GW CS8PM1.PM-LRLT-XX52-1-350-R18 数据手册
www.osram-os.com
Produktdatenblatt | Version 1.1
GW CS8PM1.PM
GW CS8PM1.PM
OSLON ® SSL 80
Higher performance. Lower thermal resistance.
Extended range of driving conditions. This OSLON
SSL family new generation LED offers a prefocused
radiation pattern making it the ideal choice for spot
lighting applications.
Applications
——Highbay Industrial
——Street, Tunnel and Outdoor
Features:
——Package: SMT ceramic package with silicone lens
——Typ. Radiation: 80°
——Color temperature: 3000K - 6500K
——CRI: 70 (min.)
——Lumen maintenance: Test results according to IESNA LM-80 available
——ESD: 8 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 3B)
——Luminous Flux: typ. 144 lm @ 5000 K, 85 °C
——Luminous efficacy: typ. 144 lm/W @ 5000 K, 85 °C
1 Version 1.5 | 2020-03-11
GW CS8PM1.PM
Ordering Information
Type
Color temperature
Luminous Flux 1)
IF = 350 mA
ΦV
Ordering Code
GW CS8PM1.PM-LRLT-A737-1
3000 K
130 ... 164 lm
Q65112A1037
GW CS8PM1.PM-LRLT-XX57-1
3000 K
130 ... 164 lm
Q65112A1036
GW CS8PM1.PM-LRLT-A636-1
3500 K
130 ... 164 lm
Q65112A1035
GW CS8PM1.PM-LRLT-XX56-1
3500 K
130 ... 164 lm
Q65112A1034
GW CS8PM1.PM-LRLT-A535-1
4000 K
130 ... 164 lm
Q65111A7343
GW CS8PM1.PM-LRLT-XX55-1
4000 K
130 ... 164 lm
Q65111A8245
GW CS8PM1.PM-LRLT-A434-1
4500 K
130 ... 164 lm
Q65111A7335
GW CS8PM1.PM-LRLT-XX54-1
4500 K
130 ... 164 lm
Q65111A8246
GW CS8PM1.PM-LRLT-A333-1
5000 K
130 ... 164 lm
Q65111A7333
GW CS8PM1.PM-LRLT-XX53-1
5000 K
130 ... 164 lm
Q65111A8247
GW CS8PM1.PM-LSLU-A333-1
5000 K
140 ... 180 lm
Q65112A1039
GW CS8PM1.PM-LSLU-XX53-1
5000 K
140 ... 180 lm
Q65112A1038
GW CS8PM1.PM-LRLT-A232-1
5700 K
130 ... 164 lm
Q65111A7327
GW CS8PM1.PM-LRLT-XX52-1
5700 K
130 ... 164 lm
Q65111A8248
GW CS8PM1.PM-LSLU-A232-1
5700 K
140 ... 180 lm
Q65112A1041
GW CS8PM1.PM-LSLU-XX52-1
5700 K
140 ... 180 lm
Q65112A1040
GW CS8PM1.PM-LRLT-A131-1
6500 K
130 ... 164 lm
Q65111A7324
GW CS8PM1.PM-LRLT-XX51-1
6500 K
130 ... 164 lm
Q65111A8249
GW CS8PM1.PM-LSLU-A131-1
6500 K
140 ... 180 lm
Q65112A1043
GW CS8PM1.PM-LSLU-XX51-1
6500 K
140 ... 180 lm
Q65112A1042
2 Version 1.5 | 2020-03-11
GW CS8PM1.PM
Maximum Ratings
Parameter
Symbol
Values
Operating Temperature
Top
min.
max.
-40 °C
125 °C
Storage Temperature
Tstg
min.
max.
-40 °C
125 °C
Junction temperature absolute **
Tj,abs
max.
160 °C
Junction Temperature
Tj
max.
135 °C
Forward Current
TJ = 85 °C
IF
min.
max.
100 mA
1300 mA
Surge Current
t ≤ 10 µs; D = 0.005 ; TJ = 85 °C
IFS
max.
2000 mA
Reverse current 2)
IR
max.
200 mA
ESD withstand voltage
acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 3B)
VESD
** This is verified by testing 30 pieces. Pass criteria: No catastrophic failures allowed, luminous flux must be better than
L70B50 after 1000 h.
3 Version 1.5 | 2020-03-11
8 kV
GW CS8PM1.PM
Characteristics
IF = 350 mA; TJ = 85 °C
Parameter
Symbol
Viewing angle at 50% IV
2φ
typ.
Forward Voltage 3)
VF
min.
typ.
max.
2.70 V
2.85 V
3.20 V
Reverse voltage (ESD device)
VR ESD
min.
45 V
Reverse voltage 2)
IR = 20 mA
VR
max.
1.2 V
Color Rendering Index 4)
CRI
min.
70
Electrical thermal resistance junction/solderpoint
with efficiency ηe = 30 %
RthJS elec.
typ.
3.7 K / W
4 Version 1.5 | 2020-03-11
Values
80 °
GW CS8PM1.PM
Brightness Groups
Group
Luminous Flux 1)
IF = 350 mA
min.
ΦV
Luminous Flux 1)
IF = 350 mA
max.
ΦV
LR
130 lm
140 lm
LS
140 lm
150 lm
LT
150 lm
164 lm
LU
164 lm
180 lm
Forward Voltage Groups
Group
Forward Voltage 3)
min.
VF
Forward Voltage 3)
max.
VF
K2
2.70 V
2.80 V
L1
2.80 V
2.90 V
L2
2.90 V
3.00 V
M1
3.00 V
3.10 V
M2
3.10 V
3.20 V
5 Version 1.5 | 2020-03-11
GW CS8PM1.PM
Chromaticity Coordinate Groups
6 Version 1.5 | 2020-03-11
5)
GW CS8PM1.PM
Group Name on Label
Example: LR-31-K2
Brightness
Wavelength
LR
31
7 Version 1.5 | 2020-03-11
Forward Voltage
K2
GW CS8PM1.PM
Relative Spectral Emission
6)
Irel = f (λ); IF = 350 mA; TJ = 85 °C
Erel
GW CS8PM1.PM
1,0
: Vλ
: white
0,8
0,6
0,4
0,2
0,0
350
400
450
500
550
600
650
700
750
800
λ [nm]
Radiation Characteristics
6)
Irel = f (ϕ); TJ = 85 °C
GW CS8PM1.PM
ϕ [°]
-40°
-50°
-20°
-10°
0°
10°
20°
30°
40°
50°
60°
70°
80°
90°
1,0
-30°
0,8
0,6
-60°
-70°
-80°
-90°
-100°
8 Version 1.5 | 2020-03-11
0,4
0,2
0,0
Irel
GW CS8PM1.PM
Forward current
Relative Luminous Flux
6), 7)
IF = f(VF); TJ = 85 °C
Φv/Φv(350 mA) = f(IF); TJ = 85 °C
Chromaticity Coordinate Shift
ΔCx, ΔCy = f(IF); TJ = 85 °C
9 Version 1.5 | 2020-03-11
6)
6), 7)
GW CS8PM1.PM
Forward Voltage
Relative Luminous Flux
6)
ΔVF = VF - VF(85 °C) = f(Tj); IF = 350 mA
∆VF [V]
Φv/Φv(85 °C) = f(Tj); IF = 350 mA
GW CS8PM1.PM
0,3
Φv
GW CS8PM1.PM
1,2
Φv(85°C)
0,2
1,0
0,1
0,8
0,0
0,6
-0,1
0,4
-0,2
0,2
-0,3
-40 -20
0
20
40
60
80
100 120
Tj [°C]
Chromaticity Coordinate Shift
6)
ΔCx, ΔCy = f(Tj); IF = 350 mA
∆Cx
∆Cy
6)
GW CS8PM1.PM
0,03
: Cx - white
: Cy - white
0,02
0,01
0,00
-0,01
-0,02
-0,03
-40 -20
0
20
40
60
80
100 120
Tj [°C]
10 Version 1.5 | 2020-03-11
0,0
-40 -20
0
20
40
60
80
100 120
Tj [°C]
GW CS8PM1.PM
Max. Permissible Forward Current
IF = f(T)
IF [mA]
GW CS8PM1.PM
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100
0
Do not use below 100 mA
0
20
40
60
80
100
120
Ts [°C]
11 Version 1.5 | 2020-03-11
GW CS8PM1.PM
Dimensional Drawing
8)
Further Information:
Approximate Weight:
25.0 mg
ESD advice:
The device is protected by ESD device which is connected in parallel to the
Chip.
12 Version 1.5 | 2020-03-11
GW CS8PM1.PM
Recommended Solder Pad
IRRWSULQW
8)
&XDUHD
VROGHUUHVLVW
VROGHUVWHQFLO
For superior solder joint connectivity results we recommend soldering under standard nitrogen atmosphere. Further information can be found in our Application Note: “Handling and Processing Details for Ceramic LEDs”.
13 Version 1.5 | 2020-03-11
GW CS8PM1.PM
Reflow Soldering Profile
Product complies to MSL Level 2 acc. to JEDEC J-STD-020E
OHA04525
300
˚C
T 250
Tp 245 ˚C
240 ˚C
tP
217 ˚C
200
tL
150
tS
100
50
25 ˚C
0
0
50
100
150
200
250
s 300
t
Profile Feature
Symbol
Pb-Free (SnAgCu) Assembly
Minimum
Recommendation Maximum
Ramp-up rate to preheat*)
25 °C to 150 °C
tS
Time tS
TSmin to TSmax
Ramp-up rate to peak*)
TSmax to TP
Liquidus temperature
60
2
3
100
120
2
3
Unit
K/s
s
K/s
TL
217
Time above liquidus temperature
tL
80
100
s
Peak temperature
TP
245
260
°C
Time within 5 °C of the specified peak
temperature TP - 5 K
tP
20
30
3
6
Ramp-down rate*
TP to 100 °C
10
Time
25 °C to TP
All temperatures refer to the center of the package, measured on the top of the component
* slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range
14 Version 1.5 | 2020-03-11
°C
480
s
K/s
s
GW CS8PM1.PM
Taping
8)
15 Version 1.5 | 2020-03-11
GW CS8PM1.PM
Tape and Reel
9)
Reel Dimensions
A
180 mm
W
Nmin
12 + 0.3 / - 0.1 mm
16 Version 1.5 | 2020-03-11
W1
60 mm
W2 max
12.4 + 2 mm
18.4 mm
Pieces per PU
600
GW CS8PM1.PM
Barcode-Product-Label (BPL)
Dry Packing Process and Materials
8)
Moisture-sensitive label or print
L
E
E
V
l
e be
sela
).
k,
H
de
L
If
an
bl r co
ba
(R
id
m
ity
.
H
R
hu
0%
e
e
/6
tiv
˚C
la ared ag
ck
re
fr
30
_
<
in pa
%
k
of
to
90
rs
ea
s
d
).
rs
ou
or
te (p
on
rs
H
de
,
ou
iti
H
an bjec ng
ou rs
co
˚C
72
si
nd
H ou
5
te
48
˚C su es
e
H
co
±
24 6
da
e
y
40 be oc
tim
˚C
e
or
<
ith
tim
ill pr).
or
ct
w
O
w nt
23
tim e
at
lo
or
fa
M TO
F
s
al
tim
at le ˚C at
lo
at
or
e.
P
th
F
l
tic
th va
lo or
ur
O
F lo
s ui
on
be
if: read
en
w
ed
l 4 5
F
m
la
ce eq
id
lo
g, n
oc
l
ve
vi
5a
is
in
or
be
24
de
pr
ve l
6
Le
de ,
nt whe
e
te
co
g:
, w
e
Le ve l
ke
r
ou
se
da
ba ed flo
ur
e
Le ve
m %
ba
e
ba
al
st
ur e
Le
r
en re
ed
e
re> 10
oi
st
e
e
fo
tim
ur
se
al
op
fo
M
se
oi st ur
as
k,
is
or .
33
se
is
M oi st
bed
k,
lo H
an
,
g ph
-0
M oi
in
an in F R ng ar
rbl
D
M
e
ba
T
r
po If bl ith
%
lif
ki r C.
(if
S
is
p.
w
ea r ks
lf
J10 ba to et
th va
Y ea
m
rs
m
_
r w,
<
he
ed
1
ee
te
Y
d, EC
iredicat
S
fte
at
nt
>
1
W Hou
D
A flody
qu In no ire
1.
d
e
ou
4 8
re
reity is
qu/JE
re
2.
bo
e
M
tim
to es id 2b
re C
16
:
e
a)
S
tim
is IP
ic
ed loor
tim e
b) ev Humor
or
e
en
F
tim
lo
or
D
2a king
nc
te
F
op
a)
lo or
3.
b) ba re
F lo
da
e
fe
l 1 2
F
If
al
re
tim ve
l
4.
se
d
l 2a
ve
Le
3
an
ve l
ag
e
Le
e
B
ve
ur
e
Le
at
st
ur
e
Le
D
oi
st
ur e
M
oi
st ur
M
oi st
M oi
M
N
E RS
s
in IV O
IT T
S C
nta
N U
TIO
U coSEND
Ais bUagRMEICO
T E
CThIS
S
d
Barcode label
<
M
RA
OS
Humidity indicator
Barcode label
Please check the HIC immidiately after
bag opening.
Discard if circles overrun.
Avoid metal contact.
Do not eat.
Comparator
check dot
WET
If wet,
examine units, if necessary
bake units
15%
If wet,
examine units, if necessary
bake units
10%
5%
If wet,
parts still adequately dry.
change desiccant
Humidity Indicator
MIL-I-8835
Desiccant
AM
OSR
OHA00539
Moisture-sensitive product is packed in a dry bag containing desiccant and a humidity card according JEDEC-STD-033.
17 Version 1.5 | 2020-03-11
GW CS8PM1.PM
Notes
The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of
lamps and lamp systems). Within the risk grouping system of this IEC standard, the device specified in this
data sheet falls into the class moderate risk (exposure time 0.25 s). Under real circumstances (for exposure
time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources
have a high secondary exposure potential due to their blinding effect. When looking at bright light sources
(e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation.
Subcomponents of this device contain, in addition to other substances, metal filled materials including silver.
Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers minimize device exposure to aggressive substances during storage,
production, and use. Devices that showed visible discoloration when tested using the described tests above
did show no performance deviations within failure limits during the stated test duration. Respective failure
limits are described in the IEC60810.
This device is designed for specific/recommended applications only. Please consult OSRAM Opto
Semiconductors Sales Staff in advance for detailed information on other non-recommended applications
(e.g. automotive).
Change management for this component is aligned with the requirements of the lighting market.
For further application related information please visit www.osram-os.com/appnotes
18 Version 1.5 | 2020-03-11
GW CS8PM1.PM
Disclaimer
Attention please!
The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved. Due to technical requirements components may
contain dangerous substances.
For information on the types in question please contact our Sales Organization.
If printed or downloaded, please find the latest version on the OSRAM OS website.
Packing
Please use the recycling operators known to you. We can also help you – get in touch with your nearest
sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of
transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we
shall have to invoice you for any costs incurred.
Product and functional safety devices/applications or medical devices/applications
OSRAM OS components are not developed, constructed or tested for the application as safety relevant
component or for the application in medical devices.
OSRAM OS products are not qualified at module and system level for such application.
In case buyer – or customer supplied by buyer – considers using OSRAM OS components in product safety
devices/applications or medical devices/applications, buyer and/or customer has to inform the local sales
partner of OSRAM OS immediately and OSRAM OS and buyer and /or customer will analyze and coordinate the customer-specific request between OSRAM OS and buyer and/or customer.
19 Version 1.5 | 2020-03-11
GW CS8PM1.PM
Glossary
1)
Brightness: Brightness values are measured during a current pulse of typically 10 ms, with a tolerance
of +/- 7%.
2)
Reverse Operation: Reverse Operation of 10 hours is permissible in total. Continuous reverse operation is not allowed.
3)
Forward Voltage: The Forward voltage is measured during a current pulse duration of typically 1 ms
with a tolerance of ± 0.05V .
4)
Color reproduction index: Color reproduction index values (CRI-RA) are measured during a current
pulse of typically 10 ms and with a tolerance of ±2.
5)
Chromaticity coordinate groups: Chromaticity coordinates are measured during a current pulse of
typically 25 ms, with an internal reproducibility of ±0.005 and an expanded uncertainty of ±0.01 (acc. to
GUM with a coverage factor of k = 3).
6)
Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures.
These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g.
because of technical improvements, these typ. data will be changed without any further notice.
7)
Characteristic curve: In the range where the line of the graph is broken, you must expect higher differences between single devices within one packing unit.
8)
Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and
dimensions are specified in mm.
9)
Tape and Reel: All dimensions and tolerances are specified acc. IEC 60286-3 and specified in mm.
20 Version 1.5 | 2020-03-11
GW CS8PM1.PM
Revision History
Version
Date
Change
1.5
2020-03-11
Schematic Transportation Box
Dimensions of Transportation Box
21 Version 1.5 | 2020-03-11
GW CS8PM1.PM
Published by OSRAM Opto Semiconductors GmbH
Leibnizstraße 4, D-93055 Regensburg
www.osram-os.com © All Rights Reserved.
22 Version 1.5 | 2020-03-11