High-Performance 8-Bit Microcontrollers
Z8 Encore!® F083A Series
Product Specification
PS026310-1212
PRELIMINARY
Copyright ©2012 Zilog®, Inc. All rights reserved.
www.zilog.com
Z8 Encore!® F083A Series
Product Specification
ii
Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.
LIFE SUPPORT POLICY
ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.
As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.
Document Disclaimer
©2012 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.
Z8, Z8 Encore! and Z8 Encore! XP are trademarks or registered trademarks of Zilog, Inc. All other product
or service names are the property of their respective owners.
PS026310-1212
PRELIMINARY
Disclaimer
Z8 Encore!® F083A Series
Product Specification
iii
Revision History
Each instance in this document’s revision history reflects a change from its previous edition. For more details, refer to the corresponding page(s) or appropriate links furnished in
the table below.
Date
Revision
Level
Chapter/Section
Page
No.
Description
Dec
2012
10
GPIO
Modified GPIO Port D0 language in Shared
Reset Pin section and Port Alternate Function Mapping table.
Jul
2011
09
LED Drive Enable Register,
Flash Sector Protect Register,
Packaging
Clarified statement surrounding the Alternate 51,
Function Register as it relates to the LED
122,
function; revised Flash Sector Protect Regis- 198
ter description; revised Packaging chapter.
Dec
2007
08
n/a
Removed XP from F083A.
Nov
2007
07
DC Characteristics, Analog-to- Updated Tables 117 and 123.
Digital Converter Electrical
Characteristics and Timing
185,
192
Sep
2007
06
DC Characteristics
Added ICC Active specification and ICC
HALT specification in Table 117.
185
Aug
2007
05
n/a
First release
All
PS026310-1212
PRELIMINARY
35, 36
All
Revision History
Z8 Encore!® F083A Series
Product Specification
iv
Table of Contents
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Part Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CPU and Peripheral Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Purpose Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nonvolatile Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Precision Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10-Bit Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analog Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
On-Chip Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Acronyms and Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
1
2
3
4
4
4
5
5
5
5
5
5
5
6
6
6
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Available Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Information Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
14
15
15
15
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Reset and Stop Mode Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PS026310-1212
PRELIMINARY
21
21
23
23
Table of Contents
Z8 Encore!® F083A Series
Product Specification
v
Voltage Brown-Out Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog Timer Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Reset Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Reset Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
On-Chip Debugger Initiated Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stop Mode Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stop Mode Recovery using Watchdog Timer Time-Out . . . . . . . . . . . . . . . . . . . . .
Stop Mode Recovery using GPIO Port Pin Transition . . . . . . . . . . . . . . . . . . . . . . .
Stop Mode Recovery Using the External RESET Pin . . . . . . . . . . . . . . . . . . . . . . .
Debug Pin Driven Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24
25
25
26
26
26
27
27
28
28
28
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STOP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HALT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peripheral Level Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
30
31
31
31
General Purpose Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIO Port Availability by Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIO Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Direct LED Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Shared Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Crystal Oscillator Override . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 V Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Clock Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIO Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIO Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port A–D Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port A–D Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port A–D Data Direction Subregisters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port A–D Alternate Function Subregisters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port A–C Input Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port A–D Output Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LED Drive Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LED Drive Level High Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LED Drive Level Low Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
33
33
34
35
35
35
35
35
39
39
40
41
41
42
49
50
51
52
53
Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Vector Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
54
54
56
56
PS026310-1212
PRELIMINARY
Table of Contents
Z8 Encore!® F083A Series
Product Specification
vi
Master Interrupt Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Vectors and Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Software Interrupt Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Request 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Request 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Request 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IRQ0 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IRQ1 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IRQ2 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Edge Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Shared Interrupt Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
56
57
57
58
58
59
60
61
61
63
64
66
67
68
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reading the Timer Count Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer Pin Signal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer 0–1 High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer Reload High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer 0–1 PWM High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer 0–1 Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
69
69
70
70
83
83
83
84
84
86
87
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog Timer Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog Timer Time-Out Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog Timer Reload Unlock Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog Timer Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog Timer Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog Timer Reload Upper, High and Low Byte Registers . . . . . . . . . . . . . . .
92
92
93
93
94
95
95
96
Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
ADC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
ADC Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Reference Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Internal Voltage Reference Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
PS026310-1212
PRELIMINARY
Table of Contents
Z8 Encore!® F083A Series
Product Specification
vii
Calibration and Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADC Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADC Control Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADC Data High Byte Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADC Data Low Bits Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sample Settling Time Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sample Time Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADC Clock Prescale Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
101
102
102
103
104
105
106
107
Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Comparator Control Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Memory Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Information Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Operation Timing Using the Flash Frequency Registers . . . . . . . . . . . . . . .
Flash Code Protection Against External Access . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Code Protection Against Accidental Program and Erasure . . . . . . . . . . . . .
Byte Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Page Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mass Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Controller Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Controller Behavior in Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NVDS Operational Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Page Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Sector Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Frequency High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . . . .
110
112
112
113
115
115
115
117
118
118
118
118
119
119
120
121
121
122
123
Flash Option Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Option Bit Configuration by Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Option Bit Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Option Bit Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trim Bit Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trim Bit Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Option Bit Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Program Memory Address 0000H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Program Memory Address 0001H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
124
124
124
124
126
126
126
127
127
128
PS026310-1212
PRELIMINARY
Table of Contents
Z8 Encore!® F083A Series
Product Specification
viii
Trim Bit Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trim Bit Address 0000H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trim Bit Address 0001H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trim Bit Address 0002H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trim Bit Address 0003H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trim Bit Address 0006H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
129
129
130
131
131
132
Nonvolatile Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NVDS Code Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Failure Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Optimizing NVDS Memory Usage for Execution Speed . . . . . . . . . . . . . . . . . . . .
134
134
134
135
136
137
137
On-Chip Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DEBUG Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OCD Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OCD Autobaud Detector/Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OCD Serial Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Runtime Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
On-Chip Debugger Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
On-Chip Debugger Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OCD Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OCD Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
139
139
140
140
141
142
142
143
143
144
144
148
148
150
Oscillator Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock Failure Detection and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oscillator Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
151
151
151
153
154
Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Crystal Oscillator Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oscillator Operation with an External RC Network . . . . . . . . . . . . . . . . . . . . . . . . . . .
157
157
157
159
Internal Precision Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
eZ8 CPU Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
PS026310-1212
PRELIMINARY
Table of Contents
Z8 Encore!® F083A Series
Product Specification
ix
Assembly Language Programming Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Assembly Language Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
eZ8 CPU Instruction Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
eZ8 CPU Instruction Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
eZ8 CPU Instruction Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
162
163
164
166
171
Op Code Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
On-Chip Peripheral AC and DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . .
General Purpose I/O Port Input Data Sample Timing . . . . . . . . . . . . . . . . . . . . . .
GPIO Port Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
On-Chip Debugger Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
184
184
185
188
189
194
195
196
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Part Number Suffix Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Appendix A. Register Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Purpose RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LED Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oscillator Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Comparator 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIO Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Watchdog Timer (WDT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trim Bit Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
203
203
203
208
212
212
213
214
214
218
222
224
224
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Customer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
PS026310-1212
PRELIMINARY
Table of Contents
Z8 Encore!® F083A Series
Product Specification
x
List of Figures
Figure 1.
Z8 Encore! F083A Series Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2.
Z8F083A Series in 20-Pin SOIC, SSOP, PDIP Package . . . . . . . . . . . . . . . . 7
Figure 3.
Z8F083A Series in 28-Pin SOIC and SSOP Packages . . . . . . . . . . . . . . . . . 8
Figure 4.
Z8F083A Series in 20-Pin QFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 5.
Z8F083A Series in 28-Pin QFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 6.
Power-On Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 7.
Voltage Brown-Out Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 8.
GPIO Port Pin Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 9.
Interrupt Controller Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 10. Timer Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 11. Analog-to-Digital Converter Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 12. ADC Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 13. ADC Convert Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 14. 4K Flash with NVDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 15. 8K Flash with NVDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 16. Flash Controller Operation Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 17. On-Chip Debugger Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 18. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface,
# 1 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 19.
Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface,
#2 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Figure 20. OCD Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 21. Oscillator Control Clock Switching Flow Chart . . . . . . . . . . . . . . . . . . . . 156
Figure 22. Recommended 20 MHz Crystal Oscillator Configuration . . . . . . . . . . . . . 158
Figure 23. Connecting the On-Chip Oscillator to an External RC Network . . . . . . . . 159
Figure 24. Typical RC Oscillator Frequency as a Function of the External Capacitance
with a 45 KΩ Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Figure 25. Op Code Map Cell Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 26. First Op Code Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
PS026310-1212
PRELIMINARY
List of Figures
Z8 Encore!® F083A Series
Product Specification
xi
Figure 27. Second Op Code Map after 1FH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Figure 28. ICC versus System Clock Frequency (HALT Mode) . . . . . . . . . . . . . . . . . 187
Figure 29. ICC versus System Clock Frequency (NORMAL Mode) . . . . . . . . . . . . . 187
Figure 30. Port Input Sample Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Figure 31. GPIO Port Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Figure 32. On-Chip Debugger Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 33. Flash Current Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
PS026310-1212
PRELIMINARY
List of Figures
Z8 Encore!® F083A Series
Product Specification
xii
List of Tables
Table 1.
Z8 Encore! F083A Series Family Part Selection Guide . . . . . . . . . . . . . . . . 2
Table 2.
Acronyms and Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3.
Z8 Encore! F083A Series Package Options . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4.
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5.
Pin Characteristics (20- and 28-pin Devices) . . . . . . . . . . . . . . . . . . . . . . . 13
Table 6.
Z8 Encore! F083A Series Program Memory Maps . . . . . . . . . . . . . . . . . . . 15
Table 7.
Z8 Encore! F083A Series Flash Memory Information Area Map . . . . . . . . 16
Table 8.
Register File Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9.
Reset and Stop Mode Recovery Characteristics and Latency . . . . . . . . . . . 22
Table 10.
Reset Sources and Resulting Reset Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 11.
Stop Mode Recovery Sources and Resulting Action . . . . . . . . . . . . . . . . . . 27
Table 12.
POR Indicator Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 13.
Reset Status Register (RSTSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 14.
Power Control Register 0 (PWRCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 15.
Port Availability by Device and Package Type . . . . . . . . . . . . . . . . . . . . . . 33
Table 16.
Port Alternate Function Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 17.
GPIO Port Registers and Subregisters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 18.
Port A–D GPIO Address Registers (PxADDR) . . . . . . . . . . . . . . . . . . . . . 40
Table 19.
Port Control Subregister Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 20.
Port A–D Control Registers (PxCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 21.
Port A–D Data Direction Subregisters (PxDD) . . . . . . . . . . . . . . . . . . . . . . 41
Table 22.
Port A–D Alternate Function Subregisters (PxAF) . . . . . . . . . . . . . . . . . . . 42
Table 23.
Port A–D Output Control Subregisters (PxOC) . . . . . . . . . . . . . . . . . . . . . 43
Table 24.
Port A–D High Drive Enable Subregisters (PxHDE) . . . . . . . . . . . . . . . . . 44
Table 25.
Port A–D Stop Mode Recovery Source Enable Subregisters (PxSMRE) . . 45
Table 26.
Port A–D Pull-Up Enable Subregisters (PxPUE) . . . . . . . . . . . . . . . . . . . . 46
Table 27.
Port A–D Alternate Function Set 1 Subregisters (PxAFS1) . . . . . . . . . . . . 47
Table 28.
Port A–D Alternate Function Set 2 Subregisters (PxAFS2) . . . . . . . . . . . . 48
PS026310-1212
PRELIMINARY
List of Tables
Z8 Encore!® F083A Series
Product Specification
xiii
Table 29.
Port A–C Input Data Registers (PxIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 30.
Port A–D Output Data Register (PxOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 31.
LED Drive Enable (LEDEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 32.
LED Drive Level High Register (LEDLVLH) . . . . . . . . . . . . . . . . . . . . . . 52
Table 33.
LED Drive Level Low Register (LEDLVLL) . . . . . . . . . . . . . . . . . . . . . . . 53
Table 34.
Trap and Interrupt Vectors in Order of Priority . . . . . . . . . . . . . . . . . . . . . . 55
Table 35.
Interrupt Request 0 Register (IRQ0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 36.
Interrupt Request 1 Register (IRQ1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 37.
Interrupt Request 2 Register (IRQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 38.
IRQ0 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 39.
IRQ0 Enable High Bit Register (IRQ0ENH) . . . . . . . . . . . . . . . . . . . . . . . 62
Table 40.
IRQ0 Enable Low Bit Register (IRQ0ENL) . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 41.
IRQ1 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 42.
IRQ1 Enable High Bit Register (IRQ1ENH) . . . . . . . . . . . . . . . . . . . . . . . 63
Table 43.
IRQ1 Enable Low Bit Register (IRQ1ENL) . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 44.
IRQ2 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 45.
IRQ2 Enable High Bit Register (IRQ2ENH) . . . . . . . . . . . . . . . . . . . . . . . 65
Table 46.
IRQ2 Enable Low Bit Register (IRQ2ENL) . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 47.
Interrupt Edge Select Register (IRQES) . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 48.
Shared Interrupt Select Register (IRQSS) . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 49.
Interrupt Control Register (IRQCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 50.
Timer 0–1 High Byte Register (TxH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 51.
Timer 0–1 Low Byte Register (TxL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 52.
Timer 0–1 Reload High Byte Register (TxRH) . . . . . . . . . . . . . . . . . . . . . . 85
Table 53.
Timer 0–1 Reload Low Byte Register (TxRL) . . . . . . . . . . . . . . . . . . . . . . 85
Table 54.
Timer 0–1 PWM High Byte Register (TxPWMH) . . . . . . . . . . . . . . . . . . . 86
Table 55.
Timer 0–1 PWM Low Byte Register (TxPWML) . . . . . . . . . . . . . . . . . . . . 86
Table 56.
Timer 0–1 Control Register 0 (TxCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 57.
Timer 0–1 Control Register 1 (TxCTL1) . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 58.
Watchdog Timer Approximate Time-Out Delays . . . . . . . . . . . . . . . . . . . . 92
PS026310-1212
PRELIMINARY
List of Tables
Z8 Encore!® F083A Series
Product Specification
xiv
Table 59.
Watchdog Timer Control Register (WDTCTL) . . . . . . . . . . . . . . . . . . . . . 95
Table 60.
Watchdog Timer Reload Upper Byte Register (WDTU) . . . . . . . . . . . . . . 96
Table 61.
Watchdog Timer Reload High Byte Register (WDTH) . . . . . . . . . . . . . . . 96
Table 62.
Watchdog Timer Reload Low Byte Register (WDTL) . . . . . . . . . . . . . . . . 97
Table 63.
ADC Control Register 0 (ADCCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 64.
ADC Data High Byte Register (ADCD_H) . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 65.
ADC Data Low Bits Register (ADCD_L) . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 66.
Sample Settling Time (ADCSST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 67.
Sample Time (ADCST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 68.
ADC Clock Prescale Register (ADCCP) . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 69.
Comparator Control Register (CMP0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 70.
Z8 Encore! F083A Series Flash Memory Configurations . . . . . . . . . . . . . 110
Table 71.
Z8F083 Flash Memory Area Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 72.
Flash Code Protection Using Flash Option Bits . . . . . . . . . . . . . . . . . . . . 116
Table 73.
Flash Control Register (FCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 74.
Flash Status Register (FSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 75.
Flash Page Select Register (FPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 76.
Flash Sector Protect Register (FPROT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 77.
Flash Frequency High Byte Register (FFREQH) . . . . . . . . . . . . . . . . . . . 123
Table 78.
Flash Frequency Low Byte Register (FFREQL) . . . . . . . . . . . . . . . . . . . . 123
Table 79.
Trim Bit Address Register (TRMADR) . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 80.
Trim Bit Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 81.
Trim Bit Data Register (TRMDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 82.
Flash Option Bits at Program Memory Address 0000H . . . . . . . . . . . . . . 127
Table 83.
Flash Options Bits at Program Memory Address 0001H . . . . . . . . . . . . . 128
Table 84.
Trim Bit Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 85.
Trim Option Bits at 0000H (ADCREF) . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 86.
Trim Option Bits at 0001H (TADC_COMP) . . . . . . . . . . . . . . . . . . . . . . 130
Table 87.
Trim Option Bits at 0002H (TIPO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 88.
Trim Option Bits at 0003H (TVBO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
PS026310-1212
PRELIMINARY
List of Tables
Z8 Encore!® F083A Series
Product Specification
xv
Table 89.
VBO Trim Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 90.
Trim Option Bits at 0006H (TCLKFLT) . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 91.
ClkFlt Delay Control Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 92.
Write Status Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 93.
Read Status Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 94.
NVDS Read Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 95.
OCD Baud-Rate Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 96.
On-Chip Debugger Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 97.
OCD Control Register (OCDCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 98.
OCD Status Register (OCDSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 99.
Oscillator Configuration and Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 100. Oscillator Control Register (OSCCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 101. Recommended Crystal Oscillator Specifications . . . . . . . . . . . . . . . . . . . 158
Table 102. Assembly Language Syntax Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 103. Assembly Language Syntax Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 104. Notational Shorthand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 105. Additional Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 106. Arithmetic Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 107. Bit Manipulation Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 108. Block Transfer Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 109. CPU Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 110. Load Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 111. Logical Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 112. Program Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 113. Rotate and Shift Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 114. eZ8 CPU Instruction Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 115. Op Code Map Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Table 116. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 117. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Table 118. AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
PS026310-1212
PRELIMINARY
List of Tables
Z8 Encore!® F083A Series
Product Specification
xvi
Table 119. Power-On Reset and Voltage Brown-Out Electrical Characteristics
and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Table 120. Flash Memory Electrical Characteristics and Timing . . . . . . . . . . . . . . . . 191
Table 121. Watchdog Timer Electrical Characteristics and Timing . . . . . . . . . . . . . . 191
Table 122. Nonvolatile Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 123. Analog-to-Digital Converter Electrical Characteristics and Timing . . . . . 192
Table 124. Comparator Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Table 125. GPIO Port Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Table 126. GPIO Port Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Table 127. On-Chip Debugger Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Table 128. Power Consumption Reference Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Table 129. Z8 Encore! F083A Series Ordering Matrix . . . . . . . . . . . . . . . . . . . . . . . . 199
Table 130. Package and Pin Count Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Table 131. Timer 0 High Byte Register (T0H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Table 132. Timer 0 Low Byte Register (T0L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Table 133. Timer 0 Reload High Byte Register (T0RH) . . . . . . . . . . . . . . . . . . . . . . . 204
Table 134. Timer 0 Reload Low Byte Register (T0RL) . . . . . . . . . . . . . . . . . . . . . . . 204
Table 135. Timer 0 PWM High Byte Register (T0PWMH) . . . . . . . . . . . . . . . . . . . . 204
Table 136. Timer 0 PWM Low Byte Register (T0PWML) . . . . . . . . . . . . . . . . . . . . . 205
Table 137. Timer 0 Control Register 0 (T0CTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Table 138. Timer 0 Control Register 1 (T0CTL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Table 139. Timer 1 High Byte Register (T1H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Table 140. Timer 1 Low Byte Register (T1L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Table 141. Timer 1 Reload High Byte Register (T1RH) . . . . . . . . . . . . . . . . . . . . . . . 206
Table 142. Timer 1 Reload Low Byte Register (T1RL) . . . . . . . . . . . . . . . . . . . . . . . 206
Table 143. Timer 1 PWM High Byte Register (T1PWMH) . . . . . . . . . . . . . . . . . . . . 206
Table 144. Timer 1 PWM Low Byte Register (T1PWML) . . . . . . . . . . . . . . . . . . . . . 207
Table 145. Timer 1 Control Register 0 (T1CTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Table 146. Timer 1 Control Register 1 (T1CTL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Table 147. ADC Control Register 0 (ADCCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Table 148. ADC Data High Byte Register (ADCD_H) . . . . . . . . . . . . . . . . . . . . . . . . 209
PS026310-1212
PRELIMINARY
List of Tables
Z8 Encore!® F083A Series
Product Specification
xvii
Table 149. ADC Data Low Bits Register (ADCD_L) . . . . . . . . . . . . . . . . . . . . . . . . . 210
Table 150. ADC Sample Settling Time (ADCSST) . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Table 151. ADC Sample Time (ADCST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Table 152. ADC Clock Prescale Register (ADCCP) . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Table 153. Power Control Register 0 (PWRCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table 154. LED Drive Enable (LEDEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table 155. LED Drive Level High Register (LEDLVLH) . . . . . . . . . . . . . . . . . . . . . 213
Table 156. LED Drive Level Low Register (LEDLVLL) . . . . . . . . . . . . . . . . . . . . . . 213
Table 157. Oscillator Control Register (OSCCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Table 158. Comparator Control Register (CMP0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Table 159. Interrupt Request 0 Register (IRQ0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Table 160. IRQ0 Enable High Bit Register (IRQ0ENH) . . . . . . . . . . . . . . . . . . . . . . 215
Table 161. IRQ0 Enable Low Bit Register (IRQ0ENL) . . . . . . . . . . . . . . . . . . . . . . . 215
Table 162. Interrupt Request 1 Register (IRQ1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Table 163. IRQ1 Enable High Bit Register (IRQ1ENH) . . . . . . . . . . . . . . . . . . . . . . 215
Table 164. IRQ1 Enable Low Bit Register (IRQ1ENL) . . . . . . . . . . . . . . . . . . . . . . . 216
Table 165. Interrupt Request 2 Register (IRQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Table 166. IRQ2 Enable High Bit Register (IRQ2ENH) . . . . . . . . . . . . . . . . . . . . . . 216
Table 167. IRQ2 Enable Low Bit Register (IRQ2ENL) . . . . . . . . . . . . . . . . . . . . . . . 216
Table 168. Interrupt Edge Select Register (IRQES) . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Table 169. Shared Interrupt Select Register (IRQSS) . . . . . . . . . . . . . . . . . . . . . . . . . 217
Table 170. Interrupt Control Register (IRQCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Table 171. Port A GPIO Address Register (PAADDR) . . . . . . . . . . . . . . . . . . . . . . . 218
Table 172. Port A Control Registers (PACTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Table 173. Port A Input Data Registers (PAIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Table 174. Port A Output Data Register (PAOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 175. Port B GPIO Address Register (PBADDR) . . . . . . . . . . . . . . . . . . . . . . . 219
Table 176. Port B Control Registers (PBCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 177. Port B Input Data Registers (PBIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 178. Port B Output Data Register (PBOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
PS026310-1212
PRELIMINARY
List of Tables
Z8 Encore!® F083A Series
Product Specification
xviii
Table 179. Port C GPIO Address Register (PCADDR) . . . . . . . . . . . . . . . . . . . . . . . 220
Table 180. Port C Control Registers (PCCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Table 181. Port C Input Data Registers (PCIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Table 182. Port C Output Data Register (PCOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Table 183. Port D GPIO Address Register (PDADDR) . . . . . . . . . . . . . . . . . . . . . . . 221
Table 184. Port D Control Registers (PDCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Table 185. Port D Output Data Register (PDOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Table 186. Watchdog Timer Control Register (WDTCTL) . . . . . . . . . . . . . . . . . . . . 222
Table 187. Reset Status Register (RSTSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Table 188. Watchdog Timer Reload Upper Byte Register (WDTU) . . . . . . . . . . . . . 223
Table 189. Watchdog Timer Reload High Byte Register (WDTH) . . . . . . . . . . . . . . 223
Table 190. Watchdog Timer Reload Low Byte Register (WDTL) . . . . . . . . . . . . . . . 223
Table 191. Trim Bit Address Register (TRMADR) . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Table 192. Trim Bit Data Register (TRMDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Table 193. Flash Control Register (FCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Table 194. Flash Status Register (FSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Table 195. Flash Page Select Register (FPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Table 196. Flash Sector Protect Register (FPROT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Table 197. Flash Frequency High Byte Register (FFREQH) . . . . . . . . . . . . . . . . . . . 226
Table 198. Flash Frequency Low Byte Register (FFREQL) . . . . . . . . . . . . . . . . . . . . 226
PS026310-1212
PRELIMINARY
List of Tables
Z8 Encore!® F083A Series
Product Specification
1
Overview
Zilog’s Z8 Encore! MCU family of products are the first in a line of Zilog microcontroller
products based on the 8-bit eZ8 CPU. The Z8 Encore! F083A Series products expand on
Zilog’s extensive line of 8-bit microcontrollers. The Flash in-circuit programming capability allows for faster development time and program changes in the field. The new eZ8
CPU is upward-compatible with existing Z8 CPU instructions. The rich peripheral set of
Z8 Encore! F083A Series makes it suitable for a variety of applications including motor
control, security systems, home appliances, personal electronic devices and sensors.
Features
Z8 Encore! F083A Series MCU include the following key features:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
PS026310-1212
20 MHz eZ8 CPU
Up to 8 KB Flash memory with in-circuit programming capability
Up to 256 B register RAM
100 B nonvolatile data storage (NVDS)
Up to 23 I/O pins depending upon package
Internal precision oscillator (IPO)
External crystal oscillator
Two enhanced 16-bit timers with capture, compare and PWM capability
Watchdog Timer (WDT) with dedicated internal RC oscillator
Single-pin, On-Chip Debugger (OCD)
Fast 8-channel, 10-bit Analog-to-Digital Converter (ADC)
On-chip analog comparator
Up to 17 interrupt sources
Voltage Brown-Out protection (VBO)
Power-On Reset (POR)
2.7 V to 3.6 V operating voltage
Up to thirteen 5 V-tolerant input pins
20-pin and 28-pin packages
PRELIMINARY
Overview
Z8 Encore!® F083A Series
Product Specification
2
•
0°C to +70°C standard temperature range and –40°C to +105°C extended temperature
operating ranges
Part Selection Guide
Table 1 lists the basic features available for each device within the Z8 Encore! F083A
Series product line. For details, see the Ordering Information chapter on page 199.
Table 1. Z8 Encore!F083A Series Family Part Selection Guide
PS026310-1212
Part
Number
Flash
(KB)
RAM
(B)
NVDS
(100B)
ADC
I/O Pins
Z8F083A
8
256
Yes
Yes
17/23
Z8F043A
4
256
Yes
Yes
17/23
PRELIMINARY
Part Selection Guide
Z8 Encore!® F083A Series
Product Specification
3
Block Diagram
Figure 1 displays a block diagram of the Z8 Encore! F083A Series architecture.
System
Clock
Oscillator
Control
XTAL/RC
Oscillator
Internal
Precision
Oscillator
Low Power
RC Oscillator
On-Chip
Debugger
eZ8
CPU
Interrupt
Controller
POR/VBO
& Reset
Controller
WDT
Memory Bus
Register Bus
Timers
Comparator
ADC
NVDS
Controller
Flash
Controller
Flash Memory
RAM
Controller
RAM
GPIO
Figure 1. Z8 Encore! F083A Series Block Diagram
PS026310-1212
PRELIMINARY
Block Diagram
Z8 Encore!® F083A Series
Product Specification
4
CPU and Peripheral Overview
Zilog’s 8-bit eZ8 CPU meets the continuing demand for faster and more code-efficient
microcontrollers. The eZ8 CPU executes a superset of the original Z8 instruction set. The
eZ8 CPU features include:
•
Direct register-to-register architecture allows each register to function as an accumulator, improving execution time and decreasing the required program memory
•
Software stack allows much greater depth in subroutine calls and interrupts than hardware stacks
•
•
•
Compatible with existing Z8 CPU code
•
•
Pipelined instruction fetch and execute
•
•
•
•
New instructions support 12-bit linear addressing of the Register File
Expanded internal Register File allows access up to 4 KB
New instructions improve execution efficiency for code developed using high-level
programming languages, including C
New instructions for improved performance including BIT, BSWAP, BTJ, CPC, LDC,
LDCI, LEA, MULT and SRL
Up to10 MIPS operation
C Compiler-friendly
Two to nine clock cycles per instruction
For more information regarding the eZ8 CPU, refer to eZ8 CPU Core User Manual
(UM0128), available for download on www.zilog.com.
General Purpose Input/Output
The Z8 Encore! F083A Series features up to 23 port pins (Ports A–D) for general purpose
input/output (GPIO). The number of GPIO pins available is a function of package. Each
pin is individually programmable.
Flash Controller
The Flash Controller programs and erases Flash memory. It also supports protection
against accidental programming and erasure.
PS026310-1212
PRELIMINARY
CPU and Peripheral Overview
Z8 Encore!® F083A Series
Product Specification
5
Nonvolatile Data Storage
The nonvolatile data storage (NVDS) uses a hybrid hardware/software scheme to implement a byte programmable data memory and is capable of storing about 100,000 write
cycles.
Internal Precision Oscillator
The internal precision oscillator (IPO) with accuracy of ±4% full voltage/temperature
range is a trimable clock source that requires no external components.
External Crystal Oscillator
The external crystal oscillator circuit provides highly accurate clock frequencies with the
use of an external crystal, ceramic resonator or RC network.
10-Bit Analog-to-Digital Converter
The analog-to-digital converter (ADC) converts an analog input signal to a 10-bit binary
number. The ADC accepts inputs from eight different analog input pins. It has a fast 2.8 µs
conversion speed.
Analog Comparator
The analog comparator compares the signal at an input pin with either an internal programmable reference voltage or with a signal at the second input pin. The comparator output is used either to drive a logic output pin or to generate an interrupt.
Timers
Two enhanced 16-bit reloadable timers are used for timing/counting events or for motor
control operations. These timers provide a 16-bit programmable reload counter and operate in ONE-SHOT, CONTINUOUS, GATED, CAPTURE, CAPTURE RESTART, COMPARE, CAPTURE and COMPARE, PWM SINGLE OUTPUT and PWM DUAL
OUTPUT modes.
Interrupt Controller
The Z8 Encore! F083A Series products support seventeen interrupt sources with sixteen
interrupt vectors: up to five internal peripheral interrupts and up to twelve GPIO interrupts. These interrupts have three levels of programmable interrupt priority.
PS026310-1212
PRELIMINARY
CPU and Peripheral Overview
Z8 Encore!® F083A Series
Product Specification
6
Reset Controller
The Z8 Encore! F083A Series products are reset using any one of the following: the
RESET pin, POR, WDT time-out, STOP Mode exit or VBO warning signal. The RESET
pin is bidirectional, that is, it functions as reset source as well as a reset indicator.
On-Chip Debugger
The Z8 Encore! F083A Series products feature an integrated OCD. The OCD provides a
rich set of debugging capabilities, such as reading and writing registers, programming
Flash memory, setting breakpoints and executing code. The OCD uses one single-pin
interface for communication with an external host.
Acronyms and Expansions
This document references a number of acronyms; each is expanded in Table 2 for the
reader’s understanding.
Table 2. Acronyms and Expansions
PS026310-1212
Acronyms
Expansions
ADC
Analog-to-Digital Converter
NVDS
Nonvolatile Data Storage
WDT
Watchdog Timer
GPIO
General-Purpose Input/Output
OCD
On-Chip Debugger
POR
Power-On Reset
VBO
Voltage Brownout
IPO
Internal Precision Ocsillator
PDIP
Plastic Dual Inline Package
SOIC
Small Outline Integrated Circuit
SSOP
Small Shrink Outline Package
QFN
Quad Flat No Lead
IRQ
Interrupt request
ISR
Interrupt service routine
MSB
Most significant byte
LSB
Least significant byte
PWM
Pulse Width Modulation
SAR
Successive Approximation Register
PRELIMINARY
Acronyms and Expansions
Z8 Encore!® F083A Series
Product Specification
7
Pin Description
The Z8 Encore! F083A Series products are available in variety of package styles and pin
configurations. This chapter describes the signals and the pin configurations for each of
the package styles. For information about the physical package specifications, see the
Packaging chapter on page 198.
Available Packages
Table 3 lists the package styles that are available for each device in the Z8 Encore! F083A
Series product line.
Table 3. Z8 Encore! F083A Series Package Options
Part Number
ADC
20-pin
QFN
20-pin
SOIC
20-pin
SSOP
20-pin
PDIP
28-pin
QFN
28-pin
SOIC
28-pin
SSOP
Z8F083A
Yes
X
X
X
X
X
X
X
Z8F043A
Yes
X
X
X
X
X
X
X
Pin Configurations
Figures 2 through 5 display the pin configurations of all of the packages available in the
Z8 Encore! F083A Series. For the description of the signals, see Table 4 on page 11.
The pin configurations listed are preliminary and subject to change based on manufacturing limitations.
PB1/ANA1
PB2/ANA2
PB3/CLKIN/ANA3
VDD
PA0/T0IN/T0OUT/XIN
PA1/T0OUT/XOUT
VSS
PA2
PA3
PA4
1
2
3
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
PB0/ANA0
PC3/COUT/LED
PC2/ANA6/LED
PC1/ANA5/CINN/LED
PC0/ANA4/CINP/LED
DBG
RESET/PD0
PA7/T1OUT
PA6/T1IN/T1OUT
PA5
Figure 2. Z8F083A Series in 20-Pin SOIC, SSOP, PDIP Package
PS026310-1212
PRELIMINARY
Pin Description
Z8 Encore!® F083A Series
Product Specification
8
PB2/ANA2
PB4/ANA7
PB5/VREF
PB3/CLKIN/ANA3
AVDD
VDD
PA0/T0IN/T0OUT/XIN
PA1/T0OUT/XOUT
VSS
AVSS
PA2
PA3
PA4
PA5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
PB1/ANA1
PB0/ANA0
PC3/COUT/LED
PC2/ANA6/LED
PC1/ANA5/CINN/LED
PC0/ANA4/CINP/LED
DBG
RESET/PD0
PC7/LED
PC6/LED
PA7/T1OUT
PC5/LED
PC4/LED
PA6/T1IN/T1OUT
Figure 3. Z8F083A Series in 28-Pin SOIC and SSOP Packages
PS026310-1212
PRELIMINARY
Pin Configurations
Z8 Encore!® F083A Series
Product Specification
11
18
DGB
RESET/PD0
PB1/ANA1
12
17
13
PB0/ANA0
14
16
PC2/ANA6/LED
PC1/ANA5/CINN/LED
PC0/ANA4/CINP/LED
PC3/COUT/LED
15
9
10
9
8
20-Pin QFN
4
5
PA2
VDD
VSS
6
3
20
PA1/T0OUT/XOUT
PB3/CLKIN/ANA3
2
7
PA0/T0IN/T0OUT/XIN
19
1
PB2/ANA2
PA7/T1OUT
PA6/T1IN/T1OUT
PA5
PA4
PA3
Figure 4. Z8F083A Series in 20-Pin QFN Package
PS026310-1212
PRELIMINARY
Pin Configurations
Z8 Encore!® F083A Series
Product Specification
21 20 19
PC6/LED
PC7/LED
RESET/PD0
DBG
PC0/ANA4/CINP/LED
PC1/ANA5/CINN/LED
PC2/ANA6/LED
10
18 17 16 15
PC3/COUT/LED
22
14
PA7/T1OUT
PB0/ANA0
23
13
PC5/LED
24
12
PB1/ANA1
PB2/ANA2
PA3
1
2
3
4
5
6
7
PA2
9
AVSS
27
VSS
PA4
PA1/T0OUT/XOUT
10
PA0/T0IN/T0OUT/XIN
PB3/CLKIN/ANA3
PA5
26
VDD
PB5/VREF
11
AVDD
PB4/ANA7
PA6/T1IN/T1OUT
28-Pin QFN
25
PC4/LED
Figure 5. Z8F083A Series in 28-Pin QFN Package
PS026310-1212
PRELIMINARY
Pin Configurations
Z8 Encore!® F083A Series
Product Specification
11
Signal Descriptions
Table 4 describes the Z8 Encore! F083A Series signals. To determine the signals available
for a specific package style, see the Pin Configurations section on page 7.
Table 4. Signal Descriptions
Signal Mnemonic
I/O
Description
General-Purpose Input/Output Ports A–D
PA[7:0]
I/O
Port A. These pins are used for GPIO.
PB[5:0]
I/O
Port B. These pins are used for GPIO.
PC[7:0]
I/O
Port C. These pins are used for GPIO.
PD[0]
I/O
Port D. This pin is used for general purpose output only.
T0OUT/T1OUT
O
Timer output 0–1. These signals are the output from the timers.
T0OUT/T1OUT
O
Timer complement output 0–1. These signals are output from the timers in
PWM DUAL OUTPUT mode.
T0IN/T1IN
I
Timer Input 0–1. These signals are used as the capture, gating and counter inputs. The T0IN signal is multiplexed T0OUT signals.
CINP/CINN
I
Comparator inputs. These signals are the positive and negative inputs to
the comparator.
COUT
O
Comparator output. This is the output of the comparator.
I
Analog port. These signals are used as inputs to the Analog-to-Digital Converter (ADC).
I/O
ADC reference voltage input.
Note: When configuring ADC using external Vref, PB5 is used as VREF in
28-pin package.
XIN
I
External crystal input. This is the input pin to the crystal oscillator. A crystal
is connected between it and the XOUT pin to form the oscillator. In addition, this pin is used with external RC networks or external clock drivers to
provide the system clock.
XOUT
O
External crystal output. This pin is the output of the crystal oscillator. A
crystal is connected between it and the XIN pin to form the oscillator.
I
Clock input signal. This pin can be used to input a TTL-level signal to be
used as the system clock.
Timers
Comparator
Analog
ANA[7:0]
VREF
Oscillators
Clock Input
CLKIN
PS026310-1212
PRELIMINARY
Signal Descriptions
Z8 Encore!® F083A Series
Product Specification
12
Table 4. Signal Descriptions (Continued)
Signal Mnemonic
I/O
Description
O
Direct LED drive capability. All Port C pins have the capability to drive an
LED without any other external components. These pins have programmable drive strengths set by the GPIO block.
I/O
Debug. This signal is the control and data input and output to and from the
On-Chip Debugger.
LED Drivers
LED
On-Chip Debugger
DBG
Caution: The DBG pin is open-drain and requires an external pull-up
resistor to ensure proper operation.
Reset
RESET
I/O
RESET. Generates a reset when asserted (driven Low). Also serves as a
reset indicator; the Z8 Encore! forces this pin low when in reset. This pin is
open-drain and features an enabled internal pull-up resistor.
Power Supply
VDD
I
Digital power supply.
AVDD
I
Analog power supply.
VSS
I
Digital ground.
AVSS
I
Analog ground.
PS026310-1212
PRELIMINARY
Signal Descriptions
Z8 Encore!® F083A Series
Product Specification
13
Pin Characteristics
Table 5 provides detailed characteristics of each pin available on the Z8 Encore! F083A
Series 20- and 28-pin devices. The data in Table 5 are sorted alphabetically by the pin
symbol mnemonic.
Table 5. Pin Characteristics (20- and 28-pin Devices)
Symbol
Reset
Mnemonic Direction Direction
Active
Low or
Active
High
Tristate
Output
Internal
Pull-up or
Pull-down
Schmitt
Trigger Open Drain
5V
Input
Output
Tolerance
AVDD
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
AVSS
N/A
N/A
N/A
N/A
N/A
N/A
N/A
NA
DBG
I/O
I
N/A
Yes
No
Yes
Yes
Yes
PA[7:0]
I/O
I
N/A
Yes
Programmable
pull-up
Yes
Yes,
programmable
PA[7:2]
only
PB[5:0]
I/O
I
N/A
Yes
Programmable
pull-up
Yes
Yes,
programmable
No
PC[7:0]
I/O
I
N/A
Yes
Programmable
pull-up
Yes
Yes,
programmable
PC[7:3]
only
RESET/
PD0
I/O
Yes
(PD0
only)
Programmable for PD0;
always on for
RESET
Yes
Programmable for PD0;
always on for
RESET
Yes
VDD
N/A
N/A
N/A
N/A
N/A
N/A
VSS
N/A
N/A
N/A
N/A
N/A
N/A
PS026310-1212
I/O
Low (in
(defaults RESET
to RESET) mode)
PRELIMINARY
Pin Characteristics
Z8 Encore!® F083A Series
Product Specification
14
Address Space
The eZ8 CPU accesses three distinct address spaces as follows:
•
The Register File addresses access for the general purpose registers and the eZ8 CPU,
peripheral and GPIO port control registers
•
Program Memory addresses access for all of the memory locations having executable
code and/or data
•
The Data Memory addresses access for all of the memory locations containing only the
data
The following sections describe these three address spaces. For more detailed information
about the eZ8 CPU and its address space, refer to the eZ8 CPU Core User Manual
(UM0128), available for download on www.zilog.com.
Register File
The Register File address space in the Z8 Encore! MCU is 4 KB (4096 bytes). The Register File consists of two sections: control registers and general purpose registers. When
instructions are executed, registers defined as source are read and registers defined as destinations are written. The architecture of the eZ8 CPU allows all general purpose registers
to function as accumulators, address pointers, index registers, stack areas or scratch pad
memory.
The upper 256 bytes of the 4 KB Register File address space are reserved for control of the
eZ8 CPU, on-chip peripherals and the I/O ports. These registers are located at addresses
from F00H to FFFH. Some of the addresses within the 256 B Control Register section are
reserved (unavailable). Reading from a reserved Register File address returns an undefined value. Writing to reserved Register File addresses is not recommended and produces
unpredictable results.
The on-chip RAM always begins at address 000H in the Register File address space. The
Z8 Encore! F083A Series devices contain up to 256 B of on-chip RAM. Reading from
Register File addresses outside the available RAM addresses (and not within the Control
Register address space), returns an undefined value. Writing to these Register File
addresses has no effect.
PS026310-1212
PRELIMINARY
Address Space
Z8 Encore!® F083A Series
Product Specification
15
Program Memory
The eZ8 CPU supports 64 KB of program memory address space. The Z8 Encore! F083A
Series devices contain 1 KB to 12 KB of on-chip Flash memory in the program memory
address space, depending on the device. Reading from program memory addresses outside
the available Flash memory addresses returns FFH. Writing to these unimplemented program memory addresses produces no effect. Table 6 describes the program memory maps
for the Z8 Encore! F083A Series products.
Table 6. Z8 Encore! F083A Series Program Memory Maps
Program Memory
Address (Hex)
Function
Z8F083A Products
0000–0001
Flash Option Bits
0002–0003
Reset Vector
0004–003D
Interrupt Vectors*
003E–1FFF
Program Memory
Z8F043A Products
0000–0001
Flash Option Bits
0002–0003
Reset Vector
0004–003D
Interrupt Vectors*
003E–0FFF
Program Memory
Note: *See Table 34 on page 55 for a list of interrupt vectors.
Data Memory
The Z8 Encore! F083A Series does not use the eZ8 CPU’s 64 KB data memory address
space.
Flash Information Area
Table 7 indicates the Z8 Encore! F083A Series MCUs’ Flash information area. This 128byte information area is accessed by setting bit 7 of the Flash Page Select Register to 1.
When access is enabled, the Flash information area is mapped into program memory and
overlays the 128 bytes at addresses FE00H to FE7FH. When information area access is
enabled, all reads from these program memory addresses return information area data
rather than program memory data. Access to the Flash information area is read-only.
PS026310-1212
PRELIMINARY
Program Memory
Z8 Encore!® F083A Series
Product Specification
16
Table 7. Z8 Encore! F083A Series Flash Memory Information Area Map
Program Memory
Address (Hex)
PS026310-1212
Function
FE00–FE3F
Zilog option bits
FE40–FE53
Part Number
20-character ASCII alphanumeric code
Left-justified and filled with FH.
FE54–FE5F
Reserved.
FE60–FE7F
Zilog calibration data.
FE80–FFFF
Reserved.
PRELIMINARY
Flash Information Area
Z8 Encore!® F083A Series
Product Specification
17
Register Map
Table 8 provides an address map for the Z8 Encore! F083A Series register file. Consider
registers for unimplemented peripherals to be reserved.
Table 8. Register File Address Map
Address (Hex) Register Description
Mnemonic
Reset (Hex)
Page #
General Purpose RAM
000–0FF
General Purpose Register File RAM
—
XX
100–EFF
Reserved
—
XX
Timer 0
F00
Timer 0 High Byte
T0H
00
84
F01
Timer 0 Low Byte
T0L
01
84
F02
Timer 0 Reload High Byte
T0RH
FF
85
F03
Timer 0 Reload Low Byte
T0RL
FF
85
F04
Timer 0 PWM High Byte
T0PWMH
00
86
F05
Timer 0 PWM Low Byte
T0PWML
00
86
F06
Timer 0 Control 0
T0CTL0
00
87
F07
Timer 0 Control 1
T0CTL1
00
88
F08
Timer 1 High Byte
T1H
00
84
F09
Timer 1 Low Byte
T1L
01
84
F0A
Timer 1 Reload High Byte
T1RH
FF
85
F0B
Timer 1 Reload Low Byte
T1RL
FF
85
F0C
Timer 1 PWM High Byte
T1PWMH
00
86
F0D
Timer 1 PWM Low Byte
T1PWML
00
86
F0E
Timer 1 Control 0
T1CTL0
00
87
F0F
Timer 1 Control 1
T1CTL1
00
84
F10–F6F
Reserved
—
XX
ADCCTL0
00
—
XX
Timer 1
Analog-to-Digital Converter
F70
ADC Control 0
102
F71
Reserved
F72
ADC Data High Byte
ADCD_H
XX
103
F73
ADC Data Low Bits
ADCD_L
XX
104
Note: XX = Undefined.
PS026310-1212
PRELIMINARY
Register Map
Z8 Encore!® F083A Series
Product Specification
18
Table 8. Register File Address Map (Continued)
Address (Hex) Register Description
Mnemonic
Reset (Hex)
Page #
ADCSST
0F
105
Analog-to-Digital Converter (cont’d.)
F74
ADC Sample Settling Time
F75
ADC Sample Time
ADCST
3F
106
F76
ADC Clock Prescale
ADCCP
00
107
F77–F7F
Reserved
—
XX
PWRCTL0
88
—
XX
LEDEN
00
51
Low Power Control
F80
Power Control 0
F81
Reserved
32
LED Controller
F82
LED Drive Enable
F83
LED Drive Level High
LEDLVLH
00
52
F84
LED Drive Level Low
LEDLVLL
00
53
F85
Reserved
—
XX
OSCCTL
A0
—
XX
CMP0
14
—
XX
IRQ0
00
59
Oscillator Control
F86
Oscillator Control
F87–F8F
Reserved
154
Comparator 0
F90
Comparator 0 Control
F91–FBF
Reserved
109
Interrupt Controller
FC0
Interrupt Request 0
FC1
IRQ0 Enable High Bit
IRQ0ENH
00
62
FC2
IRQ0 Enable Low Bit
IRQ0ENL
00
62
FC3
Interrupt Request 1
IRQ1
00
60
FC4
IRQ1 Enable High Bit
IRQ1ENH
00
63
FC5
IRQ1 Enable Low Bit
IRQ1ENL
00
64
FC6
Interrupt Request 2
IRQ2
00
61
FC7
IRQ2 Enable High Bit
IRQ2ENH
00
65
FC8
IRQ2 Enable Low Bit
IRQ2ENL
00
65
FC9–FCC
Reserved
—
XX
FCD
Interrupt Edge Select
IRQES
00
67
FCE
Shared Interrupt Select
IRQSS
00
67
Note: XX = Undefined.
PS026310-1212
PRELIMINARY
Register Map
Z8 Encore!® F083A Series
Product Specification
19
Table 8. Register File Address Map (Continued)
Address (Hex) Register Description
Mnemonic
Reset (Hex)
Page #
Interrupt Control
IRQCTL
00
68
FD0
Port A Address
PAADDR
00
39
FD1
Port A Control
PACTL
00
41
FD2
Port A Input Data
PAIN
XX
41
FD3
Port A Output Data
PAOUT
00
41
Interrupt Controller (cont’d.)
FCF
GPIO Port A
GPIO Port B
FD4
Port B Address
PBADDR
00
39
FD5
Port B Control
PBCTL
00
41
FD6
Port B Input Data
PBIN
XX
41
FD7
Port B Output Data
PBOUT
00
41
GPIO Port C
FD8
Port C Address
PCADDR
00
39
FD9
Port C Control
PCCTL
00
41
FDA
Port C Input Data
PCIN
XX
41
FDB
Port C Output Data
PCOUT
00
41
GPIO Port D
FDC
Port D Address
PDADDR
00
39
FDD
Port D Control
PDCTL
00
41
FDE
Reserved
—
XX
FDF
Port D Output Data
PDOUT
00
FE0–FEF
Reserved
—
XX
Reset Status
RSTSTAT
XX
95
WDT Control
WDTCTL
XX
95
41
Watchdog Timer
FF0
FF1
WDT Reload upper byte
WDTU
FF
96
FF2
WDT Reload High Byte
WDTH
FF
96
FF3
WDT Reload Low Byte
WDTL
FF
97
FF4–FF5
Reserved
—
XX
Note: XX = Undefined.
PS026310-1212
PRELIMINARY
Register Map
Z8 Encore!® F083A Series
Product Specification
20
Table 8. Register File Address Map (Continued)
Address (Hex) Register Description
Mnemonic
Reset (Hex)
Page #
TRMADR
00
126
TRMDR
XX
127
Trim Bit Control
FF6
Trim Bit Address
FF7
Trim Data
Flash Memory Controller
FF8
Flash Control
FCTL
00
120
FF8
Flash Status
FSTAT
00
121
FF9
Flash Page Select
FPS
00
122
FPROT
00
122
Flash Sector Protect
FFA
Flash Programming Frequency High Byte
FFREQH
00
123
FFB
Flash Programming Frequency Low Byte
FFREQL
00
123
Refer to the
eZ8 CPU
Core User
Manual
(UM0128)
eZ8 CPU
FFC
Flags
—
XX
FFD
Register Pointer
RP
XX
FFE
Stack Pointer High Byte
SPH
XX
FFF
Stack Pointer Low Byte
SPL
XX
Note: XX = Undefined.
PS026310-1212
PRELIMINARY
Register Map
Z8 Encore!® F083A Series
Product Specification
21
Reset and Stop Mode Recovery
The reset controller in the Z8 Encore! F083A Series controls Reset and Stop Mode Recovery operations. In a typical operation, the following events cause a Reset:
•
•
•
Power-On Reset
•
External RESET pin assertion (when the alternate Reset function is enabled by the
GPIO register)
•
On-Chip Debugger initiated reset (OCDCTL[0] set to 1)
Voltage Brown-Out
Watchdog Timer time-out (when configured by the WDT_RES Flash option bit to
initiate a reset)
When the device is in STOP Mode, a Stop Mode Recovery is initiated by either of the following:
•
•
WDT time-out
GPIO port input pin transition on an enabled Stop Mode Recovery source
The VBO circuitry on the device generates the VBO reset when the supply voltage drops
below a minimum safe level.
Reset Types
The Z8 Encore! F083A Series provides different types of Reset operation. Stop Mode
Recovery is considered as a form of reset. Table 9 lists the types of reset and their operating characteristics. The system reset is longer, if the external crystal oscillator is enabled
by the Flash option bits, allowing additional time for oscillator start-up.
PS026310-1212
PRELIMINARY
Reset and Stop Mode Recovery
Z8 Encore!® F083A Series
Product Specification
22
Table 9. Reset and Stop Mode Recovery Characteristics and Latency
Reset Characteristics and Latency
Reset Type
Control Registers
eZ8
CPU Reset Latency (Delay)
System Reset
Reset (as applicable)
Reset About 66 internal precision oscillator cycles.
System Reset with
Crystal Oscillator
Enabled
Reset (as applicable)
Reset About 5000 internal precision oscillator cycles.
Stop Mode Recovery
Unaffected, except
WDT_CTL and
OSC_CTL registers
Reset About 66 internal precision oscillator cycles.
Stop Mode Recovery
with crystal oscillator
enabled
Unaffected, except
WDT_CTL and
OSC_CTL registers
Reset About 5000 internal precision oscillator cycles.
During a system Reset or Stop Mode Recovery, the Z8 Encore! F083A Series device is
held in reset for about 66 cycles of the internal precision oscillator. If the crystal oscillator
is enabled in the Flash option bits, the reset period is increased to about 5000 IPO cycles.
When a reset occurs because of a low voltage condition or POR, the reset delay is measured from the time the supply voltage first exceeds the POR level (discussed later in this
chapter). If the external pin reset remains asserted at the end of the reset period, the device
remains in reset until the pin is deasserted.
At the beginning of reset, all GPIO pins are configured as inputs with pull-up resistor disabled, except PD0 which is shared with the reset pin. On Reset, the Port D0 pin is configured as a bidirectional open-drain reset. This pin is internally driven low during port reset,
after which the user code reconfigures this pin as a general purpose output.
During reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal
oscillator and Watchdog Timer Oscillator continues to run.
On reset, control registers within the Register File that have a defined reset value are
loaded with their reset values. Other control registers (including the Stack Pointer, Register Pointer and Flags) and general purpose RAM are undefined following the reset. The
eZ8 CPU fetches the reset vector at program memory addresses 0002H and 0003H and
loads that value into the program counter. Program execution begins at the reset vector
address.
Because the control registers are reinitialized by a system reset, the system clock after
reset is always the IPO. User software must reconfigure the oscillator control block, to
enable and select the correct system clock source.
PS026310-1212
PRELIMINARY
Reset Types
Z8 Encore!® F083A Series
Product Specification
23
Reset Sources
Table 10 lists the possible sources of a system reset.
Table 10. Reset Sources and Resulting Reset Type
Operating
Mode
NORMAL or
HALT modes
STOP Mode
Reset Source
Special Conditions
Power-On Reset / Voltage Brown-Out.
Reset delay begins after supply voltage
exceeds POR level.
WDT time-out when configured for reset.
None.
RESET pin assertion.
All reset pulses less than four system clocks
in width are ignored.
On-Chip Debugger initiated reset
(OCDCTL[0] set to 1).
System, except the On-Chip Debugger is
unaffected by the reset.
Power-On Reset / Voltage Brown-Out.
Reset delay begins after supply voltage
exceeds POR level.
RESET pin assertion.
All reset pulses less than 12 ns are ignored.
DBG pin driven Low.
None.
Power-On Reset
Each device in the Z8 Encore! F083A Series contains an internal POR circuit. The POR
circuit monitors the digital supply voltage and holds the device in the Reset state until the
digital supply voltage reaches a safe operating level. After the supply voltage exceeds the
POR voltage threshold (VPOR), the device is held in the Reset state until the POR counter
has timed out. If the crystal oscillator is enabled by the option bits, the time-out is longer.
After the Z8 Encore! F083A Series device exits the POR state, the eZ8 CPU fetches the
reset vector. Following the POR, the POR status bit in the Reset Status (RSTSTAT) Register is set to 1.
Figure 6 displays POR operation. For POR threshold voltage (VPOR), see the Electrical
Characteristics chapter on page 184.
PS026310-1212
PRELIMINARY
Reset Sources
Z8 Encore!® F083A Series
Product Specification
24
VDD = 3.3V
VPOR
VVBO
Program
Execution
VDD = 0.0V
Internal Precision
Oscillator
Crystal
Oscillator
Oscillator
Start-up
Internal RESET
signal
Note: Not to Scale
POR
counter delay
optional XTAL
counter delay
Figure 6. Power-On Reset Operation
Voltage Brown-Out Reset
The devices in the Z8 Encore! F083A Series provide low VBO protection. The VBO circuit forces the device to the Reset state, when the supply voltage drops below the VBO
threshold voltage (unsafe level). While the supply voltage remains below the POR threshold voltage (VPOR), the VBO circuit holds the device in reset.
After the supply voltage exceeds the POR threshold voltage, the device progresses
through a full system reset sequence, as described in the POR section. Following POR, the
POR status bit in the reset status (RSTSTAT) Register is set to 1. Figure 7 displays VBO
operation. For the VBO and POR threshold voltages (VVBO and VPOR), see the Electrical
Characteristics chapter on page 184.
The POR level is greater than the VBO level as determined by the specified hysteresis
value. As a result, the devices is ensured to undergo a POR after recovering from a VBO
condition.
PS026310-1212
PRELIMINARY
Reset Sources
Z8 Encore!® F083A Series
Product Specification
25
The VBO circuit is either enabled or disabled during STOP Mode. Operations during
STOP Mode are set by the VBO_AO Flash option bit. For more details about configuring
VBO_AO, see the Flash Option Bits chapter on page 124.
VDD = 3.3V
VDD = 3.3V
VPOR
VVBO
Program
Execution
Voltage
Brown-Out
Program
Execution
WDT Clock
System Clock
Internal RESET
signal
POR
counter delay
Note: Not to Scale
Figure 7. Voltage Brown-Out Reset Operation
Watchdog Timer Reset
If the device is in NORMAL or STOP Mode, the WDT initiates a system reset at time-out
if the WDT_RES Flash option bit is programmed to 1. This is the unprogrammed state of
the WDT_RES Flash option bit. If the bit is programmed to 0, it configures the WDT to
cause an interrupt, not a system reset, at time-out. The WDT status bit in the Reset Status
(RSTSTAT) Register is set to 1 to signify that the reset was initiated by the WDT.
External Reset Input
The RESET pin has a schmitt-triggered input and an internal pull-up resistor. Once the
RESET pin is asserted for a minimum of four system clock cycles, the device progresses
through the system reset sequence. Because of the possible asynchronicity of the system
clock and reset signals, the required reset duration may be three or four clock periods. A
PS026310-1212
PRELIMINARY
Reset Sources
Z8 Encore!® F083A Series
Product Specification
26
reset pulse of three clock cycles in duration might trigger a reset and a reset pulse of four
cycles in duration always triggers a reset.
While the RESET input pin is asserted low, the Z8 Encore! F083A Series devices remain
in the Reset state. If the RESET pin is held low beyond the system reset time-out, the
device exits the Reset state on the system clock rising edge following RESET pin deassertion. Following a system reset initiated by the external RESET pin, the EXT status bit in
the Reset Status (RSTSTAT) Register is set to 1.
External Reset Indicator
During system reset or when enabled by the GPIO logic, the RESET pin functions as an
open-drain (active low) RESET mode indicator in addition to the input functionality. This
reset output feature allows an Z8 Encore! F083A Series device to reset other components
to which it is connected, even if that reset is caused by internal sources such as POR, VBO
or WDT events. See the Port A–D Control Registers section on page 41.
After an internal Reset event occurs, the internal circuitry begins driving the RESET pin
low. The RESET pin is held low by the internal circuitry until the appropriate delay listed
in Table 9 on page 22 has elapsed.
On-Chip Debugger Initiated Reset
A POR is initiated using the On-Chip Debugger by setting the RST bit in the OCD Control
Register. The On-Chip Debugger block is not reset, but the remainder of the chip goes
through a normal system reset. The RST bit automatically clears during the system reset.
Following the system reset, the POR bit in the reset status (RSTSTAT) Register is set.
Stop Mode Recovery
The device enters the STOP Mode when the STOP instruction is executed by the eZ8
CPU. For more details about STOP Mode, see the Low-Power Modes chapter on page 30.
During Stop Mode Recovery, the CPU is held in reset for about 66 IPO cycles if the crystal
oscillator is disabled or about 5000 cycles if it is enabled.
Stop Mode Recovery does not affect the on-chip registers other than the Reset Status
(RSTSTAT) Register and the Oscillator Control Register (OSCCTL). After any Stop
Mode Recovery, the IPO is enabled and selected as the system clock. If another system
clock source is required or IPO disabling is required, the Stop Mode Recovery code must
reconfigure the oscillator control block such that the correct system clock source is
enabled and selected.
The eZ8 CPU fetches the reset vector at program memory addresses 0002H and 0003H
and loads that value into the program counter. Program execution begins at the reset vector
PS026310-1212
PRELIMINARY
Stop Mode Recovery
Z8 Encore!® F083A Series
Product Specification
27
address. Following Stop Mode Recovery, the STOP bit in the Reset Status (RSTSTAT)
Register is set to 1. Table 11 lists the Stop Mode Recovery sources and resulting actions.
The following sections provide more detailed information about each of the Stop Mode
Recovery sources.
Table 11. Stop Mode Recovery Sources and Resulting Action
Operating Mode
Stop Mode Recovery Source
Action
STOP Mode
WDT time-out when configured for Reset.
Stop Mode Recovery.
WDT time-out when configured for interrupt. Stop Mode Recovery followed by
interrupt (if interrupts are enabled).
Data transition on any GPIO port pin enabled Stop Mode Recovery.
as a Stop Mode Recovery source.
Assertion of external RESET pin.
System reset.
Debug pin driven Low.
System reset.
Stop Mode Recovery using Watchdog Timer Time-Out
If the WDT times out during STOP Mode, the device undergoes a Stop Mode Recovery
sequence. In the Reset Status (RSTSTAT) Register, the WDT and STOP bits are set to 1. If
the WDT is configured to generate an interrupt upon time-out and the Z8 Encore! F083A
Series device is configured to respond to interrupts, the eZ8 CPU services the WDT interrupt request following the normal Stop Mode Recovery sequence.
Stop Mode Recovery using GPIO Port Pin Transition
Each of the GPIO port pins can be configured as a Stop Mode Recovery input source. If
any GPIO pin is enabled as a Stop Mode Recovery source, a change in the input pin value
(from high to low or from low to high) initiates Stop Mode Recovery. In the Reset Status
(RSTSTAT) Register, the STOP bit is set to 1.
Caution: In STOP Mode, the GPIO port input data registers (PxIN) are disabled. The port input
data registers record the port transition only if the signal stays on the port pin through the
end of the Stop Mode Recovery delay. As a result, short pulses on the port pin initiates
Stop Mode Recovery without being written to the port Input Data Register or without initiating an interrupt (if enabled for that pin).
PS026310-1212
PRELIMINARY
Stop Mode Recovery
Z8 Encore!® F083A Series
Product Specification
28
Stop Mode Recovery Using the External RESET Pin
When the Z8 Encore! F083A Series device is in STOP Mode and the external RESET pin
is driven low, a system reset occurs. Because of a glitch filter operating on the RESET pin,
the low pulse must be greater than the minimum width specified about 12 ns or it is
ignored. The EXT bit in the Reset Status (RSTSTAT) Register is set.
Debug Pin Driven Low
Debug reset is initiated when the On-Chip Debugger detects any of the following error
conditions on the DBG pin:
•
•
•
Serial break (a minimum of nine continuous bits low)
Framing error (received STOP bit is low)
Transmit collision (OCD and host simultaneous transmission detected by the OCD)
When the Z8F083 is in STOP Mode, the debug reset will cause a system reset. The OnChip Debugger block is not reset, but the remainder of the chip goes through a normal system reset. The POR bit in the reset (RSTSTAT) Register is set to 1.
Reset Register Definitions
The following sections define the Reset registers.
Reset Status Register
The Reset Status (RSTSTAT) Register detailed in Table 12 is a read-only register that indicates the source of the most recent Reset event, a Stop Mode Recovery event or a WDT
time-out event. Reading this register resets the upper four bits to 0.
This register shares its address with the Watchdog Timer Control Register, which is writeonly.
PS026310-1212
PRELIMINARY
Debug Pin Driven Low
Z8 Encore!® F083A Series
Product Specification
29
Table 12. Reset Status Register (RSTSTAT)
Bit
Field
7
6
5
4
POR
STOP
WDT
EXT
RESET
R/W
See Table 13
R
R
R
Address
3
2
1
0
Reserved
0
0
0
0
0
R
R
R
R
R
FF0H
Bit
Description
[7]
POR
Power-On Reset Indicator
This bit is set to 1 if a POR event occurs and is reset to 0, if a WDT time-out or Stop Mode
Recovery occurs. Reading this register also resets this bit to 0.
[6]
STOP
Stop Mode Recovery Indicator
This bit is set to 1 if a Stop Mode Recovery occurs. If the STOP and WDT bits are both set to 1,
the Stop Mode Recovery occurs because of a WDT time-out. If the STOP bit is 1 and the WDT
bit is 0, the Stop Mode Recovery is not caused by a WDT time-out. This bit is reset by a POR
or a WDT time-out that occurred while not in STOP Mode. Reading this register also resets this
bit.
[5]
WDT
Watchdog Timer time-out Indicator
This bit is set to 1 if a WDT time-out occurs. A POR resets this pin. A Stop Mode Recovery
from a change in an input pin also resets this bit. Reading this register resets this bit. This read
must occur before clearing the WDT interrupt.
[4]
EXT
External reset Indicator
If this bit is set to 1, a reset initiated by the external RESET pin occurred. A POR or a Stop
Mode Recovery from a change in an input pin resets this bit. Reading this register resets this
bit.
[3:0]
Reserved
These bits are reserved and must be programmed to 0000.
Table 13. POR Indicator Values
Reset or Stop Mode Recovery Event
POR
STOP
WDT
EXT
Power-On Reset
1
0
0
0
Reset using RESET pin assertion
0
0
0
1
Reset using WDT time-out
0
0
1
0
Reset using the On-Chip Debugger (OCTCTL[1] set to 1)
1
0
0
0
Reset from STOP Mode using DBG pin driven Low
1
0
0
0
Stop Mode Recovery using GPIO pin transition
0
1
0
0
Stop Mode Recovery using WDT time-out
0
1
1
0
PS026310-1212
PRELIMINARY
Reset Register Definitions
Z8 Encore!® F083A Series
Product Specification
30
Low-Power Modes
The Z8 Encore! F083A Series products contain power saving features. The highest level
of power reduction is provided by the STOP Mode. The next level of power reduction is
provided by the HALT Mode.
Further power savings are implemented by disabling the individual peripheral blocks
while in NORMAL Mode.
Caution: The user must not enable the pull-up register bits for unused GPIO pins, because these
ports output by default to VSS. Unused GPIO pins include those missing on 20-pin packages and ADC-enabled 28-pin packages.
STOP Mode
Executing the eZ8 CPU’s STOP instruction places the device into STOP Mode. In STOP
Mode, the operating characteristics are:
•
Primary crystal oscillator and internal precision oscillator are stopped; XIN and XOUT
(if previously enabled) are disabled and PA0/PA1 revert to the states programmed by
the GPIO registers
•
•
•
•
System clock is stopped
•
•
If enabled, the WDT logic continues to operate
•
All other on-chip peripherals are idle
eZ8 CPU is stopped
Program counter (PC) stops incrementing
WDT’s internal RC oscillator continues to operate if enabled by the Oscillator Control
Register
If enabled for operation in STOP Mode by the associated Flash option bit, the VBO
protection circuit continues to operate
To minimize the current in STOP Mode, all GPIO pins that are configured as digital inputs
must be driven to VDD when the pull-up register bit is enabled or to one of power rail
(VDD or GND) when the pull-up register bit is disabled. The device is brought out of
STOP Mode using Stop Mode Recovery. For more information about Stop Mode Recovery, see the Reset and Stop Mode Recovery chapter on page 21.
PS026310-1212
PRELIMINARY
Low-Power Modes
Z8 Encore!® F083A Series
Product Specification
31
HALT Mode
Executing the eZ8 CPU HALT instruction places the device into HALT Mode. In HALT
Mode, the operating characteristics are:
•
•
•
•
•
•
•
Primary oscillator is enabled and continues to operate
System clock is enabled and continues to operate
eZ8 CPU is stopped
Program counter (PC) stops incrementing
WDT’s internal RC oscillator continues to operate
If enabled, the WDT continues to operate
All other on-chip peripherals continue to operate
The eZ8 CPU is brought out of HALT Mode by any one of the following operations:
•
•
•
•
•
Interrupt
WDT time-out (interrupt or reset)
POR
VBO reset
External RESET pin assertion
To minimize current in HALT Mode, all GPIO pins that are configured as digital inputs
must be driven to VDD when pull-up register bit is enabled or to one of power rail (VDD or
GND) when pull-up register bit is disabled.
Peripheral Level Power Control
In addition to the STOP and HALT modes, it is possible to disable each peripheral on each
of the Z8 Encore! F083A Series devices. Disabling a given peripheral minimizes its power
consumption.
Power Control Register Definitions
The following sections describe the power control registers.
PS026310-1212
PRELIMINARY
HALT Mode
Z8 Encore!® F083A Series
Product Specification
32
Power Control Register 0
Each bit in this register disables a peripheral block, either by gating its system clock input
or by removing power from the block.
Note: This register is only reset during a POR sequence. Other system Reset events do not affect it.
Table 14. Power Control Register 0 (PWRCTL0)
Bit
7
Field
RESET
R/W
6
5
Reserved
4
VBO
3
2
Reserved Reserved
1
0
COMP
Reserved
1
0
0
0
1
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F80H
Bit
Description
[7:5]
Reserved
These bits are reserved and must be programmed to 000.
[4]
VBO
Voltage Brown-Out detector Disable
This bit is only effect when the VBO_AO Flash option bit is disabled. In STOP Mode, VBO is
always disabled when the VBO_AO Flash option bit is disabled. For VBO_AO Flash option bit
function, see the Flash Option Bits chapter on page 124.
0 = VBO enabled.
1 = VBO disabled.
[3]
Reserved
This bit is reserved and must be programmed to 0.
[2]
Reserved
This bit is reserved and must be programmed to 0.
[1]
COMP
Comparator Disable
0 = Comparator is enabled.
1 = Comparator is disabled.
[0]
Reserved
This bit is reserved and must be programmed to 0.
PS026310-1212
PRELIMINARY
Power Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
33
General Purpose Input/Output
The Z8 Encore! F083A Series products support a maximum of 23 port pins (Port A–D) for
general purpose input/output (GPIO) operations. Each port contains control and data registers. The GPIO control registers determine data direction, open-drain, output drive current, programmable pull-ups, Stop Mode Recovery functionality and alternate pin
functions. Each port pin is individually programmable. In addition, the Port C pins are
capable of direct LED drive at programmable drive strengths.
GPIO Port Availability by Device
Table 15 lists the port pins available with each device and package type.
Table 15. Port Availability by Device and Package Type
Devices
Package
10-Bit ADC
Port A
Port B
Port C
Port D
Total I/O
Z8F083A, Z8F043A
20-pin
Yes
[7:0]
[3:0]
[3:0]
[0]
17
Z8F083A, Z8F043A
28-pin
Yes
[7:0]
[5:0]
[7:0]
[0]
23
Note: 20-pin and 28-pin and 10-bit ADC Enabled or Disabled can be selected via the option bits.
Architecture
Figure 8 displays a simplified block diagram of a GPIO port pin. In this figure, the ability
to accommodate alternate functions and variable port current drive strength is not displayed.
PS026310-1212
PRELIMINARY
General Purpose Input/Output
Z8 Encore!® F083A Series
Product Specification
34
Port Input
Data Register
Q
D
Schmitt Trigger
Q
D
System
Clock
VDD
Port Output Control
Port Output
Data Register
DATA
Bus
D
Q
Port
Pin
System
Clock
Port Data Direction
GND
Figure 8. GPIO Port Pin Block Diagram
GPIO Alternate Functions
Many of the GPIO port pins are used for general purpose input/output and access to onchip peripheral functions such as the timers and serial communication devices. The Port
A–D alternate function subregisters configure these pins for either GPIO or Alternate
Function operation. When a pin is configured for alternate function, control of the port pin
direction (input/output) is passed from the Port A–D data direction registers to the alternate function assigned to this pin. Table 16 on page 36 lists the alternate functions possible
with each port pin. The alternate function associated at a pin is defined through alternate
function subregisters AFS1 and AFS2.
The crystal oscillator functionality is not controlled by the GPIO block. When the crystal
oscillator is enabled in the oscillator control block, the GPIO functionality of PA0 and PA1
is overridden. In that case, pins PA0 and PA1 functions as input and output for the crystal
oscillator.
PA0 and PA6 contain two different timer functions, a timer input and a complementary
timer output. Both of these functions require the same GPIO configuration, the selection
between the two is based on the TIMER mode. For more details, see the Timers chapter on
page 69.
PS026310-1212
PRELIMINARY
GPIO Alternate Functions
Z8 Encore!® F083A Series
Product Specification
35
Direct LED Drive
The Port C pins provide a sinked current output, capable of driving an LED without
requiring an external resistor. The output sinks current at programmable levels of 3 mA,
7 mA, 13 mA and 20 mA. This mode is enabled through the LED control registers.
For correct function, the LED anode must be connected to VDD and the cathode to the
GPIO pin.
Using all Port C pins in LED drive mode with maximum current may result in excessive
total current. For details about maximum total current for the applicable package, see the
Electrical Characteristics chapter on page 184.
Shared Reset Pin
On the 20- and 28-pin devices, the Port D0 pin shares function with a bidirectional reset
pin. Unlike all other I/O pins, this pin does not default to GPIO function on power-up.
This pin acts as a bidirectional input/output open-drain reset with an internal pull-up until
the user software reconfigures it as a GPIO PD0. When in GPIO mode, the Port D0 pin
functions as output only, and must be configured as an output. PD0 supports the high drive
feature, but not the stop-mode recovery feature.
Crystal Oscillator Override
For systems using a crystal oscillator, the pins PA0 and PA1 are connected to the crystal.
When the crystal oscillator is enabled, the GPIO settings are overridden and PA0 and PA1
are disabled. See the Oscillator Control Register Definitions section on page 154.
5 V Tolerance
In the 20- and 28-pin versions of this device, any pin, which shares functionality with an
ADC, crystal or comparator port is not 5 V-tolerant, including PA[1:0], PB[5:0] and
PC[2:0]. All other signal pins are 5 V-tolerant and safely handles inputs higher than VDD
even with the pull-ups enabled, but with excess power consumption on pull-up resistor.
External Clock Setup
For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin
devices. In this case, configure PB3 for alternate function CLKIN. Write to the Oscillator
Control Register (see 154) to select the PB3 as the system clock.
PS026310-1212
PRELIMINARY
Direct LED Drive
Z8 Encore!® F083A Series
Product Specification
36
Table 16. Port Alternate Function Mapping
Port
Pin
Mnemonic
Alternate Function Description
Alternate
Function Set
Register AFS1
Port A
PA0
T0IN/T0OUT
Timer 0 input/Timer 0 output complement
N/A
Reserved
PA1
T0OUT
Timer 0 output
Reserved
PA2
Reserved
Reserved
Reserved
PA3
Reserved
Reserved
Reserved
PA4
Reserved
Reserved
Reserved
PA5
Reserved
Reserved
Reserved
PA6
T1IN/T1OUT
Timer 1 input/Timer 1 output complement
Reserved
PA7
T1OUT
Timer 1 output
Reserved
Note: Because there is only a single alternate function for each Port A and Port D (PD0) pin, the Alternate Function
Set registers are not implemented for Port A and Port D (PD0). Enabling alternate function selections (as described in the Port A–D Alternate Function Subregisters section on page 42) automatically enables the associated alternate function.
PS026310-1212
PRELIMINARY
External Clock Setup
Z8 Encore!® F083A Series
Product Specification
37
Table 16. Port Alternate Function Mapping (Continued)
Port
Pin
Mnemonic
Port B
PB0
Reserved
ANA0
PB1
PB3
PB4
PB7
AFS1[0]: 1
AFS1[1]: 0
ADC analog input
AFS1[1]: 1
AFS1[2]: 0
ANA2
ADC analog input
AFS1[2]: 1
CLKIN
External input clock
AFS1[3]: 0
ANA3
ADC analog input
AFS1[3]: 1
Reserved
AFS1[4]: 0
ADC analog input
Reserved
VREF
PB6
ADC analog input
Reserved
ANA7
PB5
AFS1[0]: 0
Reserved
ANA1
PB2
Alternate Function Description
Alternate
Function Set
Register AFS1
AFS1[4]: 1
AFS1[5]: 0
ADC reference voltage
AFS1[5]: 1
Reserved
AFS1[6]: 0
Reserved
AFS1[6]: 1
Reserved
AFS1[7]: 0
Reserved
AFS1[7]: 1
Note: Because there is only a single alternate function for each Port A and Port D (PD0) pin, the Alternate Function
Set registers are not implemented for Port A and Port D (PD0). Enabling alternate function selections (as described in the Port A–D Alternate Function Subregisters section on page 42) automatically enables the associated alternate function.
PS026310-1212
PRELIMINARY
External Clock Setup
Z8 Encore!® F083A Series
Product Specification
38
Table 16. Port Alternate Function Mapping (Continued)
Port
Pin
Mnemonic
Port C
PC0
Reserved
ANA4/CINP
PC1
PC3
PC4
AFS1[0]: 0
ADC or comparator input
Reserved
ANA5/CINN
PC2
Alternate Function Description
Alternate
Function Set
Register AFS1
AFS1[0]: 1
AFS1[1]: 0
ADC or comparator input
Reserved
AFS1[1]: 1
AFS1[2]: 0
ANA6
ADC analog input
AFS1[2]: 1
COUT
Comparator output
AFS1[3]: 0
Reserved
AFS1[3]: 1
Reserved
AFS1[4]: 0
AFS1[4]: 1
PC5
Reserved
AFS1[5]: 0
AFS1[5]: 1
PC6
Reserved
AFS1[6]: 0
AFS1[6]: 1
PC7
Reserved
AFS1[7]: 0
AFS1[7]: 1
Port D
PD0
RESET
Default to be Reset function
N/A
Note: Because there is only a single alternate function for each Port A and Port D (PD0) pin, the Alternate Function
Set registers are not implemented for Port A and Port D (PD0). Enabling alternate function selections (as described in the Port A–D Alternate Function Subregisters section on page 42) automatically enables the associated alternate function.
PS026310-1212
PRELIMINARY
External Clock Setup
Z8 Encore!® F083A Series
Product Specification
39
GPIO Interrupts
Many of the GPIO port pins are used as interrupt sources. Some port pins are configured
to generate an interrupt request on either the rising edge or falling edge of the input pin
signal. Other port pin interrupt sources, generate an interrupt when any edge occurs (both
rising and falling). For more details about interrupts using the GPIO pins, see the Interrupt
Controller chapter on page 54.
GPIO Control Register Definitions
Four registers for each port provide access to GPIO control, input data and output data.
Table 17 lists these port registers. Use the Port A–D address and control registers together
to provide access to subregisters for port configuration and control.
Table 17. GPIO Port Registers and Subregisters
Port Register
Mnemonic
Port Register Name
PxADDR
Port A–D Address Register (selects subregisters)
PxCTL
Port A–D Control Register (provides access to subregisters)
PxIN
Port A–D Input Data Register
PxOUT
Port A–D Output Data Register
Port Subregister
Mnemonic
Port Register Name
PxDD
Data Direction
PxAF
Alternate Function
PxOC
Output Control (open-drain)
PxHDE
High Drive Enable
PxSMRE
Stop Mode Recovery source enable
PxPUE
Pull-up Enable
PxAFS1
Alternate Function Set 1
PxAFS2
Alternate Function Set 2
PS026310-1212
PRELIMINARY
GPIO Interrupts
Z8 Encore!® F083A Series
Product Specification
40
Port A–D Address Registers
The Port A–D Address registers select the GPIO port functionality by accessing the Port
A–D Control registers. The Port A–D Address and Control registers combine to provide
access to all GPIO port controls; see Tables 18 and 19.
Table 18. Port A–D GPIO Address Registers (PxADDR)
Bit
7
6
5
4
Field
3
2
1
0
R/W
R/W
R/W
PADDR[7:0]
RESET
00H
R/W
R/W
R/W
R/W
R/W
Address
R/W
FD0H, FD4H, FD8H, FDCH
Bit
Description
[7:0]
PADDR
Port Address
The port address selects one of the subregisters accessible through the Port Control Register.
Table 19. Port Control Subregister Access
PADDR[7:0]
Port Control Subregister Accessible Using the Port A–D Control Registers
00H
No function. Provides some protection against accidental port reconfiguration.
01H
Data Direction
02H
Alternate function
03H
Output control (Open-Drain)
04H
High drive enable
05H
Stop Mode Recovery source enable.
06H
Pull-up enable
07H
Alternate function set 1
08H
Alternate function set 2
09H–FFH
PS026310-1212
No function
PRELIMINARY
GPIO Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
41
Port A–D Control Registers
The Port A–D control registers, shown in Table 20, set GPIO port operation. The value in
the corresponding Port A–D Address Register determines which subregister is read from
or written to by a Port A–D Control Register transaction.
Table 20. Port A–D Control Registers (PxCTL)
Bit
7
6
5
4
Field
2
1
0
R/W
R/W
R/W
R/W
PCTL
RESET
R/W
3
00H
R/W
R/W
R/W
R/W
Address
FD1H, FD5H, FD9H, FDDH
Bit
Description
[7:0]
PCTL
Port Control
The Port Control Register provides access to all subregisters that configure GPIO port operation.
Port A–D Data Direction Subregisters
The Port A–D Data Direction Subregister, shown in Table 21, is accessed through the Port
A–D Control Register by writing 01H to the Port A–D Address Register.
Table 21. Port A–D Data Direction Subregisters (PxDD)
Bit
7
6
5
4
3
2
1
0
DD7
DD6
DD5
DD4
DD3
DD2
DD1
DD0
1
1
1
1
1
1
1
1
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
If 01H in Port A–D Address Register, accessible through the Port A–D Control Register
Field
RESET
Bit
Description
[7:0]
DDx
Data Direction
These bits control the direction of the associated port pin. Port Alternate function operation
overrides the Data Direction Register setting.
0 = Output. Data in the Port A–D Output Data Register is driven onto the port pin.
1 = Input. The port pin is sampled and the value written into the Port A–D Input Data Register.
The output driver is tristated.
Note: x indicates the specific GPIO port pin number (7–0).
PS026310-1212
PRELIMINARY
GPIO Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
42
Port A–D Alternate Function Subregisters
The Port A–D alternate function subregister is accessed through the Port A–D Control
Register by writing 02H to the Port A–D Address Register. See Table 22 on page 42. The
Port A–D alternate function subregisters enable the alternate function selection on pins. If
disabled, the pins functions as GPIO. If enabled, select one of four alternate functions
using alternate function set subregisters 1 and 2 as described in the the Port A–D Alternate
Function Set 1 Subregisters section on page 47 and the Port A–D Alternate Function Set
2 Subregisters section on page 48. To determine the alternate functions associated with
each port pin, see the GPIO Alternate Functions section on page 34.
Caution: Do not enable alternate functions for GPIO port pins for which there are no associated
alternate functions. Failure to follow this guideline can result in unpredictable operation.
Table 22. Port A–D Alternate Function Subregisters (PxAF)
Bit
Field
7
6
5
4
3
2
1
0
AF7
AF6
AF5
AF4
AF3
AF2
AF1
AF0
RESET
00H (Ports A–C); 01H (Port D)
R/W
Address
R/W
If 02H in Port A–D Address Register, accessible through the Port A–D Control Register
Bit
Description
[7:0]
AFx
Port Alternate Function Enabled
0 = The port pin is in NORMAL Mode and the DDx bit in the Port A–D Data Direction Subregister determines the direction of the pin.
1 = The alternate function selected through alternate function set subregisters is enabled. Port
pin operation is controlled by the alternate function.
Note: x indicates the specific GPIO port pin number (7–0).
PS026310-1212
PRELIMINARY
GPIO Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
43
Port A–D Output Control Subregisters
The Port A–D output control subregister is accessed through the Port A–D Control Register by writing 03H to the Port A–D Address Register. See Table 23. Setting the bits in the
Port A–D output control subregisters to 1, configures the specified port pins for opendrain operation. These subregisters affect the pins directly and, as a result, alternate functions are also affected.
Table 23. Port A–D Output Control Subregisters (PxOC)
Bit
7
6
5
4
3
2
1
0
POC7
POC6
POC5
POC4
POC3
POC2
POC1
POC0
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
If 03H in Port A–D Address Register, accessible through the Port A–D Control Register
Field
RESET
Bit
Description
[7:0]
POCx
Port Output Control
These bits function independently of the alternate function bit and always disable the drains, if
set to 1.
0 = The drains are enabled for any output mode (unless overridden by the alternate function).
1 = The drain of the associated pin is disabled (OPEN-DRAIN mode).
Note: x indicates the specific GPIO port pin number (7–0).
PS026310-1212
PRELIMINARY
GPIO Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
44
Port A–D High Drive Enable Subregisters
The Port A–D High Drive Enable Subregister, shown in Table 24, is accessed through the
Port A–D Control Register by writing 04H to the Port A–D Address Register. Setting the
bits in the Port A–D High Drive Enable subregisters to 1 configures the specified port pins
for high-output current drive operation. The Port A–D High Drive Enable Subregister
affects the pins directly and, as a result, alternate functions are also affected.
Table 24. Port A–D High Drive Enable Subregisters (PxHDE)
Bit
7
6
5
4
3
2
1
0
PHDE7
PHDE6
PHDE5
PHDE4
PHDE3
PHDE2
PHDE1
PHDE0
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
If 04H in Port A–D Address Register, accessible through the Port A–D Control Register
Field
RESET
Bit
Description
[7:0]
PHDEx
Port High Drive Enable
0 = The port pin is configured for standard output current drive.
1 = The port pin is configured for high output current drive.
Note: x indicates the specific GPIO port pin number (7–0).
PS026310-1212
PRELIMINARY
GPIO Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
45
Port A–D Stop Mode Recovery Source Enable Subregisters
The Port A–D Stop Mode Recovery Source Enable Subregister, shown in Table 25, is
accessed through the Port A–D Control Register by writing 05H to the Port A–D Address
Register. Setting the bits in the Port A–D Stop Mode Recovery Source Enable subregisters
to1, configures the specified port pins as a Stop Mode Recovery source. During STOP
Mode, any logic transition on a port pin enabled as a Stop Mode Recovery source initiates
Stop Mode Recovery.
Table 25. Port A–D Stop Mode Recovery Source Enable Subregisters (PxSMRE)
Bit
7
6
5
4
3
2
1
0
PSMRE7
PSMRE6
PSMRE5
PSMRE4
PSMRE3
PSMRE2
PSMRE1
PSMRE0
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
If 05H in Port A–D Address Register, accessible through the Port A–D Control Register
Field
RESET
Bit
Description
[7:0]
Port Stop Mode Recovery Source Enable
PSMREx 0 = The port pin is not configured as a Stop Mode Recovery source. Transitions on this pin during STOP Mode do not initiate Stop Mode Recovery.
1 = The port pin is configured as a Stop Mode Recovery source. Any logic transition on this pin
during STOP Mode initiates Stop Mode Recovery.
Note: x indicates the specific GPIO port pin number (7–0).
PS026310-1212
PRELIMINARY
GPIO Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
46
Port A–D Pull-up Enable Subregisters
The Port A–D pull-up enable subregister is accessed through the Port A–D Control Register by writing 06H to the Port A–D Address Register. See Table 26. Setting the bits in the
Port A–D pull-up enable subregisters, enables a weak internal resistive pull-up on the
specified port pins.
Table 26. Port A–D Pull-Up Enable Subregisters (PxPUE)
Bit
7
6
5
4
3
2
1
0
PPUE7
PPUE6
PPUE5
PPUE4
PPUE3
PPUE2
PPUE1
PPUE0
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
If 06H in Port A–D Address Register, accessible through the Port A–D Control Register
Field
RESET
Bit
Description
[7:0]
PPUEx
Port Pull-Up Enable
0 = The weak pull-up on the port pin is disabled.
1 = The weak pull-up on the port pin is enabled.
Note: x indicates the specific GPIO port pin number (7–0).
PS026310-1212
PRELIMINARY
GPIO Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
47
Port A–D Alternate Function Set 1 Subregisters
The Port A–D Alternate Function Set 1 Subregister, shown in Table 27, is accessed
through the Port A–D Control Register by writing 07H to the Port A–D Address Register.
The Alternate Function Set 1 subregisters select the alternate function available at a port
pin. Alternate functions selected by setting or clearing bits of this register are defined in
the Port Alternate Function Mapping table on page 36.
Note: Alternate function selection on the port pins must also be enabled, as described in the Port
A–D Alternate Function Subregisters section on page 42.
Table 27. Port A–D Alternate Function Set 1 Subregisters (PxAFS1)
Bit
7
6
5
4
3
2
1
0
PAFS17
PAFS16
PAFS15
PAFS14
PAFS13
PAFS12
PAFS11
PAFS10
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
If 07H in Port A–D Address Register, accessible through the Port A–D Control Register
Field
RESET
Bit
Description
[7:0]
PAFS1x
Port Alternate Function Set 1
0 = Port alternate function selected as defined in the GPIO Alternate Functions section; see
Table 16 on page 36.
1 = Port alternate function selected as defined in the GPIO Alternate Functions section; see
Table 16 on page 36.
Note: x indicates the specific GPIO port pin number (7–0).
PS026310-1212
PRELIMINARY
GPIO Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
48
Port A–D Alternate Function Set 2 Subregisters
The Port A–D Alternate Function Set 2 Subregister, shown in Table 28, is accessed
through the Port A–D Control Register by writing 08H to the Port A–D Address Register.
The Alternate Function Set 2 subregisters select the alternate function available at a port
pin. Alternate functions selected by setting or clearing bits of this register are defined in
the Port Alternate Function Mapping table on page 36.
Note: Alternate function selection on port pins must also be enabled, as described in the Port A–
D Alternate Function Subregisters section on page 42.
Table 28. Port A–D Alternate Function Set 2 Subregisters (PxAFS2)
Bit
7
6
5
4
3
2
1
0
PAFS27
PAFS26
PAFS25
PAFS24
PAFS23
PAFS22
PAFS21
PAFS20
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
If 08H in Port A–D Address Register, accessible through the Port A–D Control Register
Field
RESET
Bit
Description
[7:0]
PAFS2x
Port Alternate Function Set 2
0 = Port alternate function selected, as defined in Table 16 on page 36.
1 = Port alternate function selected, as defined in Table 16 on page 36.
Note: x indicates the specific GPIO port pin number (7–0).
PS026310-1212
PRELIMINARY
GPIO Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
49
Port A–C Input Data Registers
Reading from the Port A–C Input Data registers, shown in Table 29, returns the sampled
values from the corresponding port pins. The Port A–C Input Data registers are read-only.
The value returned for any unused ports is 0. Unused ports include those missing on the 8and 28-pin packages, as well as those missing on the ADC-enabled 28-pin packages.
Table 29. Port A–C Input Data Registers (PxIN)
Bit
7
6
5
4
3
2
1
0
PIN7
PIN6
PIN5
PIN4
PIN3
PIN2
PIN1
PIN0
RESET
X
X
X
X
X
X
X
X
R/W
R
R
R
R
R
R
R
R
Field
Address
FD2H, FD6H, FDAH
Bit
Description
[7:0]
PxIN
Port Input Data
Sampled data from the corresponding port pin input.
0 = Input data is logical 0 (Low).
1 = Input data is logical 1 (High).
Note: x indicates the specific GPIO port pin number (7–0).
PS026310-1212
PRELIMINARY
GPIO Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
50
Port A–D Output Data Register
The Port A–D Output Data Register, shown in Table 30, controls the output data to the
pins.
Table 30. Port A–D Output Data Register (PxOUT)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
0
POUT7
POUT6
POUT5
POUT4
POUT3
POUT2
POUT1
POUT0
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FD3H, FD7H, FDBH, FDFH
Bit
Description
[7:0]
PxOUT
Port Output Data
These bits contain the data to be driven to the port pins. The values are only driven if the corresponding pin is configured as an output and the pin is not configured for alternate function
operation.
0 = Drive a logical 0 (Low).
1 = Drive a logical 1 (High). High value is not driven if the drain has been disabled by setting
the corresponding port output Control Register bit to 1.
Note: x indicates the specific GPIO port pin number (7–0).
PS026310-1212
PRELIMINARY
GPIO Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
51
LED Drive Enable Register
The LED Drive Enable Register, shown in Table 31, activates the controlled current drive.
The Alternate Function Register has no control over the LED function; therefore, setting
the Alternate Function Register to select the LED function is not required. LEDEN bits
[7:0] correspond to Port C bits [7:0], respectively.
Table 31. LED Drive Enable (LEDEN)
Bit
7
6
5
Field
RESET
R/W
4
3
2
1
0
LEDEN[7:0]
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F82H
Bit
Description
[7:0]
LEDEN
LED Drive Enable
These bits determine, which Port C pins are connected to an internal current sink.
0 = Tristate the Port C pin.
1 = Connect controlled current sink to the Port C pin.
PS026310-1212
PRELIMINARY
GPIO Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
52
LED Drive Level High Register
The LED Drive Level High Register, shown in Table 32, contains two control bits for each
Port C pin. These two bits selects one of four programmable current drive levels for each
Port C pin. Each pin is individually programmable.
Table 32. LED Drive Level High Register (LEDLVLH)
Bit
7
6
5
Field
RESET
R/W
3
2
1
0
LEDLVLH[7:0]
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
Bit
4
F83H
Description
[7:0]
LED Level High Bits
LEDLVLH {LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin.
00 = 3 mA.
01 = 7 mA.
10 = 13 mA.
11 = 20 mA.
PS026310-1212
PRELIMINARY
GPIO Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
53
LED Drive Level Low Register
The LED Drive Level Low Register, shown in Table 33, contains two control bits for each
Port C pin. These two bits selects one of four programmable current drive levels for each
Port C pin. Each pin is individually programmable.
Table 33. LED Drive Level Low Register (LEDLVLL)
Bit
7
6
5
Field
RESET
R/W
3
2
1
0
LEDLVLL[7:0]
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
Bit
4
F84H
Description
[7:0]
LED Level Low Bits
LEDLVLL {LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C
pin.
00 = 3 mA.
01 = 7 mA.
10 = 13 mA.
11 = 20 mA.
PS026310-1212
PRELIMINARY
GPIO Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
54
Interrupt Controller
The Interrupt Controller on the Z8 Encore! F083A Series products prioritizes the interrupt
requests from the on-chip peripherals and the GPIO port pins. The features of the Interrupt
Controller include the following:
•
Seventeen interrupt sources using sixteen unique interrupt vectors
– Twelve GPIO port pin interrupt sources
– Five on-chip peripheral interrupt sources (the comparator output interrupt shares
one interrupt vector with PA6)
•
Flexible GPIO interrupts
– Eight selectable rising- and falling-edge GPIO interrupts
– Four dual-edge interrupts
•
•
Three levels of individually-programmable interrupt priority
Watchdog Timer is configured to generate an interrupt
Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly
manner and force the CPU to start an interrupt service routine (ISR). Usually, this interrupt
service routine is involved with the exchange of data, status information or control information between the CPU and the interrupting peripheral. When the service routine is completed, the CPU returns to the operation from which it was interrupted.
The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts,
the Interrupt Controller has no effect on operation. For more information regarding interrupt servicing by the eZ8 CPU, refer to the eZ8 CPU Core User Manual (UM0128), available for download on www.zilog.com.
Interrupt Vector Listing
Table 34 lists the interrupts available in order of priority. The interrupt vector is stored
with the most-significant byte (MSB) at the even program memory address and the leastsignificant byte (LSB) at the odd program memory address.
Note: Some port interrupts are not available on the 20-pin and 28-pin packages. The ADC interrupt is unavailable on devices not containing an ADC.
PS026310-1212
PRELIMINARY
Interrupt Controller
Z8 Encore!® F083A Series
Product Specification
55
Table 34. Trap and Interrupt Vectors in Order of Priority
Priority
Program Memory
Vector Address
Interrupt or Trap Source
Highest
0002H
Reset (not an interrupt)
0004H
Watchdog Timer (see Watchdog Timer chapter)
003AH
Primary oscillator fail trap (not an interrupt)
003CH
Watchdog oscillator fail trap (not an interrupt)
0006H
Illegal instruction trap (not an interrupt)
0008H
Reserved
000AH
Timer 1
000CH
Timer 0
000EH
Reserved
0010H
Reserved
0012H
Reserved
0014H
Reserved
0016H
ADC
0018H
Port A7, selectable rising or falling input edge
001AH
Port A6, selectable rising or falling input edge or Comparator Output
001CH
Port A5, selectable rising or falling input edge
001EH
Port A4, selectable rising or falling input edge
0020H
Port A3, selectable rising or falling input edge
0022H
Port A2, selectable rising or falling input edge
0024H
Port A1, selectable rising or falling input edge
0026H
Port A0, selectable rising or falling input edge
0028H
Reserved
002AH
Reserved
002CH
Reserved
002EH
Reserved
0030H
Port C3, both input edges
0032H
Port C2, both input edges
0034H
Port C1, both input edges
0036H
Port C0, both input edges
0038H
Reserved
Lowest
PS026310-1212
PRELIMINARY
Interrupt Vector Listing
Z8 Encore!® F083A Series
Product Specification
56
Architecture
Figure 9 displays the Interrupt Controller block diagram.
High
Priority
Internal Interrupts
Interrupt Request Latches and Control
Port Interrupts
Vector
Medium
Priority
Priority
Mux
IRQ Request
Low
Priority
Figure 9. Interrupt Controller Block Diagram
Operation
This section describes the operational aspects of the following functions.
Master Interrupt Enable: see page 56
Interrupt Vectors and Priority: see page 57
Interrupt Assertion: see page 57
Software Interrupt Assertion: see page 58
Master Interrupt Enable
The master interrupt enable bit (IRQE) in the Interrupt Control Register globally enables
and disables the interrupts.
Interrupts are globally enabled by any of the following actions:
•
•
PS026310-1212
Execution of an enable interrupt (EI) instruction
Execution of an return from interrupt (IRET) instruction
PRELIMINARY
Architecture
Z8 Encore!® F083A Series
Product Specification
57
•
Writing 1 to the IRQE bit in the Interrupt Control Register
Interrupts are globally disabled by any of the following actions:
•
•
•
•
•
•
•
•
Execution of a DI (disable interrupt) instruction
eZ8 CPU acknowledgement of an interrupt service request from the Interrupt Controller
Writing a 0 to the IRQE bit in the Interrupt Control Register
Reset
Execution of a trap instruction
Illegal instruction trap
Primary oscillator fail trap
Watchdog oscillator fail trap
Interrupt Vectors and Priority
The Interrupt Controller supports three levels of interrupt priority. Level 3 is the highest
priority, level 2 is the second highest priority and level 1 is the lowest priority. If all of the
interrupts are enabled with identical interrupt priority (all as level 2 interrupts, for example), the interrupt priority is assigned from highest to lowest as specified in Table 34 on
page 55. Level 3 interrupts are always assigned higher priority than level 2 interrupts and
level 2 interrupts are assigned higher priority than level 1 interrupts. Within each interrupt
priority level (level 1, level 2 or level 3), priority is assigned as specified in Table 34.
Reset, Watchdog Timer interrupts (if enabled), primary oscillator fail traps, Watchdog
oscillator fail traps and illegal instruction traps always have highest (level 3) priority.
Interrupt Assertion
Interrupt sources assert their interrupt requests for only a single system clock period (single pulse). When the interrupt request is acknowledged by the eZ8 CPU, the corresponding bit in the interrupt request register is cleared. Writing 0 to the corresponding bit in the
interrupt request register clears the interrupt request.
Caution: Zilog recommends not using a coding style that clears bits in the Interrupt Request registers. All incoming interrupts received between execution of the first LDX command
and the final LDX command are lost. See Example 1, which follows.
Example 1. A poor coding style that can result in lost interrupt requests:
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
58
LDX r0, IRQ0
AND r0, MASK
LDX IRQ0, r0
To avoid missing interrupts, use the coding style in Example 2 to clear bits in the Interrupt
Request 0 Register:
Example 2. A good coding style that avoids lost interrupt requests:
ANDX IRQ0, MASK
Software Interrupt Assertion
Program code generates interrupts directly. Writing 1 to the correct bit in the interrupt
request register triggers an interrupt (assuming that interrupt is enabled). When the interrupt request is acknowledged by the eZ8 CPU, the bit in the interrupt request register is
automatically cleared to 0.
Caution: Zilog recommends not using a coding style to generate software interrupts by setting bits
in the Interrupt Request registers. All incoming interrupts received between execution of
the first LDX command and the final LDX command are lost. See Example 3, which follows.
Example 3. A poor coding style that can result in lost interrupt requests:
LDX r0, IRQ0
OR r0, MASK
LDX IRQ0, r0
To avoid missing interrupts, use the coding style in Example 4 to set bits in the Interrupt
Request registers:
Example 4. A good coding style that avoids lost interrupt requests:
ORX IRQ0, MASK
Interrupt Control Register Definitions
The Interrupt Control registers enable individual interrupts, set interrupt priorities and
indicate interrupt requests for all of the interrupts other than the Watchdog Timer interrupt,
the primary oscillator fail trap and the Watchdog oscillator fail trap interrupts.
PS026310-1212
PRELIMINARY
Interrupt Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
59
Interrupt Request 0 Register
The Interrupt Request 0 (IRQ0) Register, shown in Table 35, stores the interrupt requests
for both vectored and polled interrupts. When a request is sent to the Interrupt Controller,
the corresponding bit in the IRQ0 Register becomes 1. If interrupts are globally enabled
(vectored interrupts), the Interrupt Controller passes an interrupt request to the eZ8 CPU.
If interrupts are globally disabled (polled interrupts), the eZ8 CPU reads the Interrupt
Request 0 Register to determine if any interrupt requests are pending.
Table 35. Interrupt Request 0 Register (IRQ0)
Bit
Field
RESET
R/W
7
6
5
Reserved
T1I
T0I
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
4
3
2
1
Reserved
0
ADCI
FC0H
Bit
Description
[7]
Reserved
This bit is reserved and must be programmed to 0.
[6]
T1I
Timer 1 Interrupt Request
0 = No interrupt request is pending for Timer 1.
1 = An interrupt request from timer 1 is awaiting service.
[5]
T0I
Timer 0 Interrupt Request
0 = No interrupt request is pending for Timer 0.
1 = An interrupt request from timer 0 is awaiting service.
[4:1]
Reserved
These bits are reserved and must be programmed to 0000.
[0]
ADCI
ADC Interrupt Request
0 = No interrupt request is pending for the ADC.
1 = An interrupt request from the ADC is awaiting service.
PS026310-1212
PRELIMINARY
Interrupt Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
60
Interrupt Request 1 Register
The Interrupt Request 1 (IRQ1) Register, shown in Table 36, stores interrupt requests for
both vectored and polled interrupts. When a request is sent to the Interrupt Controller, the
corresponding bit in the IRQ1 Register becomes 1. If interrupts are globally enabled (i.e.,
vectored interrupts), the Interrupt Controller passes an interrupt request to the eZ8 CPU. If
interrupts are globally disabled (i.e., polled interrupts), the eZ8 CPU reads the Interrupt
Request 1 Register to determine if any interrupt requests are pending.
Table 36. Interrupt Request 1 Register (IRQ1)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
0
PA7I
PA6CI
PA5I
PA4I
PA3I
PA2I
PA1I
PA0I
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FC3H
Bit
Description
[7]
PA7I
Port A7
0 = No interrupt request is pending for GPIO Port A.
1 = An interrupt request from GPIO Port A.
[6]
PA6CI
Port A6 or Comparator Interrupt Request
0 = No interrupt request is pending for GPIO Port A or comparator.
1 = An interrupt request from GPIO Port A or comparator.
[5]
PAxI
Port A Pin x Interrupt Request
0 = No interrupt request is pending for GPIO Port A pin x.
1 = An interrupt request from GPIO Port A pin x is awaiting service.
Note: x indicates the specific GPIO port pin number (5–0).
PS026310-1212
PRELIMINARY
Interrupt Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
61
Interrupt Request 2 Register
The Interrupt Request 2 (IRQ2) Register, shown in Table 37, stores interrupt requests for
both vectored and polled interrupts. When a request is sent to the Interrupt Controller, the
corresponding bit in the IRQ2 Register becomes 1. If interrupts are globally enabled (i.e.,
vectored interrupts), the Interrupt Controller passes an interrupt request to the eZ8 CPU. If
interrupts are globally disabled (i.e., polled interrupts), the eZ8 CPU reads the Interrupt
Request 2 Register to determine if any interrupt requests are pending.
Table 37. Interrupt Request 2 Register (IRQ2)
Bit
7
6
Field
RESET
R/W
5
4
Reserved
3
2
1
0
PC3I
PC2I
PC1I
PC0I
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FC6H
Bit
Description
[7:4]
Reserved
These bits are reserved and must be programmed to 0000.
[3:0]
PCxI
Port C pin x Interrupt Request
0 = No interrupt request is pending for GPIO Port C pin x.
1 = An interrupt request from GPIO Port C pin x is awaiting service.
Note: x indicates the specific GPIO port pin number (3–0).
IRQ0 Enable High and Low Bit Registers
Table 38 indicates priority control for the IRQ0 Register. The IRQ0 Enable High and Low
Bit registers, shown in Tables 39 and 40, form a priority-encoded enabling service for
interrupts in the Interrupt Request 0 Register. Priority is generated by setting the appropriate bits in each register.
Table 38. IRQ0 Enable and Priority Encoding
IRQ0ENH[x]
IRQ0ENL[x]
Priority
Description
0
0
Disabled
Disabled
0
1
Level 1
Low
1
0
Level 2
Nominal
1
1
Level 3
High
Note: x indicates register bits 7–0.
PS026310-1212
PRELIMINARY
Interrupt Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
62
Table 39. IRQ0 Enable High Bit Register (IRQ0ENH)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
Reserved
T1ENH
T0ENH
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
1
0
Reserved
Address
0
ADCENH
FC1H
Bit
Description
[7]
Reserved
This bit is reserved and must be programmed to 0.
[6]
T1ENH
Timer 1 Interrupt Request Enable High Bit
[5]
T0ENH
Timer 0 Interrupt Request Enable High Bit
[4:1]
Reserved
These bits are reserved and must be programmed to 000.
[0]
ADC Interrupt Request Enable High Bit
ADCENH
Table 40. IRQ0 Enable Low Bit Register (IRQ0ENL)
Bit
7
6
5
Reserved
T1ENL
T0ENL
RESET
0
0
0
0
0
0
0
0
R/W
R
R/W
R/W
R/W
R/W
R
R
R/W
Field
4
3
2
Reserved
Address
ADCENL
FC2H
Bit
Description
[7]
Reserved
This bit is reserved and must be programmed to 0.
[6]
T1ENL
Timer 1 Interrupt Request Enable Low Bit
[5]
T0ENL
Timer 0 Interrupt Request Enable Low Bit
[4:1]
Reserved
These bits are reserved and must be programmed to 000.
[0]
ADC Interrupt Request Enable Low Bit
ADCENL
PS026310-1212
PRELIMINARY
Interrupt Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
63
IRQ1 Enable High and Low Bit Registers
Table 41 indicates priority control for the IRQ1 Register. The IRQ1 Enable High and Low
Bit registers, shown in Tables 42 and 43, form a priority-encoded enabling service for
interrupts in the Interrupt Request 1 Register. Priority is generated by setting the appropriate bits in each register.
Table 41. IRQ1 Enable and Priority Encoding
IRQ1ENH[x]
IRQ1ENL[x]
Priority
Description
0
0
Disabled
Disabled
0
1
Level 1
Low
1
0
Level 2
Nominal
1
1
Level 3
High
Note: x indicates register bits 7–0.
Table 42. IRQ1 Enable High Bit Register (IRQ1ENH)
Bit
Field
RESET
R/W
7
6
5
PA7ENH PA6CENH PA5ENH
4
3
2
1
0
PA4ENH
PA3ENH
PA2ENH
PA1ENH
PA0ENH
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FC4H
Bit
Description
[7]
PA7ENH
Port A Interrupt Request Enable High Bit
[6]
PA6CENH
Port A Comparator Interrupt Request Enable High Bit
[5:0]
PAxENH
Port A Interrupt Request Enable High Bits
Refer to the Interrupt Port Select Register for selection of either Port A or Port D as the interrupt source.
Note: x indicates register bits 5–0.
PS026310-1212
PRELIMINARY
Interrupt Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
64
Table 43. IRQ1 Enable Low Bit Register (IRQ1ENL)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
0
PA7ENL
PA6CENL
PA5ENL
PA4ENL
PA3ENL
PA2ENL
PA1ENL
PA0ENL
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FC5H
Bit
Description
[7]
PA7ENL
Port A Interrupt Request Enable Low Bit
[6]
PA6CENL
Port A Comparator Interrupt Request Enable Low Bit
[5:0]
PAxENL
Port A Interrupt Request Enable Low Bits
Note: x indicates register bits 5–0.
IRQ2 Enable High and Low Bit Registers
Table 44 indicates priority control for the IRQ2 Register. The IRQ2 Enable High and Low
Bit registers, shown in Tables 45 and 46, form a priority-encoded enabling service for
interrupts in the Interrupt Request 2 Register. Priority is generated by setting the appropriate bits in each register.
Table 44. IRQ2 Enable and Priority Encoding
IRQ2ENH[x]
IRQ2ENL[x]
Priority
Description
0
0
Disabled
Disabled
0
1
Level 1
Low
1
0
Level 2
Nominal
1
1
Level 3
High
Note: x indicates register bits 7–0.
PS026310-1212
PRELIMINARY
Interrupt Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
65
Table 45. IRQ2 Enable High Bit Register (IRQ2ENH)
Bit
7
6
Field
RESET
R/W
5
4
Reserved
3
2
1
0
C3ENH
C2ENH
C1ENH
C0ENH
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FC7H
Bit
Description
[7:4]
Reserved
These bits are reserved and must be programmed to 0000.
[3]
C3ENH
Port C3 Interrupt Request Enable High Bit
[2]
C2ENH
Port C2 Interrupt Request Enable High Bit
[1]
C1ENH
Port C1 Interrupt Request Enable High Bit
[0]
C0ENH
Port C0 Interrupt Request Enable High Bit
Table 46. IRQ2 Enable Low Bit Register (IRQ2ENL)
Bit
7
6
Field
RESET
R/W
5
4
Reserved
3
2
1
0
C3ENL
C2ENL
C1ENL
C0ENL
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FC8H
Bit
Description
[7:4]
Reserved
These bits are reserved and must be programmed to 0000.
[3]
C3ENL
Port C3 Interrupt Request Enable Low Bit
[2]
C2ENL
Port C2 Interrupt Request Enable Low Bit
[1]
C1ENL
Port C1 Interrupt Request Enable Low Bit
[0]
C0ENL
Port C0 Interrupt Request Enable Low Bit
PS026310-1212
PRELIMINARY
Interrupt Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
66
Interrupt Edge Select Register
The Interrupt Edge Select (IRQES) Register, shown in Table 47, determines whether an
interrupt is generated for the rising edge or falling edge on the selected GPIO Port A or
Port D input pin.
Table 47. Interrupt Edge Select Register (IRQES)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
0
IES7
IES6
IES5
IES4
IES3
IES2
IES1
IES0
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FCDH
Bit
Description
[7:0]
IESx
Interrupt Edge Select
0 = An interrupt request is generated on the falling edge of the PAx input or PDx.
1 = An interrupt request is generated on the rising edge of the PAx input or PDx.
Note: x indicates register bits 7–0.
PS026310-1212
PRELIMINARY
Interrupt Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
67
Shared Interrupt Select Register
The Shared Interrupt Select (IRQSS) Register, shown in Table 48, determines the source
of the PADxS interrupts. The Shared Interrupt Select Register selects between Port A and
alternate sources for the individual interrupts.
Because these shared interrupts are edge-triggered, it is possible to generate an interrupt
just by switching from one shared source to another. For this reason, an interrupt must be
disabled before switching between sources.
Table 48. Shared Interrupt Select Register (IRQSS)
Bit
Field
RESET
R/W
7
6
Reserved
PA6CS
0
0
0
0
R/W
R/W
R/W
R/W
Address
5
4
3
2
1
0
0
0
0
0
R/W
R/W
R/W
R/W
Reserved
FCEH
Bit
Description
[7]
Reserved
This bit is reserved and must be programmed to 0.
[6]
PA6CS
PA6/Comparator Selection
0 = PA6 is used for the interrupt caused by PA6CS interrupt request.
1 = The comparator is used for the interrupt caused by PA6CS interrupt request.
[5:0]
Reserved
These bits are reserved and must be programmed to 000000.
PS026310-1212
PRELIMINARY
Interrupt Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
68
Interrupt Control Register
The Interrupt Control (IRQCTL) Register, shown in Table 49, contains the master enable
bit for all interrupts.
Table 49. Interrupt Control Register (IRQCTL)
Bit
Field
RESET
R/W
7
6
5
4
IRQE
3
2
1
0
Reserved
0
0
0
0
0
0
0
0
R/W
R
R
R
R
R
R
R
Address
FCFH
Bit
Description
[7]
IRQE
Interrupt Request Enable
This bit is set to 1 by executing an EI (enable interrupts) or IRET (interrupt return) instruction or
by a direct register write of 1 to this bit. It is reset to 0 by executing a DI instruction, eZ8 CPU
acknowledgement of an interrupt request, reset or by a direct register write of a 0 to this bit.
0 = Interrupts are disabled.
1 = Interrupts are enabled.
[6:0]
Reserved
These bits are reserved and must be programmed to 0000000.
PS026310-1212
PRELIMINARY
Interrupt Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
69
Timers
Z8 Encore! F083A Series products contain up to two 16-bit reloadable timers that are used
for timing, event counting or generation of pulse width modulated (PWM) signals. The
timers features include:
•
•
•
•
•
16-bit reload counter
•
•
Timer output pin
Programmable prescaler with prescale values ranging from 1 to 128
PWM output generation
Capture and compare capability
External input pin for timer input, clock gating or capture signal. External input pin signal frequency is limited to a maximum of one-fourth the system clock frequency
Timer interrupt
Architecture
Figure 10 displays the architecture of the timers.
PS026310-1212
PRELIMINARY
Timers
Z8 Encore!® F083A Series
Product Specification
70
Timer Block
Block
Control
16-Bit
Reload Register
System
Clock
Compare
Timer
Control
Data
Bus
Interrupt,
PWM,
and
Timer Output
Control
Timer
Input
Gate
Input
16-Bit
PWM/Compare
Compare
16-Bit Counter
with Prescaler
Timer
Interrupt
Timer
Output
Timer
Output
Complement
Capture
Input
Figure 10. Timer Block Diagram
Operation
The timers are 16-bit upcounters. Minimum time-out delay is set by loading the value
0001H into the Timer Reload High and Low Byte registers and setting the prescale value
to 1. Maximum time-out delay is set by loading the value 0000H into the Timer Reload
High and Low Byte registers and setting the prescale value to 128. If the timer reaches
FFFFH, the timer resets back to 0000H and continues counting.
Timer Operating Modes
The timers are configured to operate in the following modes:
ONE-SHOT Mode
In ONE-SHOT Mode, the timer counts up to the 16-bit reload value stored in the Timer
Reload High and Low Byte registers. The timer input is the system clock. Upon reaching
the reload value, the timer generates an interrupt and the count value in the Timer High
and Low Byte registers is reset to 0001H. The timer is automatically disabled and stops
counting.
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
71
Additionally, if the timer output alternate function is enabled, the timer output pin changes
state for one system clock cycle (from Low to High or from High to Low) upon timer
reload. For the timer output to make a state change at a ONE-SHOT time-out (rather than
a single cycle pulse), first set the TPOL bit in the Timer Control Register to the start value
before enabling ONE-SHOT Mode. After starting the timer, set TPOL to the opposite bit
value.
Observe the following steps to configure a timer for ONE-SHOT Mode and to initiate the
count.
1. Write to the Timer Control Register to:
– Disable the timer
– Configure the timer for ONE-SHOT Mode
– Set the prescale value
– Set the initial output level (High or Low) if using the timer output alternate function
2. Write to the Timer High and Low Byte registers to set the starting count value.
3. Write to the Timer Reload High and Low Byte registers to set the reload value.
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing
to the relevant interrupt registers.
5. If using the timer output function, configure the associated GPIO port pin for the timer
output alternate function.
6. Write to the Timer Control Register to enable the timer and initiate counting.
In ONE-SHOT Mode, the system clock always provides the timer input. The timer period
is given by the following equation:
Reload Value – Start Value PrescaleOne-Shot Mode Time-Out Period (s) = -----------------------------------------------------------------------------------------------System Clock Frequency (Hz)
CONTINUOUS Mode
In CONTINUOUS Mode, the timer counts up to the 16-bit reload value stored in the
Timer Reload High and Low Byte registers. The timer input is the system clock. Upon
reaching the reload value, the timer generates an interrupt, the count value in the Timer
High and Low Byte registers is reset to 0001H and counting resumes. Additionally, if the
timer output alternate function is enabled, the timer output pin changes state (from Low to
High or from High to Low) at timer reload.
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
72
Observe the following steps to configure a timer for CONTINUOUS Mode and to initiate
the count.
1. Write to the Timer Control Register to:
– Disable the timer
– Configure the timer for CONTINUOUS Mode
– Set the prescale value
– If using the timer output alternate function, set the initial output level ((High or
Low))
2. Write to the Timer High and Low Byte registers to set the starting count value (usually
0001H). This write only affects the first pass in CONTINUOUS Mode. After the first
timer reload in CONTINUOUS Mode, counting always begins at the reset value of
0001H.
3. Write to the Timer Reload High and Low Byte registers to set the reload value.
4. Enable the timer interrupt (if appropriate) and set the timer interrupt priority by writing to the relevant interrupt registers.
5. Configure the associated GPIO port pin (if using the timer output function) for the
timer output alternate function.
6. Write to the Timer Control Register to enable the timer and initiate counting.
In CONTINUOUS Mode, the system clock always provides the timer input. The timer
period is given by the following equation:
Reload Value Prescale
Continuous Mode Time-Out Period (s) = -----------------------------------------------------------------------System Clock Frequency (Hz)
If an initial starting value other than 0001H is loaded into the Timer High and Low Byte
registers, use the ONE-SHOT Mode equation to determine the first time-out period.
COUNTER Mode
In COUNTER Mode, the timer counts input transitions from a GPIO port pin. The timer
input is taken from the GPIO port pin: timer input alternate function. The TPOL bit in the
Timer Control Register determines whether the count occurs on the rising edge or the falling edge of the timer input signal. In COUNTER Mode, the prescaler is disabled.
Caution: The input frequency of the timer input signal must not exceed one-fourth the system
clock frequency.
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
73
Upon reaching the reload value stored in the Timer Reload High and Low Byte registers,
the timer generates an interrupt, the count value in the Timer High and Low Byte registers
is reset to 0001H and counting resumes. Additionally, if the timer output alternate function
is enabled, the timer output pin changes state (from Low to High or from High to Low) at
timer reload.
Observe the following steps to configure a timer for COUNTER Mode and to initiate the
count.
1. Write to the Timer Control Register to:
– Disable the timer
– Configure the timer for COUNTER Mode
– Select either the rising edge or falling edge of the timer input signal for the count.
This selection also sets the initial logic level (High or Low) for the timer output
alternate function. However, the timer output function is not required to be
enabled
2. Write to the Timer High and Low Byte registers to set the starting count value. This
only affects the first pass in COUNTER Mode. After the first timer reload in COUNTER Mode, counting always begins at the reset value 0001H. In COUNTER Mode,
the Timer High and Low Byte registers must be written with the value 0001H.
3. Write to the Timer Reload High and Low Byte registers to set the reload value.
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing
to the relevant interrupt registers.
5. Configure the associated GPIO port pin for the timer input alternate function.
6. If using the timer output function, configure the associated GPIO port pin for the timer
output alternate function.
7. Write to the Timer Control Register to enable the timer.
In COUNTER Mode, the number of timer input transitions is given by the following equation:
Counter Mode Timer Input Transitions = Current Count Value – Start Value
COMPARATOR COUNTER Mode
In COMPARATOR COUNTER Mode, the timer counts the input transitions from the analog comparator output. The TPOL bit in the Timer Control Register determines whether
the count occurs on the rising edge or the falling edge of the comparator output signal. In
COMPARATOR COUNTER Mode, the prescaler is disabled.
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
74
Caution: The frequency of the comparator output signal must not exceed one-fourth the system
clock frequency.
After reaching the reload value stored in the Timer Reload High and Low Byte registers,
the timer generates an interrupt, the count value in the Timer High and Low Byte registers
is reset to 0001H and counting resumes. Additionally, if the timer output alternate function
is enabled, the timer output pin changes state (from Low to High or from High to Low) at
timer reload.
Observe the following steps to configure a timer for COMPARATOR COUNTER Mode
and to initiate the count.
1. Write to the Timer Control Register to:
– Disable the timer
– Configure the timer for COMPARATOR COUNTER Mode
– Select either the rising edge or falling edge of the comparator output signal for the
count. This also sets the initial logic level (High or Low) for the timer output alternate function. However, the timer output function is not required to be enabled
2. Write to the Timer High and Low Byte registers to set the starting count value. This
write only affects the first pass in COMPARATOR COUNTER Mode. After the first
timer reload in COMPARATOR COUNTER Mode, counting always begins at the
reset value 0001H. Generally, in COMPARATOR COUNTER Mode, the Timer High
and Low Byte registers must be written with the value 0001H.
3. Write to the Timer Reload High and Low Byte registers to set the reload value.
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing
to the relevant interrupt registers.
5. If using the timer output function, configure the associated GPIO port pin for the timer
output alternate function.
6. Write to the Timer Control Register to enable the timer.
In COMPARATOR COUNTER Mode, the number of comparator output transitions is
given by the following equation:
Comparator Output Transitions = Current Count Value – Start Value
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
75
PWM SINGLE OUTPUT Mode
In PWM SINGLE OUTPUT Mode, the timer outputs a pulse width modulated (PWM)
output signal through a GPIO port pin. The timer input is the system clock. The timer first
counts up to the 16-bit PWM match value stored in the timer PWM High and Low Byte
registers. When the timer count value matches the PWM value, the timer output toggles.
The timer continues counting until it reaches the reload value stored in the Timer Reload
High and Low Byte registers. Upon reaching the reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and
counting resumes.
If the TPOL bit in the Timer Control Register is set to 1, the timer output signal begins as
a high (1) and transitions to a low (0) when the timer value matches the PWM value. The
timer output signal returns to a high (1) after the timer reaches the reload value and is reset
to 0001H.
If the TPOL bit in the Timer Control Register is set to 0, the timer output signal begins as
a low (0) and transitions to a high (1) when the timer value matches the PWM value. The
timer output signal returns to a low (0) after the timer reaches the reload value and is reset
to 0001H.
Observe the following steps to configure a timer for PWM SINGLE OUTPUT Mode and
for initiating the PWM operation are:
1. Write to the Timer Control Register to:
– Disable the timer
– Configure the timer for PWM mode
– Set the prescale value
– Set the initial logic level (High or Low) and PWM high/low transition for the
timer output alternate function
2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). This only affects the first pass in PWM mode. After the first timer reset
in PWM mode, counting always begins at the reset value of 0001H.
3. Write to the PWM High and Low Byte registers to set the PWM value.
4. Write to the Timer Reload High and Low Byte registers to set the reload value (PWM
period). The reload value must be greater than the PWM value.
5. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing
to the relevant interrupt registers.
6. Configure the associated GPIO port pin for the timer output alternate function.
7. Write to the Timer Control Register to enable the timer and initiate counting.
The PWM period is represented by the following equation:
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
76
Reload Value Prescale
PWM Period (s) = -----------------------------------------------------------------------System Clock Frequency (Hz)
If an initial starting value other than 0001H is loaded into the Timer High and Low Byte
registers, use the ONE-SHOT Mode equation to determine the first PWM time-out period.
If TPOL bit is set to 0, the ratio of the PWM output high time to the total period is represented by:
Reload Value – PWM Value
PWM Output High Time Ratio (%) = --------------------------------------------------------------------- 100
Reload Value
If TPOL bit is set to 1, the ratio of the PWM output high time to the total period is represented by:
PWM Value
PWM Output High Time Ratio (%) = -------------------------------- 100
Reload Value
PWM DUAL OUTPUT Mode
In PWM DUAL OUTPUT Mode, the timer outputs a PWM output signal pair (i.e., a basic
PWM signal and its complement) through two GPIO port pins. The timer input is the system clock. The timer first counts up to the 16-bit PWM match value stored in the timer
PWM High and Low Byte registers. When the timer count value matches the PWM value,
the timer output toggles. The timer continues counting until it reaches the reload value
stored in the Timer Reload High and Low Byte registers. Upon reaching the reload value,
the timer generates an interrupt, the count value in the Timer High and Low Byte registers
is reset to 0001H and counting resumes.
If the TPOL bit in the Timer Control Register is set to 1, the timer output signal begins as
a high (1) and transitions to low (0) when the timer value matches the PWM value. The
timer output signal returns to high (1) after the timer reaches the reload value and is reset
to 0001H.
If the TPOL bit in the Timer Control Register is set to 0, the timer output signal begins as
a low (0) and transitions to high (1) when the timer value matches the PWM value. The
timer output signal returns to low (0) after the timer reaches the reload value and is reset to
0001H.
The timer also generates a second PWM output signal: the timer output complement. The
timer output complement is the complement of the timer output PWM signal. A programmable deadband delay is configured to time delay (0 to 128 system clock cycles) PWM
output transitions on these two pins from a Low to a High (i.e., inactive to active) to
ensure a time gap between the deassertion of one PWM output to the assertion of its complement.
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
77
Observe the following steps to configure a timer for PWM DUAL OUTPUT Mode and for
initiating the PWM operation are:
1. Write to the Timer Control Register to:
– Disable the timer
– Configure the timer for PWM DUAL OUTPUT Mode. Setting the mode also
involves writing to TMODEHI bit in the TxCTL1 Register
– Set the prescale value
– Set the initial logic level (High or Low) and PWM high/low transition for the
timer output alternate function
2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H). This only affects the first pass in PWM mode. After the first timer reset
in PWM mode, counting always begins at the reset value of 0001H.
3. Write to the PWM High and Low Byte registers to set the PWM value.
4. Write to the PWM Control Register to set the PWM deadband delay value. The deadband delay must be less than the duration of the positive phase of the PWM signal (as
defined by the PWM High and Low Byte registers). It must also be less than the duration of the negative phase of the PWM signal (as defined by the difference between
the PWM registers and the timer reload registers).
5. Write to the Timer Reload High and Low Byte registers to set the reload value (PWM
period). The reload value must be greater than the PWM value.
6. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing
to the relevant interrupt registers.
7. Configure the associated GPIO port pin for the timer output and timer output complement alternate functions. The timer output complement function is shared with the
timer input function for both timers. Setting the timer mode to dual PWM, will automatically switch the function from timer-in to timer-out complement.
8. Write to the Timer Control Register to enable the timer and initiate counting.
The PWM period is represented by the following equation:
Reload Value Prescale
PWM Period (s) = -----------------------------------------------------------------------System Clock Frequency (Hz)
If an initial starting value other than 0001H is loaded into the Timer High and Low Byte
registers, the ONE-SHOT Mode equation determines the first PWM time-out period.
If TPOL bit is set to 0, the ratio of the PWM output high time to the total period is represented by:
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
78
Reload Value – PWM Value
PWM Output High Time Ratio (%) = --------------------------------------------------------------------- 100
Reload Value
If TPOL bit is set to 1, the ratio of the PWM output high time to the total period is represented by:
PWM Value
PWM Output High Time Ratio (%) = -------------------------------- 100
Reload Value
CAPTURE Mode
In CAPTURE Mode, the current timer count value is recorded when the appropriate external timer input transition occurs. The capture count value is written to the timer PWM
High and Low Byte registers. The timer input is the system clock. The TPOL bit in the
Timer Control Register determines if a capture event occurs on a rising edge or a falling
edge of the timer input signal.
When a capture event occurs, an interrupt is generated and the timer continues counting.
The INPCAP bit in the TxCTL1 Register is set to indicate the timer interrupt because of an
input capture event.
The timer continues counting up to the 16-bit reload value stored in the Timer Reload
High and Low Byte registers. Upon reaching the reload value, the timer generates an interrupt and continues counting. The INPCAP bit in the TxCTL1 Register clears, indicating
that the timer interrupt has not occurred because of an input capture event.
Observe the following steps to configure a timer for CAPTURE Mode and initiating the
count.
1. Write to the Timer Control Register to:
– Disable the timer
– Configure the timer for CAPTURE Mode
– Set the prescale value
– Set the capture edge (rising or falling) for the timer input
2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
3. Write to the Timer Reload High and Low Byte registers to set the reload value.
4. Clear the timer PWM High and Low Byte registers to 0000H. Clearing these registers
allows user software to determine if interrupts were generated either by a capture
event or by a reload. If the PWM High and Low Byte registers still contain 0000H
after the interrupt, the interrupt were generated by a reload.
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
79
5. Enable the timer interrupt, if appropriate and set the timer interrupt priority by writing
to the relevant interrupt registers. By default, the timer interrupt is generated for both
input capture and reload events. If appropriate, configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field
of the TxCTL1 Register.
6. Configure the associated GPIO port pin for the timer input alternate function.
7. Write to the Timer Control Register to enable the timer and initiate counting.
In CAPTURE Mode, the elapsed time between the timer start and the capture event is calculated using the following equation:
Capture Value – Start Value Prescale
Capture Elapsed Time (s) = --------------------------------------------------------------------------------------------------System Clock Frequency (Hz)
CAPTURE RESTART Mode
In CAPTURE RESTART Mode, the current timer count value is recorded when an acceptable external timer input transition occurs. The capture count value is written to the timer
PWM High and Low Byte registers. The timer input is the system clock. The TPOL bit in
the Timer Control Register determines whether the capture occurs on a rising edge or a
falling edge of the timer input signal. When a capture event occurs, an interrupt is generated and the count value in the Timer High and Low Byte registers is reset to 0001H;
counting then resumes. The INPCAP bit in the TxCTL1 Register is set to indicate that the
timer interrupt is caused by an input capture event.
If no capture event occurs, the timer counts up to the 16-bit compare value that is stored in
the Timer Reload High and Low Byte registers. Upon reaching the reload value, the timer
generates an interrupt, the count value in the Timer High and Low Byte registers is reset to
0001H and counting resumes. The INPCAP bit in the TxCTL1 Register is cleared to indicate that the timer interrupt is not caused by an input capture event.
Observe the following steps to configure a timer for CAPTURE RESTART Mode and to
initiate the count.
1. Write to the Timer Control Register to:
– Disable the timer
– Configure the timer for CAPTURE RESTART Mode. Setting the mode also
involves writing to TMODEHI bit in the TxCTL1 Register
– Set the prescale value
– Set the capture edge (rising or falling) for the timer input
2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
80
3. Write to the Timer Reload High and Low Byte registers to set the reload value.
4. Clear the timer PWM High and Low Byte registers to 0000H. This allows user software to determine if interrupts are generated by either a capture event or a reload. If
the PWM High and Low Byte registers still contain 0000H after the interrupt, the
interrupt were generated by a reload.
5. Enable the timer interrupt, if appropriate and set the timer interrupt priority by writing
to the relevant interrupt registers. By default, the timer interrupt is generated for both
input capture and reload events. The user must configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG field
of the TxCTL1 Register.
6. Configure the associated GPIO port pin for the timer input alternate function.
7. Write to the Timer Control Register to enable the timer and initiate counting.
In CAPTURE Mode, the elapsed time between the timer start and the capture event is calculated using the following equation:
Capture Value – Start Value Prescale
Capture Elapsed Time (s) = --------------------------------------------------------------------------------------------------System Clock Frequency (Hz)
COMPARE Mode
In COMPARE Mode, the timer counts up to the 16-bit maximum compare value stored in
the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon
reaching the compare value, the timer generates an interrupt and counting continues (the
timer value is not reset to 0001H). Additionally, if the timer output alternate function is
enabled, the timer output pin changes state (from Low to High or from High to Low) upon
compare.
If the timer reaches FFFFH, the timer resets to 0000H and continues counting.
Observe the following steps to configure a timer for COMPARE Mode and to initiate the
count.
1. Write to the Timer Control Register to:
– Disable the timer
– Configure the timer for COMPARE Mode
– Set the prescale value
– Set the initial logic level (High or Low) for the timer output alternate function
2. Write to the Timer High and Low Byte registers to set the starting count value.
3. Write to the Timer Reload High and Low Byte registers to set the compare value.
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
81
4. Enable the timer interrupt and set the timer interrupt priority by writing to the relevant
interrupt registers.
5. If using the timer output function, configure the associated GPIO port pin for the timer
output alternate function.
6. Write to the Timer Control Register to enable the timer and initiate counting.
In COMPARE Mode, the system clock always provides the timer input. The compare time
is calculated by the following equation:
Compare Value – Start Value Prescale
Compare Mode Time (s) = -----------------------------------------------------------------------------------------------------System Clock Frequency (Hz)
GATED Mode
In GATED Mode, the timer counts only when the timer input signal is in its active state
(asserted), as determined by the TPOL bit in the Timer Control Register. When the timer
input signal is asserted, counting begins. A timer interrupt is generated when the timer
input signal is deasserted or a timer reload occurs. To determine whether the timer input
signal deassertion generated the interrupt, read the associated GPIO input value and compare to the value stored in the TPOL bit.
The timer counts up to the 16-bit reload value stored in the Timer Reload High and Low
Byte registers. The timer input is the system clock. Upon reaching the reload value, the
timer generates an interrupt, the count value in the Timer High and Low Byte registers is
reset to 0001H and counting resumes (assuming the timer input signal remains asserted).
Additionally, if the timer output alternate function is enabled, the timer output pin changes
state (from Low to High or from High to Low) at timer reset.
Observe the following steps to configure a timer for GATED Mode and to initiate the
count.
1. Write to the Timer Control Register to:
– Disable the timer
– Configure the timer for GATED Mode
– Set the prescale value
2. Write to the Timer High and Low Byte registers to set the starting count value. Writing
these registers only affects the first pass in GATED Mode. After the first timer reset in
GATED Mode, counting always begins at the reset value of 0001H.
3. Write to the Timer Reload High and Low Byte registers to set the reload value.
4. Enable the timer interrupt and set the timer interrupt priority by writing to the relevant
interrupt registers. By default, the timer interrupt is generated for both input deasser-
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
82
tion and reload events. Therefore, configure the timer interrupt to be generated only at
the input deassertion event or the reload event by setting TICONFIG bit of the
TxCTL1 Register.
5. Configure the associated GPIO port pin for the timer input alternate function.
6. Write to the Timer Control Register to enable the timer.
7. Assert the timer input signal to initiate the counting.
CAPTURE/COMPARE Mode
In CAPTURE/COMPARE Mode, the timer begins counting on the first external timer
input transition. The acceptable transition (rising edge or falling edge) is set by the TPOL
bit in the Timer Control Register. The timer input is the system clock.
Every subsequent acceptable transition (after the first) of the timer input signal, captures
the current count value. The capture value is written to the timer PWM High and Low
Byte registers. When a capture event occurs, an interrupt is generated, the count value in
the Timer High and Low Byte registers is reset to 0001H and the counting resumes. The
INPCAP bit in the TxCTL1 Register is set to indicate that the timer interrupt is caused by
an input capture event.
If no capture event occurs, the timer counts up to the 16-bit compare value stored in the
Timer Reload High and Low Byte registers. Upon reaching the compare value, the timer
generates an interrupt, the count value in the Timer High and Low Byte registers is reset to
0001H and counting resumes. The INPCAP bit in the TxCTL1 Register is cleared to indicate that the timer interrupt is not caused by an input capture event.
Observe the following steps to configure a timer for CAPTURE/COMPARE Mode and to
initiate the count.
1. Write to the Timer Control Register to:
– Disable the timer
– Configure the timer for CAPTURE/COMPARE Mode
– Set the prescale value
– Set the capture edge (rising or falling) for the timer input
2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
3. Write to the Timer Reload High and Low Byte registers to set the compare value.
4. Enable the timer interrupt and set the timer interrupt priority by writing to the relevant
interrupt registers.By default, the timer interrupt is generated for both input capture
and reload events. The user must configure the timer interrupt to be generated only at
the input capture event or the reload event by setting TICONFIG bit of the TxCTL1
Register.
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
83
5. Configure the associated GPIO port pin for the timer input alternate function.
6. Write to the Timer Control Register to enable the timer.
7. Counting begins on the first appropriate transition of the timer input signal. No interrupt is generated by the first edge.
In CAPTURE/COMPARE Mode, the elapsed time from timer start to capture event is calculated using the following equation:
Capture Value – Start Value Prescale
Capture Elapsed Time (s) = --------------------------------------------------------------------------------------------------System Clock Frequency (Hz)
Reading the Timer Count Values
The current count value in the timers are read (i.e., enabled) while counting. This capability has no effect on Timer operation. When the timer is enabled and the Timer High Byte
Register is read, the contents of the Timer Low Byte Register are placed in a holding register. A subsequent read from the Timer Low Byte Register returns the value in the holding
register. This operation allows accurate reads of the full 16-bit timer count value when
enabled. When the timers are not enabled, a read from the Timer Low Byte Register
returns the actual value in the counter.
Timer Pin Signal Operation
Timer output is a GPIO port pin alternate function. The timer output is toggled every time
the counter is reloaded.
The timer input is used as a selectable counting source. It shares the same pin as the complementary timer output. When selected by the GPIO alternate function registers, this pin
functions as a timer input in all modes except for the DUAL PWM OUTPUT Mode. For
this mode, there is no timer input available.
Timer Control Register Definitions
This section defines the features of the following Timer Control registers.
Timer 0–1 High and Low Byte Registers: see page 84
Timer Reload High and Low Byte Registers: see page 84
Timer 0–1 PWM High and Low Byte Registers: see page 86
Timer 0–1 Control Registers: see page 87
PS026310-1212
PRELIMINARY
Timer Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
84
Timer 0–1 High and Low Byte Registers
The Timer 0–1 High and Low Byte (TxH and TxL) registers, shown in Tables 50 and 51,
contain the current 16-bit timer count value. When the timer is enabled, a read from TxH
causes the value in TxL to be stored in a temporary holding register. A read from TxL
always returns this temporary register content when the timer is enabled; however, when
the timer is disabled, a read from the TxL reads the TxL Register content directly.
Writing to the Timer High and Low Byte registers while the timer is enabled is not recommended. There are no temporary holding registers available for write operations; therefore, simultaneous 16-bit writes are not possible. If either of the Timer High or Low Byte
registers are written to during counting, the 8-bit written value is placed in the counter
(high or low byte) at the next clock edge. The counter continues counting from the new
value.
Table 50. Timer 0–1 High Byte Register (TxH)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
TH
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F00H, F08H
Table 51. Timer 0–1 Low Byte Register (TxL)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
TL
0
0
0
0
0
0
0
1
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F01H, F09H
Bit
Description
[7:0]
TH, TL
Timer High and Low Bytes
These 2 bytes, {TH[7:0], TL[7:0]}, contain the current 16-bit timer count value.
Timer Reload High and Low Byte Registers
The timer 0–1 reload High and Low Byte (TxRH and TxRL) registers, shown in Tables 52
and 53, store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to the timer
reload high byte register are stored in a temporary holding register. When a write to the
timer reload low byte register occurs, the temporary holding register value is written to the
Timer High Byte Register. This operation allows simultaneous updates of the 16-bit timer
PS026310-1212
PRELIMINARY
Timer Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
85
reload value. In COMPARE Mode, the Timer Reload High and Low Byte registers store
the 16-bit compare value.
Table 52. Timer 0–1 Reload High Byte Register (TxRH)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
TRH
1
1
1
1
1
1
1
1
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F02H, F0AH
Table 53. Timer 0–1 Reload Low Byte Register (TxRL)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
TRL
1
1
1
1
1
1
1
1
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F03H, F0BH
Bit
Description
[7:0]
TRH, TRL
Timer Reload Register High and Low Bytes
These two bytes form the 16-bit reload value, {TRH[7:0], TRL[7:0]}. This value sets the maximum count value, which initiates a timer reload to 0001H. In COMPARE Mode, these two
bytes form the 16-bit compare value.
PS026310-1212
PRELIMINARY
Timer Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
86
Timer 0–1 PWM High and Low Byte Registers
The Timer 0–1 PWM High and Low Byte (TxPWMH and TxPWML) registers, shown in
Tables 54 and 55, control PWM operations. These registers also store the capture values
for the CAPTURE and CAPTURE/COMPARE modes.
Table 54. Timer 0–1 PWM High Byte Register (TxPWMH)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
PWMH
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F04H, F0CH
Table 55. Timer 0–1 PWM Low Byte Register (TxPWML)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
PWML
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
Bit
F05H, F0DH
Description
Pulse width modulator High and Low Bytes
[7:0]
PWMH, PWML These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the
current 16-bit timer count. When a match occurs, the PWM output changes state. The
PWM output value is set by the TPOL bit in the Timer Control Register (TxCTL1).
The TxPWMH and TxPWML registers also store the 16-bit captured timer value when
operating in capture or CAPTURE/COMPARE modes.
PS026310-1212
PRELIMINARY
Timer Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
87
Timer 0–1 Control Registers
The Timer Control registers are 8-bit read/write registers that control the operation of their
associated counter/timers.
Time 0–1 Control Register 0
The Timer Control Register 0 (TxCTL0) and the Timer Control Register 1 (TxCTL1)
determine the timer operating mode. It also includes a programmable PWM deadband
delay, two bits to configure timer interrupt definition and a status bit to identify, if the most
recent timer interrupt is caused by an input capture event.
Table 56. Timer 0–1 Control Register 0 (TxCTL0)
Bit
Field
RESET
R/W
7
TMODEHI
6
5
TICONFIG
4
3
Reserved
2
1
PWMD
0
INPCAP
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F06H, F0EH
Bit
Description
[7]
TMODEHI
Timer Mode High Bit
This bit, along with the TMODE field in the TxCTL1 Register, determines the operating
mode of the timer; it is the most significant bit of the timer mode selection value. For more
details, see Timer 0–1 Control Register 1 on page 88.
[6:5]
TICONFIG
Timer Interrupt Configuration
This field configures timer interrupt definition.
0x = Timer interrupt occurs on all of the defined reload, compare and input events.
10 = Timer interrupt occurs only on defined input Capture/Deassertion events.
11 = Timer interrupt occurs only on defined Reload/Compare events.
[4]
Reserved
This bit is reserved and must be programmed to 0.
[3:1]
PWMD
PWM Delay Value
This field is a programmable delay to control the number of system clock cycles delay
before the timer output and the timer output complement are forced to their active state.
000 = No delay.
001 = 2-cycle delay.
010 = 4-cycle delay.
011 = 8-cycle delay.
100 = 16-cycle delay.
101 = 32-cycle delay.
110 = 64-cycle delay.
111 = 128-cycle delay.
PS026310-1212
PRELIMINARY
Timer Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
88
Bit
Description (Continued)
[0]
INPCAP
Input Capture Event
This bit indicates whether the most recent timer interrupt is caused by a timer input capture
event.
0 = Previous timer interrupt is not caused by timer input capture event.
1 = Previous timer interrupt is caused by timer input capture event .
Timer 0–1 Control Register 1
The Timer 0–1 Control (TxCTL1) Register, shown in Table 57, enables/disables the timers, set the prescaler value and determines the timer operating mode.
Table 57. Timer 0–1 Control Register 1 (TxCTL1)
Bit
Field
RESET
R/W
7
6
5
4
3
2
TEN
TPOL
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
PRES
Address
1
0
TMODE
F07H, F0FH
Bit
Description
[7]
TEN
Timer Enable
0 = Timer is disabled.
1 = Timer enabled to count.
PS026310-1212
PRELIMINARY
Timer Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
89
Bit
Description (Continued)
[6]
TPOL
Timer Input/Output Polarity
Operation of this bit is a function of the current operating mode of the timer.
ONE-SHOT Mode
When the timer is disabled, the timer output signal is set to the value of this bit. When the timer
is enabled, the timer output signal is complemented on timer reload.
CONTINUOUS Mode
When the timer is disabled, the timer output signal is set to the value of this bit. When the timer
is enabled and reloaded, the timer output signal is complemented.
COUNTER Mode
If the timer is disabled, the timer output signal is set to the value of this bit.
If the timer is enabled the timer output signal is complemented after timer reload.
0 = Count occurs on the rising edge of the timer input signal.
1 = Count occurs on the falling edge of the timer input signal.
PWM SINGLE OUTPUT Mode
0 = Timer output is forced low (0), when the timer is disabled. The timer output is forced high
(1), when the timer is enabled and the PWM count matches and the timer output is forced
low (0), when the timer is enabled and reloaded.
1 = Timer output is forced high (1), when the timer is disabled. The timer output is forced
low(0), when the timer is enabled and the PWM count matches and forced high (1) when
the timer is enabled and reloaded.
CAPTURE Mode
0 = Count is captured on the rising edge of the timer input signal.
1 = Count is captured on the falling edge of the timer input signal.
COMPARE Mode
When the timer is disabled, the timer output signal is set to the value of this bit. When the timer
is enabled and reloaded, the timer output signal is complemented.
GATED Mode
0 = Timer counts when the timer input signal is high (1) and interrupts are generated on the falling edge of the timer input.
1 = Timer counts when the timer input signal is low (0) and interrupts are generated on the rising edge of the timer input.
CAPTURE/COMPARE Mode
0 = Counting is started on the first rising edge of the timer input signal. The current count is
captured on subsequent rising edges of the timer input signal.
1 = Counting is started on the first falling edge of the timer input signal. The current count is
captured on subsequent falling edges of the timer input signal.
PS026310-1212
PRELIMINARY
Timer Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
90
Bit
Description (Continued)
[6]
TPOL
(cont’d.)
PWM DUAL OUTPUT Mode
0 = Timer output is forced low (0) and timer output complement is forced high (1), when the
timer is disabled. When enabled and the PWM count matches, the timer output is forced
high (1) and forced low (0) when enabled and reloaded. When enabled and the PWM count
matches, the timer output complement is forced low (0) and forced high (1) when enabled
and reloaded.
1 = Timer output is forced high (1) and timer output complement is forced low (0) when the
timer is disabled. When enabled and the PWM count matches, the timer output is forced
low (0) and forced high (1) when enabled and reloaded.When enabled and the PWM count
matches, the timer output complement is forced high (1) and forced low (0) when enabled
and reloaded. The PWMD field in the TxCTL0 register determiners an optional added delay
on the assertion (low to high) transition of both timer output and timer output complement
for deadband generation.
CAPTURE RESTART Mode
0 = Count is captured on the rising edge of the timer input signal.
1 = Count is captured on the falling edge of the timer input signal.
COMPARATOR COUNTER Mode
When the timer is disabled, the timer output signal is set to the value of this bit. When the timer
is enabled, the timer output signal is complemented on timer reload.
When the timer output alternate function TxOUT on a GPIO port pin is enabled, TxOUT will
change to whatever state the TPOL bit is in. The timer is not required to be enabled for that to
happen. Additionally, the port data direction sub register is not needed to be set to output on
TxOUT. Changing the TPOL bit when the timer is enabled and running does not immediately
change the polarity TxOUT.
[5:3]
PRES
Prescale Value
The timer input clock is divided by 2PRES, where PRES is set from 0 to 7. The prescaler is reset
each time the timer is disabled. This reset ensures proper clock division each time the timer is
restarted.
000 = Divide by 1.
001 = Divide by 2.
010 = Divide by 4.
011 = Divide by 8.
100 = Divide by 16.
101 = Divide by 32.
110 = Divide by 64.
111 = Divide by 128.
PS026310-1212
PRELIMINARY
Timer Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
91
Bit
Description (Continued)
[2:0]
TMODE
TIMER Mode
This field along with the TMODEHI bit in TxCTL0 register determines the operating mode of
the timer. TMODEHI is the most significant bit of the timer mode selection value.
0000 = ONE-SHOT Mode.
0001 = CONTINUOUS Mode.
0010 = COUNTER Mode.
0011 = PWM SINGLE OUTPUT Mode.
0100 = CAPTURE Mode.
0101 = COMPARE Mode.
0110 = GATED Mode.
0111 = CAPTURE/COMPARE Mode.
1000 = PWM DUAL OUTPUT Mode.
1001 = CAPTURE RESTART Mode.
1010 = COMPARATOR COUNTER Mode.
PS026310-1212
PRELIMINARY
Timer Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
92
Watchdog Timer
The Watchdog Timer (WDT) protects from corrupted or unreliable software, power faults
and other system-level problems, which may place the Z8 Encore! F083A Series devices
into unsuitable operating states. The Watchdog Timer includes the following features:
•
•
•
On-chip RC oscillator
A selectable time-out response: reset or interrupt
24-bit programmable time-out value
Operation
The WDT is a retriggerable one-shot timer that resets or interrupts Z8 Encore! F083A
Series devices when the WDT reaches its terminal count. The WDT uses a dedicated onchip RC oscillator as its clock source. The WDT operates only in two modes: ON and
OFF. Once enabled, it always counts and must be refreshed to prevent a time-out. Perform
an enable by executing the WDT instruction or by setting the WDT_AO Flash option bit.
The WDT_AO bit forces the WDT to operate immediately upon reset, even if a WDT
instruction has not been executed.
The WDT is a 24-bit reloadable downcounter that uses three 8-bit registers in the eZ8
CPU register space to set the reload value. The nominal WDT time-out period is calculated by the following equation:
WDT Reload Value
WDT Time-out Period (ms) = -----------------------------------------------10
where the WDT reload value is the 24-bit decimal value furnished by {WDTU[7:0],
WDTH[7:0], WDTL[7:0]} and the typical Watchdog Timer RC oscillator frequency is
10 kHz. The Watchdog Timer cannot be refreshed after it reaches 000002H. The WDT
reload value must not be set to values below 000004H. Table 58 provides information
about approximate time-out delays for the minimum and maximum WDT reload values.
Table 58. Watchdog Timer Approximate Time-Out Delays
Approximate Time-Out Delay
(with 10 kHz Typical WDT Oscillator Frequency)
WDT Reload Value
(Hex)
WDT Reload Value
(Decimal)
000004
4
400 µs
Minimum time-out delay
000400
1024
102 ms
Default time-out delay
FFFFFF
16,777,215
28 minutes
PS026310-1212
Typical
PRELIMINARY
Description
Maximum time-out delay
Watchdog Timer
Z8 Encore!® F083A Series
Product Specification
93
Watchdog Timer Refresh
Upon first enable, the Watchdog Timer is loaded with the value in the WDT reload registers. The Watchdog Timer counts down to 000000H unless a WDT instruction is executed
by the eZ8 CPU. Execution of the WDT instruction causes the downcounter to be reloaded
with the WDT reload value stored in the WDT reload registers. Counting resumes following the reload operation.
When Z8 Encore! F083A Series devices are operating in DEBUG Mode (using the OnChip Debugger), the WDT must be continuously refreshed to prevent any WDT Timer
time-outs.
Watchdog Timer Time-Out Response
The WDT times out when the counter reaches 000000H. A time-out of the WDT generates either an interrupt or a system reset. The WDT_RES Flash option bit determines the
time-out response of the WDT. For more details about programming of WDT_RES Flash
option bit, see the Flash Option Bits chapter on page 124.
WDT Interrupt in Normal Operation
If configured to generate an interrupt when a time-out occurs, the Watchdog Timer issues
an interrupt request to the Interrupt Controller and sets the WDT status bit in the reset status
register. If interrupts are enabled, the eZ8 CPU responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executing code from the vector address.
After time-out and interrupt generation, the Watchdog Timer counter resets to its maximum value of FFFFFH and continues counting. The Watchdog Timer counter will not
automatically return to its reload value.
The Reset Status Register, shown in Table 12 on page 29, must be read before clearing the
WDT interrupt. This read clears the WDT time-out flag and prevents further WDT interrupts occurring immediately.
WDT Interrupt in STOP Mode
If configured to generate an interrupt when a time-out occurs and the Z8 Encore! F083A
Series devices are in STOP Mode, the Watchdog Timer automatically initiates a Stop
Mode Recovery and generates an interrupt request. Both the WDT status bit and the STOP
bit in the Watchdog Timer Control Register are set to 1 following a WDT time-out in
STOP Mode. For more details about Stop Mode Recovery, see the Reset and Stop Mode
Recovery chapter on page 21.
If interrupts are enabled, following completion of the Stop Mode Recovery, the eZ8 CPU
responds to the interrupt request by fetching the Watchdog Timer interrupt vector and executes the code from the vector address.
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
94
WDT Reset in Normal Operation
If configured to generate a reset when a time-out occurs, the Watchdog Timer forces the
device into the system Reset state. The WDT status bit in the Watchdog Timer Control
Register is set to 1. For more details about system reset, see the Reset and Stop Mode
Recovery chapter on page 21.
WDT Reset in STOP Mode
If configured to generate a reset when a time-out occurs and the device is in STOP Mode,
the Watchdog Timer initiates a Stop Mode Recovery. Both the WDT status bit and the
STOP bit in the Watchdog Timer Control Register are set to 1 following WDT time-out in
STOP Mode. For more details, see the Reset and Stop Mode Recovery chapter on page 21.
Watchdog Timer Reload Unlock Sequence
Writing the unlock sequence to the Watchdog Timer (WDTCTL) Control Register
address, unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH and
WDTL) to allow changes to the time-out period. These write operations to the WDTCTL
Register address produce no effect on the bits in the WDTCTL Register. The locking
mechanism prevents spurious writes to the reload registers. The following sequence is
required to unlock the Watchdog Timer Reload Byte registers (WDTU, WDTH and
WDTL) for write access.
1. Write 55H to the Watchdog Timer Control Register (WDTCTL).
2. Write AAH to the Watchdog Timer Control Register (WDTCTL).
3. Write the Watchdog Timer reload upper byte register (WDTU).
4. Write the Watchdog Timer reload high byte register (WDTH).
5. Write the Watchdog Timer reload low byte register (WDTL).
All three Watchdog Timer Reload registers must be written in the order listed above.
There must be no other register writes between each of these operations. If a register write
occurs, the lock state machine resets and no further writes occurs unless the sequence is
restarted. The value in the Watchdog Timer reload registers is loaded into the counter
when the Watchdog Timer is first enabled and every time a WDT instruction is executed.
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
95
Watchdog Timer Control Register Definitions
This section defines the features of the following Watchdog Timer Control registers.
Watchdog Timer Control Register (WDTCTL): see page 95
Watchdog Timer Reload Upper Byte Register (WDTU): see page 96
Watchdog Timer Reload High Byte Register (WDTH): see page 96
Watchdog Timer Reload Low Byte Register (WDTL): see page 97
Watchdog Timer Control Register
The Watchdog Timer Control (WDTCTL) Register, shown in Table 59, is a write-only
control register. Writing the unlock sequence: 55H, AAH to the WDTCTL Register address
unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH and WDTL) to
allow changes to the time-out period. These write operations to the WDTCTL Register
address have no effect on the bits in the WDTCTL Register. The locking mechanism prevents spurious writes to the reload registers.
This register address is shared with the read-only Reset Status Register.
Table 59. Watchdog Timer Control Register (WDTCTL)
Bit
7
6
5
Field
4
3
2
1
0
WDTUNLK
RESET
X
X
X
X
X
X
X
X
R/W
W
W
W
W
W
W
W
W
Address
FF0H
Bit
Description
[7:0]
WDTUNLK
Watchdog Timer Unlock
The user software must write the correct unlocking sequence to this register before it is
allowed to modify the contents of the Watchdog Timer reload registers.
PS026310-1212
PRELIMINARY
Watchdog Timer Control Register
Z8 Encore!® F083A Series
Product Specification
96
Watchdog Timer Reload Upper, High and Low Byte Registers
The Watchdog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL) registers, shown in Tables 60 through 62, form the 24-bit reload value{WDTU[7:0],
WDTH[7:0], WDTL[7:0]} that is loaded into the Watchdog Timer when a WDT instruction is executed. Writing to these registers sets the appropriate reload value; reading from
these registers returns the current Watchdog Timer count value.
Caution:
The 24-bit WDT reload value must not be set to a value less than 000004H.
Table 60. Watchdog Timer Reload Upper Byte Register (WDTU)
Bit
7
6
5
4
Field
2
1
0
WDTU
RESET
R/W
3
0
0
0
0
0
0
0
0
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
Address
FF1H
Note: *R/W = A read returns the current WDT count value; a write sets the appropriate reload value.
Bit
Description
[7:0]
WDTU
WDT Reload Upper Byte
MSB, Bits[23:16], of the 24-bit WDT reload value.
Table 61. Watchdog Timer Reload High Byte Register (WDTH)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
WDTH
0
0
0
0
0
1
0
0
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
Address
FF2H
Note: *R/W = A read returns the current WDT count value; a write sets the appropriate reload value.
Bit
Description
[7:0]
WDTH
WDT Reload High Byte
Middle byte, bits[15:8] of the 24-bit WDT reload value.
PS026310-1212
PRELIMINARY
Watchdog Timer Control Register
Z8 Encore!® F083A Series
Product Specification
97
Table 62. Watchdog Timer Reload Low Byte Register (WDTL)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
WDTL
0
0
0
0
0
0
0
0
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
Address
FF3H
Note: *A read returns the current WDT count value; a write sets the appropriate reload value.
Bit
Description
[7:0]
WDTL
WDT Reload Low Byte
LSB, bits[7:0] of the 24-bit WDT reload value.
PS026310-1212
PRELIMINARY
Watchdog Timer Control Register
Z8 Encore!® F083A Series
Product Specification
98
Analog-to-Digital Converter
Z8 Encore! F083A Series devices include an eight-channel Successive Approximation
Register (SAR) analog-to-digital converter (ADC). The ADC converts an analog input
signal to a 10-bit binary number. The features of the SAR ADC include:
•
•
Eight analog input sources multiplexed with general purpose I/O ports
•
•
•
•
•
Programmable timing controls
Fast conversion time, as low as 2.8 µs (ADC conversion clock should be less than
10 MHz)
Interrupt on conversion complete
Internal voltage reference generator
Ability to select external reference voltage.
When configuring ADC using external Vref, PB5 is used as Vref in 28-pin package
Architecture
The ADC architecture, shown in Figure 11, consists of an 8-input multiplexer, sampleand-hold amplifier and 10-bit SAR ADC. The ADC digitizes the signal on a selected
channel and stores the digitized data in the ADC data registers. In an environment with
high electrical noise, an external RC filter must be added at the input pins to reduce highfrequency noise.
TCONV = TS/H + TCON
TCONV = TS + TH + 13 * SCLK * ADC Prescaler
where:
SCLK = System clock
TCONV = Total conversion time
Ts = Sample time (SCLK*ADCST)
TCON = Conversion time (13 * SCLK * ADCCP)
TH = Hold time (SCLK * ADCSST)
DIV = ADC Prescaler register number
Example: For an F083A device operating at 10 MHz:
TCONV = 1 µs + 0.5 µs + 13 * SCLK * DIV
TCONV = 1 µs + 0.5 µs + 13 * (1/10 MHz) * 1 = 2.8 µs
PS026310-1212
PRELIMINARY
Analog-to-Digital Converter
Z8 Encore!® F083A Series
Product Specification
99
REFEN
Sel 28 Package
Internal Voltage
Reference Generator
VR2
RBUF
Analog Input
Multiplexer
Analog-to-Digital
Converter
ANA0
ANA1
Reference Input
Data
Output
VREF
10
ANA2
ANA3
Analog Input
BUSY
Sample-and-Hold
Amplifier
ANA4
ANA5
ANA6
ANA7
ADCLK
ANAIN[2:0]
ADCEN
SAMPLE/HOLD
START
Figure 11. Analog-to-Digital Converter Block Diagram
Operation
The ADC converts the analog input, ANAX, to a 10-bit digital representation. The equation for calculating the digital value is represented by:
ADCOutput = 1024 ANA x V REF
Assuming zero gain and offset errors, any voltage outside the ADC input limits of AVSS
and VREF returns all 0s or 1s, respectively. A new conversion is initiated by a software to
the ADC Control Register’s start bit.
Initiating a new conversion stops any conversion currently in progress and begins a new
conversion. To avoid disrupting a conversion already in progress, the START bit is read to
determine ADC operation status (i.e., busy or available).
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
100
ADC Timing
Each ADC measurement consists of three phases:
1. Input sampling (programmable, minimum of 1.0 µs).
2. Sample-and-hold amplifier settling (programmable, minimum of 0.5 µs).
3. Conversion is 13 ADCLK cycles.
Figure 12 displays the timing of an ADC conversion.
conversion period
START
1.0 µs min
sample period
Programable
settling period
SAMPLE/HOLD
13 clock
convert period
BUSY
convertbit7
convertbit6
convertbit5
convertbit4
convertbit3
4
5
6
7
8
9
store in register
convertbit8
3
convertbit0
convertbitmsb
2
convertbit1
sync
1
convertbit2
sync
Figure 12. ADC Timing Diagram
10
11
12
13
14
15
16
17
ADC Clock
BUSY
13 clocks
convert period
Figure 13. ADC Convert Timing
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
101
ADC Interrupt
The ADC generates an interrupt request when a conversion has been completed. An interrupt request that is pending when the ADC is disabled is not cleared automatically.
Reference Buffer
The reference buffer, RBUF, supplies the reference voltage for the ADC. When enabled,
the internal voltage reference generator supplies the ADC. When RBUF is disabled, the
ADC must have the reference voltage supplied externally through the VREF pin in 28-pin
package. RBUF is controlled by the REFEN bit in the ADC Control Register.
Internal Voltage Reference Generator
The internal voltage reference generator provides the RBUF voltage, VR2; this VR2 value
is 2 V.
Calibration and Compensation
The user can perform calibration and store the values into Flash; conversely, the user code
can perform a manual offset calibration. There is no provision for manual gain calibration.
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
102
ADC Control Register Definitions
The ADC control registers are defined in this section.
ADC Control Register 0
The ADC Control Register 0, shown in Table 63, initiates the A/D conversion and provides ADC status information.
Table 63. ADC Control Register 0 (ADCCTL0)
Bit
Field
RESET
R/W
7
6
5
4
3
START
Reserved
REFEN
ADCEN
Reserved
0
0
0
0
0
0
0
0
R/W1
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
2
1
0
ANAIN[2:0]
F70h
Bit
Position Description
[7]
START
ADC Start/Busy
0 = Writing to 0 has no effect. Reading a 0 indicates that the ADC is available to begin a conversion.
1 = Writing to 1 starts a conversion. Reading a 1 indicates that a conversion is currently in
progress.
[6]
Reserved
This bit is reserved and must be programmed to 0.
[5]
REFEN
Reference Enable
0 = Internal reference voltage is disabled allowing an external reference voltage to be used by
the ADC.
1 = Internal reference voltage for the ADC is enabled. The internal reference voltage is measured on the VREF pin.
[4]
ADCEN
ADC Enable
0 = ADC is disabled for Low Power operation.
1 = ADC is enabled for normal use.
[3]
Reserved
This bit is reserved and must be programmed to 0.
PS026310-1212
PRELIMINARY
ADC Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
103
Bit
Position Description (Continued)
[2:0]
ANAIN
Analog Input Select
000 = ANA0 input is selected for analog-to-digital conversion.
001 = ANA1 input is selected for analog-to-digital conversion.
010 = ANA2 input is selected for analog-to-digital conversion.
011 = ANA3 input is selected for analog-to-digital conversion.
100 = ANA4 input is selected for analog-to-digital conversion.
101 = ANA5 input is selected for analog-to-digital conversion.
110 = ANA6 input is selected for analog-to-digital conversion.
111 = ANA7 input is selected for analog-to-digital conversion.
ADC Data High Byte Register
The ADC Data High Byte Register, shown in Table 64, contains the upper eight bits of the
ADC output. Access to the ADC Data High Byte Register is read-only. Reading the ADC
Data High Byte Register latches data in the ADC Low Bits Register.
Table 64. ADC Data High Byte Register (ADCD_H)
Bit
7
6
Field
5
4
3
2
1
0
ADCDH
RESET
X
R/W
R
Address
F72H
Bit
Position
Value
(H)
[7:0]
00h–FFh ADC high byte
The last conversion output is held in the data registers until the next ADC conversion is completed.
PS026310-1212
Description
PRELIMINARY
ADC Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
104
ADC Data Low Bits Register
The ADC Data Low Bits Register, shown in Table 65, contain the lower bits of the ADC
output as well as an overflow status bit. Access to the ADC Data Low Bits Register is
read-only. Reading the ADC Data High Byte Register latches lower bits of the ADC in the
ADC Low Bits Register.
Table 65. ADC Data Low Bits Register (ADCD_L)
Bit
7
Field
6
5
4
3
2
ADCDL
Reserved
RESET
X
X
R/W
R
R
Address
1
0
F73H
Bit
Description
[7:6]
ADC Low Bits
00–11b = These bits are the two least significant bits of the 10-bit ADC output. These bits are
undefined after a reset. The low bits are latched into this register whenever the ADC Data High
Byte Register is read.
[5:0]
Reserved
These bits are reserved and must be programmed to 000000.
PS026310-1212
PRELIMINARY
ADC Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
105
Sample Settling Time Register
The Sample Settling Time Register, shown in Table 66, is used to program the delay after
the SAMPLE/HOLD signal is asserted and before the START signal is asserted; the conversion then begins. The number of clock cycles required for settling will vary from system to system depending on the system clock period used. The system designer must
program this register to contain the number of clocks required to meet a 0.5 µs minimum
settling time.
Table 66. Sample Settling Time (ADCSST)
Bit
7
Field
6
5
4
3
2
Reserved
RESET
0
R/W
R
Address
1
0
1
1
SST
1
1
R/W
F74H
Bit
Description
[7:4]
Reserved
These bits are reserved and must be programmed to 0000.
[3:0]
SST
0h–Fh: Sample settling time in number of system clock periods to meet 0.5 µs minimum.
PS026310-1212
PRELIMINARY
ADC Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
106
Sample Time Register
The sample time register, shown in Table 67, is used to program the length of active time
for the sample after a conversion has begun by setting the START bit in the ADC Control
Register. The number of system clock cycles required for the sample time varies from system to system, depending on the clock period used. The system designer must program
this register to contain the number of system clocks required to meet a 1 µs minimum sample time.
Table 67. Sample Time (ADCST)
Bit
7
Field
6
5
4
3
Reserved
RESET
0
R/W
1
0
1
1
1
ST
1
1
1
R/W
Address
2
R/W
F75H
Bit
Description
[7:6]
Reserved
These bits are reserved and must be programmed to 00.
[5:0]
ST
Sample/Hold Time
Measured in number of system clock periods to meet 1 µs minimum.
PS026310-1212
PRELIMINARY
ADC Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
107
ADC Clock Prescale Register
The ADC Clock Prescale Register, shown in Table 68, is used to provide a divided system
clock to the ADC. When this register is programmed with 0h, the system clock is used for
the ADC clock. DIV8 has the highest priority, DIV2 has the lowest priority.
Table 68. ADC Clock Prescale Register (ADCCP)
Bit
7
Field
RESET
6
5
4
3
2
1
0
Reserved
DIV8
DIV4
DIV2
0
0
0
0
R/W
R/W
Address
F76H
Bit
Description
[0]
DIV2
DIV2
0 = Clock is not divided.
1 = System clock is divided by 2 for ADC clock.
[1]
DIV4
DIV4
0 = Clock is not divided.
1 = System clock is divided by 4 for ADC clock
[2]
DIV8
DIV8
0 = Clock is not divided.
1 = System clock is divided by 8 for ADC clock.
[7:3]
Reserved
These bits are reserved and must be programmed to 00000.
PS026310-1212
PRELIMINARY
ADC Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
108
Comparator
Z8 Encore! F083A Series devices feature a general purpose comparator that compares two
analog input signals. A GPIO (CINP) pin provides the positive comparator input. The negative input (CINN) is taken from either an external GPIO pin or from an internal reference.
The output is available as an interrupt source or is routed to an external pin using the GPIO
multiplex. The comparator includes the following features:
•
•
•
Positive input is connected to a GPIO pin
Negative input is connected to either a GPIO pin or an programmable internal reference
Output is either an interrupt source or an output to an external pin
Operation
One of the comparator inputs is connected to an internal reference, which is a user selectable reference and is user programmable with 200 mV resolution.
The comparator may be powered down to save supply current. For more details, see the
Power Control Register 0 section on page 32.
Caution: As a result of the propagation delay of the comparator, Zilog does not recommend enabling the comparator without first disabling interrupts and waiting for the comparator
output to settle. This delay prevents spurious interrupts after comparator enabling.
The following sample code shows how to safely enable the comparator:
di
ld cmp0
nop
nop
; wait for output to settle
clr irq0 ; clear any spurious interrupts pending
ei
PS026310-1212
PRELIMINARY
Comparator
Z8 Encore!® F083A Series
Product Specification
109
Comparator Control Register Definition
The Comparator Control Register (CMPCTL) configures the comparator inputs and sets
the value of the internal voltage reference. The GPIO pin always used as positive comparator input.
Table 69. Comparator Control Register (CMP0)
Bit
Field
RESET
R/W
7
6
Reserved
INNSEL
0
0
0
1
0
1
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
5
4
3
2
1
REFLVL
0
Reserved
F90H
Bit
Description
[7]
Reserved
This bit is reserved and must be programmed to 0.
[6]
INNSEL
Signal Select for Negative Input
0 = internal reference disabled, GPIO pin used as negative comparator input.
1 = internal reference enabled as negative comparator input.
[5:2]
REFLVL
Internal Reference Voltage Level
This reference is independent of the ADC voltage reference.
0000 = 0.0 V.
0001 = 0.2 V.
0010 = 0.4 V.
0011 = 0.6 V.
0100 = 0.8 V.
0101 = 1.0 V (Default).
0110 = 1.2 V.
0111 = 1.4 V.
1000 = 1.6 V.
1001 = 1.8 V.
1010–1111 = Reserved.
[1:0]
Reserved
These bits are reserved and must be programmed to 00.
PS026310-1212
PRELIMINARY
Comparator Control Register Definition
Z8 Encore!® F083A Series
Product Specification
110
Flash Memory
The products in the Z8 Encore! F083A Series features either 4 KB (4096 bytes with
NVDS) or 8 KB (8192 bytes with NVDS) of nonvolatile Flash memory with read/write/
erase capability. The Flash memory is programmed and erased in-circuit by either user
code or through the On-Chip Debugger.
The Flash memory array is arranged in pages with 512-bytes per page. The 512-byte page
is the minimum Flash block size that is erased. Each page is divided into eight rows of 64
bytes.
For program/data protection, Flash memory is also divided into sectors. In the Z8 Encore!
F083A Series, each sector maps to one page for 4 KB devices and two pages for 8 KB
devices.
The first two bytes of the Flash program memory are used as Flash option bits. For details,
see the Flash Option Bits chapter on page 124.
Table 70 describes the Flash memory configuration for each device in the Z8 Encore!
F083A Series. Figures 14 and 15 display the Flash memory arrangement.
Table 70. Z8 Encore! F083A Series Flash Memory Configurations
Part Number
Flash Size
KB (Bytes)
Flash
Pages
Program Memory
Addresses
Flash Sector
Size (bytes)
Z8F083A
8 (8196)
16
0000H–1FFFH
1024
Z8F043A
4 (4096)
8
0000H–0FFFH
512
PS026310-1212
PRELIMINARY
Flash Memory
Z8 Encore!® F083A Series
Product Specification
111
0FFFH
0FFFH
Page 7
Sector 7
0E00H
0DFFH
0E00H
0DFFH
Page 6
Sector 6
0C00H
0BFFH
0C00H
0BFFH
Page 5
Sector 5
0A00H
09FFH
0A00H
09FFH
Page 4
Sector 4
0800H
07FFH
Page 3
Sector 3
0800H
07FFH
0600H
05FFH
0600H
05FFH
Page 2
Sector 2
0400H
03FFH
0400H
03FFH
Page 1
Sector 1
0200H
01FFH
0200H
01FFH
Page 0
Sector 0
0000H
0000H
Figure 14. 4K Flash with NVDS
PS026310-1212
PRELIMINARY
Flash Memory
Z8 Encore!® F083A Series
Product Specification
112
Page 15
1FFFH
Page 14
Sector 7
1C00H
18FFH
Page 13
Page 12
Sector 6
1800H
17FFH
Page 11
Sector 5
Page 10
1400H
13FFH
Page 9
Sector 4
1C00H
0FFFH
Page 8
Page 7
Sector 3
Page 6
0C00H
0BFFH
Page 5
Sector 2
Page 4
0800H
07FFH
Page 3
Sector 1
Page 2
0400H
03FFH
Page 1
Sector 0
Page 0
0000H
1FFFH
1E00H
1DFFH
1C00H
1BFFH
1A00H
19FFH
1800H
17FFH
1600H
15FFH
1400H
13FFH
1200H
11FFH
1C00H
0FFFH
0E00H
0DFFH
0C00H
0BFFH
0A00H
09FFH
0800H
07FFH
0600H
05FFH
0400H
03FFH
0200H
0100H
0000H
Figure 15. 8K Flash with NVDS
Data Memory Address Space
The Flash information area, including the Zilog Flash option bits, is located in the data
memory address space. The Z8 Encore! F083A Series devices are configured by the Zilog
Flash option bits to prevent the user from writing to the eZ8 CPU data memory address
space.
Flash Information Area
The Flash information area is physically separate from program memory and is mapped to
the address range FE00H to FE7FH. Not all of these addresses are user-accessible. Factory
trim values for the VBO and internal precision oscillator, and factory calibration data for
the ADC, are stored here.
PS026310-1212
PRELIMINARY
Data Memory Address Space
Z8 Encore!® F083A Series
Product Specification
113
Table 71 describes the Flash information area. This 128-byte information area is accessed
by setting the bit 7 of the Flash Page Select Register to 1. When access is enabled, the
Flash information area is mapped into program memory and overlays the 128-bytes at the
addresses FE00H to FE7FH. When the information area access is enabled, all reads from
these program memory addresses return the information area data rather than the program
memory data. Access to the Flash information area is read-only.
The trim bits are handled differently than the other Zilog Flash option bits. The trim bits
are the hybrid of the user option bits and the standard Zilog option bits. These trim bits
must be user accessible for reading at all times using external registers, regardless of the
state of bit 7 in the Flash Page Select Register. Writes to the trim space change the value of
the option bit holding register, but does not affect the Flash bits, which remain as read-only.
Table 71. Z8F083 Flash Memory Area Map
Program Memory
Address (Hex)
Function
FE00–FE3F
Zilog option bits
FE40–FE53
Part number
20-character ASCII alphanumeric code
Left-justified and filled with FH
FE54–FE5F
Reserved
FE60–FE7F
Zilog calibration data
Operation
The Flash Controller programs and erases Flash memory, and provides the proper Flash
controls and timing for the byte programming, page erase and mass erase operations performed in Flash memory.
The Flash Controller contains several protection mechanisms to prevent accidental programming or erasure. These mechanism operate on the page, sector and full-memory levels.
The flow chart in Figure 16 displays basic Flash Controller operation. The subsections that
follow provide details about the various operations (Lock, Unlock, Byte Programming,
Page Protect, Page Unprotect, Page Select Page Erase and Mass Erase) shown in
Figure 16.
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
114
Reset
Lock State 0
Write Page
Select Register
Write FCTL
No
73H
Yes
Lock State 1
Write FCTL
Writes to Page Select
Register in Lock State 1
result in a return to
Lock State 0
No
8CH
Yes
Write Page
Select Register
No
Page Select
values match?
Yes
Yes
Page in
Protected Sector?
Byte Program
Write FCTL
No
Page
Unlocked
Program/Erase
Enabled
Yes
95H
Page Erase
No
Figure 16. Flash Controller Operation Flow Chart
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
115
Flash Operation Timing Using the Flash Frequency Registers
Before performing either a Program or Erase operation on Flash memory, the user must
first configure the Flash frequency High and Low Byte registers. The Flash frequency registers allow programming and erasing of the Flash with system clock frequencies ranging
from 10 kHz to 20 MHz.
The Flash frequency High and Low Byte registers combine to form a 16-bit value, FFREQ,
to control the timing for Flash Program and Erase operations. The 16-bit binary Flash frequency value must contain the system clock frequency (in kHz). This value is calculated
using the following equation:
System Clock Frequency (Hz)
FFREQ[15:0] = -----------------------------------------------------------------------1000
Caution: Flash programming and erasure are not supported for system clock frequencies below
10 kHz or above 20 MHz. The Flash frequency High and Low Byte registers must be loaded with the correct value to ensure operation of the Z8 Encore! F083A Series devices.
Flash Code Protection Against External Access
The user code contained within Flash memory is protected against external access by
using the On-Chip Debugger. Programming the FRP Flash option bit prevents reading of
the user code using the On-Chip Debugger. For more details, see the Flash Option Bits
chapter on page 124 and the On-Chip Debugger chapter on page 139.
Flash Code Protection Against Accidental Program and
Erasure
Z8 Encore! F083A Series devices provide several levels of protection against accidental
program and erasure of the Flash memory contents. This protection is provided by a combination of the Flash option bits, the register locking mechanism, the page select redundancy and the sector level protection control of the Flash Controller.
Flash Code Protection using the Flash Option Bits
The FHSWP and FWP Flash option bits combine to provide three levels of Flash program
memory protection as listed in Table 72. For more details, see the Flash Option Bits chapter on page 124.
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
116
Table 72. Flash Code Protection Using Flash Option Bits
FHSWP
FWP
Flash Code Protection Description
0
0
Programming and erasing disabled for all Flash program memory. In user code programming, page erase and mass erase are all disabled. Mass erase is available
through the On-Chip Debugger.
0 or 1
1
Programming, page erase and mass erase are enabled for all of the Flash program
memory.
At reset, the Flash Controller is locked to prevent accidental program or erasure of Flash
memory. To program or erase Flash memory, first write the target page to the Page Select
Register. Unlock the Flash Controller by making two consecutive writes to the Flash Control Register with the values 73H and 8CH, sequentially. The Page Select Register must be
rewritten with the same page previously stored there. If the two page select writes do not
match, the controller reverts to a Locked state. If the two writes match, the selected page
becomes active. For details, see Figure 16 on page 114.
After unlocking a specific page, the user must enable either page program or erase. Writing the value 95H causes a page erase only if the active page resides in a sector that is not
protected. Any other value written to the Flash Control Register locks the Flash Controller.
Mass erase is not allowed in the user code, but is allowed through the debug port.
After unlocking a specific page, the user must also write to any byte on that page. After a
byte is written, the page remains unlocked, allowing for subsequent writes to other bytes
on the same page. Further writes to the Flash Control Register causes the active page to
revert to a Locked state.
Sector-Based Flash Protection
The final protection mechanism is implemented on a per-sector basis. The Flash memories
of Z8 Encore! devices are divided into maximum number of eight sectors. A sector is oneeighth of the total size of Flash memory, unless this value is smaller than the page size, in
which case the sector and page sizes are equal. On the Z8 Encore! F083A Series devices,
the sector size is varied; see Table 70 and Figures 14 and 15.
The Flash Sector Protect Register can be configured to prevent sectors from being programmed or erased. After a sector is protected, it cannot be unprotected by user code. The
Flash Sector Protect Register is cleared after reset and any previously written protection
values is lost. User code must write this register in their initialization routine if they want
to enable sector protection.
The Flash Sector Protect Register shares its Register File address with the Page Select
Register. The Flash Sector Protect Register is accessed by writing the Flash Control Register with 5EH. After the Flash Sector Protect Register is selected, it can be accessed at the
Page Select Register address. When user code writes the Flash Sector Protect Register,
bits can only be set to 1. Thus, sectors can be protected, but not unprotected, via register
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
117
write operations. Writing a value other than 5EH to the Flash Control Register deselects
the Flash Sector Protect Register and reenables access to the Page Select Register.
Observe the following procedure to setup the Flash Sector Protect Register from user
code:
1. Write 00H to the Flash Control Register to reset the Flash Controller.
2. Write 5EH to the Flash Control Register to select the Flash Sector Protect Register.
3. Read and/or write the Flash Sector Protect Register which is now at Register File
address FF9H.
4. Write 00H to the Flash Control Register to return the Flash Controller to its reset state.
The Sector Protect Register is initialized to 0 upon reset, putting each sector into an unprotected state. When a bit in the Sector Protect Register is written to 1, the corresponding
sector is no longer be written or erased. After setting a bit in the Sector Protect Register,
the bit cannot be cleared by the user.
Byte Programming
The Flash memory is enabled for byte programming after unlocking the Flash Controller
and successfully enabling either mass erase or page erase. When the Flash Controller is
unlocked and mass erase is successfully enabled, all of the program memory locations are
available for byte programming. In contrast, when the Flash Controller is unlocked and
page erase is successfully enabled, only the locations of the selected page are available for
byte programming. An erased Flash byte contains all 1’s (FFH). The programming operation is used only to change bits from 1 to 0. To change a Flash bit (or multiple bits) from 0
to 1 requires execution of either the page erase or mass erase commands.
Byte programming is accomplished using the On-Chip Debugger’s write memory command or eZ8 CPU execution of the LDC or LDCI instructions. For the description of the
LDC and LDCI instructions, refer to the eZ8 CPU Core User Manual (UM0128), available
for download on www.zilog.com. While the Flash Controller programs Flash memory, the
eZ8 CPU idles, but the system clock and on-chip peripherals continue to operate. To exit
programming mode and lock the Flash, write any value to the Flash Control Register,
except the mass erase or page erase commands.
Caution: The byte at each Flash memory address cannot be programmed (any bits written to 0)
more than twice before an erase cycle occurs.
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
118
Page Erase
The Flash memory is erased one page (512 bytes) at a time. Page erasing Flash memory
sets all bytes in that page to the value FFH. The Flash Page Select Register identifies the
page to be erased. Only a page residing in an unprotected sector is erased. With the Flash
Controller unlocked and the active page set, writing the value 95h to the Flash Control
Register initiates the Page Erase operation. While the Flash Controller executes the Page
Erase operation, the eZ8 CPU idles, but the system clock and on-chip peripherals continue
to operate. The eZ8 CPU resumes operation after the Page Erase operation completes. If
the Page Erase operation is performed using the On-Chip Debugger, poll the Flash status
register to determine when the Page Erase operation is complete. When the page erase is
complete, the Flash Controller returns to its Locked state.
Mass Erase
The Flash memory is also mass erased using the Flash Controller, but only by using the
On-Chip Debugger. Mass erasing Flash memory sets all bytes to the value FFH. With the
Flash Controller unlocked and the mass erase successfully enabled, writing the value 63H
to the Flash Control Register initiates the Mass Erase operation. While the Flash Controller executes the Mass Erase operation, the eZ8 CPU idles, but the system clock and onchip peripherals continue to operate. Using the On-Chip Debugger, poll the Flash status
register to determine when the Mass Erase operation is complete. When the mass erase is
complete, the Flash Controller returns to its Locked state.
Flash Controller Bypass
The Flash Controller is bypassed and the control signals for Flash memory are brought out
to the GPIO pins. Bypassing the Flash Controller allows faster row programming algorithms by controlling the Flash programming signals directly.
Row programing is recommended for gang programming applications and large volume
customers who do not require in-circuit initial programming of Flash memory. Mass Erase
and Page Erase operations are also supported, when the Flash Controller is bypassed.
For more information about bypassing the Flash Controller, refer to the Third Party Flash
Programming Support for Z8 Encore! MCUs Application Note. This document is available for download at www.zilog.com.
Flash Controller Behavior in Debug Mode
The following behavioral changes are observed in the Flash Controller when the Flash
Controller is accessed using the On-Chip Debugger:
•
PS026310-1212
The Flash write protect option bit is ignored.
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
119
•
The Flash Sector Protect Register is ignored for programming and Erase operations.
•
Programming operations are not limited to the page selected in the Page Select
Register.
•
Bits in the Flash Sector Protect Register are written to one or zero.
•
The second write of the Page Select Register to unlock the flash controller is not
necessary.
•
The Page Select Register is written when the Flash Controller is unlocked.
•
The mass erase command is enabled through the Flash Control Register
Caution: For security reasons, Flash Controller allows only a single page to be opened for write/
erase. When writing multiple Flash pages, the Flash Controller must go through the unlock sequence again to select another page.
NVDS Operational Requirements
The device uses a 12 KB Flash memory, despite the maximum specified Flash of 8 KB size
(except 12 KB mode with non-NVDS). User code accesses the lower 8 KB of flash, leaving the upper 4 K for Zilog memory. The NVDS is implemented by using Zilog memory
for special purpose routines and for the data required by the routines. These routines are
factory programmed and cannot be altered by the user. The NVDS operation is described
in detail. See the Nonvolatile Data Storage chapter on page 134.
The NVDS routines are triggered by a user code: CALL into Zilog memory. Code executing from Zilog memory must be able to read and write other locations within Zilog memory. User code must not be able to read or write Zilog memory.
Flash Control Register Definitions
This section defines the features of the following Flash Control registers.
Flash Control Register: see page 120
Flash Status Register: see page 121
Flash Page Select Register: see page 121
Flash Sector Protect Register: see page 122
Flash Frequency High and Low Byte Registers: see page 123
PS026310-1212
PRELIMINARY
NVDS Operational Requirements
Z8 Encore!® F083A Series
Product Specification
120
Flash Control Register
The Flash Controller must be unlocked using the Flash Control Register before programming or erasing Flash memory. Writing the sequence 73H 8CH, sequentially, to the Flash
Control Register unlocks the Flash Controller. When the Flash Controller is unlocked,
Flash memory is enabled for mass erase or page erase by writing the appropriate enable
command to the FCTL. Page erase applies only to the active page selected in the Flash
Page Select Register. Mass erase is enabled only through the On-Chip Debugger. Writing
an invalid value or an invalid sequence returns the Flash Controller to its Locked state.
The write-only Flash Control Register, shown in Table 73, shares its Register File address
with the read-only Flash Status Register.
Table 73. Flash Control Register (FCTL)
Bit
7
6
5
4
Field
3
2
1
0
FCMD
RESET
0
0
0
0
0
0
0
0
R/W
W
W
W
W
W
W
W
W
Address
FF8H
Bit
Description
[7:0]
FCMD
Flash Command
73H = First unlock command.
8CH = Second unlock command.
95H = Page erase command (must be third command in sequence to initiate page erase).
63H = Mass erase command (must be third command in sequence to initiate mass erase).
5EH = Enable Flash Sector Protect Register access.
PS026310-1212
PRELIMINARY
Flash Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
121
Flash Status Register
The Flash Status Register, shown in Table 74, indicates the current state of the Flash Controller. This register is read at any time. The read-only Flash status register shares its Register File address with the write-only Flash Control Register.
Table 74. Flash Status Register (FSTAT)
Bit
7
Field
6
5
4
3
Reserved
2
1
0
FSTAT
RESET
0
0
0
0
0
0
0
0
R/W
R
R
R
R
R
R
R
R
Address
FF8H
Bit
Description
[7:6]
Reserved
These bits are reserved and must be programmed to 00.
[5:0]
FSTAT
Flash Controller Status
000000 = Flash Controller locked.
000001 = First unlock command received (73H written).
000010 = Second unlock command received (8CH written).
000011 = Flash Controller unlocked.
000100 = Sector protect register selected.
001xxx = Program operation in progress.
010xxx = Page Erase operation in progress.
100xxx = Mass Erase operation in progress.
Flash Page Select Register
The Flash Page Select Register, shown in Table 75, shares address space with the Flash
Sector Protect Register. Unless the Flash Controller is locked and written with 5EH, any
writes to this address will target the Flash Page Select Register.
This register selects one of the eight available Flash memory pages to be programmed or
erased. Each Flash page contains 512-bytes of Flash memory. During a Page Erase operation, all Flash memory having addresses with the most significant 7 bits given by FPS[6:0]
are chosen for Program/Erase operation.
PS026310-1212
PRELIMINARY
Flash Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
122
Table 75. Flash Page Select Register (FPS)
Bit
Field
RESET
R/W
7
6
5
4
3
INFO_EN
2
1
0
PAGE
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FF9H
Bit
Description
[7]
INFO_EN
Information Area Enable
0 = Information area is not selected.
1 = Information area is selected. The information area is mapped into the program memory
address space at addresses FE00H through FFFFH.
[6:0]
PAGE
Page Select
This 7-bit field identifies the Flash memory page for page erase and page unlocking. Program
memory address[15:9] = PAGE[6:0]. For Z8F04xx devices, the upper four bits must always be 0.
Flash Sector Protect Register
The Flash Sector Protect Register, shown in Table 76, is shared with the Flash Page Select
Register. When the Flash Control Register is locked and written with 5EH, the next write
to this address targets the Flash Sector Protect Register. In all other cases, it targets the
Flash Page Select Register.
This register selects one of the eight available Flash memory sectors to be protected. The
Reset state of each sector protect bit is a zero (unprotected) state. After a sector is protected by setting its corresponding register bit, the register bit cannot be cleared by the
user.
Table 76. Flash Sector Protect Register (FPROT)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
0
SPROT7
SPROT6
SPROT5
SPROT4
SPROT3
SPROT2
SPROT1
SPROT0
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
Bit
FF9H
Description
[7:0]
Sector Protection
SPROTx To determine the appropriate Flash memory sector address range and sector number for your
F083A Series product, please refer to Table 70 and to Figures 14 and 15.
Note: x indicates register bits 7–0.
PS026310-1212
PRELIMINARY
Flash Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
123
Flash Frequency High and Low Byte Registers
The Flash Frequency High and Low Byte registers, shown in Tables 77 and 78, combine
to form a 16-bit value, FFREQ, to control timing for Flash Program and Erase operations.
The 16-bit binary Flash frequency value must contain the system clock frequency (in kHz)
and is calculated using the following equation.
System Clock Frequency
FFREQ[15:0] = FFREQH[7:0],FFREQL[7:0] = -----------------------------------------------------------1000
Caution: Flash programming and erasure is not supported for system clock frequencies below
10 kHz or above 20 MHz. The Flash frequency High and Low Byte registers must be
loaded with the correct value to ensure proper operation of the device.
Table 77. Flash Frequency High Byte Register (FFREQH)
Bit
7
6
5
4
Field
RESET
R/W
2
1
0
FFREQH
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
1
0
Address
Bit
3
FFAH
Description
[7:0]
Flash Frequency High Byte
FFREQH The high byte of the 16-bit Flash frequency value.
Table 78. Flash Frequency Low Byte Register (FFREQL)
Bit
7
Field
5
4
3
2
FFREQL
RESET
0
R/W
R/W
Address
Bit
6
FFBH
Description
[7:0]
Flash Frequency Low Byte
FFREQL The low byte of the 16-bit Flash frequency value.
PS026310-1212
PRELIMINARY
Flash Control Register Definitions
Z8 Encore!® F083A Series
Product Specification
124
Flash Option Bits
Programmable Flash option bits allow users to configure certain aspects of Z8 Encore!
F083A Series operation. The configuration data is stored in Flash program memory and
read during reset. These Flash option bits control the following functions:
•
•
•
•
Watchdog Timer time-out response selection at interrupt or system reset
•
VBO configuration, which is always enabled or disabled during STOP Mode to reduce
STOP Mode power consumption
•
OSCILLATOR mode selection for high, medium and low power crystal oscillators or
external RC oscillator
•
Factory trimming information for the internal precision oscillator and VBO voltage
Watchdog Timer enable at reset
The ability to prevent unwanted read access to user code in program memory
The ability to prevent accidental programming and erasure of all or a portion of the user
code in program memory
Operation
This section describes the type and configuration of the programmable Flash option bits.
Option Bit Configuration by Reset
Each time the Flash option bits are programmed or erased, the device must be reset for the
change to be effective. During any Reset operation (system reset or Stop Mode Recovery),
the Flash option bits are automatically read from the Flash program memory and written to
option configuration registers. The option configuration registers, control the operation of
the devices within the Z8 Encore! F083A Series. Option bit control is established before
the device exits reset and the eZ8 CPU begins code execution. The option configuration
registers are not part of the Register File and are not accessible for read or write access.
Option Bit Types
This section describes the two types of Flash option bits offered in the F083A Series.
User Option Bits
The user option bits are contained in the first two bytes of program memory. User access
to these bits is provided because these locations contain application-specific device con-
PS026310-1212
PRELIMINARY
Flash Option Bits
Z8 Encore!® F083A Series
Product Specification
125
figurations. The information contained in these first two bytes is lost when page 0 of program memory is erased.
Trim Option Bits
The trim option bits are contained in the information page of Flash memory. These bits are
factory programmed values required to optimize the operation of onboard analog circuitry
and cannot be permanently altered by the user. Program memory may be erased without
endangering these values. It is possible to alter working values of these bits by accessing
the trim bit address and data registers, but these working values are lost after a power loss.
There are 32-bytes of trim data. To modify one of these values, the user code must first
write a value between 00H and 1FH into the trim bit Address Register. The next write to
the trim bit data register changes the working value of the target trim data byte.
Reading the trim data requires the user code to write a value between 00H and 1FH into the
trim bit Address Register. The next read from the trim bit data register returns the working
value of the target trim data byte.
Note: The trim address range is from information address 20–3F only. The remainder of the
information page is not accessible through the trim bit address and data registers.
During reset, the first 43 system clock cycles perform 43 Flash accesses. The six bits of
the counter provide the lower six bits of the Flash memory address. All other address bits
are set to 0. The option bit registers use the 6-bit address from the counter as an address
and latch the data from the Flash on the positive edge of the IPO clock, allowing for a
maximum of 344 bits (43 bytes) of option information to be read from Flash memory.
Because option information is stored in both the first two bytes of program memory and in
the information area of Flash memory, the data must be placed in specific locations to be
read correctly. In this case, the first two bytes at address 0 and 1 in program memory are
read and the remainder of the bytes are read from the Flash information area.
PS026310-1212
PRELIMINARY
Operation
Z8 Encore!® F083A Series
Product Specification
126
Flash Option Bit Control Register Definitions
This section briefly describes the features of the Trim Bit Address and Data registers.
Trim Bit Address Register
The Trim Bit Address Register, shown in Table 79, contains the target address to access
the trim option bits.Trim bit addresses in the range (00H-1FH) map to the information area
addresses (20H to 3FH) listed in Table 80.
Table 79. Trim Bit Address Register (TRMADR)
Bit
7
6
Field
RESET
R/W
5
4
3
2
1
0
TRMADR: Trim Bit Address (00H to 1FH)
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FF6H
Table 80. Trim Bit Address Map
Trim Bit
Address
Information
Area Address
00H
20H
01H
21H
02H
22H
03H
23H
:
:
1FH
3FH
Trim Bit Data Register
The Trim Bit Data Register, shown in Table 81, contains the read or write data to access
the trim option bits.
PS026310-1212
PRELIMINARY
Flash Option Bit Control Register
Z8 Encore!® F083A Series
Product Specification
127
Table 81. Trim Bit Data Register (TRMDR)
Bit
7
6
5
4
Field
3
2
1
0
TRMDR: Trim Bit Data
RESET
R/W
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FF7H
Flash Option Bit Address Space
The first two bytes of Flash program memory at addresses 0000H and 0001H are reserved
for the user-programmable Flash option bits.
Flash Program Memory Address 0000H
Table 82. Flash Option Bits at Program Memory Address 0000H
Bit
Field
7
WDT_RES WDT_AO
RESET
R/W
6
5
4
OSC_SEL[1:0]
3
2
1
0
VBO_AO
FRP
Reserved
FWP
U
U
U
U
U
U
U
U
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
Program Memory 0000H
Note: U = Unchanged by Reset; R/W = Read/Write.
Bit
Description
[7]
WDT_RES
Watchdog Timer Reset
0 = Watchdog Timer time-out generates an interrupt request. Interrupts must be globally
enabled for the eZ8 CPU to acknowledge the interrupt request.
1 = Watchdog Timer time-out causes a system reset. This is the default setting for unprogrammed (erased) Flash.
[6]
WDT_AO
Watchdog Timer Always On
0 = On application of system power, Watchdog Timer is automatically enabled. Watchdog
Timer cannot be disabled.
1 = Watchdog Timer is enabled on execution of the WDT instruction. Once enabled, the
Watchdog Timer is disabled only by a reset. This is the default setting for unprogrammed (erased) Flash.
PS026310-1212
PRELIMINARY
Flash Option Bit Address Space
Z8 Encore!® F083A Series
Product Specification
128
Bit
Description (Continued)
[5:4]
OSC_SEL
OSCILLATOR Mode Selection
00 = On-chip oscillator configured for use with external RC networks ( VPOR; TPOR
Digital Reset delay
follows TANA
Note:
1. Data in the typical column is from characterization at 3.3 V and 0°C. These values are provided for design guidance only and are not tested in production.
PS026310-1212
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical
Z8 Encore!® F083A Series
Product Specification
190
Table 119. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing
TA = –40°C to
+105°C
TA = 0°C to +70°C
Min
Typ1
Max
POR Digital Delay
TBD
13
TBD
µs
66 Internal Precision Oscillator
cycles
TPOR
POR Digital Delay
TBD
8
TBD
ms
5000 Internal Precision Oscillator
cycles
TSMR
Stop Mode
Recovery with
crystal oscillator
disabled
TBD
13
TBD
µs
66 Internal Precision Oscillator
cycles
TSMR
Stop Mode
Recovery with
crystal oscillator
enabled
TBD
8
TBD
ms
5000 Internal Precision Oscillator
cycles
TVBO
Voltage BrownOut Pulse Rejection Period
–
10
–
µs
VDD < VVBO to generate a Reset.
TRAMP
Time for VDD to
transition from
VSS to VPOR to
ensure valid
Reset
0.10
–
100
ms
Symbol
Parameter
TPOR
Min
Typ
Max
Units Conditions
Note:
1. Data in the typical column is from characterization at 3.3 V and 0°C. These values are provided for design guidance only and are not tested in production.
PS026310-1212
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical
Z8 Encore!® F083A Series
Product Specification
191
Table 120. Flash Memory Electrical Characteristics and Timing
VDD = 2.7 V to 3.6 V
TA = –40°C to +105°C
VDD = 2.7 V to 3.6 V
TA = 0°C to +70°C
Min
Typ
Max
Flash Byte Read
Time
50
–
–
ns
Flash Byte Program Time
20
–
–
µs
Flash Page Erase
Time
50
–
–
ms
Flash Mass Erase
Time
50
–
–
ms
Writes to Single
Address Before
Next Erase
–
–
2
Flash Row
Program Time
–
–
8
Data Retention
10
–
–
years 25°C
10,000
–
–
cycles Program/erase cycles
Parameter
Min
Typ
Max
Endurance
Units
ms
Notes
Cumulative program
time for single row cannot exceed limit before
next erase. This
parameter is only an
issue when bypassing
the Flash Controller.
Table 121. Watchdog Timer Electrical Characteristics and Timing
VDD = 2.7 V to 3.6 V
TA = 0°C to +70°C
Symbol
Parameter
Min
Typ
Max
VDD = 2.7 V to 3.6 V
TA = –40°C to +105°C
Min
Active power
consumption
FWDT
WDT oscillator
frequency
PS026310-1212
2.5
Typ
Max
Units Conditions
2
3
µA
5
7.5
kHz
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical
Z8 Encore!® F083A Series
Product Specification
192
Table 122. Nonvolatile Data Storage
VDD = 2.7 V to 3.6 V
TA = –40°C to +105°C
VDD = 2.7 V to 3.6 V
TA = 0°C to +70°C
Parameter
Min
Typ
Max
Min
Typ
Max
Units
NVDS Byte
Read Time
71
–
258
µs
With system
clock at
20 MHz
NVDS Byte
Program Time
126
–
136
µs
With system
clock at
20 MHz
Data Retention
10
–
–
years
25°C
100,000
–
–
cycles
Cumulative
write cycles for
entire memory
Endurance
Notes
Note: For every 200 writes, a maintenance operation is necessary. In this rare occurrence, the
write takes up to 58 ms to complete.
Table 123. Analog-to-Digital Converter Electrical Characteristics and Timing
VDD = 2.7 V to 3.6 V
TA = 0°C to +70°C
VDD = 2.7 V to 3.6 V
TA = –40°C to +105°C
Min
Min
Typ
Max
Symbol
Parameter
N
Resolution
–
10
–
bits
DNL
Differential
Nonlinearity1
–1
–
+4
LSB
INL
Integral
Nonlinearity1
–5
–
+5
LSB
Typ
Max
Gain Error
Offset Error
VREF
On chip reference
IDDADC
ADC Active
Current
15
Units Conditions
LSB
–15
–
15
LSB PDIP package
–9
–
9
LSB Other packages
1.9
2.0
2.1
4
V
mA
Note:
1. When the input voltage is lower than 20 mV, the conversion error is out of specification tolerance.
PS026310-1212
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical
Z8 Encore!® F083A Series
Product Specification
193
Table 123. Analog-to-Digital Converter Electrical Characteristics and Timing (Continued)
Symbol
Parameter
VDD = 2.7 V to 3.6 V
TA = 0°C to +70°C
VDD = 2.7 V to 3.6 V
TA = –40°C to +105°C
Min
Min
Typ
Max
Typ
Max
IDD2ADC ADC Quiescent
Current
1
ZIN
Input Impedance
10
VIN
Input Voltage
Range
0
2.0
0
0.9*VDD
Units Conditions
µA
MΩ
2.8
V
Internal reference.
External reference.
TCONV
Conversion Time
GBWIN
Input Bandwidth
350
kHz
TWAKE
Wake Up Time
0.02
ms
Internal reference.
10
ms
External reference.
Input Clock Duty
µs
45
50
fADC_CLK Maximum
Frequency of
ADC_CLK
10 MHz (ADC
Clock)
55
%
10
MHz
Note:
1. When the input voltage is lower than 20 mV, the conversion error is out of specification tolerance.
Table 124. Comparator Electrical Characteristics
VDD = 2.7 V to 3.6 V
TA = 0°C to +70°C
VDD = 2.7 V to 3.6 V
TA = –40°C to +105°C
Symbol
Parameter
VOS
Input DC Offset
VCREF
Programmable Internal Reference Voltage Range
0
VCREF
Programmable internal reference voltage
0.92
TPROP
Propagation delay
VHYS
Input hysteresis
PS026310-1212
Min
Typ
Max
Min
Typ
Max
5
1.0
Units Conditions
mV
1.8
V
User-programmable in 200
mV step
1.08
V
Default
(CMP0[REFLV
L]=5H)
100
ns
8
mV
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical
Z8 Encore!® F083A Series
Product Specification
194
General Purpose I/O Port Input Data Sample Timing
Figure 30 and Table 125 display timing data for the GPIO port input sampling operation.
The input value on a GPIO port pin is sampled on the rising edge of the system clock. The
port value is available to the eZ8 CPU on the second rising clock edge following the
change of the port value.
TCLK
System
Clock
Port Value
Changes to 0
Port Pin
Input Value
Port Input Data
Register Latch
0 Latched
Into Port Input
Data Register
Port Input Data Register
Value 0 Read
by eZ8
Port Input Data
Read on Data Bus
Figure 30. Port Input Sample Timing
Table 125. GPIO Port Input Timing
Delay (ns)
Parameter
Abbreviation
Minimum
Maximum
TS_PORT
Port Input Transition to XIN Rise Setup Time (not pictured)
5
–
TH_PORT
XIN Rise to Port Input Transition Hold Time (not pictured)
0
–
TSMR
GPIO Port Pin Pulse Width to ensure Stop Mode Recovery
(for GPIO Port Pins enabled as SMR sources)
PS026310-1212
1 µs
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical
Z8 Encore!® F083A Series
Product Specification
195
GPIO Port Output Timing
Figure 31 and Table 126 provide timing information for the GPIO port pins.
TCLK
XIN
T1
T2
Port Output
Figure 31. GPIO Port Output Timing
Table 126. GPIO Port Output Timing
Delay (ns)
Parameter
Abbreviation
Minimum
Maximum
GPIO Port pins
T1
XIN Rise to Port Output Valid Delay
–
15
T2
XIN Rise to Port Output Hold Time
2
–
PS026310-1212
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical
Z8 Encore!® F083A Series
Product Specification
196
On-Chip Debugger Timing
Figure 32 and Table 127 provide timing information for the DBG pin. The DBG pin timing specifications assume a 4 ns maximum rise and fall time.
TCLK
XIN
T1
T2
DBG
(Output)
Output Data
T3
DBG
(Input)
T4
Input Data
Figure 32. On-Chip Debugger Timing
Table 127. On-Chip Debugger Timing
Delay (ns)
Parameter
Abbreviation
Minimum
Maximum
DBG
T1
XIN Rise to DBG Valid Delay
–
15
T2
XIN Rise to DBG Output Hold Time
2
–
T3
DBG to XIN Rise Input Setup Time
5
–
T4
DBG to XIN Rise Input Hold Time
5
–
PS026310-1212
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical
Z8 Encore!® F083A Series
Product Specification
197
Table 128. Power Consumption Reference Table
Power Consumption
Category
Block
Typical
Logic
CPU/Peripherals @20 MHz
Flash
Flash@20 MHz
Analog
ADC@20 MHz
4 mA
4.5 mA
IPO@20 MHz
350 µA
400 µA
Comparator@10 MHz
330 µA
450 µA
POR & VBO
120 µA
150 µA
2 µA
3 µA
OSC@20 MHz
600 µA
900 µA
Clock Filter
120 µA
150 µA
WDT OSC
Maximum
5 mA
12 mA
Note: The power consumption values in this table are subject to change upon characterization.
Figure 33. Flash Current Diagram
PS026310-1212
P R E L I M I N A R Y On-Chip Peripheral AC and DC Electrical
Z8 Encore!® F083A Series
Product Specification
198
Packaging
Zilog’s F083A Series of MCUs includes the Z8F043A and Z8F083A devices, which are
available in the following packages:
•
•
•
•
•
•
•
•
20-Pin Quad Flat No-Lead Package (QFN)
20-pin Small Outline Integrated Circuit Package (SOIC)
20-pin Plastic Dual-Inline Package (PDIP)
20-pin Small Shrink Outline Package (SSOP)
28-Pin Quad Flat No-Lead Package (QFN)
28-pin Small Outline Integrated Circuit Package (SOIC)
28-pin Plastic Dual-Inline Package (PDIP)
28-pin Small Shrink Outline Package (SSOP)
Current diagrams for each of these packages are published in Zilog’s Packaging Product
Specification (PS0072), which is available free for download from the Zilog website.
PS026310-1212
PRELIMINARY
Packaging
Z8 Encore!® F083A Series
Product Specification
199
Ordering Information
Order your F083A Series products from Zilog using the part numbers shown in Table 129.
For more information about ordering, please consult your local Zilog sales office. The
Sales Location page on the Zilog website lists all regional offices.
Table 129. Z8 Encore! F083A Series Ordering Matrix
Part Number
Flash
RAM
NVDS
ADC
Channels Description
Z8 Encore!F083A with 8 KB Flash
Standard Temperature: 0°C to 70°C
Z8F083ASH020SG
8 KB
256
100 B
7
SOIC 20-pin
Z8F083AHH020SG
8 KB
256
100 B
7
SSOP 20-pin
Z8F083APH020SG
8 KB
256
100 B
7
PDIP 20-pin
Z8F083AQH020SG
8 KB
256
100 B
7
QFN 20-pin
Z8F083ASJ020SG
8 KB
256
100 B
8
SOIC 28-pin
Z8F083AHJ020SG
8 KB
256
100 B
8
SSOP 28-pin
Z8F083AQJ020SG
8 KB
256
100 B
8
QFN 28-pin
Extended Temperature: –40°C to 105°C
Z8F083ASH020EG
8 KB
256
100 B
7
SOIC 20-pin
Z8F083AHH020EG
8 KB
256
100 B
7
SSOP 20-pin
Z8F083APH020EG
8 KB
256
100 B
7
PDIP 20-pin
Z8F083AQH020EG
8 KB
256
100 B
7
QFN 20-pin
Z8F083ASJ020EG
8 KB
256
100 B
8
SOIC 28-pin
Z8F083AHJ020EG
8 KB
256
100 B
8
SSOP 28-pin
Z8F083AQJ020EG
8 KB
256
100 B
8
QFN 28-pin
Z8 Encore!F083A with 4 KB Flash
Standard Temperature: 0°C to 70°C
Z8F043ASH020SG
4 KB
256
100 B
7
SOIC 20-pin
Z8F043AHH020SG
4 KB
256
100 B
7
SSOP 20-pin
Z8F043APH020SG
4 KB
256
100 B
7
PDIP 20-pin
Z8F043AQH020SG
4 KB
256
100 B
7
QFN 20-pin
Z8F043ASJ020SG
4 KB
256
100 B
8
SOIC 28-pin
Z8F043AHJ020SG
4 KB
256
100 B
8
SSOP 28-pin
Z8F043AQJ020SG
4 KB
256
100 B
8
QFN 28-pin
PS026310-1212
PRELIMINARY
Ordering Information
Z8 Encore!® F083A Series
Product Specification
200
Table 129. Z8 Encore! F083A Series Ordering Matrix (Continued)
Part Number
Flash
RAM
NVDS
ADC
Channels Description
Extended Temperature: –40°C to 105°C
Z8F043ASH020EG
4 KB
256
100 B
7
SOIC 20-pin
Z8F043AHH020EG
4 KB
256
100 B
7
SSOP 20-pin
Z8F043APH020EG
4 KB
256
100 B
7
PDIP 20-pin
Z8F043AQH020EG
4 KB
256
100 B
7
QFN 20-pin
Z8F043ASJ020EG
4 KB
256
100 B
8
SOIC 28-pin
Z8F043AHJ020EG
4 KB
256
100 B
8
SSOP 28-pin
Z8F043AQJ020EG
4 KB
256
100 B
8
QFN 28-pin
ZUSBOPTSC01ZACG
Opto-Isolated USB Smart Cable
Accessory Kit
ZUSBSC00100ZACG
USB Smart Cable Accessory Kit
ZENETSC0100ZACG
Ethernet Smart Cable Accessory
Kit
Z8F083A0128ZCOG
F083A Development Kit
Visit the Zilog website at http://www.zilog.com for ordering information about Z8 Encore!
F083A Series development tools and accessories.
PS026310-1212
PRELIMINARY
Ordering Information
Z8 Encore!® F083A Series
Product Specification
201
Part Number Suffix Designations
Zilog part numbers consist of a number of components, as indicated in the following
example.
Example. Part number Z8F083ASH020SG is an 8-bit 20 MHz Flash MCU with 8 KB of
Program Memory, equipped with a fast ADC in a 20-pin SOIC package, operating within
a 0ºC to +70ºC temperature range and built using lead-free solder.
Z8
F
08
3A
S
H
020
S
G
Environmental Flow
G = Green Plastic Packaging Compound
Temperature Range
S = Standard, 0°C to 70°C
E = Extended, –40°C to +105°C
Speed
020 = 20 MHz
Pin Count
H = 20
J = 28
Package
P = PDIP
Q = QFN
S = SOIC
H = SSOP
Device Type
3A = Equipped with fast ADC
Memory Size
08 = 8 KB Flash
04 = 4 KB Flash
Memory Type
F = Flash
Device Family
Z8 = Zilog’s 8-bit microcontroller
PS026310-1212
PRELIMINARY
Ordering Information
Z8 Encore!® F083A Series
Product Specification
202
In Table 130, a “√” mark indicates F083A Series package availability by pin count.
Table 130. Package and Pin Count Description
Pin Count
PS026310-1212
Package
20
PDIP
√
QFN
√
√
SOIC
√
√
SSOP
√
√
PRELIMINARY
28
Ordering Information
Z8 Encore!® F083A Series
Product Specification
203
Appendix A. Register Tables
For the reader’s convenience, this appendix lists all F083A Series registers numerically by
hexadecimal address.
General Purpose RAM
In the F083A Series, the 000–EFF hexadecimal address range is partitioned for generalpurpose random access memory, as follows.
Hex Addresses: 000–0FF
This address range is reserved for general-purpose register file RAM. For more details, see
the Register File section on page 14.
Hex Addresses: 100–EFF
This address range is reserved.
Timer 0
For more information about these Timer Control registers, see the Timer Control Register
Definitions section on page 83.
Hex Address: F00
Table 131. Timer 0 High Byte Register (T0H)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
TH
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
PS026310-1212
F00H
PRELIMINARY
General Purpose RAM
Z8 Encore!® F083A Series
Product Specification
204
Hex Address: F01
Table 132. Timer 0 Low Byte Register (T0L)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
TL
0
0
0
0
0
0
0
1
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F01H
Hex Address: F02
Table 133. Timer 0 Reload High Byte Register (T0RH)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
TRH
1
1
1
1
1
1
1
1
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F02H
Hex Address: F03
Table 134. Timer 0 Reload Low Byte Register (T0RL)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
TRL
1
1
1
1
1
1
1
1
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F03H
Hex Address: F04
Table 135. Timer 0 PWM High Byte Register (T0PWMH)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
PWMH
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
PS026310-1212
F04H
PRELIMINARY
Timer 0
Z8 Encore!® F083A Series
Product Specification
205
Hex Address: F05
Table 136. Timer 0 PWM Low Byte Register (T0PWML)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
PWML
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F05H
Hex Address: F06
Table 137. Timer 0 Control Register 0 (T0CTL0)
Bit
Field
RESET
R/W
7
6
TMODEHI
5
TICONFIG
4
3
Reserved
2
1
PWMD
0
INPCAP
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F06H
Hex Address: F07
Table 138. Timer 0 Control Register 1 (T0CTL1)
Bit
Field
RESET
R/W
7
6
5
4
3
2
TEN
TPOL
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
PRES
Address
1
0
TMODE
F07H
Hex Address: F08
Table 139. Timer 1 High Byte Register (T1H)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
TH
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
PS026310-1212
F08H
PRELIMINARY
Timer 0
Z8 Encore!® F083A Series
Product Specification
206
Hex Address: F09
Table 140. Timer 1 Low Byte Register (T1L)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
TL
0
0
0
0
0
0
0
1
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F09H
Hex Address: F0A
Table 141. Timer 1 Reload High Byte Register (T1RH)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
TRH
1
1
1
1
1
1
1
1
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F0AH
Hex Address: F0B
Table 142. Timer 1 Reload Low Byte Register (T1RL)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
TRL
1
1
1
1
1
1
1
1
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F0BH
Hex Address: F0C
Table 143. Timer 1 PWM High Byte Register (T1PWMH)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
PWMH
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
PS026310-1212
F0CH
PRELIMINARY
Timer 0
Z8 Encore!® F083A Series
Product Specification
207
Hex Address: F0D
Table 144. Timer 1 PWM Low Byte Register (T1PWML)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
PWML
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
1
0
Address
F0DH
Hex Address: F0E
Table 145. Timer 1 Control Register 0 (T1CTL0)
Bit
Field
RESET
R/W
7
6
TMODEHI
5
4
TICONFIG
3
Reserved
2
PWMD
INPCAP
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
1
0
Address
F0EH
Hex Address: F0F
Table 146. Timer 1 Control Register 1 (T1CTL1)
Bit
Field
RESET
R/W
7
6
5
4
3
2
TEN
TPOL
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
PRES
Address
TMODE
F0FH
Hex Addresses: F10–F6F
This address range is reserved.
PS026310-1212
PRELIMINARY
Timer 0
Z8 Encore!® F083A Series
Product Specification
208
Analog-to-Digital Converter (ADC)
For more information about these ADC registers, see the ADC Control Register Definitions section on page 102.
Hex Address: F70
Table 147. ADC Control Register 0 (ADCCTL0)
Bit
Field
RESET
R/W
7
6
5
4
3
START
Reserved
REFEN
ADCEN
Reserved
0
0
0
0
0
0
0
0
R/W1
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
2
1
0
ANAIN[2:0]
F70h
Bit
Position Description
[7]
START
ADC Start/Busy
0 = Writing to 0 has no effect. Reading a 0 indicates that the ADC is available to begin a conversion.
1 = Writing to 1 starts a conversion. Reading a 1 indicates that a conversion is currently in
progress.
[6]
Reserved
This bit is reserved and must be programmed to 0.
[5]
REFEN
Reference Enable
0 = Internal reference voltage is disabled, allowing an external reference voltage to be used by
the ADC.
1 = Internal reference voltage for the ADC is enabled. The internal reference voltage is measured on the VREF pin.
[4]
ADCEN
ADC Enable
0 = ADC is disabled for low power operation.
1 = ADC is enabled for normal use.
[3]
Reserved
This bit is reserved and must be programmed to 0.
PS026310-1212
PRELIMINARY
Analog-to-Digital Converter (ADC)
Z8 Encore!® F083A Series
Product Specification
209
Bit
Position Description (Continued)
[2:0]
ANAIN
Analog Input Select
000 = ANA0 input is selected for analog-to-digital conversion.
001 = ANA1 input is selected for analog-to-digital conversion.
010 = ANA2 input is selected for analog-to-digital conversion.
011 = ANA3 input is selected for analog-to-digital conversion.
100 = ANA4 input is selected for analog-to-digital conversion.
101 = ANA5 input is selected for analog-to-digital conversion.
110 = ANA6 input is selected for analog-to-digital conversion.
111 = ANA7 input is selected for analog-to-digital conversion.
Hex Address: F71
This address range is reserved.
Hex Address: F72
Table 148. ADC Data High Byte Register (ADCD_H)
Bit
7
Field
6
5
4
3
2
1
0
ADCDH
RESET
X
R/W
R
Address
F72H
Bit
Position Description
[7:0]
ADC High Byte
00h–FFh = The last conversion output is held in the data registers until the next ADC conversion is completed.
PS026310-1212
PRELIMINARY
Analog-to-Digital Converter (ADC)
Z8 Encore!® F083A Series
Product Specification
210
Hex Address: F73
Table 149. ADC Data Low Bits Register (ADCD_L)
Bit
7
Field
6
5
4
3
2
ADCDL
Reserved
RESET
X
X
R/W
R
R
Address
1
0
F73H
Bit
Position Description
[7:6]
ADC Low Bits
00–11b = These bits are the two least significant bits of the 10-bit ADC output. These bits are
undefined after a reset. The low bits are latched into this register whenever the ADC
Data High Byte Register is read.
[5:0]
Reserved
These bits are reserved and must be programmed to 000000.
Hex Address: F74
Table 150. ADC Sample Settling Time (ADCSST)
Bit
7
Field
6
5
4
3
2
Reserved
RESET
0
R/W
R
Address
1
0
1
1
SST
1
1
R/W
F74H
Bit
Position Description
[7:4]
Reserved
These bits are reserved and must be programmed to 0000.
[3:0]
SST
Sample Setting Time
0h–Fh = Sample settling time in number of system clock periods to meet 0.5 µs minimum.
PS026310-1212
PRELIMINARY
Analog-to-Digital Converter (ADC)
Z8 Encore!® F083A Series
Product Specification
211
Hex Address: F75
Table 151. ADC Sample Time (ADCST)
Bit
7
Field
6
5
4
3
Reserved
RESET
1
0
1
1
1
ST
0
R/W
2
1
1
1
R/W
R/W
Address
F75H
Bit
Position Description
[7:6]
Reserved
These bits are reserved and must be programmed to 00.
[5:0]
ST
Sample Time
0h–Fh = Sample/hold time in number of system clock periods to meet 1 µs minimum.
Hex Address: F76
Table 152. ADC Clock Prescale Register (ADCCP)
Bit
7
Field
RESET
6
5
4
3
2
1
0
Reserved
DIV8
DIV4
DIV2
0
0
0
0
R/W
R/W
Address
F76H
Bit
Position Description
[0]
DIV2
DIV2
0 = Clock is not divided
1 = System clock is divided by 2 for ADC clock
[1]
DIV4
DIV4
0 = Clock is not divided
1 = System clock is divided by 4 for ADC clock
[2]
DIV8
DIV8
0 = Clock is not divided
1 = System clock is divided by 8 for ADC clock
[7:3]
Reserved
These bits are reserved and must be programmed to 00000.
PS026310-1212
PRELIMINARY
Analog-to-Digital Converter (ADC)
Z8 Encore!® F083A Series
Product Specification
212
Hex Addresses: F77–F7F
This address range is reserved.
Low Power Control
For more information about the Power Control Register, see the Power Control Register
Definitions section on page 31.
Hex Address: F80
Table 153. Power Control Register 0 (PWRCTL0)
Bit
7
Field
RESET
R/W
6
5
Reserved
4
VBO
3
2
Reserved Reserved
1
0
COMP
Reserved
1
0
0
0
1
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F80H
Hex Address: F81
This address is reserved.
LED Controller
For more information about the LED Drive registers, see the GPIO Control Register Definitions section on page 39.
Hex Address: F82
Table 154. LED Drive Enable (LEDEN)
Bit
7
6
5
Field
RESET
R/W
4
3
2
1
0
LEDEN[7:0]
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
PS026310-1212
F82H
PRELIMINARY
Low Power Control
Z8 Encore!® F083A Series
Product Specification
213
Hex Address: F83
Table 155. LED Drive Level High Register (LEDLVLH)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
LEDLVLH[7:0]
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
2
1
0
Address
F83H
Hex Address: F84
Table 156. LED Drive Level Low Register (LEDLVLL)
Bit
7
6
5
4
Field
RESET
R/W
3
LEDLVLL[7:0]
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
F84H
Hex Address: F85
This address is reserved.
Oscillator Control
For more information about the Oscillator Control registers, see the Oscillator Control
Register Definitions section on page 154.
Hex Address: F86
Table 157. Oscillator Control Register (OSCCTL)
Bit
Field
RESET
R/W
7
6
5
4
3
INTEN
XTLEN
WDTEN
POFEN
WDFEN
1
0
1
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
PS026310-1212
2
1
0
SCKSEL
F86H
PRELIMINARY
Oscillator Control
Z8 Encore!® F083A Series
Product Specification
214
Hex Addresses: F87–F8F
This address range is reserved.
Comparator 0
For more information about the Comparator Register, see the Comparator Control Register Definition section on page 109.
Hex Address: F90
Table 158. Comparator Control Register (CMP0)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
Reserved
INNSEL
0
0
0
1
0
1
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
REFLVL
Address
0
Reserved
F90H
Hex Addresses: F91–FBF
This address range is reserved.
Interrupt Controller
For more information about the Interrupt Control registers, see the Interrupt Control Register Definitions section on page 58.
Hex Address: FC0
Table 159. Interrupt Request 0 Register (IRQ0)
Bit
Field
RESET
R/W
7
6
5
Reserved
T1I
T0I
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
PS026310-1212
4
3
2
1
0
Reserved Reserved Reserved Reserved
ADCI
FC0H
PRELIMINARY
Comparator 0
Z8 Encore!® F083A Series
Product Specification
215
Hex Address: FC1
Table 160. IRQ0 Enable High Bit Register (IRQ0ENH)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
Reserved
T1ENH
T0ENH
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
1
0
Reserved Reserved Reserved Reserved
Address
0
ADCENH
FC1H
Hex Address: FC2
Table 161. IRQ0 Enable Low Bit Register (IRQ0ENL)
Bit
7
6
5
Reserved
T1ENL
T0ENL
RESET
0
0
0
0
0
0
0
0
R/W
R
R/W
R/W
R/W
R/W
R
R
R/W
Field
4
3
2
Reserved Reserved Reserved Reserved
Address
ADCENL
FC2H
Hex Address: FC3
Table 162. Interrupt Request 1 Register (IRQ1)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
0
PA7I
PA6CI
PA5I
PA4I
PA3I
PA2I
PA1I
PA0I
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FC3H
Hex Address: FC4
Table 163. IRQ1 Enable High Bit Register (IRQ1ENH)
Bit
Field
RESET
R/W
7
6
5
PA7ENH PA6CENH PA5ENH
4
3
2
1
0
PA4ENH
PA3ENH
PA2ENH
PA1ENH
PA0ENH
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
PS026310-1212
FC4H
PRELIMINARY
Interrupt Controller
Z8 Encore!® F083A Series
Product Specification
216
Hex Address: FC5
Table 164. IRQ1 Enable Low Bit Register (IRQ1ENL)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
0
PA7ENL
PA6CENL
PA5ENL
PA4ENL
PA3ENL
PA2ENL
PA1ENL
PA0ENL
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FC5H
Hex Address: FC6
Table 165. Interrupt Request 2 Register (IRQ2)
Bit
7
6
Field
RESET
R/W
5
4
Reserved
3
2
1
0
PC3I
PC2I
PC1I
PC0I
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FC6H
Hex Address: FC7
Table 166. IRQ2 Enable High Bit Register (IRQ2ENH)
Bit
7
6
Field
RESET
R/W
5
4
Reserved
3
2
1
0
C3ENH
C2ENH
C1ENH
C0ENH
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FC7H
Hex Address: FC8
Table 167. IRQ2 Enable Low Bit Register (IRQ2ENL)
Bit
7
6
Field
RESET
R/W
5
4
Reserved
3
2
1
0
C3ENL
C2ENL
C1ENL
C0ENL
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
PS026310-1212
FC8H
PRELIMINARY
Interrupt Controller
Z8 Encore!® F083A Series
Product Specification
217
Hex Addresses: FC9–FCC
This address range is reserved.
Hex Address: FCD
Table 168. Interrupt Edge Select Register (IRQES)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
0
IES7
IES6
IES5
IES4
IES3
IES2
IES1
IES0
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
2
1
0
Address
FCDH
Hex Address: FCE
Table 169. Shared Interrupt Select Register (IRQSS)
Bit
Field
RESET
R/W
7
6
5
4
3
Reserved
PA6CS
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
2
1
0
Reserved
Address
FCEH
Hex Address: FCF
Table 170. Interrupt Control Register (IRQCTL)
Bit
Field
RESET
R/W
7
6
5
4
IRQE
3
Reserved
0
0
0
0
0
0
0
0
R/W
R
R
R
R
R
R
R
Address
PS026310-1212
FCFH
PRELIMINARY
Interrupt Controller
Z8 Encore!® F083A Series
Product Specification
218
GPIO Port A
For more information about the GPIO registers, see the GPIO Control Register Definitions
section on page 39.
Hex Address: FD0
Table 171. Port A GPIO Address Register (PAADDR)
Bit
7
6
5
4
Field
2
1
0
R/W
R/W
R/W
PADDR[7:0]
RESET
R/W
3
00H
R/W
R/W
R/W
R/W
Address
R/W
FD0H
Hex Address: FD1
Table 172. Port A Control Registers (PACTL)
Bit
7
6
5
4
Field
2
1
0
R/W
R/W
R/W
R/W
PCTL
RESET
R/W
3
00H
R/W
R/W
R/W
R/W
Address
FD1H
Hex Address: FD2
Table 173. Port A Input Data Registers (PAIN)
Bit
7
6
5
4
3
2
1
0
PIN7
PIN6
PIN5
PIN4
PIN3
PIN2
PIN1
PIN0
RESET
X
X
X
X
X
X
X
X
R/W
R
R
R
R
R
R
R
R
Field
Address
PS026310-1212
FD2H
PRELIMINARY
GPIO Port A
Z8 Encore!® F083A Series
Product Specification
219
Hex Address: FD3
Table 174. Port A Output Data Register (PAOUT)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
0
POUT7
POUT6
POUT5
POUT4
POUT3
POUT2
POUT1
POUT0
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
2
1
0
R/W
R/W
R/W
Address
FD3H
Hex Address: FD4
Table 175. Port B GPIO Address Register (PBADDR)
Bit
7
6
5
4
Field
PADDR[7:0]
RESET
R/W
3
00H
R/W
R/W
R/W
R/W
Address
R/W
FD4H
Hex Address: FD5
Table 176. Port B Control Registers (PBCTL)
Bit
7
6
5
4
Field
2
1
0
R/W
R/W
R/W
R/W
PCTL
RESET
R/W
3
00H
R/W
R/W
R/W
R/W
Address
FD5H
Hex Address: FD6
Table 177. Port B Input Data Registers (PBIN)
Bit
7
6
5
4
3
2
1
0
PIN7
PIN6
PIN5
PIN4
PIN3
PIN2
PIN1
PIN0
RESET
X
X
X
X
X
X
X
X
R/W
R
R
R
R
R
R
R
R
Field
Address
PS026310-1212
FD6H
PRELIMINARY
GPIO Port A
Z8 Encore!® F083A Series
Product Specification
220
Hex Address: FD7
Table 178. Port B Output Data Register (PBOUT)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
0
POUT7
POUT6
POUT5
POUT4
POUT3
POUT2
POUT1
POUT0
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
2
1
0
R/W
R/W
R/W
Address
FD7H
Hex Address: FD8
Table 179. Port C GPIO Address Register (PCADDR)
Bit
7
6
5
4
Field
PADDR[7:0]
RESET
R/W
3
00H
R/W
R/W
R/W
R/W
Address
R/W
FD8H
Hex Address: FD9
Table 180. Port C Control Registers (PCCTL)
Bit
7
6
5
4
Field
2
1
0
R/W
R/W
R/W
R/W
PCTL
RESET
R/W
3
00H
R/W
R/W
R/W
R/W
Address
FD9H
Hex Address: FDA
Table 181. Port C Input Data Registers (PCIN)
Bit
7
6
5
4
3
2
1
0
PIN7
PIN6
PIN5
PIN4
PIN3
PIN2
PIN1
PIN0
RESET
X
X
X
X
X
X
X
X
R/W
R
R
R
R
R
R
R
R
Field
Address
PS026310-1212
FDAH
PRELIMINARY
GPIO Port A
Z8 Encore!® F083A Series
Product Specification
221
Hex Address: FDB
Table 182. Port C Output Data Register (PCOUT)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
0
POUT7
POUT6
POUT5
POUT4
POUT3
POUT2
POUT1
POUT0
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
2
1
0
R/W
R/W
R/W
Address
FDBH
Hex Address: FDC
Table 183. Port D GPIO Address Register (PDADDR)
Bit
7
6
5
Field
4
PADDR[7:0]
RESET
R/W
3
00H
R/W
R/W
R/W
R/W
Address
R/W
FDCH
Hex Address: FDD
Table 184. Port D Control Registers (PDCTL)
Bit
7
6
5
4
Field
2
1
0
R/W
R/W
R/W
R/W
PCTL
RESET
R/W
3
00H
R/W
R/W
R/W
Address
R/W
FDDH
Hex Address: FDE
This address is reserved.
PS026310-1212
PRELIMINARY
GPIO Port A
Z8 Encore!® F083A Series
Product Specification
222
Hex Address: FDF
Table 185. Port D Output Data Register (PDOUT)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
0
POUT7
POUT6
POUT5
POUT4
POUT3
POUT2
POUT1
POUT0
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FDFH
Hex Addresses: FE0–FEF
This address range is reserved.
Watchdog Timer (WDT)
For more information about the Watchdog Timer registers, see the Watchdog Timer Control Register Definitions section on page 95.
Hex Address: FF0
This register address is shared with the read-only Reset Status Register.
Table 186. Watchdog Timer Control Register (WDTCTL)
Bit
7
6
5
4
Field
3
2
1
0
WDTUNLK
RESET
X
X
X
X
X
X
X
X
R/W
W
W
W
W
W
W
W
W
1
0
Address
FF0H
Table 187. Reset Status Register (RSTSTAT)
Bit
Field
7
6
5
4
POR
STOP
WDT
EXT
3
2
Reserved
RESET
See Table 12 on page 29
0
0
0
0
0
R/W
R
R
R
R
R
R
Address
PS026310-1212
R
R
FF0H
PRELIMINARY
Watchdog Timer (WDT)
Z8 Encore!® F083A Series
Product Specification
223
Hex Address: FF1
Table 188. Watchdog Timer Reload Upper Byte Register (WDTU)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
WDTU
0
0
0
0
0
0
0
0
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
Address
FF1H
Note: *R = Read returns the current WDT count value; W = Write sets the appropriate reload value.
Hex Address: FF2
Table 189. Watchdog Timer Reload High Byte Register (WDTH)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
WDTH
0
0
0
0
0
1
0
0
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
Address
FF2H
Note: *R = Read returns the current WDT count value; W = Write sets the appropriate reload value.
Hex Address: FF3
Table 190. Watchdog Timer Reload Low Byte Register (WDTL)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
WDTL
0
0
0
0
0
0
0
0
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
R/W*
Address
FF3H
Note: *R = Read returns the current WDT count value; W = Write sets the appropriate reload value.
Hex Addresses: FF4–FF5
This address range is reserved.
PS026310-1212
PRELIMINARY
Watchdog Timer (WDT)
Z8 Encore!® F083A Series
Product Specification
224
Trim Bit Control
For more information about the Trim Bit Control registers, see the Flash Option Bit Control Register Definitions section on page 126.
Hex Address: FF6
Table 191. Trim Bit Address Register (TRMADR)
Bit
7
6
5
Field
RESET
R/W
4
3
2
1
0
TRMADR - Trim Bit Address (00H to 1FH)
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
2
1
0
Address
FF6H
Hex Address: FF7
Table 192. Trim Bit Data Register (TRMDR)
Bit
7
6
5
Field
RESET
R/W
4
3
TRMDR - Trim Bit Data
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FF7H
Flash Memory Controller
For more information about the Flash Control registers, see the Flash Control Register
Definitions section on page 119.
Hex Address: FF8
Table 193. Flash Control Register (FCTL)
Bit
7
6
5
4
Field
3
2
1
0
FCMD
RESET
0
0
0
0
0
0
0
0
R/W
W
W
W
W
W
W
W
W
Address
PS026310-1212
FF8H
PRELIMINARY
Trim Bit Control
Z8 Encore!® F083A Series
Product Specification
225
Hex Address: FF8
Table 194. Flash Status Register (FSTAT)
Bit
7
Field
6
5
4
3
Reserved
2
1
0
FSTAT
RESET
0
0
0
0
0
0
0
0
R/W
R
R
R
R
R
R
R
R
Address
FF8H
Hex Address: FF9
The Flash Page Select Register, shown in Table 195, is shared with the Flash Sector Protect Register, which is shown in Table 196.
Table 195. Flash Page Select Register (FPS)
Bit
Field
RESET
R/W
7
6
5
4
3
INFO_EN
2
1
0
PAGE
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
FF9H
Table 196. Flash Sector Protect Register (FPROT)
Bit
Field
RESET
R/W
7
6
5
4
3
2
1
0
SPROT7
SPROT6
SPROT5
SPROT4
SPROT3
SPROT2
SPROT1
SPROT0
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Address
PS026310-1212
FF9H
PRELIMINARY
Flash Memory Controller
Z8 Encore!® F083A Series
Product Specification
226
Hex Address: FFA
Table 197. Flash Frequency High Byte Register (FFREQH)
Bit
7
6
5
4
Field
RESET
R/W
3
2
1
0
FFREQH
0
0
0
0
0
0
0
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
1
0
Address
FFAH
Hex Address: FFB
Table 198. Flash Frequency Low Byte Register (FFREQL)
Bit
7
Field
RESET
R/W
Address
PS026310-1212
6
5
4
3
2
FFREQL
0
R/W
FFBH
PRELIMINARY
Flash Memory Controller
Z8 Encore!® F083A Series
Product Specification
227
Index
Numerics
10-bit ADC 4
A
absolute maximum ratings 184
AC characteristics 188
ADC 166
block diagram 99
overview 98
ADC Channel Register 1 (ADCCTL) 102
ADC Data High Byte Register (ADCDH) 103
ADC Data Low Bit Register (ADCDL) 104, 105,
106, 107, 211
ADCX 166
ADD 166
add - extended addressing 166
add with carry 166
add with carry - extended addressing 166
additional symbols 165
address space 14
ADDX 166
analog block/PWM signal synchronization 100
analog block/PWM signal zynchronization 100
analog signals 11
analog-to-digital converter
overview 98
AND 169
ANDX 169
architecture
voltage measurements 98
arithmetic instructions 166
assembly language programming 162
assembly language syntax 163
B
B 165
b 164
BCLR 167
PS026310-1212
binary number suffix 165
BIT 167
bit 164
clear 167
manipulation instructions 167
set 167
set or clear 167
swap 167
test and jump 169
test and jump if non-zero 169
test and jump if zero 169
bit jump and test if non-zero 166
bit swap 170
block diagram 3
block transfer instructions 167
BRK 169
BSET 167
BSWAP 167, 170
BTJ 169
BTJNZ 166, 169
BTJZ 169
C
calibration and compensation, motor control measurements 101
CALL procedure 169
capture mode 89, 90
capture/compare mode 89
cc 164
CCF 168
characteristics, electrical 184
clear 168
CLR 168
COM 169
compare 89
compare - extended addressing 166
compare mode 89
compare with carry 166
compare with carry - extended addressing 166
PRELIMINARY
Index
Z8 Encore!® F083A Series
Product Specification
228
complement 169
complement carry flag 167, 168
condition code 164
continuous mode 89
Control Registers 14, 17
counter modes 89
CP 166
CPC 166
CPCX 166
CPU and peripheral overview 4
CPU control instructions 168
CPX 166
current measurement
architecture 98
operation 99
Customer Feedback Form 235
Customer Information 235
D
DA 164, 166
data memory 15
DC characteristics 185
debugger, on-chip 139
DEC 166
decimal adjust 166
decrement 166
decrement and jump non-zero 169
decrement word 166
DECW 166
destination operand 165
device, port availability 33
DI 168
direct address 164
disable interrupts 168
DJNZ 169
dst 165
E
EI 168
electrical characteristics 184
GPIO input data sample timing 194
watch-dog timer 193
PS026310-1212
electrical noise 98
enable interrupt 168
ER 164
extended addressing register 164
external pin reset 25
eZ8 CPU features 4
eZ8 CPU instruction classes 166
eZ8 CPU instruction notation 164
eZ8 CPU instruction set 162
eZ8 CPU instruction summary 171
F
FCTL register 120, 126, 127, 224
features, Z8 Encore! 1
first opcode map 182
FLAGS 165
flags register 165
flash
controller 4
option bit address space 127
option bit configuration - reset 124
program memory address 0000H 127
program memory address 0001H 128
flash memory 110
byte programming 117
code protection 115
configurations 110
control register definitions 119, 126
controller bypass 118
flash control register 120, 126, 127, 224
flash option bits 116
flash status register 121
flow chart 114
frequency high and low byte registers 123
mass erase 118
operation 113
operation timing 115
page erase 118
page select register 121, 122
FPS register 121, 122
FSTAT register 121
PRELIMINARY
Index
Z8 Encore!® F083A Series
Product Specification
229
G
gated mode 89
general-purpose I/O 33
GPIO 4, 33
alternate functions 34
architecture 33
control register definitions 39
input data sample timing 194
interrupts 39
port A-C pull-up enable sub-registers 46, 47, 48
port A-H address registers 40
port A-H alternate function sub-registers 42
port A-H control registers 41
port A-H data direction sub-registers 41
port A-H high drive enable sub-registers 44
port A-H input data registers 49
port A-H output control sub-registers 43
port A-H output data registers 50, 51
port A-H stop mode recovery sub-registers 45
port availability by device 33
port input timing 194
port output timing 195
H
H 165
HALT 168
halt mode 31, 168
hexadecimal number prefix/suffix 165
I
I2C 4
IM 164
immediate data 164
immediate operand prefix 165
INC 166
increment 166
increment word 166
INCW 166
indexed 165
indirect address prefix 165
indirect register 164
PS026310-1212
indirect register pair 164
indirect working register 164
indirect working register pair 164
instruction set, ez8 CPU 162
instructions
ADC 166
ADCX 166
ADD 166
ADDX 166
AND 169
ANDX 169
arithmetic 166
BCLR 167
BIT 167
bit manipulation 167
block transfer 167
BRK 169
BSET 167
BSWAP 167, 170
BTJ 169
BTJNZ 166, 169
BTJZ 169
CALL 169
CCF 167, 168
CLR 168
COM 169
CP 166
CPC 166
CPCX 166
CPU control 168
CPX 166
DA 166
DEC 166
DECW 166
DI 168
DJNZ 169
EI 168
HALT 168
INC 166
INCW 166
IRET 169
JP 169
LD 168
LDC 168
PRELIMINARY
Index
Z8 Encore!® F083A Series
Product Specification
230
LDCI 167, 168
LDE 168
LDEI 167
LDX 168
LEA 168
load 168
logical 169
MULT 167
NOP 168
OR 169
ORX 169
POP 168
POPX 168
program control 169
PUSH 168
PUSHX 168
RCF 167, 168
RET 169
RL 170
RLC 170
rotate and shift 170
RR 170
RRC 170
SBC 167
SCF 167, 168
SRA 170
SRL 170
SRP 168
STOP 168
SUB 167
SUBX 167
SWAP 170
TCM 167
TCMX 167
TM 167
TMX 167
TRAP 169
watch-dog timer refresh 168
XOR 169
XORX 169
instructions, eZ8 classes of 166
interrupt control register 68
interrupt controller 54
architecture 54
PS026310-1212
interrupt assertion types 57
interrupt vectors and priority 57
operation 56
register definitions 58
software interrupt assertion 58
interrupt edge select register 66
interrupt request 0 register 59
interrupt request 1 register 60
interrupt request 2 register 61
interrupt return 169
interrupt vector listing 54
IR 164
Ir 164
IRET 169
IRQ0 enable high and low bit registers 61
IRQ1 enable high and low bit registers 63
IRQ2 enable high and low bit registers 64
IRR 164
Irr 164
J
JP 169
jump, conditional, relative, and relative conditional
169
L
LD 168
LDC 168
LDCI 167, 168
LDE 168
LDEI 167, 168
LDX 168
LEA 168
load 168
load constant 167
load constant to/from program memory 168
load constant with auto-increment addresses 168
load effective address 168
load external data 168
load external data to/from data memory and autoincrement addresses 167
load external to/from data memory and auto-incre-
PRELIMINARY
Index
Z8 Encore!® F083A Series
Product Specification
231
ment addresses 168
load instructions 168
load using extended addressing 168
logical AND 169
logical AND/extended addressing 169
logical exclusive OR 169
logical exclusive OR/extended addressing 169
logical instructions 169
logical OR 169
logical OR/extended addressing 169
low power modes 30
M
master interrupt enable 56
memory
data 15
program 15
mode
capture 89, 90
capture/compare 89
continuous 89
counter 89
gated 89
one-shot 89
PWM 89, 90
modes 89
motor control measurements
ADC Control register definitions 102
calibration and compensation 101
interrupts 101
overview 98
MULT 167
multiply 167
N
noise, electrical 98
NOP (no operation) 168
notation
b 164
cc 164
DA 164
ER 164
PS026310-1212
IM 164
IR 164
Ir 164
IRR 164
Irr 164
p 164
R 164
r 164
RA 165
RR 165
rr 165
vector 165
X 165
notational shorthand 164
O
OCD
architecture 139
auto-baud detector/generator 142
baud rate limits 142
block diagram 139
breakpoints 143
commands 144
control register 148
data format 142
DBG pin to RS-232 Interface 140
debug mode 141
debugger break 169
interface 140
serial errors 143
status register 150
timing 196
OCD commands
execute instruction (12H) 148
read data memory (0DH) 147
read OCD control register (05H) 145
read OCD revision (00H) 145
read OCD status register (02H) 145
read program counter (07H) 146
read program memory (0BH) 147
read program memory CRC (0EH) 147
read register (09H) 146
read runtime counter (03H) 145
PRELIMINARY
Index
Z8 Encore!® F083A Series
Product Specification
232
step instruction (10H) 148
stuff instruction (11H) 148
write data memory (0CH) 147
write OCD control register (04H) 145
write program counter (06H) 146
write program memory (0AH) 146
write register (08H) 146
on-chip debugger (OCD) 139
on-chip debugger signals 12
on-chip oscillator 157
one-shot mode 89
opcode map
abbreviations 181
cell description 181
first 182
second after 1FH 183
operation 100
current measurement 99
voltage measurement timing diagram 100
Operational Description 21, 30, 33, 54, 69, 92, 98,
108, 110, 124, 139, 151, 157, 161
OR 169
ordering information 199
ORX 169
oscillator signals 11
P
p 164
Packaging 198
part selection guide 2
PC 165
peripheral AC and DC electrical characteristics 189
pin characteristics 13
Pin Descriptions 7
polarity 164
POP 168
pop using extended addressing 168
POPX 168
port availability, device 33
port input timing (GPIO) 194
port output timing, GPIO 195
power supply signals 12
power-on reset (POR) 23
PS026310-1212
program control instructions 169
program counter 165
program memory 15
PUSH 168
push using extended addressing 168
PUSHX 168
PWM mode 89, 90
PxADDR register 40, 218, 219, 220, 221
PxCTL register 41, 218, 219, 220, 221
R
R 164
r 164
RA
register address 165
RCF 167, 168
register 164
flash control (FCTL) 120, 126, 127, 224
flash high and low byte (FFREQH and FREEQL) 123
flash page select (FPS) 121, 122
flash status (FSTAT) 121
GPIO port A-H address (PxADDR) 40, 218,
219, 220, 221
GPIO port A-H alternate function sub-registers
42
GPIO port A-H control address (PxCTL) 41,
218, 219, 220, 221
GPIO port A-H data direction sub-registers 41
OCD control 148
OCD status 150
watch-dog timer control (WDTCTL) 29, 95,
109, 154, 213, 214, 222
watch-dog timer reload high byte (WDTH) 96,
223
watch-dog timer reload low byte (WDTL) 97,
223
watch-dog timer reload upper byte (WDTU)
96, 223
register file 14
register pair 165
register pointer 165
registers
PRELIMINARY
Index
Z8 Encore!® F083A Series
Product Specification
233
ADC channel 1 102
ADC data high byte 103
ADC data low bit 104, 105, 106, 107, 211
reset
and stop mode characteristics 22
and stop mode recovery 21
carry flag 167
sources 23
RET 169
return 169
RL 170
RLC 170
rotate and shift instuctions 170
rotate left 170
rotate left through carry 170
rotate right 170
rotate right through carry 170
RP 165
RR 165, 170
rr 165
RRC 170
S
SBC 167
SCF 167, 168
second opcode map after 1FH 183
set carry flag 167, 168
set register pointer 168
shift right arithmatic 170
shift right logical 170
signal descriptions 11
software trap 169
source operand 165
SP 165
SRA 170
src 165
SRL 170
SRP 168
stack pointer 165
STOP 168
stop mode 30, 168
stop mode recovery
sources 26
PS026310-1212
using a GPIO port pin transition 27, 28
using watch-dog timer time-out 27
SUB 167
subtract 167
subtract - extended addressing 167
subtract with carry 167
subtract with carry - extended addressing 167
SUBX 167
SWAP 170
swap nibbles 170
symbols, additional 165
T
Table 134. Power Consumption Reference Table
196
TCM 167
TCMX 167
test complement under mask 167
test complement under mask - extended addressing
167
test under mask 167
test under mask - extended addressing 167
tiing diagram, voltage measurement 100
timer signals 11
timers 69
architecture 69
block diagram 70
capture mode 78, 79, 89, 90
capture/compare mode 82, 89
compare mode 80, 89
continuous mode 71, 89
counter mode 72, 73
counter modes 89
gated mode 81, 89
one-shot mode 70, 89
operating mode 70
PWM mode 75, 76, 89, 90
reading the timer count values 83
reload high and low byte registers 84
timer control register definitions 83
timer output signal operation 83
timers 0-3
control registers 87, 88
PRELIMINARY
Index
Z8 Encore!® F083A Series
Product Specification
234
high and low byte registers 84, 86
TM 167
TMX 167
TRAP 169
XOR 169
XORX 169
Z
Z8 Encore!
block diagram 3
features 1
part selection guide 2
U
UART 4
V
vector 165
voltage brown-out reset (VBR) 24
voltage measurement timing diagram 100
W
watch-dog timer
approximate time-out delay 92
approximate time-out delays 92, 108, 151, 161
CNTL 24
control register 95, 154
electrical characteristics and timing 193
interrupt in noromal operation 93
interrupt in stop mode 93
operation 92, 108, 151, 161
refresh 93, 168
reload unlock sequence 94
reload upper, high and low registers 96
reset 25
reset in normal operation 94
reset in Stop mode 94
time-out response 93
WDTCTL register 29, 95, 109, 154, 213, 214, 222
WDTH register 96, 223
WDTL register 97, 223
working register 164
working register pair 165
WTDU register 96, 223
X
X 165
PS026310-1212
PRELIMINARY
Index
Z8 Encore!® F083A Series
Product Specification
235
Customer Support
To share comments, get your technical questions answered or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at
http://support.zilog.com.
To learn more about this product, find additional documentation or to discover other facets
about Zilog product offerings, please visit the Zilog Knowledge Base at http://zilog.com/
kb or consider participating in the Zilog Forum at http://zilog.com/forum.
This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.
PS026310-1212
PRELIMINARY
Customer Support