IO_L82N_Y E28 2 IO_L91P_Y L26 1 IO_VREF_L82P_Y F28 2 IO_L91N_Y D33 1 IO_L83N_Y L25 2 IO_VREF_L92P_Y D34 Module 4 of 4 122 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # 2 IO_L92N_Y H29 2 IO_L109N_Y L33 2 IO_L93P_YY J284 2 IO_L110P_Y P27 2 IO_L93N_YY E335 2 IO_L110N_Y M33 2 IO_L94P_YY H28 2 IO_L111P M31 2 IO_L94N_YY H30 2 IO_L111N R26 2 IO_L95P_Y H32 2 IO_L112P_Y N30 2 IO_L95N_Y K28 2 IO_L112N_Y P28 2 IO_L96P_Y L274 2 IO_VREF_L113P_Y N29 2 IO_L96N_Y F335 2 IO_L113N_Y N33 2 IO_L97P_Y M26 2 IO_L114P_YY T254 2 IO_L97N_Y E34 2 IO_L114N_YY N345 2 IO_VREF_L98P_YY H31 2 IO_L115P_YY P34 2 IO_L98N_YY G32 2 IO_L115N_YY R27 2 IO_L99P_YY N254 2 IO_L116P_Y P29 2 IO_L99N_YY J315 2 IO_L116N_Y P31 2 IO_L100P_YY J30 2 IO_L117P_Y P334 2 IO_L100N_YY G33 2 IO_L117N_Y T265 2 IO_VREF_L101P_Y H342 2 IO_L118P_Y R34 2 IO_L101N_Y J29 2 IO_L118N_Y R28 2 IO_L102P M274 2 IO_VREF_L119P_YY N31 2 IO_L102N H335 2 IO_D3_L119N_YY N32 2 IO_L103P_Y K29 2 IO_L120P_YY P304 2 IO_L103N_Y J34 2 IO_L120N_YY R335 2 IO_VREF_L104P_YY L29 2 IO_L121P_YY R29 2 IO_L104N_YY J33 2 IO_L121N_YY T34 2 IO_L105P_YY M28 2 IO_L122P_Y R30 2 IO_L105N_YY K34 2 IO_L122N_Y T30 2 IO_L106P_Y N27 2 IO_L123P T284 2 IO_L106N_Y L34 2 IO_L123N R315 2 IO_VREF_L107P_YY K33 2 IO_L124P_Y T29 2 IO_D1_L107N_YY P26 2 IO_L124N_Y U27 2 IO_L108P_Y R25 2 IO_VREF_L125P_YY T31 2 IO_L108N_Y M34 2 IO_L125N_YY T33 2 IO_L109P_Y L31 2 IO_L126P_YY U28 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 123 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # 2 IO_L126N_YY T32 3 IO_L136P_YY AA345 2 IO_VREF_L127P_Y U291 3 IO_L136N_YY W314 2 IO_L127N_Y U33 3 IO_D4_L137P_YY AA33 2 IO_L128P_YY V33 3 IO_VREF_L137N_YY Y29 2 IO_L128N_YY U31 3 IO_L138P_Y W25 3 IO_L138N_Y AB34 3 IO V273 3 IO_L139P_Y Y285 3 IO V31 3 IO_L139N_Y AB334 3 IO V323 3 IO_L140P_Y AA30 3 IO W33 3 IO_L140N_Y Y26 3 IO AB253 3 IO_L141P_YY Y27 3 IO AB263 3 IO_L141N_YY AA31 3 IO AB313 3 IO_L142P_YY AA275 3 IO AC313 3 IO_L142N_YY AA294 3 IO AF34 3 IO_L143P_Y AB32 3 IO AG313 3 IO_VREF_L143N_Y AB29 3 IO AG333 3 IO_L144P_Y AA28 3 IO AG34 3 IO_L144N_Y AC34 3 IO AH293 3 IO_L145P Y25 3 IO AJ303 3 IO_L145N AD34 3 IO_L129P_Y V26 3 IO_L146P_Y AB30 3 IO_VREF_L129N_Y V301 3 IO_L146N_Y AC33 3 IO_L130P_YY W34 3 IO_L147P_Y AA26 3 IO_L130N_YY V28 3 IO_L147N_Y AC32 3 IO_L131P_YY W32 3 IO_L148P_Y AD33 3 IO_VREF_L131N_YY W30 3 IO_L148N_Y AB28 3 IO_L132P_Y V29 3 IO_L149P_YY AE34 3 IO_L132N_Y Y34 3 IO_D5_L149N_YY AB27 3 IO_L133P W295 3 IO_D6_L150P_YY AE33 3 IO_L133N Y334 3 IO_VREF_L150N_YY AC30 3 IO_L134P_Y W26 3 IO_L151P_Y AA25 3 IO_L134N_Y W28 3 IO_L151N_Y AE32 3 IO_L135P_YY Y31 3 IO_L152P_YY AE31 3 IO_L135N_YY Y30 3 IO_L152N_YY AD29 Module 4 of 4 124 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # 3 IO_L153P_YY AD31 3 IO_L170P_Y AK33 3 IO_VREF_L153N_YY AF33 3 IO_L170N_Y AH30 3 IO_L154P_Y AC28 3 IO_D7_L171P_YY AK32 3 IO_L154N_Y AF31 3 IO_INIT_L171N_YY AK31 3 IO_L155P_Y AC275 3 IO V34 3 IO_L155N_Y AF324 3 IO_L156P_Y AE29 4 GCK0 AH18 3 IO_VREF_L156N_Y AD282 4 IO AE213 3 IO_L157P_YY AD30 4 IO AG18 3 IO_L157N_YY AG32 4 IO AG23 3 IO_L158P_YY AC265 4 IO AH243 3 IO_L158N_YY AH334 4 IO AH253 3 IO_L159P_YY AD26 4 IO AJ283 3 IO_VREF_L159N_YY AF30 4 IO AK183 3 IO_L160P_Y AC25 4 IO AK193 3 IO_L160N_Y AH32 4 IO AL25 3 IO_L161P_Y AE285 4 IO AL273 3 IO_L161N_Y AL344 4 IO AL303 3 IO_L162P_Y AG30 4 IO AN18 3 IO_L162N_Y AD27 4 IO AN223 3 IO_L163P_YY AF29 4 IO AN243 3 IO_L163N_YY AK34 4 IO_L172P_YY AP31 3 IO_L164P_YY AD255 4 IO_L172N_YY AK29 3 IO_L164N_YY AE274 4 IO_L173P_Y AP30 3 IO_L165P_Y AJ33 4 IO_L173N_Y AN31 3 IO_VREF_L165N_Y AH31 4 IO_L174P_Y AH27 3 IO_L166P_Y AE26 4 IO_L174N_Y AN30 3 IO_L166N_Y AL33 4 IO_VREF_L175P_Y AM30 3 IO_L167P AF28 4 IO_L175N_Y AK28 3 IO_L167N AL32 4 IO_L176P_Y AG26 3 IO_L168P_Y AJ31 4 IO_L176N_Y AN29 3 IO_VREF_L168N_Y AF27 4 IO_L177P_YY AF25 3 IO_L169P_Y AG29 4 IO_L177N_YY AM29 3 IO_L169N_Y AJ32 4 IO_VREF_L178P_YY AL29 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 125 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # 4 IO_L178N_YY AL28 4 IO_L195N_Y AN23 4 IO_L179P_YY AE244 4 IO_L196P_Y AP23 4 IO_L179N_YY AN285 4 IO_L196N_Y AM23 4 IO_L180P_Y AJ27 4 IO_L197P_Y AH22 4 IO_L180N_Y AH26 4 IO_L197N_Y AP22 4 IO_L181P_Y AG25 4 IO_L198P_Y AL23 4 IO_L181N_Y AK27 4 IO_L198N_Y AF21 4 IO_L182P AM284 4 IO_L199P_YY AL22 4 IO_L182N AF245 4 IO_L199N_YY AJ22 4 IO_L183P_YY AJ26 4 IO_VREF_L200P_YY AK22 4 IO_L183N_YY AP27 4 IO_L200N_YY AM22 4 IO_VREF_L184P_YY AK26 4 IO_L201P_YY AG214 4 IO_L184N_YY AN27 4 IO_L201N_YY AJ215 4 IO_L185P AE234 4 IO_L202P_Y AP21 4 IO_L185N AM275 4 IO_L202N_Y AE20 4 IO_L186P_Y AL26 4 IO_L203P_Y AH21 4 IO_L186N_Y AP26 4 IO_L203N_Y AL21 4 IO_VREF_L187P_Y AN262 4 IO_L204P AN214 4 IO_L187N_Y AJ25 4 IO_L204N AF205 4 IO_L188P AG244 4 IO_L205P_YY AK21 4 IO_L188N AP255 4 IO_L205N_YY AP20 4 IO_L189P_YY AF23 4 IO_VREF_L206P_YY AE19 4 IO_L189N_YY AM26 4 IO_L206N_YY AN20 4 IO_VREF_L190P_YY AJ24 4 IO_L207P_Y AG204 4 IO_L190N_YY AN25 4 IO_L207N_Y AL205 4 IO_L191P_Y AE22 4 IO_L208P_Y AH20 4 IO_L191N_Y AM25 4 IO_L208N_Y AK20 4 IO_L192P_Y AK24 4 IO_L209P_Y AN19 4 IO_L192N_Y AH23 4 IO_L209N_Y AJ20 4 IO_VREF_L193P_YY AF22 4 IO_L210P AF194 4 IO_L193N_YY AP24 4 IO_L210N AP195 4 IO_L194P_YY AL24 4 IO_L211P_YY AM19 4 IO_L194N_YY AK23 4 IO_L211N_YY AH19 4 IO_L195P_Y AG22 4 IO_VREF_L212P_YY AJ19 Module 4 of 4 126 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # 4 IO_L212N_YY AP18 5 IO_L222P_Y AN15 4 IO_L213P_Y AF18 5 IO_L222N_Y AF16 4 IO_L213N_Y AP17 5 IO_L223P_Y AP145 4 IO_VREF_L214P_Y AJ181 5 IO_L223N_Y AE164 4 IO_L214N_Y AL18 5 IO_L224P_YY AK15 4 IO_LVDS_DLL_L215P AM18 5 IO_VREF_L224N_YY AJ15 5 IO_L225P_YY AH15 5 GCK1 AL19 5 IO_L225N_YY AN14 5 IO AF173 5 IO_L226P AK145 5 IO AG123 5 IO_L226N AG154 5 IO AH12 5 IO_L227P_Y AM13 5 IO AJ103 5 IO_L227N_Y AF15 5 IO AJ113 5 IO_L228P_Y AG14 5 IO AK73 5 IO_L228N_Y AP13 5 IO AK133 5 IO_L229P_YY AE145 5 IO AL133 5 IO_L229N_YY AE154 5 IO AM43 5 IO_L230P_YY AN13 5 IO AN9 5 IO_VREF_L230N_YY AG13 5 IO AN103 5 IO_L231P_YY AH14 5 IO AN16 5 IO_L231N_YY AP12 5 IO AN173 5 IO_L232P_Y AJ14 5 IO_LVDS_DLL_L215N AL17 5 IO_L232N_Y AL14 5 IO_L216P_Y AH17 5 IO_L233P_Y AF13 5 IO_VREF_L216N_Y AM171 5 IO_L233N_Y AN12 5 IO_L217P_Y AJ17 5 IO_L234P_Y AF14 5 IO_L217N_Y AG17 5 IO_L234N_Y AP11 5 IO_L218P_YY AP16 5 IO_L235P_Y AN11 5 IO_VREF_L218N_YY AL16 5 IO_L235N_Y AH13 5 IO_L219P_YY AJ16 5 IO_L236P_YY AM12 5 IO_L219N_YY AM16 5 IO_L236N_YY AL12 5 IO_L220P AK165 5 IO_L237P_YY AJ13 5 IO_L220N AP154 5 IO_VREF_L237N_YY AP10 5 IO_L221P_Y AL15 5 IO_L238P_Y AK12 5 IO_L221N_Y AH16 5 IO_L238N_Y AM10 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 127 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # 5 IO_L239P_Y AP9 5 IO_L256P_Y AH8 5 IO_L239N_Y AK11 5 IO_L256N_Y AP4 5 IO_L240P_YY AL11 5 IO_L257P_Y AN4 5 IO_VREF_L240N_YY AL10 5 IO_L257N_Y AJ7 5 IO_L241P_YY AE13 5 IO_L258P_YY AM5 5 IO_L241N_YY AM9 5 IO_L258N_YY AK6 5 IO_L242P AF125 5 IO_L242N AP84 6 IO T1 5 IO_L243P_Y AL9 6 IO V2 5 IO_VREF_L243N_Y AH112 6 IO V3 5 IO_L244P_Y AF11 6 IO V53 5 IO_L244N_Y AN8 6 IO V83 5 IO_L245P_Y AM85 6 IO AA103 5 IO_L245N_Y AG114 6 IO AB53 5 IO_L246P_YY AL8 6 IO AB73 5 IO_VREF_L246N_YY AK9 6 IO AB93 5 IO_L247P_YY AH10 6 IO AD73 5 IO_L247N_YY AN7 6 IO AD83 5 IO_L248P AE125 6 IO AE2 5 IO_L248N AJ94 6 IO AE4 5 IO_L249P_Y AM7 6 IO AJ43 5 IO_L249N_Y AL7 6 IO AH53 5 IO_L250P_Y AG10 6 IO_L259N_YY AH6 5 IO_L250N_Y AN6 6 IO_L259P_YY AF8 5 IO_L251P_YY AK85 6 IO_L260N_Y AE9 5 IO_L251N_YY AH94 6 IO_L260P_Y AK3 5 IO_L252P_YY AP5 6 IO_L261N_Y AD10 5 IO_VREF_L252N_YY AJ8 6 IO_L261P_Y AL2 5 IO_L253P_YY AE11 6 IO_VREF_L262N_Y AL1 5 IO_L253N_YY AN5 6 IO_L262P_Y AH4 5 IO_L254P_Y AF10 6 IO_L263N AG6 5 IO_L254N_Y AM6 6 IO_L263P AK1 5 IO_L255P_Y AL6 6 IO_L264N_Y AF7 5 IO_VREF_L255N_Y AG9 6 IO_L264P_Y AK2 Module 4 of 4 128 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # 6 IO_VREF_L265N_Y AJ3 6 IO_L282N_Y AA9 6 IO_L265P_Y AG5 6 IO_L282P_Y AC3 6 IO_L266N_YY AD94 6 IO_L283N_Y AC4 6 IO_L266P_YY AJ25 6 IO_L283P_Y AD4 6 IO_L267N_YY AC10 6 IO_L284N_Y AA8 6 IO_L267P_YY AH2 6 IO_L284P_Y AB6 6 IO_L268N_Y AH3 6 IO_L285N AB1 6 IO_L268P_Y AF5 6 IO_L285P Y10 6 IO_L269N_Y AE84 6 IO_L286N_Y AB2 6 IO_L269P_Y AG35 6 IO_L286P_Y AA7 6 IO_L270N_Y AE7 6 IO_VREF_L287N_Y AA4 6 IO_L270P_Y AG2 6 IO_L287P_Y AA1 6 IO_VREF_L271N_YY AF6 6 IO_L288N_YY Y94 6 IO_L271P_YY AG1 6 IO_L288P_YY AB45 6 IO_L272N_YY AC94 6 IO_L289N_YY AA2 6 IO_L272P_YY AG45 6 IO_L289P_YY Y8 6 IO_L273N_YY AE6 6 IO_L290N_Y AA6 6 IO_L273P_YY AF3 6 IO_L290P_Y AA5 6 IO_VREF_L274N_Y AF12 6 IO_L291N_Y AB34 6 IO_L274P_Y AF4 6 IO_L291P_Y Y75 6 IO_L275N AB104 6 IO_L292N_Y Y1 6 IO_L275P AF25 6 IO_L292P_Y W10 6 IO_L276N_Y AC8 6 IO_VREF_L293N_YY Y5 6 IO_L276P_Y AE1 6 IO_L293P_YY Y2 6 IO_VREF_L277N_YY AD5 6 IO_L294N_YY W94 6 IO_L277P_YY AE3 6 IO_L294P_YY W25 6 IO_L278N_YY AC7 6 IO_L295N_YY W7 6 IO_L278P_YY AD1 6 IO_L295P_YY Y4 6 IO_L279N_Y AD6 6 IO_L296N_Y W1 6 IO_L279P_Y AD2 6 IO_L296P_Y Y6 6 IO_VREF_L280N_YY AB8 6 IO_L297N_Y W64 6 IO_L280P_YY AC1 6 IO_L297P_Y W35 6 IO_L281N_YY AC5 6 IO_L298N_Y V9 6 IO_L281P_YY AC2 6 IO_L298P_Y W4 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 129 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # 6 IO_VREF_L299N_YY W5 7 IO_L307P_Y R14 6 IO_L299P_YY V1 7 IO_L308N_Y R6 6 IO_L300N_YY V7 7 IO_L308P_Y T10 6 IO_L300P_YY U2 7 IO_L309N_YY R2 6 IO_VREF_L301N_Y V61 7 IO_L309P_YY R5 6 IO_L301P_Y U1 7 IO_L310N_YY P1 7 IO_VREF_L310P_YY P5 7 IO F5 7 IO_L311N_Y R8 7 IO G63 7 IO_L311P_Y P2 7 IO H1 7 IO_L312N_Y R95 7 IO H73 7 IO_L312P_Y N14 7 IO K23 7 IO_L313N_Y P4 7 IO K43 7 IO_L313P_Y R10 7 IO L63 7 IO_L314N_YY P8 7 IO M53 7 IO_L314P_YY N2 7 IO M103 7 IO_L315N_YY P65 7 IO N53 7 IO_L315P_YY P74 7 IO N10 7 IO_L316N_Y M1 7 IO R74 7 IO_VREF_L316P_Y N4 7 IO T2 7 IO_L317N_Y N6 7 IO T73 7 IO_L317P_Y N3 7 IO U8 7 IO_L318N P9 7 IO V43 7 IO_L318P M2 7 IO_L302N_YY U9 7 IO_L319N_Y N7 7 IO_L302P_YY U4 7 IO_L319P_Y M3 7 IO_L303N_Y U7 7 IO_L320N_Y P10 7 IO_VREF_L303P_Y U51 7 IO_L320P_Y M4 7 IO_L304N_YY U3 7 IO_L321N_Y L1 7 IO_L304P_YY U6 7 IO_L321P_Y N8 7 IO_L305N_YY T3 7 IO_L322N_YY L2 7 IO_VREF_L305P_YY T6 7 IO_L322P_YY N9 7 IO_L306N_Y T9 7 IO_L323N_YY M7 7 IO_L306P_Y T4 7 IO_VREF_L323P_YY K1 IO_L307N_Y T55 7 IO_L324N_Y M8 7 Module 4 of 4 130 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # 7 IO_L324P_Y L4 7 IO_VREF_L341P_Y J8 7 IO_L325N_YY J1 7 IO_L342N_Y E4 7 IO_L325P_YY L5 7 IO_L342P_Y D2 7 IO_L326N_YY J2 7 IO_L343N_Y F4 7 IO_VREF_L326P_YY K3 7 IO_L343P_Y D3 7 IO_L327N_Y L7 7 IO_L327P_Y J3 2 CCLK C31 7 IO_L328N_Y M95 3 DONE AM31 7 IO_L328P_Y H24 NA DXN AJ5 7 IO_L329N_Y J4 NA DXP AL5 7 IO_VREF_L329P_Y K62 NA M0 AK4 7 IO_L330N_YY L8 NA M1 AG7 7 IO_L330P_YY G2 NA M2 AL3 7 IO_L331N_YY H35 NA PROGRAM AG28 7 IO_L331P_YY K74 NA TCK D5 7 IO_L332N_YY G3 NA TDI C30 7 IO_VREF_L332P_YY J5 2 TDO K26 7 IO_L333N_Y L9 NA TMS C4 7 IO_L333P_Y H5 7 IO_L334N_Y J65 NA VCCINT K10 7 IO_L334P_Y H44 NA VCCINT K17 7 IO_L335N_Y G4 NA VCCINT K18 7 IO_L335P_Y K8 NA VCCINT K25 7 IO_L336N_YY J7 NA VCCINT L11 7 IO_L336P_YY F2 NA VCCINT L24 7 IO_L337N_YY F35 NA VCCINT M12 7 IO_L337P_YY L104 NA VCCINT M23 7 IO_L338N_Y E1 NA VCCINT N13 7 IO_VREF_L338P_Y_Y H6 NA VCCINT N14 7 IO_L339N_Y G5 NA VCCINT N15 7 IO_L339P_Y E2 NA VCCINT N16 7 IO_L340N K9 NA VCCINT N19 7 IO_L340P D1 NA VCCINT N20 7 IO_L341N_Y E3 NA VCCINT N21 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 131 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # NA VCCINT N22 NA VCCO_0 M17 NA VCCINT P13 NA VCCO_0 L17 NA VCCINT P22 NA VCCO_0 L16 NA VCCINT R13 NA VCCO_0 E10 NA VCCINT R22 NA VCCO_0 C14 NA VCCINT T13 NA VCCO_0 A6 NA VCCINT T22 NA VCCO_0 M13 NA VCCINT U10 NA VCCO_0 M14 NA VCCINT U25 NA VCCO_0 M15 NA VCCINT V10 NA VCCO_0 M16 NA VCCINT V25 NA VCCO_0 L12 NA VCCINT W13 NA VCCO_0 L13 NA VCCINT W22 NA VCCO_0 L14 NA VCCINT Y13 NA VCCO_0 L15 NA VCCINT Y22 NA VCCO_1 M18 NA VCCINT AA13 NA VCCO_1 L18 NA VCCINT AA22 NA VCCO_1 L23 NA VCCINT AB13 NA VCCO_1 E25 NA VCCINT AB14 NA VCCO_1 C21 NA VCCINT AB15 NA VCCO_1 A29 NA VCCINT AB16 NA VCCO_1 M19 NA VCCINT AB19 NA VCCO_1 M20 NA VCCINT AB20 NA VCCO_1 M21 NA VCCINT AB21 NA VCCO_1 M22 NA VCCINT AB22 NA VCCO_1 L19 NA VCCINT AC12 NA VCCO_1 L20 NA VCCINT AC23 NA VCCO_1 L21 NA VCCINT AD24 NA VCCO_1 L22 NA VCCINT AD11 NA VCCO_2 U24 NA VCCINT AE10 NA VCCO_2 U23 NA VCCINT AE17 NA VCCO_2 N24 NA VCCINT AE18 NA VCCO_2 M24 NA VCCINT AE25 NA VCCO_2 K30 NA VCCO_2 F34 Module 4 of 4 132 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # NA VCCO_2 T23 NA VCCO_4 AD22 NA VCCO_2 T24 NA VCCO_4 AD23 NA VCCO_2 R23 NA VCCO_5 AC17 NA VCCO_2 R24 NA VCCO_5 AD17 NA VCCO_2 P23 NA VCCO_5 AC13 NA VCCO_2 P24 NA VCCO_5 AC14 NA VCCO_2 P32 NA VCCO_5 AC15 NA VCCO_2 N23 NA VCCO_5 AC16 NA VCCO_3 V23 NA VCCO_5 AP6 NA VCCO_3 V24 NA VCCO_5 AM14 NA VCCO_3 Y23 NA VCCO_5 AK10 NA VCCO_3 Y24 NA VCCO_5 AD12 NA VCCO_3 W23 NA VCCO_5 AD13 NA VCCO_3 W24 NA VCCO_5 AD14 NA VCCO_3 AJ34 NA VCCO_5 AD15 NA VCCO_3 AE30 NA VCCO_5 AD16 NA VCCO_3 AC24 NA VCCO_6 V11 NA VCCO_3 AB23 NA VCCO_6 V12 NA VCCO_3 AB24 NA VCCO_6 Y11 NA VCCO_3 AA23 NA VCCO_6 Y12 NA VCCO_3 AA24 NA VCCO_6 W11 NA VCCO_3 AA32 NA VCCO_6 W12 NA VCCO_4 AD18 NA VCCO_6 AJ1 NA VCCO_4 AC18 NA VCCO_6 AE5 NA VCCO_4 AC19 NA VCCO_6 AC11 NA VCCO_4 AC20 NA VCCO_6 AB11 NA VCCO_4 AC21 NA VCCO_6 AB12 NA VCCO_4 AC22 NA VCCO_6 AA3 NA VCCO_4 AP29 NA VCCO_6 AA11 NA VCCO_4 AM21 NA VCCO_6 AA12 NA VCCO_4 AK25 NA VCCO_7 U11 NA VCCO_4 AD19 NA VCCO_7 U12 NA VCCO_4 AD20 NA VCCO_7 N12 NA VCCO_4 AD21 NA VCCO_7 M11 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 133 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # NA VCCO_7 K5 NA GND AK17 NA VCCO_7 F1 NA GND AH34 NA VCCO_7 T11 NA GND AC6 NA VCCO_7 T12 NA GND AA21 NA VCCO_7 R11 NA GND Y21 NA VCCO_7 R12 NA GND W20 NA VCCO_7 P3 NA GND V20 NA VCCO_7 P11 NA GND U21 NA VCCO_7 P12 NA GND T21 NA VCCO_7 N11 NA GND R20 NA GND P20 NA GND K32 NA GND H16 NA GND R4 NA GND F23 NA GND AN1 NA GND C3 NA GND AM11 NA GND B2 NA GND AK5 NA GND A28 NA GND AH28 NA GND AP34 NA GND AD32 NA GND AM3 NA GND AA20 NA GND AL31 NA GND Y20 NA GND AH7 NA GND W19 NA GND AD3 NA GND V19 NA GND AA19 NA GND U20 NA GND Y19 NA GND T20 NA GND W18 NA GND R19 NA GND V18 NA GND P19 NA GND U19 NA GND H8 NA GND T19 NA GND F12 NA GND R18 NA GND C2 NA GND P18 NA GND B1 NA GND J26 NA GND A7 NA GND F6 NA GND AP1 NA GND C1 NA GND AN2 NA GND C34 NA GND AM15 NA GND A3 Module 4 of 4 134 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # NA GND AP2 NA GND E5 NA GND AN3 NA GND C15 NA GND AM20 NA GND B32 NA GND AK30 NA GND A33 NA GND AG8 NA GND AP7 NA GND AC29 NA GND AN33 NA GND Y3 NA GND AM32 NA GND Y32 NA GND AJ12 NA GND W21 NA GND AG19 NA GND V21 NA GND AA15 NA GND T8 NA GND Y15 NA GND T27 NA GND W14 NA GND R21 NA GND V14 NA GND P21 NA GND U15 NA GND H19 NA GND T15 NA GND F29 NA GND R14 NA GND C11 NA GND P14 NA GND B3 NA GND M29 NA GND A32 NA GND G1 NA GND AP3 NA GND E18 NA GND AN32 NA GND C20 NA GND AM24 NA GND B33 NA GND AJ6 NA GND A34 NA GND AG16 NA GND AP28 NA GND AA14 NA GND AN34 NA GND Y14 NA GND AM33 NA GND W8 NA GND AJ23 NA GND W27 NA GND AG27 NA GND U14 NA GND AA16 NA GND T14 NA GND Y16 NA GND R3 NA GND W15 NA GND R32 NA GND V15 NA GND M6 NA GND U16 NA GND H27 NA GND T16 DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 135 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Table 28: FG1156 — XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Bank Pin Description Pin # Bank Pin Description Pin # NA GND R15 NA GND U18 NA GND P15 NA GND T18 NA GND L3 NA GND R17 NA GND G7 NA GND P17 NA GND E30 NA GND J9 NA GND C24 NA GND G34 NA GND B34 NA GND D31 NA GND AP32 NA GND C33 NA GND AM1 NA GND A2 NA GND AM34 NA GND AB17 NA GND AJ29 NA GND AB18 NA GND AF9 NA GND N17 NA GND AA17 NA GND N18 NA GND Y17 NA GND U13 NA GND W16 NA GND V13 NA GND V16 NA GND U22 NA GND U17 NA GND V22 NA GND T17 NA GND R16 NA GND P16 NA GND L32 NA GND G28 NA GND D4 NA GND C32 NA GND A1 NA GND AP33 NA GND AM2 NA GND AL4 NA GND AH1 NA GND AF26 NA GND AA18 NA GND Y18 NA GND W17 NA GND V17 Module 4 of 4 136 Notes: 1. VREF or I/O option only in the XCV1600E, XCV2000E, XCV2600E, and XCV3200E; otherwise, I/O option only. 2. VREF or I/O option only in the XCV2000E, XCV2600E, and XCV3200E; otherwise, I/O option only. 3. No Connect in the XCV1000E, XCV1600E. 4. No Connect in the XCV1000E. 5. I/O in the XCV1000E. www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays FG1156 Differential Pin Pairs Virtex-E devices have differential pin pairs that can also provide other functions when not used as a differential pair. The AO column in Table 29 indicates which devices in this package can use the pin pair as an asynchronous output. The “Other Functions” column indicates alternative function(s) that are not available when the pair is used as a differential pair or differential clock. Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Pair Bank P N Pin Pin Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E P N Pair Bank Pin Pin AO Functions 13 0 B8 E9 3200 2000 1000 - 14 0 G11 K13 3200 2000 1000 VREF 15 0 F10 A8 3200 2600 - 16 0 H12 C9 3200 2600 2000 1600 1000 - 17 0 A9 D10 3200 2600 2000 1600 1000 VREF 18 0 A10 F11 2600 1600 1000 - 19 0 C10 K14 2600 1600 1000 - 20 0 G12 H13 3200 2600 2000 1600 1000 VREF 21 0 B11 A11 3200 2600 2000 1600 1000 - 22 0 D11 E12 3200 1600 1000 - 23 0 C12 G13 3200 2000 1000 - 24 0 A12 K15 3200 2000 1000 - 25 0 H14 B12 3200 2600 1000 - 26 0 F13 D12 3200 2600 2000 1600 1000 - 27 0 B13 A13 3200 2600 2000 1600 1000 VREF 28 0 G14 J15 2000 1600 - 29 0 F14 C13 3200 2600 1000 - 30 0 D13 H15 3200 2600 1000 - 31 0 K16 A14 3200 - Other AO Functions GCLK LVDS 3 0 E17 C17 NA IO_DLL_L 42N 2 1 D17 J18 NA IO_DLL_L 42P 1 5 AL19 AL17 NA IO_DLL_L 215N 0 4 AH18 AM18 NA IO_DLL_L 215P IO LVDS Total Pairs: 344, Asynchronous Output Pairs: 134 0 0 H9 F7 3200 1600 1000 1 0 J10 C5 3200 2000 1000 - 2 0 D6 E6 3200 2000 1000 VREF 3200 2600 1000 - - 3 0 G8 A4 - 4 0 J11 C6 3200 2600 2000 1600 1000 5 0 F8 G9 3200 2600 2000 1600 1000 VREF 6 0 H10 A5 2000 1600 - 7 0 B5 D7 3200 1000 - 8 0 E8 K12 3200 1000 - 9 0 F9 B6 3200 2600 - 10 0 C7 G10 3200 2600 2000 1600 1000 - 11 0 B7 D8 3200 2600 2000 1600 1000 VREF 12 0 C8 H11 3200 1600 - DS022-4 (v2.5) March 14, 2003 Production Product Specification Other www.xilinx.com 1-800-255-7778 Module 4 of 4 137 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E P N Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 32 0 B14 E14 3200 2600 2000 1600 1000 - 52 1 A21 H20 3200 2600 2000 1600 1000 - 1 J20 E21 3200 - 0 D14 G15 3200 2600 2000 1600 1000 53 33 VREF 54 1 K20 D21 3200 2600 1000 - J16 3200 1600 55 1 H21 B21 - 3200 2600 1000 - F15 3200 2000 1000 56 1 F21 G21 2000 1600 - A15 3200 2000 1000 57 1 B22 A22 3200 2600 2000 1600 1000 VREF 58 1 C22 J21 3200 2600 2000 1600 1000 - 59 1 G22 D22 3200 2600 1000 - 60 1 A23 K21 3200 2000 1000 - 61 1 B23 F22 3200 2000 1000 - 62 1 H22 C23 3200 1600 1000 - 63 1 K22 D23 3200 2600 2000 1600 1000 - 64 1 J22 A24 3200 2600 2000 1600 1000 VREF 65 1 D24 H23 2600 1600 1000 - 66 1 E24 A25 2600 1600 1000 - 67 1 C25 A26 3200 2600 2000 1600 1000 VREF 68 1 B26 F24 3200 2600 2000 1600 1000 - 69 1 F25 K23 3200 2600 - 70 1 H24 C26 3200 2000 1000 VREF 34 35 36 0 0 0 D15 B15 E15 37 0 A16 G16 3200 2600 - 38 0 J17 F16 3200 2600 2000 1600 1000 - 39 0 B16 C16 3200 2600 2000 1600 1000 VREF H17 2600 1600 1000 VREF 40 0 A17 - 41 0 B17 G17 2600 1600 1000 42 1 J18 C17 None IO_LVDS_DLL 43 1 C18 G18 2600 1600 1000 VREF 44 1 F18 H18 2600 1600 1000 - 45 1 A19 B19 3200 2600 2000 1600 1000 VREF - 46 1 C19 K19 3200 2600 2000 1600 1000 47 1 E19 F19 3200 2600 48 1 J19 G19 3200 2000 1000 - 49 1 G20 A20 3200 2000 1000 - 50 1 F20 B20 3200 1600 - D20 3200 2600 2000 1600 1000 VREF 51 1 Module 4 of 4 138 E20 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E P N Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 71 1 A27 G24 3200 2000 1000 - 91 2 L26 D33 3200 2600 1600 1000 - 72 1 G25 B27 3200 1600 - 92 2 D34 H29 2600 2000 1000 VREF VREF 93 2 J28 E33 3200 2600 2000 1600 - 94 2 H28 H30 3200 2600 2000 1600 1000 - 95 2 H32 K28 3200 2600 1600 1000 - 96 2 L27 F33 3200 2600 2000 - 97 2 M26 E34 2600 2000 1000 - 98 2 H31 G32 3200 2600 2000 1600 1000 VREF 99 2 N25 J31 2000 1600 - 73 1 C27 E26 3200 2600 2000 1600 1000 74 1 B28 J24 3200 2600 2000 1600 1000 - 75 1 H25 K24 3200 2600 - 76 1 F26 D27 3200 1000 - 77 1 C28 G26 3200 1000 - 78 1 J25 E27 2000 1600 - A30 3200 2600 2000 1600 1000 VREF - 79 1 H26 80 1 B29 G27 3200 2600 2000 1600 1000 81 1 C29 F27 3200 2600 1000 - 100 2 J30 G33 3200 2600 2000 1600 1000 - 82 1 F28 E28 3200 2000 1000 VREF 101 2 H34 J29 2600 1000 VREF 83 1 B30 L25 3200 2000 1000 - 102 2 M27 H33 3200 2600 1600 - 84 1 E29 B31 3200 1600 1000 - 103 2 K29 J34 3200 2600 1600 1000 - A31 3200 2600 2000 1600 1000 104 2 L29 J33 3200 2600 2000 1600 1000 VREF DIN, D0 105 2 M28 K34 3200 2600 2000 1600 1000 - 106 2 N27 L34 3200 1600 1000 - 107 2 K33 P26 2000 1600 1000 D1 108 2 R25 M34 3200 2600 2000 - 109 2 L31 L33 2000 1000 - 110 2 P27 M33 3200 2600 1600 1000 - 85 1 D30 CS 86 2 D32 J27 3200 2600 2000 1600 1000 87 2 E31 F30 3200 2600 2000 - 88 2 G29 F32 2600 2000 1000 - 89 2 E32 G30 3200 2600 1600 1000 VREF 90 2 M25 G31 2600 1600 - DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 139 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E P N Other Pair Bank Pin Pin AO Functions 111 2 M31 R26 2600 1600 VREF 112 2 N30 P28 3200 1600 1000 113 2 N29 N33 2600 2000 1000 - 114 2 T25 N34 3200 2600 2000 1600 115 2 P34 R27 3200 2600 2000 1600 1000 - 116 2 P29 P31 3200 2600 1600 1000 - 117 2 P33 T26 3200 2600 2000 - 118 2 R34 R28 2600 2000 1000 - 119 2 N31 N32 2000 1600 1000 D3 120 2 P30 R33 2000 1600 - 121 2 R29 T34 3200 2600 2000 1600 1000 - 122 2 R30 T30 1000 - 123 2 T28 R31 3200 1600 - 124 2 T29 U27 3200 2600 1600 1000 125 2 T31 T33 2000 1600 1000 VREF 126 2 U28 T32 2000 1600 1000 - U33 3200 2600 1600 1000 U31 3200 2600 2000 1600 1000 V30 3200 2600 1600 1000 V28 2000 1600 1000 W30 2000 1600 1000 127 128 129 130 131 2 2 3 3 3 Module 4 of 4 140 U29 V33 V26 W34 W32 Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E P N Pair Bank Pin Pin AO Functions 132 3 V29 Y34 3200 2600 1600 1000 - 133 3 W29 Y33 3200 1600 - 134 3 W26 W28 1000 - 135 3 Y31 Y30 3200 2600 2000 1600 1000 - 136 3 AA34 W31 2000 1600 - 137 3 AA33 Y29 2000 1600 1000 VREF 138 3 W25 AB34 2600 2000 1000 - 139 3 Y28 AB33 3200 2600 2000 - 140 3 AA30 Y26 3200 2600 1600 1000 - 141 3 Y27 AA31 3200 2600 2000 1600 1000 - 142 3 AA27 AA29 3200 2600 2000 1600 - 143 3 AB32 AB29 2600 2000 1000 VREF 144 3 AA28 AC34 3200 1600 1000 - 145 3 Y25 AD34 2600 1600 - 146 3 AB30 AC33 3200 2600 1600 1000 - 147 3 AA26 AC32 2000 1000 - 148 3 AD33 AB28 3200 2600 2000 - 149 3 AE34 AB27 3200 2600 2000 1600 1000 D5 150 3 AE33 AC30 2000 1600 1000 VREF 151 3 AA25 AE32 3200 1600 1000 - 152 3 AE31 AD29 3200 2600 2000 1600 1000 - VREF - VREF VREF Other www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E P N Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 153 3 AD31 AF33 3200 2600 2000 1600 1000 VREF 172 4 AP31 AK29 3200 2600 2000 1600 1000 - 154 3 AC28 AF31 3200 2600 1600 1000 - 173 4 AP30 AN31 3200 1600 1000 - 155 3 AC27 AF32 3200 2600 1600 - 174 4 AH27 AN30 3200 2000 1000 - 156 3 AE29 AD28 2600 1000 VREF 175 4 AM30 AK28 3200 2000 1000 VREF - 176 4 AG26 AN29 3200 2600 1000 - 177 4 AF25 AM29 3200 2600 2000 1600 1000 - 178 4 AL29 AL28 3200 2600 2000 1600 1000 VREF 179 4 AE24 AN28 2000 1600 - 180 4 AJ27 AH26 3200 1000 - 181 4 AG25 AK27 3200 1000 - 182 4 AM28 AF24 3200 2600 - 183 4 AJ26 AP27 3200 2600 2000 1600 1000 - 184 4 AK26 AN27 3200 2600 2000 1600 1000 VREF 185 4 AE23 AM27 3200 1600 - 186 4 AL26 AP26 3200 2000 1000 - 187 4 AN26 AJ25 3200 2000 1000 VREF 188 4 AG24 AP25 3200 2600 - 189 4 AF23 AM26 3200 2600 2000 1600 1000 - 190 4 AJ24 AN25 3200 2600 2000 1600 1000 VREF 191 4 AE22 AM25 2600 1600 1000 - 157 3 AD30 AG32 3200 2600 2000 1600 1000 158 3 AC26 AH33 2000 1600 159 3 AD26 AF30 3200 2600 2000 1600 1000 VREF 160 3 AC25 AH32 2600 2000 1000 - 161 3 AE28 AL34 3200 2600 2000 - 162 3 AG30 AD27 3200 2600 1600 1000 - - 163 3 AF29 AK34 3200 2600 2000 1600 1000 164 3 AD25 AE27 3200 2600 2000 1600 - AH31 2600 2000 1000 VREF - 165 3 AJ33 166 3 AE26 AL33 3200 2600 1600 1000 167 3 AF28 AL32 2600 1600 AF27 3200 2600 1600 1000 VREF AJ32 2600 2000 1000 - AH30 3200 2600 2000 - AK31 3200 2600 2000 1600 1000 168 169 170 171 3 3 3 3 AJ31 AG29 AK33 AK32 DS022-4 (v2.5) March 14, 2003 Production Product Specification INIT www.xilinx.com 1-800-255-7778 Module 4 of 4 141 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E P N Other Pair Bank Pin Pin AO Functions 192 4 AK24 AH23 2600 1600 1000 - 193 4 AF22 AP24 3200 2600 2000 1600 1000 VREF 194 4 AL24 AK23 3200 2600 2000 1600 1000 - 195 4 AG22 AN23 3200 1600 1000 - 196 4 AP23 AM23 3200 2000 1000 - AP22 3200 2000 1000 AF21 3200 2600 1000 AJ22 3200 2600 2000 1600 1000 VREF - 197 198 199 4 4 4 AH22 AL23 AL22 AK22 AM22 201 4 AG21 AJ21 2000 1600 AE20 3200 2600 1000 - 203 4 AH21 AL21 204 4 AN21 AF20 3200 AP20 3200 2600 2000 1600 1000 VREF - 205 4 AK21 206 4 AE19 AN20 207 4 AG20 AL20 3200 1600 AK20 3200 2000 1000 - 4 AH20 209 4 AN19 AJ20 3200 2000 1000 210 4 AF19 AP19 3200 2600 Module 4 of 4 142 Pin Pin AO Functions 211 4 AM19 AH19 3200 2600 2000 1600 1000 - 212 4 AJ19 AP18 3200 2600 2000 1600 1000 VREF 213 4 AF18 AP17 2600 1600 1000 - 214 4 AJ18 AL18 2600 1600 1000 VREF 215 5 AM18 AL17 None IO_LVDS_DLL 216 5 AH17 AM17 2600 1600 1000 VREF 217 5 AJ17 AG17 2600 1600 1000 - 218 5 AP16 AL16 3200 2600 2000 1600 1000 VREF 219 5 AJ16 AM16 3200 2600 2000 1600 1000 - 220 5 AK16 AP15 3200 2600 - 221 5 AL15 AH16 3200 2000 1000 - 222 5 AN15 AF16 3200 2000 1000 - 223 5 AP14 AE16 3200 1600 - 224 5 AK15 AJ15 3200 2600 2000 1600 1000 VREF 225 5 AH15 AN14 3200 2600 2000 1600 1000 - 226 5 AK14 AG15 3200 - 227 5 AM13 AF15 3200 2600 1000 - 228 5 AG14 AP13 3200 2600 1000 - 229 5 AE14 AE15 2000 1600 - 230 5 AN13 AG13 3200 2600 2000 1600 1000 VREF - 3200 2600 2000 1600 1000 208 Bank - 3200 2600 1000 Other Pair - 4 AP21 N - 200 4 P - 3200 2600 2000 1600 1000 202 Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E - www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E P N Other Pair Bank Pin Pin AO Functions 231 5 AH14 AP12 3200 2600 2000 1600 1000 - AL14 3200 2600 1000 - 232 5 AJ14 Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E P N Other Pair Bank Pin Pin AO Functions 251 5 AK8 AH9 2000 1600 - 252 5 AP5 AJ8 3200 2600 2000 1600 1000 VREF 253 5 AE11 AN5 3200 2600 2000 1600 1000 - 233 5 AF13 AN12 3200 2000 1000 234 5 AF14 AP11 3200 2000 1000 - 254 5 AF10 AM6 3200 2600 1000 - 235 5 AN11 AH13 3200 1600 1000 - 255 5 AL6 AG9 3200 2000 1000 VREF 236 5 AM12 AL12 3200 2600 2000 1600 1000 - 256 5 AH8 AP4 3200 2000 1000 - 257 5 AN4 AJ7 3200 1600 1000 - AP10 3200 2600 2000 1600 1000 VREF 258 5 AM5 AK6 - AM10 2600 1600 1000 - 3200 2600 2000 1600 1000 - 259 6 AF8 AH6 3200 2600 2000 1600 1000 - VREF 260 6 AK3 AE9 3200 2600 2000 - 261 6 AL2 AD10 2600 2000 1000 - 262 6 AH4 AL1 3200 2600 1600 1000 VREF 263 6 AK1 AG6 2600 1600 - 264 6 AK2 AF7 3200 2600 1600 1000 - 265 6 AG5 AJ3 2600 2000 1000 VREF 266 6 AJ2 AD9 3200 2600 2000 1600 - 267 6 AH2 AC10 3200 2600 2000 1600 1000 - 268 6 AF5 AH3 3200 2600 1600 1000 - 269 6 AG3 AE8 3200 2600 2000 - 237 238 5 5 AJ13 AK12 239 5 AP9 AK11 2600 1600 1000 240 5 AL11 AL10 3200 2600 2000 1600 1000 AM9 3200 2600 2000 1600 1000 - AP8 3200 2600 VREF 241 242 5 5 AE13 AF12 243 5 AL9 AH11 3200 2000 1000 244 5 AF11 AN8 3200 2000 1000 - 245 5 AM8 AG11 3200 1600 - AK9 3200 2600 2000 1600 1000 VREF 3200 2600 2000 1600 1000 - 246 247 5 5 AL8 AH10 AN7 248 5 AE12 AJ9 3200 2600 - 249 5 AM7 AL7 3200 1000 - 250 5 AG10 AN6 3200 1000 - DS022-4 (v2.5) March 14, 2003 Production Product Specification www.xilinx.com 1-800-255-7778 Module 4 of 4 143 R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E P N Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E Other P N Other Pair Bank Pin Pin AO Functions Pair Bank Pin Pin AO Functions 270 6 AG2 AE7 2600 2000 1000 - 290 6 AA5 AA6 3200 2600 1600 1000 - 271 6 AG1 AF6 3200 2600 2000 1600 1000 VREF 291 6 Y7 AB3 3200 2600 2000 - 272 6 AG4 AC9 2000 1600 - 292 6 W10 Y1 2600 2000 1000 - 273 6 AF3 AE6 3200 2600 2000 1600 1000 - 293 6 Y2 Y5 2000 1600 1000 VREF 294 6 W2 W9 2000 1600 - 274 6 AF4 AF1 2600 1000 VREF - 295 6 Y4 W7 3200 2600 2000 1600 1000 - 296 6 Y6 W1 1000 - 297 6 W3 W6 3200 1600 - 298 6 W4 V9 3200 2600 1600 1000 - 299 6 V1 W5 2000 1600 1000 VREF 300 6 U2 V7 2000 1600 1000 - 301 6 U1 V6 3200 2600 1600 1000 VREF 302 7 U4 U9 3200 2600 2000 1600 1000 - 303 7 U5 U7 3200 2600 1600 1000 VREF 304 7 U6 U3 2000 1600 1000 - 305 7 T6 T3 2000 1600 1000 VREF 275 6 AF2 AB10 3200 2600 1600 276 6 AE1 AC8 3200 2600 1600 1000 - AD5 3200 2600 2000 1600 1000 VREF AC7 3200 2600 2000 1600 1000 - 3200 1600 1000 - 2000 1600 1000 VREF 277 278 279 280 281 282 6 6 6 6 6 6 AE3 AD1 AD2 AC1 AC2 AC3 AD6 AB8 AC5 AA9 3200 2600 2000 1600 1000 - 3200 2600 2000 - 283 6 AD4 AC4 2000 1000 - 284 6 AB6 AA8 3200 2600 1600 1000 - 285 6 Y10 AB1 2600 1600 - 306 7 T4 T9 3200 2600 1600 1000 - 286 6 AA7 AB2 3200 1600 1000 - 307 7 R1 T5 3200 1600 - 7 T10 R6 1000 - 6 AA1 AA4 2600 2000 1000 308 287 VREF 309 7 R5 R2 3200 2600 2000 1600 1000 - 310 7 P5 P1 2000 1600 1000 VREF 288 289 6 6 Module 4 of 4 144 AB4 Y8 Y9 3200 2600 2000 1600 AA2 3200 2600 2000 1600 1000 - - www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E P N Other Pair Bank Pin Pin AO Functions 311 7 P2 R8 2600 2000 1000 - 312 7 N1 R9 3200 2600 2000 313 7 R10 P4 3200 2600 1600 1000 - 314 7 N2 P8 3200 2600 2000 1600 1000 - P6 3200 2600 2000 1600 VREF 315 7 P7 316 7 N4 M1 317 7 N3 N6 3200 1600 1000 - 318 7 M2 P9 2600 1600 - N7 3200 2600 1600 1000 - 7 M3 320 7 M4 P10 2000 1000 - 321 7 N8 L1 3200 2600 2000 - - 322 7 N9 L2 3200 2600 2000 1600 1000 323 7 K1 M7 2000 1600 1000 VREF 324 7 L4 M8 3200 1600 1000 - 325 7 L5 J1 3200 2600 2000 1600 1000 - 326 7 K3 J2 3200 2600 2000 1600 1000 VREF 327 7 J3 L7 3200 2600 1600 1000 - 328 7 H2 M9 3200 2600 1600 - 329 7 K6 J4 2600 1000 VREF 330 7 G2 L8 3200 2600 2000 1600 1000 - DS022-4 (v2.5) March 14, 2003 Production Product Specification P N Other Pair Bank Pin Pin AO Functions 331 7 K7 H3 2000 1600 - 332 7 J5 G3 3200 2600 2000 1600 1000 VREF 333 7 H5 L9 2600 2000 1000 - 334 7 H4 J6 3200 2600 2000 - 335 7 K8 G4 3200 2600 1600 1000 - 336 7 F2 J7 3200 2600 2000 1600 1000 - 337 7 L10 F3 3200 2600 2000 1600 - 338 7 H6 E1 2600 2000 1000 VREF 339 7 E2 G5 3200 2600 1600 1000 - 340 7 D1 K9 2600 1600 - 341 7 J8 E3 3200 2600 1600 1000 VREF 342 7 D2 E4 2600 2000 1000 - 343 7 D3 F4 3200 2600 2000 - - 2600 2000 1000 319 Table 29: FG1156 Differential Pin Pair Summary: XCV1000E, XCV1600E, XCV2000E, XCV2600E, XCV3200E www.xilinx.com 1-800-255-7778 Module 4 of 4 145 R Virtex™-E 1.8 V Field Programmable Gate Arrays Revision History The following table shows the revision history for this document. Date Version Revision 12/7/99 1.0 Initial Xilinx release. 1/10/00 1.1 Re-released with spd.txt v. 1.18, FG860/900/1156 package information, and additional DLL, Select RAM and SelectI/O information. 1/28/00 1.2 Added Delay Measurement Methodology table, updated SelectI/O section, Figures 30, 54, & 55, text explaining Table 5, TBYP values, buffered Hex Line info, p. 8, I/O Timing Measurement notes, notes for Tables 15, 16, and corrected F1156 pinout table footnote references. 2/29/00 1.3 Updated pinout tables, VCC page 20, and corrected Figure 20. 5/23/00 1.4 Correction to table on p. 22. 7/10/00 1.5 • • • Numerous minor edits. Data sheet upgraded to Preliminary. Preview -8 numbers added to Virtex-E Electrical Characteristics tables. 8/1/00 1.6 • • Reformatted entire document to follow new style guidelines. Changed speed grade values in tables on pages 35-37. 9/20/00 1.7 • • • • Min values added to Virtex-E Electrical Characteristics tables. XCV2600E and XCV3200E numbers added to Virtex-E Electrical Characteristics tables (Module 3). Corrected user I/O count for XCV100E device in Table 1 (Module 1). Changed several pins to “No Connect in the XCV100E“ and removed duplicate VCCINT pins in Table ~ (Module 4). Changed pin J10 to “No connect in XCV600E” in Table 74 (Module 4). Changed pin J30 to “VREF or I/O option only in the XCV600E” in Table 74 (Module 4). • Corrected pair 18 in Table 75 (Module 4) to be “AO in the XCV1000E, XCV1600E“. • Upgraded speed grade -8 numbers in Virtex-E Electrical Characteristics tables to Preliminary. Updated minimums in Table 13 and added notes to Table 14. Added to note 2 to Absolute Maximum Ratings. Changed speed grade -8 numbers for TSHCKO32, TREG, TBCCS, and TICKOF. • • 11/20/00 1.8 • • • • 2/12/01 1.9 • Changed all minimum hold times to –0.4 under Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Revised maximum TDLLPW in -6 speed grade for DLL Timing Parameters. • Changed GCLK0 to BA22 for FG860 package in Table 46. • • Revised footnote for Table 14. Added numbers to Virtex-E Electrical Characteristics tables for XCV1000E and XCV2000E devices. Updated Table 27 and Table 78 to include values for XCV400E and XCV600E devices. Revised Table 62 to include pinout information for the XCV400E and XCV600E devices in the BG560 package. Updated footnotes 1 and 2 for Table 76 to include XCV2600E and XCV3200E devices. • • • Module 4 of 4 146 www.xilinx.com 1-800-255-7778 DS022-4 (v2.5) March 14, 2003 Production Product Specification R Virtex™-E 1.8 V Field Programmable Gate Arrays Date Version 4/2/01 2.0 Revision • • • 7/26/01 2.1 • • 10/25/01 2.2 • Updated numerous values in Virtex-E Switching Characteristics tables. Changed pinout table footnotes from "VREF option only" to "VREF or I/O option only" to improve clarity. Converted file to modularized format. See the Virtex-E Data Sheet section. Changed pinout table footnotes from "VREF or I/O option only" to "VREF or I/O option only; otherwise I/O only" to improve clarity. Changed designation for pin pair 300 in Table 29 from AO to footnote 9. • Changed Table 29 to clarify which devices in the FG1156 package can use each pin pair as an asynchronous output. Updated references to the XCV3200E device in the FG1156 package. 11/15/01 2.3 • Fixed cosmetic error. 07/17/02 2.4 • • Added “VREF” to the description for pin B15 in Table 12. Changed designation for pin pair 129 in Table 15 from AO to “AO in the XCV1000E, 1600E, 2000E“. Data sheet designation upgraded from Preliminary to Production. • 03/14/03 2.5 • Removed the Virtex-E XCV300E section under Pinout Differences Between Virtex and Virtex-E Families (and revised Table 1), since these differences do not exist. Virtex-E Data Sheet The Virtex-E Data Sheet contains the following modules: • DS022-1, Virtex-E 1.8V FPGAs: • Introduction and Ordering Information (Module 1) • DS022-2, Virtex-E 1.8V FPGAs: Functional Description (Module 2) DS022-4 (v2.5) March 14, 2003 Production Product Specification DS022-3, Virtex-E 1.8V FPGAs: DC and Switching Characteristics (Module 3) • DS022-4, Virtex-E 1.8V FPGAs: Pinout Tables (Module 4) www.xilinx.com 1-800-255-7778 Module 4 of 4 147
XCV600E-7FG676C
物料型号:Virtex™-E 1.8 V Field Programmable Gate Arrays (现场可编程门阵列)

器件简介:Virtex-E系列是Xilinx公司生产的1.8V电压级别的FPGA产品,具有高性能和低功耗的特点,适用于多种应用领域。

引脚分配:文档中提供了详细的引脚分配表,包括每个引脚的编号、所属的Bank(组)、P Pin(正引脚)和N Pin(负引脚)等信息。

参数特性:文档中包含了FPGA的电气特性和性能参数,例如电压、电流、时钟频率等。

功能详解:文档详细描述了FPGA的各个功能模块,如I/O(输入/输出)模块、时钟管理、电源管理等。

应用信息:虽然文档没有直接提供应用案例,但从引脚分配功能详解中可以推断,Virtex-E FPGA适用于高速数据通信、信号处理、嵌入式系统等应用。

封装信息:文档提供了FPGA的封装信息,包括FG900、FG1156等不同的封装类型,以及它们的引脚排列和特性。
XCV600E-7FG676C 价格&库存

很抱歉,暂时无法提供与“XCV600E-7FG676C”相匹配的价格&库存,您可以联系我们找货

免费人工找货