0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
2182A/E

2182A/E

  • 厂商:

    KEITHLEY

  • 封装:

  • 描述:

    KEITHLEY - 2182A/E - Bench Digital Multimeter, Nanovoltmeter, DC Voltage, Resistance, 100 V, 7.5 Dig...

  • 数据手册
  • 价格&库存
2182A/E 数据手册
The two-channel Model 2182A Nanovoltmeter is optimized for making stable, low noise voltage measurements and for characterizing low resistance materials and devices reliably and repeatably. It provides higher measurement speed and significantly better noise performance than alternative low voltage measurement solutions. The Model 2182A represents the next step forward in Keithley nanovoltmeter technology, replacing the original Model 2182 and offering enhanced capabilities including pulse capability, lower measurement noise, faster current reversals, and a simplified delta mode for making resistance measurements in combination with a reversing current source, such as the Model 6220 or 6221. • Make low noise measurements at high speeds, typically just 15nV p-p noise at 1s response time, 40–50nV p-p noise at 60ms • Delta mode coordinates measurements with a reversing current source at up to 24Hz with 30nV p-p noise (typical) for one reading. Averages multiple readings for greater noise reduction Flexible, Effective Speed/Noise Trade-offs The Model 2182A makes it easy to choose the best speed/filter combination for a particular application’s response time and noise level requirements. The ability to select from a wide range of response times allows optimizing speed/noise trade-offs. Low noise levels are assured over a wide range of useful response times, e.g., 15nV p-p noise at 1s and 40-50nV p-p noise at 60ms are typical. Figure 1 illustrates the Model 2182A’s noise performance. 150 • Synchronization to line provides 110dB NMRR and minimizes the effect of AC common-mode currents • Dual channels support measuring voltage, temperature, or the ratio of an unknown resistance to a reference resistor • Built-in thermocouple linearization and cold junction compensation 100 50 Low noise measurements for research, metrology, and other low voltage testing applications Nanovoltmeter Keithley 2182A nV nV/µΩ Meter 0 -50 -100 0 Number of Readings 100 Figure 1. Compare the Model 2182A’s DC noise performance with a nanovolt/micro-ohmmeter’s. All the data shown was taken at 10 readings per second with a low thermal short applied to the input. 1.888.KEITHLEY (U.S. only) www.keithley.com A Greater Measure of Confidence LOW LEVEL MEASURE & SOURCE 2182A Low noise measurements for research, metrology, and other low voltage testing applications 2182A Ordering Information 2182A Nanovoltmeter Accessories Supplied 2107-4 Low Thermal Input Cable with spade lugs, 1.2m (4 ft). User manual, service manual, contact cleaner, line cord, ­alligator clips. Accessories Available 2107-30 2182-KIT 2187-4 2188 4288-1 4288-2 7007-1 7007-2 7009-5 8501-1 8501-2 8503 KPCI-488LPA KUSB-488B Low Thermal Input Cable with spade lugs, 9.1m (30 ft) Low Thermal Connector with strain relief Low Thermal Test Lead Kit Low Thermal Calibration Shorting Plug Single Fixed Rack Mount Kit Dual Fixed Rack Mount Kit Shielded GPIB Cable, 1m (3.2 ft) Shielded GPIB Cable, 2m (6.5 ft) Shielded RS-232 Cable, 1.5m (5 ft) Trigger Link Cable, 1m (3.2 ft) Trigger Link Cable, 2m (6.5 ft) Trigger Link Cable to 2 male BNC connectors IEEE-488 Interface/Controller for the PCI Bus IEEE-488 USB-to-GPIB Interface Adapter Services Available Nanovoltmeter Reliable Results Power line noise can compromise measurement accuracy significantly at the nanovolt level. The Model 2182A reduces this interference by synchronizing its measurement cycle to line, which minimizes variations due to readings that begin at different phases of the line cycle. The result is exceptionally high immunity to line interference with little or no shielding and filtering required. Optimized for Use with Model 6220/6221 Current Sources Device test and characterization for today’s very small and power-efficient electronics requires sourcing low current levels, which demands the use of a precision, low current source. Lower stimulus currents produce lower—and harder to measure—voltages across the devices. Linking the Model 2182A Nanovoltmeter with a Model 6220 or 6221 Current Source makes it possible to address both of these challenges in one easy-to-use configuration. When connected, the Model 2182A and Model 6220 or 6221 can be operated like a single instrument. Their simple connections eliminate the isolation and noise current problems that plague other solutions. The Model 2182A/622X combination allows making delta mode and differential conductance measurements faster and with less noise than the original Model 2182 design allowed. The Model 2182A will also work together with the Model 6221 to make pulse-mode measurements. The 2182A/622X combination is ideal for a variety of applications, including resistance measurements, pulsed I-V measurements, and differential conductance measurements, providing significant advantages over earlier solutions like lock-in amplifiers or AC resistance bridges. The 2182A/622X combination is also well suited for many nanotechnology applications because it can measure resistance without dissipating much power into the device under test (DUT), which would otherwise invalidate results or even destroy the DUT. An Easy-to-Use Delta Mode Keithley originally created the delta mode method for measuring voltage and resistance for the Model 2182 and a triggerable external current source, such as the Model 2400 SourceMeter® SMU instrument. Basically, the delta mode automatically triggers the current source to alternate the signal polarity, and then triggers a nanovoltmeter reading at each polarity. This current reversal technique 2182A-3Y-EW 1-year factory warranty extended to 3 years from date of shipment C/2182A-3Y-ISO 3 (ISO-17025 accredited) calibrations within 3 years of purchase* * Not available in all countries 5nV LOW LEVEL MEASURE & SOURCE Applications Research • Determining the transition temperature of superconductive materials • I-V characterization of a material at a specific temperature • Calorimetry • Differential thermometry • Superconductivity • Nanomaterials Metrology • Intercomparisons of standard cells • Null meter for resistance bridge measurements 4µV DC Measurement Delta Mode Measurement Figure 2. Results from a Model 2182A/6220 using the delta mode to measure a 10mW resistor with a 20µA test current. The free Model 6220/6221 instrument control example start-up software used here can be downloaded from www.keithley.com. 1.888.KEITHLEY (U.S. only) www.keithley.com A Greater Measure of Confidence cancels out any constant thermoelectric offsets, so the results reflect the true value of the voltage being measured. The improved delta mode for the Model 2182A and the Model 622X current sources uses the same basic technique, but the way in which it’s implemented has been simplified dramatically. The new technique can cancel thermoelectric offsets that drift over time (not just static offsets), produces results in half the time of the original technique, and allows the current source to control and configure the Model 2182A. Two key presses are all that’s required to set up the measurement. The improved cancellation and higher reading rates reduce measurement noise to as little as 1nV. Differential Conductance Measurements Characterizing non-linear tunneling devices and low temperature devices often requires measuring differential conductance (the derivative of a device’s I-V curve). When used with a Model 622X current source, the Model 2182A is the industry’s fastest, most complete solution for differential conductance measurements, providing 10X the speed and significantly lower noise than other instrumentation options. There’s no need to average the results of multiple sweeps, because data can be obtained in a single measurement pass, reducing test time and minimizing the potential for measurement error. Pulsed Testing with the Model 6221 When measuring small devices, introducing even tiny amounts of heat to the DUT can raise its temperature, skewing test results or even destroying the device. When used with the Model 2182A, the Model 6221’s pulse capability minimizes the amount of power dissipated into a DUT. The Model 2182A/6221 combination synchronizes the pulse and measurement. A measurement can begin as soon as 16µs after the Model 6221 applies the pulse. The entire pulse, including a complete nanovolt measurement, can be as short as 50µs. Competition 100µs Model 2182A 2182A NANOVOLTMETER Model 622X RS-232 Trigger Link GPIB or Ethernet 6220 DC AND AC CURRENT SOURCE DUT Figure 3. It’s simple to connect the Model 2182A to the Model 6220 or 6221 to make a variety of measurements. The instrument control example start-up software available for the Model 622X current sources includes a step-by-step guide to setting up the instrumentation and making proper connections. 2182A 2182A in delta mode 0.5µA Figure 4. The Model 2182A produces the lowest transient currents of any nanovoltmeter available. In the delta, differential conductance, and pulse modes, The Model 2182A produces virtually no transient currents, so it’s ideal for characterizing devices that can be easily disrupted by current spikes (see Figure 4). Metrology Applications The Model 2182A combines the accuracy of a digital multimeter with low noise at high speeds for high-precision metrology applications. Its low noise, high signal observation time, fast measurement rates, and 2ppm accuracy provide the most cost-effective meter available today for applications such as intercomparison of voltage standards and direct measurements of resistance standards. Research Applications The Model 2182A’s 1nV sensitivity, thermoelectric EMF cancellation, direct display of “true” voltage, ability to perform calculations, and high measurement speed makes it ideal for determining the characteristics of materials such as metals, low resistance filled plastics, and high and low temperature superconductors. Nanotechnology Applications The Model 2182A combined with the Model 622X current source or Series 2400 SourceMeter® SMU instrument is a highly accurate and repeatable solution for measuring resistances on carbon nanotube based materials and silicon nanowires. 1.888.KEITHLEY (U.S. only) www.keithley.com A Greater Measure of Confidence Low noise measurements for research, metrology, and other low voltage testing applications Nanovoltmeter LOW LEVEL MEASURE & SOURCE 2182A LOW LEVEL MEASURE & SOURCE Low noise measurements for research, metrology, and other low voltage testing applications 2182A Nanovoltmeter Three Ways to Measure Nanovolts 220 DC nanovoltmeters. DC nanovoltmeters and sensitive DMMs both provide low noise DC voltage measurements by using long integration times and highly filtered readings to minimize the bandwidth near DC. Unfortunately, this approach has limitations, particularly the fact that thermal voltages develop in the sample and connections vary, so long integration times don’t improve measurement precision. With a noise specification of just 6nV p-p, the Model 2182A is the lowest noise digital nanovolt­meter available. 215 AC technique. The limitations of the long integration and filtered readings technique have led many people to use an AC technique for measuring low resistances and voltages. In this method, an AC excitation is applied to the sample and the voltage is detected syn­chronously at the same frequency and an optimum phase. While this technique removes the varying DC component, in many experiments at high frequencies, users can experience problems related to phase shifts caused by spurious capacitance or the L/R time constant. At low frequencies, as the AC frequency is reduced to minimize phase shifts, amplifier noise increases. The current reversal method. The Model 2182A is optimized for the current reversal method, which combines the advantages of both earlier approaches. In this technique, the DC test current is reversed, then the difference in voltage due to the difference in current is determined. Typically, this measure­ment is performed at a few hertz (a frequency just high enough for the current to be reversed before the thermal voltages can change). The Model 2182A’s low noise performance at measurement times of a few hundred milliseconds to a few seconds means that the reversal period can be set quite small in comparison with the thermal time constant of the sample and the con­ nections, effectively reducing the impact of thermal voltages. 30 Temperature (°C) 25 210 20 205 15 200 Voltage (nV) 195 10 5 190 0 185 –5 180 0 8 17 –10 25 33 42 50 58 67 75 83 92 100 108 117 125 Minutes Figure 5. The Model 2182A’s delta mode provides extremely stable results, even in the presence of large ambient temperature changes. In this challenging example, the 200nV signal results from a 20µA current sourced by a Model 6221 through a 10mW test resistor. Optional Accessory: Model 2187-4 Low Thermal Test Lead Kit The standard cabling provided with the Model 2182A Nano­volt­meter and Model 622X Current Sources provides everything normally needed to connect the instruments to each other and to the DUT. The Model 2187-4 Low Thermal Test Lead Kit is required when the cabling provided may not be sufficient for specific applications, such as when the DUT has special connection requirements. The kit includes an input cable with banana terminations, banana extensions, sprung-hook clips, alligator clips, needle probes, and spade lugs to accommodate virtually any DUT. The Model 2187-4 is also helpful when the DUT has roughly 1GW impedance or higher. In this case, measuring with the Model 2182A Figure 6. Model 2187-4 Test Lead Kit directly across the DUT will lead to loading errors. The Model 2187-4 Low Thermal Test Lead Kit provides a banana cable and banana jack extender to allow the Model 2182A to connect easily to the Model 622X’s low impedance guard output, so the Model 2182A can measure the DUT voltage indirectly. This same configuration also removes the Model 2182A’s input capacitance from the DUT, so it improves device response time, which may be critical for pulsed measurements. Figure 7. Model 2182A rear panel 1.888.KEITHLEY (U.S. only) www.keithley.com A Greater Measure of Confidence 2182A Nanovoltmeter Volts Specifications (20% over range) Channel 2 6, 10 100.00000 mV 1.0000000 V 10.000000 V 10 nV 100 nV 1 µV >10 GW >10 G W >10 GW 10 + 6 7 + 2 2 + 1 5 25 + 6 18 + 2 18 + 2 30 + 7 25 + 2 25 + 2 Temperature Coefficient 0°–18°C & 28°–50°C (1 + 0.5)/°C (1 + 0.2)/°C (1 + 0.1)/°C (1 + 0.1)/°C (1 + 0.5)/°C 40 + 7 32 + 3 32 + 3 (1 + 1   )/°C (1 + 0.5)/°C (1 + 0.5)/°C CHANNEL 1/CHANNEL 2 RATIO: For input signals ≥1% of the range, Ratio Accuracy = ±{[Channel 1 ppm of Reading + Channel 1 ppm of Range * (Channel 1 Range/Channel 1 Input)] + [Channel 2 ppm of Reading + Channel 2 ppm of Range * (Channel 2 Range/Channel 2 Input)]}. DELTA (hardware-triggered coordination with Series 24XX, Series 26XXA, or Series 622X current sources for low noise R measurement): Accuracy = accuracy of selected Channel 1 range plus accuracy of I source range. DELTA measurement noise with 6220 or 6221: Typical 3nVrms / Hz (10mV range)21. 1Hz achieved with 1PLC, delay = 1ms, RPT filter = 23 (20 if 50Hz). PULSE-MODE (with 6221): Line synchronized voltage measurements within current pulses from 50µs to 12ms, pulse repetition rate up to 12Hz. Pulse measurement noise (typical rms noise, R DUT10 GW 100.00000 mV 10 nV >10 GW 1.0000000 V 100 nV >10 GW 10.000000 V 1 µV >10 GW 100.00000 V 4 10 µV 10 M W ±1% Accuracy: ±(ppm of reading + ppm of range) (ppm = parts per million) (e.g., 10ppm = 0.001%) 24 Hour 1 90 Day 1 Year 2 Year TCAL ±1°C TCAL ±5°C TCAL ±5°C TCAL ±5°C 20 + 4 40 + 4 50 + 4 60 + 4 10 + 3 25 + 3 30 + 4 40 + 5 7 + 2 18 + 2 25 + 2 32 + 3 2 + 1 5 18 + 2 25 + 2 32 + 3 10 + 3 25 + 3 35 + 4 52 + 5 Operating Characteristics 13, 14 60Hz (50Hz) Operation Function DCV Channel 1, Channel 2, Thermocouple Channel 1/Channel 2 (Ratio), Delta with 24XX, Scan Delta with 622X Digits Readings/s 7.5 3 (2) 7.5 17, 19 6 (4) 6.5 18, 19 18 (15) 6.5 18, 19, 20 45 (36) 5.5 17, 19 80 (72) 4.5 16, 17, 19 115 (105) 7.5 1.5 (1.3) 7.5 17, 19 2.3 (2.1) 6.5 18 8.5 (7.5) 6.5 18, 20 20 (16) 5.5 17 30 (29) 4.5 17 41 (40) 6.5 47 (40.0) 22 System Speeds 13, 15 Range Change Time: 14
2182A/E 价格&库存

很抱歉,暂时无法提供与“2182A/E”相匹配的价格&库存,您可以联系我们找货

免费人工找货
2182A/E
  •  国内价格
  • 1+76349.88776

库存:6