0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RS512M32LD3D2LMZ-125BT

RS512M32LD3D2LMZ-125BT

  • 厂商:

    RAYSON(晶存)

  • 封装:

    BGA178

  • 描述:

    LPDDR3

  • 数据手册
  • 价格&库存
RS512M32LD3D2LMZ-125BT 数据手册
RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) 178ball FBGASpecification 16Gb LPDDR3 (x32) 1 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Document Title FBGA 16Gb (x32) LPDDR3 Revision History Revision No. 0.1 History - Initial Draft 2 Draft Date Remark May. 2019 Preliminary RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) FEATURES [ FBGA ] ● OperationTemperature - -25oC ~85oC ● Package - 178-ballFBGA - 11.0x11.5mm2, 1.00t, 0.65mm pitch - Lead & HalogenFree [ LPDDR3 ] • VDD1 = 1.8V (1.7V to1.95V) • VDD2, VDDCA and VDDQ = 1.2V (1.14V to1.30) • HSUL_12 interface (High Speed Unterminated Logic1.2V) • Doubledataratearchitectureforcommand,addressanddataBus; - allcontrolandaddressexceptCS_n,CKElatchedatbothrisingandfallingedgeoftheclock - CS_n,CKElatchedatrisingedgeoftheclock - twodataaccessesperclockcycle • Differential clock inputs (CK_t,CK_c) • Bi-directional differential data strobe (DQS_t,DQS_c) - Sourcesynchronousdatatransactionalignedtobi-directionaldifferentialdatastrobe(DQS_t,DQS_c) - Dataoutputsalignedtotheedgeofthedatastrobe(DQS_t,DQS_c)whenREADoperation - Datainputsalignedtothecenterofthedatastrobe(DQS_t,DQS_c)whenWRITEoperation • DMmaskswritedataatthebothrisingandfallingedgeofthedatastrobe • Programmable RL (Read Latency) and WL (WriteLatency) • Programmable burst length:8 • Auto refresh and self refreshsupported • All bankautorefreshandperbankautorefreshsupported • AutoTCSR(TemperatureCompensatedSelfRefresh) • PASR(PartialArraySelfRefresh)byBankMaskandSegmentMask • DS (DriveStrength) • ZQ(Calibration) • ODT (On DieTermination) 3 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Functional Block Diagram CA0 ~ CA9 DM0~DM3, DQS0_t~DQS3_t, DQS0_c~DQS3_c CS1_n CKE1 CS0_n CKE0 DQ0~DQ31 8Gb x32 device (256M x 32) CK_t, CK_c ZQ, ODT 8Gb x32 device (256M x 32) VDD1, VDD2, VDDCA, VDDQ, Vref(CA/DQ) VSS, VSSCA, VSSQ Note 1. Totalcurrentconsumptionisdependenttouseroperatingconditions.ACandDCCharacteristicsshownin thisspecificationarebasedonasingledie.Seethesectionof“DCParametersandOperatingConditions” 4 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) ORDERING INFORMATION Part Number RS512M32LD3D2LMZ-125BT Memory Operation Combination Voltage LPDDR3 1.8V/1.2/1.2/1.2 5 Density 16Gb(x 32) Speed DDR3 1600 Package 178Ball FBGA (Lead & Halogen Free) RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Ball ASSIGNMENT 1 2 A B VSS 3 4 5 6 7 8 9 10 11 1213 VDD1 VDD1VDD1 VDD1 VDD2 VDD2 VDD1 VDDQ A ZQ DQ31 DQ30 DQ29 DQ28VSSQ B NC VSS VSSQ C D CA9 VSSCA NC CA8 VSSCA VDD2 VDD2 VDD2 DQ27 DQ26 DQ25 DQ24 VDDQ DM3 DQ15 D _t 3 D_c3VSSQ QS QS C D E CA7 VDDQ DQ14 DQ13DQ12VDDQ E DQ11 DQ10 DQ9 DQ8 VSSQ F G CA6 VSS VSSQ VSS VSS VSSQ F G VDDCA CA5 VSSCA H VDDQ VDDQ VSSQ VDDQVDD2 H J VSS VDDCA Vref VDD2 VDD2 (CA ) CK_c CK_t AVDD2 VDD2 ODT VDDQ VDDQ(DQ) VSS Vref J K VSS VDDQ K VSS VSSQ VDDCA VSSCA VSSCA VDD2 VSSQ DM1 VSSC CKE NC VDD2VDD2 L VDDCA CS_n NC VDD2 VSS M VDDCA CA4 VSSCA VSS VSSQ VSSQ D 1 D VDDQ _t _cS1 QS Q NC VSSQVDDQVDD2 DM0 VSSQ D _t _c VDDQ 0D QS QS0 L DQ4 DQ5 DQ6 DQ7VSSQ M VDDQ DQ1 DQ2 DQ3VDDQ N P N P CA2 CA1 VSSCA VDD2VDD2 VDD2 DM2 R CA0 DQ20 DQ21 DQ22DQ23VDDQ R DQ16 DQ17 DQ18 DQ19 VSSQ T T VSS U CA3 NC VSS VSS VSS VSSQ VSS VSS VSSQ VSS VSS VSSQ VDD1VDD1 VDD1 VDD1 1 2 3 4 5 DQ0 D_t 2 D_c2VSSQ QS QS VDD2 VDD2 VDD1 VDDQ 6 7 8 9 LPDDR3 Commend/Address LPDDR3 DataIO Power(VDD1,VDD2,V DDCA, VDDQ,VREF) Ground (VSS,VSSC A,V SSQ) U 10 11 12 13 TopView 178ball x 32 LPDDR3 Note 1.1. J8 will be used as “ODT”. Users who don’t use ODT Function can assign J8 as VSSQ. 2. Insidethechip,VDDCAandVDD2aretied.F2,G2,H3,L2andM2arenotconnectedtothechip.Itfully guaranteesDRAMoperationeventhereisaVDDCAinputvoltage. 6 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Pin Description SYMBOL DESCRIPTION Type CS0 Chip Select Input CK_c, CK_t Differential Clocks Input CKE0 Clock Enable Input CA0 ~ CA9 Command / Address Input DQ0 ~ DQ31 Data I/O Input/Output DM0 ~ DM3 Input Data Mask Input/Output DQS0_t ~ DQS3_t Differential Data Strobe (rising edge) Input/Output DQS0_c ~ DQS3_c Differential Data Strobe (falling edge) Input/Output ZQ Drive Strength Calibration Input/Output VDD1 Core Power Supply Power VDD2 Core Power Supply Power VSS Ground Ground Power VDDQ I/O Power Supply VDDCA CA Power Supply Power VSSCA CA Ground Ground VSSQ I/O Ground Ground VREF Reference Voltage Power ODT On Die Termination Enable Input Input/Output Capacitance Parameter Input capacitance, CK_t and CK_c Symbol CCK Min 1.5 Max 3.0 Unit pF Input capacitance, all other input-only pins CI 0.5 3.0 pF Input/output capacitance, DQ, DM, DQS_t, DQS_c Input/Output Capacitance ZQ CIO CZQ 2.0 1.5 3.5 3.0 pF pF (TOPER; VDDQ = 1.14-1.3V; VDDCA = 1.14-1.3V; VDD1 = 1.7-1.95V, VDD2 = 1.14-1.3V) Note: 1. This parameter applies to both die andpackage. 2. Thisparameteris notsubjecttoproductiontest.It isverifiedbydesignandcharacterization.Thecapacitanceismeasured according to JEP147 (Procedure for measuring input capacitance using a vector network analyzer (VNA) with VDD1, VDD2, VDDQ, VSS, VSSCA, VSSQ applied and all other pinsfloating). 3. CI applies to CS_n, CKE,CA0-CA9. 4. DM loading matches DQ andDQS. 5. MR3 I/O configuration DS OP3-OP0 = 0001B (34.3Ohm typical) 6. MaximumexternalloadcapacitanceonZQ pin,includingpackaging,board,pin,resistor,andotherLPDDR3devices:5pF. 7 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) PACKAGE INFORMATION 178 Ball 0.65mm pitch 11.0mm x 11.5mm [t = 1.00mm max] FBGA Unit: mm 0.800 x 12 = 9.600 0.700±0.100 A1 INDEXMARK 0.800 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F 0 0 0 4 . 1 = 6 1 x 0 5 6 . 0 G H 100 . 0 J ± 0 0 5 . 1 1 K L M0 5 6 . N0 P R T U 11.000±0.100 178xØ0.300±0.050 (PostReflowØ0.320±0.050) Ø0.15 M C A B 0 070 .0 5 .0 0 ±± 0 0 3 22 .9 0 0. BottomView 0 0 1 0 . 0± 5 5 0. SEATING PLANE C 0.10 C Front View 8 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) 8Gb LPDDR3 SDRAM 9 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Input/Output Functional Description SYMBOL CK_t, CK_c TYPE DESCRIPTION Clock: CK_t and CK_c are differential clock inputs. All Double Data Rate (DDR) CA inputs are sampled on both positive and negative edge of CK_t. Single Data Rate (SDR) inputs, Input CS_n and CKE, are sampled at the positive Clock edge. Clock is defined as the differential pair, CK_t and CK_c. The positive Clock edge is defined bythecrosspointofarisingCK_tandafallingCK_c.ThenegativeClockedgeisdefinedby the crosspoint of a falling CK_t and a risingCK_c. CKE Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and Input therefore device input buffers and output drivers. Power savings modes are entered and exited through CKE transitions. CKE is considered part of the command code. CKE is sampled at the positive Clock edge. CS_n Input CA0 - CA9 DQ0 - DQ15(x16) DQ0 - DQ31(x32) DQS0_t, DQS1_t, DQS0_c, DQS1_c (x16) DQS0_t - DQS3_t, DQS0_c - DQS3_c (x32) DM0-DM1 (x16) DM0-DM3 (x32) Chip Select: CS_n is considered part of the command code.CS_n is sampled at the posi- tive Clock edge. DDR Command/Address Inputs: Uni-directional command/address bus inputs. CA is Input considered part of the command code. I/O Data Input/Output: Bi-directional data bus Data Strobe (Bi-directional, Differential): The data strobe is bi-directional (used for read and write data) and differential (DQS_t and DQS_c). It is output with read data and input with write data. DQS_t is edge-aligned to read data and centered with write data. For x16, DQS0_t and DQS0_c correspond to the data on DQ0 - DQ7; DQS1_t and DQS1_c to the data on DQ8 - DQ15. I/O For x32 DQS0_t and DQS0_c correspond to the data on DQ0 - DQ7, DQS1_t and DQS1_c tothedataonDQ8-DQ15,DQS2_tandDQS2_ctothedataonDQ16-DQ23,DQS3_tand DQS3_c to the data on DQ24 -DQ31. InputDataMask:DMistheinputmasksignalforwritedata.Inputdataismaskedwhen DMissampledHIGHcoincidentwiththatinputdataduringaWriteaccess.DMissampled onbothedgesofDQS_t.AlthoughDMisforinputonly,theDMloadingshallmatchtheDQ and Input DQS_t (orDQS_c). For x16 and x32 devices, DM0 is the input data mask signal for the data on DQ0-7. DM1 is the input data mask signal for the data on DQ8-15. Forx32devices,DM2istheinputdatamasksignalforthedataonDQ16-23andDM3isthe input data mask signal for the data onDQ24-31. On-Die Termination: This signal enables and disables termination on the DRAM DQ bus ODT Input VDD1 Supply Core Power Supply 1 VDD2 Supply Core Power Supply 2 VDDCA Supply VDDQ VREFCA VREFDQ VSS VSSCA VSSQ ZQ according to the specified mode register settings. Input Receiver Power Supply: Power for CA0-9, CKE, CS_n, CK_t and CK_c input buf- fers. Supply I/O Power Supply: Power supply for data input/output buffers. ReferenceVoltageforCACommandandControlInputReceiver:Referencevoltage Supply for all CA0-9, CKE, CS_n, CK_t and CK_c input buffers. Supply ReferenceVoltageforDQInputReceiver:ReferencevoltageforallDatainputbuffers. Supply Ground Supply Ground for Input Receivers Supply I/O Ground: Ground for data input/output buffers I/O Reference Pin for Output Drive Strength Calibration 10 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Functional Description LPDDR3-SDRAM is a high-speed synchronous DRAM device internally configured as an 8-bank memory. These devices contain the following number of bits: 8 Gb has 8,589,934,592 bits LPDDR3devicesuseadoubledataratearchitectureontheCommand/Address(CA)bustoreducethenumberofinput pinsinthesystem.The10-bitCAbuscontainscommand,address,andbankinformation.Eachcommandusesoneclock cycle,duringwhichcommandinformationistransferredonboththepositiveandnegativeedgeoftheclock. ThesedevicesalsouseadoubledataratearchitectureontheDQpinstoachievehighspeedoperation.Thedoubledata ratearchitectureisessentiallyan8nprefetcharchitecturewithaninterfacedesignedtotransfertwodatabitsperDQ everyclockcycleattheI/Opins.AsinglereadorwriteaccessfortheLPDDR3SDRAMeffectivelyconsistsofasingle 8nbitwide,oneclockcycledatatransferattheinternalDRAMcoreandeightcorrespondingn-bitwide,one-half-clock- cycle data transfers at the I/Opins. ReadandwriteaccessestotheLPDDR3SDRAMsareburstoriented;accessesstartataselectedlocationandcontinue foraprogrammednumberoflocationsinaprogrammedsequence.AccessesbeginwiththeregistrationofanActivate command,whichisthenfollowedbyaReadorWritecommand.TheaddressandBAbitsregisteredcoincidentwiththe Activatecommandareusedtoselecttherowandthebanktobeaccessed.Theaddressbitsregisteredcoincidentwith theReadorWritecommandareusedtoselectthebankandthestartingcolumnlocationfortheburstaccess. Priortonormaloperation,theLPDDR3SDRAMmustbeinitialized.Thefollowingsectionprovidesdetailedinformation coveringdeviceinitialization,registerdefinition,commanddescriptionanddeviceoperation. LPDDR3 SDRAM Addressing Density Number of Banks Bank Addresses tREFI(us)2 x16 x32 8Gb 8 BA0 - BA2 3.9 Row Addresses Column Addresses1 Row Addresses Column Addresses1 R0 - R14 C0 - C10 R0 - R14 C0 - C9 Note: 1. Theleast-significantcolumnaddressC0isnottransmittedontheCAbus,andisimpliedtobezero. 2. tREFI values for all bank refresh is Tc = 0 ~ 85 ° C, Tc means Operating CaseTemperature. 3. Row and Column Address values on the CA bus which are not used are “don’tcare”. 4. NomemorypresentataddresseswithR13=R14=HIGH.ACTcommandwithR13=R14=HIGHisignored(NOP).Writeto R13=R14=HIGH is ignored(NOP). 11 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) STATE DIAGRAM Power Applied Resetting MR Reading Power On RESET MRR Self Refreshing Resetting SREF PD PDX Resetting Power Down SREFX RESET REF Idle1 MRW MR Writing Refreshing PD MRR Idle MR Reading PR,PRA Active Power Down PDX Idle Power Down ACT MRR PDX Automatic Active MR Reading SequenceCommand Sequence PD Active*1 RD WR Write RD Reading Writing WRA RDA WRA Writing with Autoprecharge RDA PR,PRA Reading with Autoprecharge Precharging PR(A) = Precharge (All) PD = Enter Power Down ACT = Activate PDX = Exit Power Down WR(A) = Write (with Autoprecharge) SREF = Enter Self Refresh RD(A) = Read (with Autoprecharge) SREFX = Exit Self Refresh REF = Refresh RESET=ResetisachievedthroughMRWcommand MRW=ModeRegisterWrite MRR = Mode Register Read 12 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Note: 1. In the Idle state, all banks areprecharged. 2. In the case of MRW to enter CA Training mode or Write Leveling Mode, the state machine will not automatically return to the Idle state.InthesecasesanadditionalMRWcommandisrequiredtoexiteitheroperatingmodeandreturntotheIdlestate.Seesections "CA Training"or "WriteLeveling". 3. Terminated bursts are not allowed. For these state transitions, the burst operation must be completed before the transition can occur. 4. Use caution with this diagram. It is intended to provide a floorplan of the possible state transitions and commands to control them, not all details. In particular, situations involving more than one bank are not capturediSn full detail. 13 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Power-up, Initialization and Power-off Voltage Ramp and Device Initialization The following sequence must be used to power up the device. Unless specified otherwise, this procedure is mandatory. 1. Voltage Ramp Whileapplyingpower(afterTa),CKEmustbeheldLOW(≤0.2×VDDCA),andallotherinputsmustbebetween VILmin andVIHmax.Thedevice outputsremainatHigh-ZwhileCKEisheldLOW. Followingthecompletionofthevoltageramp(Tb),CKEmustbemaintainedLOW.DQ,DM,DQS_tandDQS_cvoltage levelsmustbebetweenVSSQandVDDQduringvoltageramptoavoidlatchup.CK_t,CK_c,CS_n,andCAinputlevels mustbebetweenVSSCAandVDDCAduringvoltageramptoavoidlatch-up.Voltageramppowersupplyrequirements are provided in the table “Voltage RampConditions”. After... Ta is reached Table.VoltageRampConditions Applicable Conditions VDD1 must be greater than VDD2-200mV. VDD1 and VDD2 must be greater than VDDCA-200mV. VDD1 and VDD2 must be greater than VDDQ-200mV. VREF must always be less than all other supply voltages. Note: 1. Ta is the point when any power supply firstreaches 300mV. 2. Noted conditions apply between Ta and power-off (controlledor uncontrolled). 3. Tb is the point at which all supply and reference voltages are within their defined operatingranges. 4. Power ramp duration tINIT0 (Tb - Ta) must not exceed20ms. 5. The voltage difference between any of VSS, VSSQ, and VSSCA pins must not exceed100mV. BeginningatTb,CKEmustremainLOWforatleasttINIT1,afterwhichCKEcanbeassertedHIGH.Theclockmustbe stableatleasttINIT2priortothefirstCKELOW-to-HIGHtransition(Tc).CKE,CS_n,andCAinputsmustobservesetup andholdrequirements(tIS,tIH)withrespecttothefirstrisingclockedge(aswellastosubsequentfallingandrising edges). IfanyMRRcommandsareissued,theclockperiodmustbewithintherangedefinedfortCKb.MRWcommandscanbe issuedatnormalclockfrequenciesaslongasallACtimingsaremet.SomeACparameters(forexample,tDQSCK) c ould have relaxed timings (such as t DQSCKb) before the system is appropriately configured. While keeping CKE HIGH,NOPcommandsmustbeissuedforatleasttINIT3(Td).TheODTinputsignalmaybeinundefinedstateuntilt ISbeforeCKEisregisteredHIGH.WhenCKEisregisteredHIGH,theODTinputsignalshallbestaticallyheldateither LOWorHIGH.TheODTinputsignalremainsstaticuntilthepowerupinitializationsequenceisfinished,includingthe expiration oftZQINIT. 2. ResetCommand After tINIT3 is satisfied, the MRW RESET command must be issued (Td). AnoptionalPRECHARGEALLcommandcanbeissuedpriortotheMRWRESETcommand.WaitatleasttINIT4while keepingCKEassertedandissuingNOPcommands.OnlyNOPcommandsareallowedduringtimetINIT4. 14 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) 3. MRRs and Device Auto Initialization (DAI)Polling AftertINIT4issatisfied(Te),onlyMRRcommandsandpower-downentry/exitcommandsaresupported.AfterTe,CKE cangoLOWinalignmentwithpower-downentryandexitspecifications.MRRcommandsareonlyvalidatthistimeif the CA bus does not need to be trained. may only begin after time Tf. User may issue MRR command to poll the DAI bitwhichwillindicateifdeviceautoinitializationiscomplete;onceDAIbitindicatescompletion,SDRAMisinidlestate. DevicewillalsobeinidlestateaftertINIT5(max)hasexpired(whetherornotDAIbithasbeenreadbyMRRcommand). AsthememoryoutputbuffersarenotproperlyconfiguredbyTe,someACparametersmusthaverelaxedtimingsbefore the system is appropriatelyconfigured. 4. ZQCalibration IfCATrainingisnotrequired,theMRWinitializationcalibration(ZQ_CAL)commandcanbeissuedtothememory ( MR10) after time Tf. If CA Training is required, the CA Training may begin at time Tf. See the section of "Mode Regis- ter Write - CA Training Mode" for the CA Training command. No other CA commands (other than RESET or NOP) may beissuedpriortothecompletionofCATraining.AtthecompletionofCATraining(Tf'),theMRWinitializationcalibra-t ion(ZQ_CAL)commandcanbe issuedtothememory(MR10). Thiscommandisusedtocalibrateoutputimpedanceoverprocess,voltage,andtemperature.Insystemswheremore thanoneLPDDR3deviceexistsonthesamebus,thecontrollermustnotoverlapMRWZQ_CALcommands.Thedevice is readyfornormaloperationaftertZQINIT. 5. NormalOperation AftertZQINIT(Tg),MRWcommandsmustbeusedtoproperlyconfigurethememory(forexampletheoutputbuffer drivestrength,latencies,etc.).Specifically,MR1,MR2,andMR3mustbesettoconfigurethememoryforthetargetf requency and memoryconfiguration. Aftertheinitializationsequenceiscomplete,thedeviceisreadyforanyvalidcommand.AfterTg,theclockfrequency canbechangedusingtheproceduredescribedintheLPDDR3specification. Table. Timing Parameters for initialization Symbol tINIT0 tINIT1 tINIT2 tINIT3 tINIT4 tINIT5 tZQINIT tCKb Parameter Maximum Voltage Ramp Time Minimum CKE low time after completion of voltage ramp Minimum stable clock before first CKE high Minimum idle time after first CKE assertion Minimum idle time after Reset command Maximum duration of Device Auto-Initialization ZQ Initial Calibration for LPDDR3 devices Clock cycle time during boot 15 min 100 5 200 1 1 18 Value max 20 10 100 Unit ms ns tCK us us us us ns RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Ta Tb Tc Td Te Tf’ Tf Tg tINIT2 = 5 tCK (min) CK_t / CK_c tINIT0 = 20 ms (max) Supplies tINIT3 = 200 us (min) tINIT1 = 100 ns (min) CKE PD tINIT5 tISCKE tZQINIT tINIT4 = 1 us (min) CA CA* RESET MRR Training ZQC DQ tIS ODT Static HIGH or LOW Valid * Midlevel on CA bus means: valid NOP Figure. Power Ramp and Initialization Sequence Notes 1. High-Z on the CA bus indicatesNOP. 2. For tINIT values, see the table "Timing Parameters forInitialization". 3. After RESET command (time Te), RTT is disabled until ODT function is enabled by MRW to MR11following Tg. 4. CA Training isoptional. 16 Valid RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Initialization After Reset (without Power ramp) IftheRESETcommandisissuedbeforeorafterthepower-upinitializationsequence,there-initializationproceduremust begin atTd. Power-off Sequence The following procedure is required to power off the device. Whilepoweringoff,CKEmustbeheldLOW(≤0.2×VDDCA);allotherinputsmustbebetweenVILminandVIHmax.The deviceoutputsremainatHigh-ZwhileCKEisheldLOW. DQ,DM,DQS_t,andDQS_cvoltagelevelsmustbebetweenVSSQandVDDQduringthepower-offsequencetoavoidlatchup.CK_t,CK_c,CS_n,andCAinputlevelsmustbebetweenVSSCAandVDDCAduringthepower-offsequence to avoid latch-up. Tx is the point where any power supply drops below the minimum value specified. Tz is the point where all power supplies are below 300mV. After Tz, the device is powered off (see the table “Power Supply Conditions”). Table. Power Supply Conditions Between... Tx and Tz Applicable Conditions VDD1 must be greater than VDD2—200mV VDD1 must be greater than VDDCA—200mV VDD1 must be greater than VDDQ—200mV VREF must always be less than all other supply voltages The voltage difference between any of VSS, VSSQ, and VSSCA pins must not exceed 100mV. Uncontrolled Power-Off Sequence When an uncontrolled power-off occurs, the following conditions must be met: AtTx,whenthepowersupplydropsbelowtheminimumvaluesspecified,allpowersuppliesmustbeturnedoffandall powersupplycurrentcapacitymustbeatzero,exceptforanystaticchargeremaininginthesystem. AfterTz(thepointatwhichallpowersuppliesfirstreach300mV),thedevicemustpoweroff.ThetimebetweenTxa ndTzmustnotexceed10ms.Duringthisperiod,therelativevoltagebetweenpowersuppliesisuncontrolled.VDD1a ndVDD2mustdecreasewithaslopelowerthan0.5V/μsbetweenTxandTz. An uncontrolled power-off sequence can occur a maximum of 400 times over the life of the device. Table. Power-Off Timing Symbol tPOFF Parameter Maximum power-off ramp time 17 Value min max 2 Unit sec RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Mode Register Definition TablebelowshowsthemoderegistersforLPDDR3SDRAM.Eachregisterisdenotedas“R”ifitcanbereadbutnotw ritten,“W”ifitcanbewrittenbutnotread,and“R/W”ifitcanbereadandwritten.AModeRegisterReadcommands hallbeusedtoreadamoderegister.AModeRegisterWritecommandshallbeusedtowriteamoderegister. Table. Mode Register Assignment MR # MA Function 0 00H Device Info. R 1 01H Device Feature1 W 2 02H Device Feature 2 W 3 03H W 4 04H R TUF 5 6 7 8 9 05H 06H 07H 08H 09H I/O Config-1 Device Temperature Basic Config-1 Basic Config-2 Basic Config-3 Basic Config-4 Test Mode WL RZQI (RFU) setB (Optional) nWR (for AP) (RFU) BT WR WL (RFU) nWRE Lev Select (RFU) 10 0AH Calibration W 11 0BH ODT W 16 10H PASR_Bank W 17 11H PASR_Segment W 32 20H 40 28H 41 29H 42 2AH 48 63 DQ Calibration Pattern A DQ Calibration Pattern B CA TrainingEntry for CA0-3,CA5-8 Access OP7 R R R R W OP6 OP5 OP4 OP3 RL3 (RFU) I/O width OP2 OP1 (RFU) OP0 Link DAI go to MR0 BL go to MR1 RL & WL go to MR2 DS go to MR3 Refresh Rate go to MR4 Manufacturer ID Revision ID1 Revision ID2 Density Vendor-Specific Test Mode Type go go go go go Calibration Code PD CTL (RFU) DQ ODT PASR Bank Mask PASR Segment Mask R See the section “DQ Calibration” R See the section “DQ Calibration” W See the section “Mode Register Write - CA Training Mode” CA Training Exit W See the section “Mode Register Write - CA Training Mode” 30H CA Training Entry for CA4, 9 W See the section “Mode Register Write - CA Training Mode” 3FH Reset W X Note: 1. RFU bits shall be set to `0' during Mode Registerwrites. 2. RFU bits shall be read as `0' during ModeRegister reads. 3. AllModeRegistersthatarespecifiedas RFUor write-onlyshallreturnundefineddatawhen readandDQS_t,DQS_cshallbetog- gled. 4. All Mode Registers that are specified as RFU shall not bewritten. 5. Writestoread-onlyregistersshallhavenoimpactsonthefunctionalityofthedevice. 18 to MR5 to MR6 to MR7 to MR8 to MR9 go to MR10 go to MR11 go to MR16 go to MR17 go to MR32 go to MR40 go to MR41 go to MR42 go to MR48 go to MR63 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) MR0 Device Information (MA = 00H) OP7 OP6 OP5 RL3 WL (Set B) Support (RFU) OP4 RZQI (Optional) DAI (Device Auto-Initialization Status) Read-only RZQI (Built in Self Test for RZQ Information) Read-only WL (Set B) Support OP3 Read-only RL3 Option Support Read-only OP2 OP1 (RFU) OP0 DAI 0B: DAI complete 1B: DAI still in progress 00B: RZQ self test not supported 01B: ZQ-pin may connect to VDDCA or float 10B: ZQ-pin may short to GND OP4:OP3 11B:ZQ-pinself testcompleted,noerrorcondition detected (ZQ-pin may not connect toVDD or float nor short to GND) 0B: DRAM does not support WL (Set B) OP 1B: DRAM supports WL (Set B) 0B : DRAM does not support RL=3, nWR=3, WL=1 1B : DRAM supports RL=3, nWR=3, WL=1 OP for frequencies 9 (default) 0B : Select WL Set A (default) 1B : Select WL Set B (optional2) 0B : Disabled (default) 1B : Enabled RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) MR3 I/O Configuration 1 (MA = 03H) OP7 OP6 OP5 OP4 OP3 OP2 (RFU) OP1 OP0 DS 0000B: reserved 0001B: 34.3typical pull-down/pull-up 0010B: 40typical pull-down/pull-up (default) 0011B: 48typical pull-down/pull-up DS Write-only OP 0100B: reserved for 60typical pull-down/pull-up 0110B: reserved for 80typical pull-down/pull-up 1001B: 34.3typical pull-down, 40Typical Pull-up (optional1) 1010B: 40typical pull-down, 48Typical Pull-up (optional1) 1011B: 34.3typical pull-down, 48Typical Pull-up (optional1) All others: reserved Note: 1. Please contact us, for the supportability of the optionalfeature. 22 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) MR4 Device Temperature (MA = 04H) OP7 OP6 OP5 TUF OP4 OP3 (RFU) OP2 OP1 OP0 Refresh Rate 000B: Low temperature operating limit exceeded 001B: 4 x tREFI, 4 x tREFIpb, 4 x tREFW 010B: 2 x tREFI, 2 x tREFIpb, 2 x tREFW Refresh Rate Read-only OP Temperature Update Flag (TUF) Read-only OP 011B: 100B: 101B: 110B: 111B: 1 x tREFI, 1 x tREFIpb, 1 x tREFW (85C) 1/2 x tREFI, 1/2 x tREFIpb, 1/2 x tREFW, do not de-rate AC timing 1/4 x tREFI, 1/4 x tREFIpb, 1/4 x tREFW, do not de-rate AC timing 1/4 x tREFI, 1/4 x tREFIpb, 1/4 x tREFW, de-rate AC timing High temperature operating limit exceeded 0B: OP value has not changed since last read of MR4 1B: OP value has changed since last read of MR4 Note: 1.A Mode Register Read from MR4 will reset OP7 to ‘0’. 2. OP7 is reset to ‘0’ atpower-up. 3. If OP2 equals ‘1', the device temperature is greaterthan 85oC. 4. OP7 is set to ‘1’ if OP2:OP0 has changed at any time since the last readof MR4. 5. LPDDR3mightnotoperateproperlywhenOP[2:0]=000Bor111B. 6. For specified operating temperature range and maximum operating temperature refer to the section of Operating Temperature Range. 7. LPDDR3 devices shall be de-rated by adding derating values to the following core timing parameters: tRCD, tRC, tRAS, tRP and tRRD.tDQSCKshallbede-ratedaccordingtothetDQSCKde-ratingin“ACtimingtable”.Prevailingclockfrequencyspecandrelated setup and hold timings shall remainunchanged. 8. See the section of Temperature Sensor for information on the recommended frequencyof reading MR4. 23 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) MR5BasicConfiguration1(MA=05H) OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0 OP2 OP1 OP0 OP2 OP1 OP0 Manufacturer ID Company ID Read-only OP 0000 0110B: Hynix Semiconductor MR6BasicConfiguration2(MA=06H) OP7 OP6 OP5 OP4 OP3 Revision ID 1 Revision ID1 Read-only OP 00000011B MR7BasicConfiguration3(MA=07H) OP7 OP6 OP5 OP4 OP3 Revision ID 2 Revision ID2 Read-only OP 00000000B: A-version MR8BasicConfiguration4(MA=08H) OP7 OP6 OP5 I/O width OP4 OP3 OP2 Density Type Read-only OP Density Read-only OP I/O width Read-only OP 24 OP1 OP0 Type 11B: S8 All Others : Reserved 0110B : 4Gb 0111B : 8Gb 1000B : 16Gb All Others : Reserved 00B: x32 01B: x16 All Others : Reserved RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) MR9 Test Mode (MA = 09H) OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0 OP2 OP1 OP0 Vendor-specific Test Mode MR10 Calibration (MA = 0AH) OP7 OP6 OP5 OP4 OP3 Calibration Code Calibration Code Write Only 1111 1111B: Calibration command after initialization 1010 1011B: Long Calibration OP 0101 0110B: Short Calibration 1100 0011B: ZQ Reset others: reserved Note: 1. Host processor shall not write MR10 with “Reserved”values 2. LPDDR3devicesshallignorecalibrationcommandwhena“Reserved”valueis writtenintoMR10. 3. See AC timing table for the calibrationlatency. 4. If ZQ is connected to VSSCA through RZQ, either the ZQ calibration function (see "Mode Register Write ZQ Calibration Command") or default calibration (through the ZQRESET command) is supported. If ZQ is connected to VDDCA, the device operates with default calibration, and ZQ calibration commands are ignored. In both cases, the ZQ connection shall not change after power is applied to thedevice. 5. LPDDR3 devices that do not support calibration shall ignore theZQ Calibration command. 6. Optionally, the MRW ZQ Initialization Calibration command will update MR0 to indicate RZQ pinconnection. MR11 ODT (MA = 0BH) OP7 OP6 OP5 OP4 OP3 OP2 PD Control (RFU) DQ ODT Write Only OP Power Down Control Write Only OP OP1 OP0 DQ ODT 00B : Disable (Default) 01B : RZQ/4 (See the Note 1.) 10B : RZQ/2 11B : RZQ/1 0B : ODT disabled by DRAM during power down 1B : ODT enabled by DRAM during power down Note: 1. RZQ/4 shall be supported for LPDDR3-1866 devices. RZQ/4 support is optional for LPDDR3-1333 and LPDDR3-1600 devices. Consult manufacturer specifications for RZQ/4 support for LPDDR3-1333 and LPDDR3-1600. MR12:15 (Reserved) (MA = 0CH - 0FH) 25 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) MR16 PASR Bank Mask (MA = 10H) OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0 Bank Mask Bank Mask Write-only OP 0B : refresh enable to the bank (=unmasked, default) 1B : refresh blocked (=masked) OP 0 1 2 3 4 5 6 7 Bank Mask XXXXXXX1 XXXXXX1X XXXXX1XX XXXX1XXX XXX1XXXX XX1XXXXX X1XXXXXX 1XXXXXXX LPDDR3 SDRAM Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7 MR17 PASR Segment Mask (MA = 11H) OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0 Segment Mask Segment Mask Write-only OP 0B : refresh enable to the segment (=unmasked, default) 1B : refresh blocked (=masked) Segment OP Segment Mask 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 XXXXXXX1 XXXXXX1X XXXXX1XX XXXX1XXX XXX1XXXX XX1XXXXX X1XXXXXX 1XXXXXXX 4Gb R13:11 6Gb2 R14:12 8Gb R14:12 12Gb2 R14:12 16Gb R14:12 000B 001B 010B 011B 100B 101B 110B 111B Note: 1. This table indicates the range of row addresses in each masked segment. X is do not care for a particular segment. 26 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) MR18:31 (Reserved) (MA = 12H - 1FH) MR32 DQ Calibration Pattern A (MA = 20H): MRR only Reads to MR32 return DQ Calibration Pattern A. See the section of DQ Calibration. MR33:39 (Reserved) (MA = 21H - 27H) MR40 DQ Calibration Pattern B (MA = 28H): MRR only Reads to MR40 return DQ Calibration Pattern B. See the section of DQ Calibration. MR41 CA Calibration Mode Entry for CA0-3, CA5-8 (MA = 29H) OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0 OP3 OP2 OP1 OP0 A4 See the section of CA Calibration. MR42 CA Calibration Mode Exit (MA = 2AH) OP7 OP6 OP5 OP4 A8 See the section of CA Calibration. MR43:47 (Reserved) (MA = 2BH - 2FH) MR48 CA Calibration Mode Entry for CA4, 9 (MA = 30H) OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0 OP3 OP2 OP1 OP0 C0 See the section of CA Calibration. MR49:62 (Reserved) (MA = 31H - 3EH) MR63 Reset (MA = 3FH): MRW only OP7 OP6 OP5 OP4 X or 0xFC Note: For additional information on MRW RESET, see Mode Register Write Command section. 27 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) TRUTHTABLES Operationortimingthatisnotspecifiedisillegalandaftersuchanevent,inordertoguaranteeproperoperation,the LPDDR3devicemustbepowereddownandthenrestartedthroughthespecifiedinitializationsequencebeforenormal operation cancontinue. COMMAND TRUTH TABLE SDR Command Pins (2) CKE Command CK_t(n-1) CK_t(n) MRW H H MRR H H Refresh (per bank) H H Refresh (all bank) H H H L Active (bank) H H Write (bank) H H Read (bank) H H H H NOP H H Maintain SREF, PD (NOP)4 L L NOP H H L L Enter Power Down H L Exit PD, SREF L H Enter Self Refresh Precharge (perbank, all bank)11 Maintain PD, SREF (NOP)4 CS_n DDR CA Pins (10) CA0 CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9 CK_t edg e L L L L L MA0 MA1 MA2 MA3 MA4 MA5 rising X MA6 MA7 OP0 OP1 OP2 OP3 OP4 OP5 OP6 OP7 falling L H MA0 MA1 MA2 MA3 MA4 MA5 L L L X MA6 MA7 L L L X H L X X L L rising X L L H falling H X X rising X L L falling H X X rising falling rising X falling L L H R8 R9 R10 R11 R12 BA0 BA1 BA2 rising X R0 R1 R2 R3 R4 R5 R6 R7 R13 R14 falling L H L L RFU RFU C1 C2 BA0 BA1 BA2 rising X AP3 C3 C4 C5 C6 C7 C8 C9 C10 C11 falling L H L H RFU RFU C1 C2 BA0 BA1 BA2 rising X AP3 C3 C4 C5 C6 C7 C8 C9 C10 C11 falling L H H L H AB X X BA0 BA1 BA2 rising X X X X X X X X X X X falling L H H H X X X X H H H rising falling X rising X X falling H X rising X X falling X X rising X X falling H X rising X X falling H X rising X X falling Note: 1. All LPDDR3 commands are defined by states of CS_n, CA0, CA1, CA2, CA3, and CKE at the rising edge of theclock. 2. BankaddressesBA0,BA1,BA2(BA)determinewhichbankistobeoperatedupon. 3. AP"high"duringaREADor WRITEcommandindicatesthatanauto-prechargewill occurto thebankassociatedwiththeREADor WRITEcommand. 4. "X" means "H or L (but a defined logic level)", except when the LPDDR3 SDRAM is in PD, or SREF, in which case CS_n, CK_t/CK_c, and CA can be floated after the required tCPDED time is satisfied, and until the required exit procedure is initiated as described in the respective entry/exitprocedure. 5. Self refresh exit isasynchronous. 6. VREF must be between 0 and VDDQ during Self Refreshoperation. 7. CAxr refers to command/address bit "x" on the rising edge ofclock. 8. CAxf refers to command/address bit "x" on the falling edge ofclock. 9. CS_n and CKE are sampled at the rising edge ofclock. 10. Theleast-significantcolumnaddressC0isnottransmittedon theCAbus,andis impliedtobezero. 11. AB"high"duringPrechargecommandindicatesthatallbankPrechargewill occur.Inthiscase,BankAddressisdo-not-care. 12. When CS_n is HIGH, LPDDR3 CA bus can befloated. 28 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) CKE TRUTH TABLE Current State3 CKEn-1 4 CKEn 4 CS_n5 Active Power Down L L X L H H Idl Power Down L L X L H H Resetting Power Down L L X L L L H L H H X H H L H H L H H L L H L H H H Self Refresh Bank(s) Active All Banks Idle Resetting Command n6 Operationn6 Next State Maintain Active X Active Power Down Powe Down NOP Exit Active Power Down Active Maintain Idle X Idle Power Down Power Down NOP Exit Idle Power Down Idle Maintain Resetting X Resetting Power Down Power Down NOP Exit Resetting Power Down Idle or Resetting X Maintain Self Refresh Self Refresh NOP Exit Self Refresh Idle Enter Active PowerNOP Active Power Down Down Enter Idle Power NOP Down Idle Power Down Enter Enter Self Refresh Self Refresh Self Refresh Enter Resetting NOP Resetting Power Down Power Down Refer to the Command Truth Table Notes 7 7 7,9 8 11 Note: 1. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere inthis document. 2. 'X' means 'Don'tcare'. 3. "Currentstate"isthestateoftheLPDDR3deviceimmediatelypriortoclockedgen. 4. "CKEn" is the logic state of CKE at clock rising edge n; "CKEn-1" was the state of CKE at the previousclock edge. 5. "CS_n" is the logic state of CS_n at the clock rising edgen. 6. "Commandn"isthecommandregisteredatclockedgeN, and"Operationn"is aresultof"Commandn". 7. PowerDownexittime(tXP)shouldelapsebeforeacommandotherthanNOPis issued.Theclockmusttoggleatleast twice during the tXP period. 8. Self-Refresh exit time (tXSR) should elapse before a command other than NOP is issued. The clock must toggle at least t wice during the tXSRtime. 9. UponexitingResettingPowerDown,thedevicewillreturntotheIdlestateiftINIT5hasexpired. 10. Inthecaseof ODTdisabled,allDQoutputshallbeHi-Z.InthecaseofODTenabled,all DQshallbe terminatedto VDDQ. 30 29 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Current State Bank n - Command to Bank n Current State Command Any NOP Activate Refresh (Per Bank) Refresh (All Bank) MRW MRR Reset Precharge Read Write MRR Precharge Idle Row Active Reading Read Write Writing Write Power On Resetting Read Reset MRR Operation Next State Note Continue previous operation Current State Select and activate row Active Begin to refresh Refreshing (Per Bank) 6 Begin to refresh Refreshing (All Bank) 7 Write value to Mode Register MR Writing 7 Read value from Mode Register Idle MR Reading Begin Device Auto-Initialization Resetting 8 Deactive row in bank or banks Precharging 9, 12 Select Column, and start read burst Reading Select Column, and start write burst Writing Read value from Mode Register Active MR Reading Deactivate row in bank or banks Precharging 9 Select column, and start new read Reading 10,11 burst Select column, and start write burst Writing 10,11,13 Select Column, and start new write Writing 10,11 burst Select column, and start read burst Reading 10,11,14 Begin Device Auto-Initialization Resetting 7, 9 Read value from Mode Register Resetting MR Reading Note: 1. ThetableapplieswhenbothCKEn-1andCKEnareHIGH,andaftertXSRortXPhasbeenmetifthepreviousstatewasPowerDown. 2. All states and sequences not shown are illegal orreserved. 3. Current StateDefinitions: Idle: The bank or banks have been precharged, and tRP has been met. Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts / accesses and no register accesses are in progress. Reading: A READ burst has been initiated, with Auto Precharge disabled. Writing: A WRITE burst has been initiated, with Auto Precharge disabled. 4. The following states must not be interrupted by a command issued to the same bank. NOP commands or allowable commands to theotherbankshouldbeissuedonanyclock edgeoccurringduringthesestates.Allowablecommandstotheotherbanksaredeter- mined by its current state and Table “Current State Bank n - Command to Bank n”, and according to Table “Current State Bank n - Command to Bankm”. Precharging:startswiththeregistrationofaPRECHARGEcommandandendswhentRPismet.OncetRPismet,thebankwill be in the idlestate. Row Activating: starts with registration of an ACTIVE command and ends when tRCD is met. Once tRCD is met, the bank will be in the ‘Active’ state. Read with AP Enabled: starts with the registration of the READ command with Auto Precharge enabled and ends when tRP has been met. Once tRP has been met, the bank will be in the idle state. Write with AP Enabled: starts with registration of a WRITE command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank will be in the idle state. 5. Thefollowingstatesmustnotbeinterruptedbyanyexecutablecommand;NOPcommandsmustbe appliedto eachpositiveclock edge during thesestates. Refreshing(PerBank):startswithregistrationofaREFRESH(PerBank)commandandendswhentRFCpbismet.OncetRFCpbis met, the bank will be in an ‘idle’state. Refreshing (All Bank): starts with registration of a REFRESH(All Bank) command and ends when tRFCab is met. Once tRFCab is met, the device will be in an ‘all banks idle’ state. Idle MR Reading: starts with the registration of a MRR command and ends when tMRR has been met. Once tMRR has been met, the bank will be in the Idle state. Resetting MR Reading: starts with the registration of a MRR command and ends when tMRR has been met. Once tMRR has been met, the bank will be in the Resetting state. 30 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Active MR Reading: starts with the registration of a MRR command and ends when tMRR has been met. Once tMRR has been met, the bank will be in the Row Active state. MR Writing: starts with the registration of a MRW command and ends when tMRW has been met. Once tMRW has been met, the bank will be in the Idle state. PrechargingAll:startswiththeregistrationofaPRECHARGEALLcommandandendswhentRPismet.OncetRPismet,thebank will be in the idlestate. 6. Bank-specific; requires that the bank is idle and no bursts are inprogress. 7. Not bank-specific; requires that all banks are idle and no bursts are inprogress. 8. Not bank-specific reset command is achieved through MODE REGISTER WRITEcommand. 9. Thiscommandmayormaynotbebankspecific.Ifallbanks arebeingprecharged,theymustbein a validstateforprecharging. 10. AcommandotherthanNOPshouldnotbeissuedtothesamebankwhileaREADorWRITEburstwithAutoPrechargeisenabled. 11. The new Read or Write command could be Auto Precharge enabled or Auto Prechargedisabled. 12. If a Precharge command is issued to a bank in the Idle state, tRP shallstill apply. 13. A Write command may be applied after the completion of the Read burst, burst terminates arenot permitted. 14. A Read command may be applied after the completion of the Write burst, burst terminates arenot permitted. 31 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Current State Bank n - Command to Bank m Current State of Commandfor Bank n Bank m Any Idle NOP Any Activate Row Activating, Active, or Precharging Read Write Precharge MRR Reading (Autoprecharge disabled) Writing (Autoprecharge disabled) Read Write Activate Precharge Read Write Activate Precharge Read Reading with Autoprecharge Write Activate Precharge Read Writing with Autoprecharge Power On Resetting Write Activate Precharge Reset MRR Operation Next State for Bank m Note Continue previous operation Current State of Bank m Any command allowed to Bank m Select and activate row in Bank m Active 6 Select column, and start read burst from Bank Reading 7 m Select column, and start write burst to Bank m Writing 7 Deactivate row in bank or banks Precharging 8 Idle MR Readingor Read value from Mode Register 9,10,12 Active MRReading Select column, and start read burst from Bank Reading 7 m Select column, and start write burst to Bank m Writing 7,15 Select and activate row in Bank m Active Deactivate row in bank or banks Precharging 8 Select column, and start read burst from Bank Reading 7,16 m Select column, and start write burst to Bank m Writing 7 Select and activate row in Bank m Active Deactivate row in bank or banks Precharging 8 Select column, and start read burst from Bank Reading 7,13 m Select column, and start write burst to Bank m Writing 7,15,13 Select and activate row in Bank m Active Deactivate row in bank or banks Precharging 8 Select column, and start read burst from Bank Reading 7,13,16 m Select column, and start write burst to Bank m Writing 7,13 Select and activate row in Bank m Active Deactivate row in bank or banks Precharging 8 Begin Device Auto-Initialization Resetting 11, 14 Read value from Mode Register Resetting MR Reading Note: 1. The table applies when both CKEn-1 and CKEn are HIGH, and after tXSR or tXP has been met if the previous state was Self Refresh or PowerDown. 2. All states and sequences not shown are illegal orreserved. 3. Current StateDefinitions: Idle: the bank has been precharged, and tRP has been met. Active: a row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no register accesses are in progress. Reading: a READ burst has been initiated, with Auto Precharge disabled. Writing: a WRITE burst has been initiated, with Auto Precharge disabled. 4. REFRESH,SELFREFRESH,andMODEREGISTERWRITEcommandsmayonlybeissuedwhenall bankareidle. 5. Thefollowingstatesmustnotbeinterruptedbyanyexecutablecommand;NOPcommandsmustbeappliedduringeachclockcycle while in thesestates: Idle MR Reading: starts with the registration of a MRR command and ends when tMRR has been met. Once tMRR has been met, the bank will be in the Idle state. Resetting MR Reading: starts with the registration of a MRR command and ends when tMRR has been met. Once tMRR has been met, the bank will be in the Resetting state. Active MR Reading: starts with the registration of a MRR command and ends when tMRR has been met. Once tMRR has been met, the bank will be in the Row Active state. MR Writing: starts with the registration of a MRW command and ends when tMRW has been met. Once tMRW has been met, the bank will be in the Idle state. 6. tRRDmustbemetbetweenActivatecommandtoBanknandasubsequentActivatecommandtoBankm. 32 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) 7. READsorWRITEslistedintheCommandcolumnincludeREADsandWRITEswithAutoPrechargeenabledandREADsandWRITEs with Auto Prechargedisabled. 8. This command may or may not be bank specific. If all banks are being precharged, they must be in a valid state for precharging. 9.MRRisallowedduringtheRowActivatingstateandMRWisprohibitedduringtheRowActivatingstate.(RowActivatingstartswith registrationofanActivatecommandandendswhentRCDismet.) 10. MRRisallowedduringthePrechargingstate.(PrechargingstartswithregistrationofaPrechargecommandandendswhentRPis met. 11. Not bank-specific; requires that all banks are idle and no bursts are inprogress. 12. ThenextstateforBankmdependsonthecurrentstateofBankm(Idle,RowActivating,Precharging,orActive).Thereadershall note that the state may be in transition when a MRR is issued. Therefore, if Bank m is in the Row Activating state and Precharging, the next state may be Active and Precharge dependent upon tRCD andtRP respectively. 13. ReadwithautoprechargeenabledoraWritewithautoprechargeenabledmaybefollowedbyanyvalidcommandtootherbanks provided that the timing restrictions in the section of Precharge and Auto Precharge clarification arefollowed. 14. Reset command is achieved through MODE REGISTER WRITEcommand. 15. A Write command may be applied after the completion of the Read burst, burst terminates arenot permitted. 16. A Read command may be applied after the completionof the Write burst, burst terminates are not permitted. 33 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) DATA MASK TRUTH TABLE Function Write Enable Write Inhibit DM L H Note: 1. Used to mask write data, provided coincident with the corresponding data. 34 DQ Valid X Note 1 1 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Absolute Maximum DC Ratings Stressesgreaterthanthoselistedmaycausepermanentdamagetothedevice.Thisisastressratingonly,andfunc-t ionaloperationofthedeviceattheseoranyotherconditions above thoseindicatedintheoperationalsectionsofthis specificationisnotimplied.Exposuretoabsolutemaximumratingconditionsforextendedperiodsmayaffectreliability. Parameter VDD1 supply voltage relative to VSS VDD2 supply voltage relative to VSS VDDCA supply voltage relative to VSSCA VDDQ supply voltage relative to VSSQ Voltage on Any Pin relative to VSS Storage Temperature Symbol VDD1 VDD2 VDDCA VDDQ VIN, VOUT TSTG Min -0.4 -0.4 -0.4 -0.4 -0.4 -55 Max 2.3 1.6 1.6 1.6 1.6 125 Unit V V V V V Notes 1 1 1, 2 1, 3 oC 4 Note: 1. See the section “Power-up, Initialization, and Power-off” for relationships between powersupplies. 2. VREFCA0.6x VDDCA;however,VREFCAmaybeVDDCAprovidedthatVREFCA300mV. 3. VREFDQ0.7x VDDQ; however,VREFDQmaybe VDDQprovidedthatVREFDQ 300mV. 4. StorageTemperatureisthecase surfacetemperatureonthecenter/topsideof thedevice.Forthemeasurementconditions,please refer to JESD51-2standard. 35 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) AC and DC Operating Conditions Operationortimingthatisnotspecifiedisillegal,andaftersuchanevent,inordertoguaranteeproperoperation,the LPDDR3Devicemustbepowereddownandthenrestartedthroughthespecializedinitializationsequencebeforenormal operation cancontinue. Recommended DC Operating Conditions Parameter Core Power 1 Core Power 2 Input Buffer Power I/O Buffer Power Symbol VDD1 VDD2 VDDCA VDDQ Min 1.70 1.14 1.14 1.14 Typ 1.80 1.20 1.20 1.20 Max 1.95 1.30 1.30 1.30 Unit V V V V Note : 1. VDD1 uses significantly less current thanVDD2. 2. ThevoltagerangeisforDCvoltageonly.DCisdefinedasthevoltagesuppliedattheDRAMandisinclusiveof allnoiseupto 1MHz at the DRAM package ball. Input Leakage Current Parameter Input Leakage current VREF supply leakage current Symbol IL IVREF Min -2 -1 Max 2 1 Unit uA uA Note 2 1 Unit Note 1 Note: 1. ForCA,CKE,CS_n,CK_t,CK_c.Anyinput0V VIN VDDCA(Allotherpinsnotundertest=0V) 2. Although DM is for input only, the DM leakage shall match the DQ and DQS_t/DQS_c outputleakage specification. 3. Theminimumlimitrequirementisfortestingpurposes.Theleakagecurrenton VREFCAandVREFDQpinsshouldbeminimal. 4. VREFDQ = VDDQ/2 or VREFCA = VDDCA/2. (All other pins not under test= 0V) Operating Temperature Parameter Operating Temperature Standard Symbol TOPER Min -25 Max 85 oC Note: 1.Operating Temperature is the case surface temperature on the center-top side of the LPDDR3 device. For the measurement conditions, please refer to JESD51-2 standard. 36 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) AC and DC Input Measurement Levels AC and DC Logic Input Levels for Single-Ended CA and CS_n Signals Parameter LPDDR3 1600/1333 Min Max VREF + 0.150 Note 2 Note 2 VREF - 0.150 VREF + 0.100 VDDCA VSSCA VREF - 0.100 Symbol AC Input Logic High AC Input Logic Low DC Input Logic High DC Input Logic Low VIHCA VILCA VIHCA VILCA Reference Voltage for CA and CS_n Inputs VREFCA(DC) 0.49 * VDDCA 0.51 * VDDCA Unit Note V V V V 1,2 1,2 1 1 V 3,4 Note: 1. For CA and CS_n input only pins. VREF =VREFCA(DC). 2. See the section “Overshoot and UndershootSpecifications”. 3. The ac peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than +/-1% VDDCA (for reference: ap prox. +/- 12mV). 4. For reference: approx. VDDCA/2 +/- 12mV. AC and DC Logic Input Levels for CKE Parameter CKE Input High Level CKE Input Low Level Symbol VIHCKE VILCKE Min 0.65 * VDDCA Note 1 Max Note 1 0.35 * VDDCA Unit Note V 1 V 1 Note: 1. See the section “Overshoot and Undershoot Specifications”. AC and DC Logic Input Levels for Single-Ended Data (DQ and DM) Signals Parameter AC Input High Voltage AC Input Low Voltage DC Input High Voltage DC Input Low Voltage Reference Voltage for DQ and DM Inputs Reference Voltage for DQ and DM Inputs Symbol VIHDQ VILDQ VIHDQ VILDQ VREFDQ(DC) (DQ ODT disabled) VREFDQ(DC) (DQODT enabled) LPDDR3 1600/1333 Min Max VREF + 0.150 Note 2 Note 2 VREF - 0.150 VREF + 0.100 VDDQ VSSCA VREF - 0.100 0.49 * VDDQ 0.5 * Vodtr - 0.01 * VDDQ Unit Note V V V V 1,2 1,2 1 1 0.51*VDDQ V 3,4 0.5 * Vodtr + 0.01 * VDDQ V 3,5,6 Note: 1. For DQ input only pins. VREF =VREFDQ(DC). 2. See the section of Overshoot and UndershootSpecifications. 3. The ac peak noise on VREFDQ may not allow VREFDQ to deviate from VREFDQ(DC) by more than +/-1% VDDQ (for reference: ap prox. +/- 12mV). 4. For reference: approx. VDDQ/2 +/- 12mV. 5. For reference: approx. VODTR/2 +/- 12mV. 6. ThenominalmoderegisterprogrammedvalueforRODTandthenominalcontrolleroutputimpedanceRONareusedforthecalcu- lation of VODTR. For testing purposes a controller RON value of 50 Ω isused. Vodtr = (2 * RON + RTT) / (RON + RTT) * VDDQ 37 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) VREF Tolerances Thedc-tolerancelimitsandac-noiselimitsforthereferencevoltagesVREFCAandVREFDQareillustratedinFigurebelow.ItshowsavalidreferencevoltageVREF(t)asafunctionoftime.(VREFstandsforVREFCAandVREFDQlikewise). VDDstandsforVDDCSforVREFCAandVDDQforVREFDQ.VREF(DC)isthelinearaverageofVREF(t)overaverylong periodoftime(e.g.1sec)andisspecifiedasafractionofthelinearaverageofVDDCAorVDDQalsooveraverylong periodoftime(e.g.1sec).Thisaveragehastomeetthemin/maxrequirementsinTable“ElectricalCharacteristicsand OperatingConditions”.FurthermoreVREF(t)maytemporarilydeviatefromVREF(DC)bynomorethan+/-1%VDD.V REF(t)cannottracknoiseonVDDQorVDDCAif thiswouldsendVREF outsidethesespecifications. voltage VDD V VREF(t) REF ac-noise VREF(DC)max VREF(DC) VDD/2 VREF(DC)min VSS time Figure. Illustration of VREF(DC) tolerance and VREF ac-noise limits ThevoltagelevelsforsetupandholdtimemeasurementsVIH(AC),VIH(DC),VIL(AC)andVIL(DC)aredependentonV REF."VREF"shallbe understoodasVREF(DC),asdefinedinFigure above. Thisclarifiesthatdc-variationsofVRefaffecttheabsolutevoltageasignalhastoreachtoachieveavalidhighorlowl evelandthereforethetimetowhichsetupandholdismeasured.Systemtimingandvoltagebudgetsneedtoaccount forVREF(DC)deviationsfromtheoptimumpositionwithinthedata-eyeoftheinputsignals. ThisalsoclarifiesthattheLPDDR3setup/holdspecificationandderatingvaluesneedtoincludetimeandvoltageassociatedwithVREFac-noise.Timingandvoltageeffectsduetoac-noiseonVREFuptothespecifiedlimit(+/-1%ofVD D) are included in LPDDR3 timings and their associated deratings. 38 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Input Signal Figure. LPDDR3 Input signal Note: 1. Numbers reflect nominalvalues. 2. For CA0-9, CK_t, CK_c and CS_n, VDD stands for VDDCA. For DQ, DM/DNV, DQS_t and DQS_c, VDD stands forVDDQ. 3. ForCA0-9,CK_t,CK_candCS_n,VSSstandsforVSSCA.ForDQ,DM/DNV,DQS_tandDQS_c,VSSstandsfor VSSQ. 40 39 RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) AC and DC Logic Input Levels for Differential Signals DifferentialSignalDefinition differential voltage VIHDIFF(AC)MIN tDVAC VIHDIFF(DC)MIN CK_t - CK_c DQS_t -DQS_c 0.0 VILDIFF(DC)MAX VILDIFF(AC)MAX halfcycle tDVAC Figure. Definition of differential ac-swing and Time above ac-level tDVAC 40 time RS512M32LD3D2LMZ-125BT LPDDR3 16Gb(x32) Differential swing requirements for clock and strobe Parameter Symbol DC Differential Input High DC Differential Input Low AC Differential Input High AC Differential Input Low VIHDIFF(DC) VILDIFF(DC) VIHDIFF(AC) VILDIFF(AC) Min 2 x (VIH(DC) - VREF) Note 3 2 x (VIH(AC) - VREF) Note 3 Max Unit Note Note 3 2 x (VIL(DC) - VREF) Note 3 2 x (VIL(AC) - VREF) V V V V 1 1 2 2 Note: 1.Used to define a differential signal slew-rate. For CK_t - CK_c use VIH/VIL(dc) of CA and VREFCA; for DQS_t - DQS_c, use VIH/ VIL(dc) of DQs and VREFDQ; if a reduced dc-high or dc-low level is used for a signal group, then the reduced level applies also here. 2.For CK_t - CK_c use VIH/VIL(ac) of CA and VREFCA; for DQS_t - DQS_c, use VIH/VIL(ac) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here. 3. These values are not defined, however the single-ended signals CK_t, CK_c, DQS_t, and DQS_c need to be within the respective limits(VIH(dc)max,VIL(dc)min) forsingle-endedsignalsaswellasthelimitationsforovershootandundershoot.Referto thesection of “Overshoot and UndershootSpecifications”. 4. For CK_t and CK_c, Vref = VrefCA(DC). For DQS_t and DQS_c, Vref= VrefDQ(DC). Table. Allowed time before ringback (tDVAC) for DQS_t - DQS_c Slew Rate [V/ns] tDVAC [ps] tDVAC [ps] @ |VIH/Ldiff(ac)|= 300mV 1600Mbps @ |VIH/Ldiff(ac)| = 300mV 1333Mbps MIN MIN > 8.0 48 58 8.0 48 58 7.0 46 56 6.0 43 53 5.0 40 50 4.0 35 45 3.0 27 37 8.0 48 58 8.0 48 58 7.0 46 56 6.0 43 53 5.0 40 50 4.0 35 45 3.0 27 37
RS512M32LD3D2LMZ-125BT 价格&库存

很抱歉,暂时无法提供与“RS512M32LD3D2LMZ-125BT”相匹配的价格&库存,您可以联系我们找货

免费人工找货