74HC4052/
74HCT4052
Dual 4-channel analog multiplexer/demultiplexer
1. General description
The 74HC4052; 74HCT4052 is a high-speed Si-gate CMOS device and is pin compatible
with the HEF4052B. The device is specified in compliance with JEDEC standard no. 7A.
The 74HC4052; 74HCT4052 is a dual 4-channel analog multiplexer/demultiplexer with
common select logic. Each multiplexer has four independent inputs/outputs (pins nY0 to
nY3) and a common input/output (pin nZ). The common channel select logics include two
digital select inputs (pins S0 and S1) and an active LOW enable input (pin E). When
pin E = LOW, one of the four switches is selected (low-impedance ON-state) with pins S0
and S1. When pin E = HIGH, all switches are in the high-impedance OFF-state,
independent of pins S0 and S1.
VCC and GND are the supply voltage pins for the digital control inputs (pins S0, S1 and E).
The VCC to GND ranges are 2.0 V to 10.0 V for the 74HC4052 and 4.5 V to 5.5 V for the
74HCT4052. The analog inputs/outputs (pins nY0 to nY3 and nZ) can swing between VCC
as a positive limit and VEE as a negative limit. VCC − VEE may not exceed 10.0 V.
For operation as a digital multiplexer/demultiplexer, VEE is connected to GND (typically
ground).
2. Features
Wide analog input voltage range from −5 V to +5 V
Low ON resistance:
80 Ω (typical) at VCC − VEE = 4.5 V
70 Ω (typical) at VCC − VEE = 6.0 V
60 Ω (typical) at VCC − VEE = 9.0 V
Logic level translation: to enable 5 V logic to communicate with ±5 V analog signals
Typical ‘break before make’ built-in
Complies with JEDEC standard no. 7A
ESD protection:
HBM JESD22-A114F exceeds 2000 V
MM JESD22-A115-A exceeds 200 V
Specified from −40 °C to +85 °C and −40 °C to +125 °C
3. Applications
Analog multiplexing and demultiplexing
Digital multiplexing and demultiplexing
Signal gating
http://www.hgsemi.com.cn
1
2018 AUG
74HC4052/
74HCT4052
4. Functional diagram
13
1Z
1Y0
12
10
S0
1Y1
14
9
S1
1Y2
15
6
E
1Y3
11
2Y0
1
2Y1
5
2Y2
2
2Y3
4
10
0
9
1
6
G4
4×
0
3
MDX
3
0
1
1
5
2
2
3
4
12
14
13
15
2Z
11
001aah824
3
Fig 1.
Logic symbol
001aah825
Fig 2.
IEC logic symbol
nYn
VEE
VCC
VCC
VCC
VCC
VEE
from
logic
VEE
nZ
mnb043
Fig 3.
Schematic diagram (one switch)
http://www.hgsemi.com.cn
2
2018 AUG
74HC4052/
74HCT4052
VDD
16
13
12
14
15
S0
10
11
S1
E
9
LOGIC
LEVEL
CONVERSION
1Y0
1Y1
1Y2
1Y3
1-OF-4
DECODER
1
2Y0
6
5
2
4
3
Fig 4.
1Z
8
7
VSS
VEE
2Y1
2Y2
2Y3
2Z
001aah872
Functional diagram
http://www.hgsemi.com.cn
3
2018 AUG
74HC4052/
74HCT4052
5. Pinning information
5.1 Pinning
74HC4052
74HCT4052
terminal 1
index area
1
16 VCC
2Y2
2
15 1Y2
2Z
3
14 1Y1
2Y3
4
13 1Z
2Y1
5
12 1Y0
2Y1
5
E
6
VEE
7
3
14 1Y1
4
13 1Z
10 S0
9
S1
12 1Y0
VCC
(1)
11 1Y3
10 S0
9
8
2Z
2Y3
S1
GND
15 1Y2
8
7
2
11 1Y3
6
VEE
2Y2
GND
E
1
2Y0
16 VCC
2Y0
74HC4052
74HCT4052
001aah823
Transparent top view
001aah822
(1) The die substrate is attached to this pad using
conductive die attach material. It can not be used as a
supply pin or input.
Fig 5.
Pin configuration for DIP16, SO16 and
(T)SSOP16
Fig 6.
Pin configuration for DHVQFN16
5.2 Pin description
Table 2.
Symbol
Pin description
Pin
Description
2Y0
1
independent input or output 2Y0
2Y2
2
independent input or output 2Y2
2Z
3
common input or output 2
2Y3
4
independent input or output 2Y3
2Y1
5
independent input or output 2Y1
E
6
enable input (active LOW)
VEE
7
negative supply voltage
GND
8
ground (0 V)
S1
9
select logic input 1
S0
10
select logic input 0
1Y3
11
independent input or output 1Y3
1Y0
12
independent input or output 1Y0
1Z
13
common input or output 1
1Y1
14
independent input or output 1Y1
1Y2
15
independent input or output 1Y2
VCC
16
positive supply voltage
http://www.hgsemi.com.cn
4
2018 AUG
74HC4052/
74HCT4052
6. Functional description
6.1 Function table
Table 3.
Function table[1]
Channel on
Input
E
S1
S0
L
L
L
nY0 and nZ
L
L
H
nY1 and nZ
L
H
L
nY2 and nZ
L
H
H
nY3 and nZ
H
X
X
none
[1]
H = HIGH voltage level;
L = LOW voltage level;
X = don’t care.
7. Limiting values
Table 4.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Voltages are referenced to VEE = GND (ground = 0 V).
Symbol
Parameter
Conditions
Min
Max
Unit
VCC
supply voltage
−0.5
+11.0
V
IIK
input clamping current
VI < −0.5 V or VI > VCC + 0.5 V
-
±20
mA
ISK
switch clamping current
VSW < −0.5 V or VSW > VCC + 0.5 V
-
±20
mA
ISW
switch current
−0.5 V < VSW < VCC + 0.5 V
-
±25
mA
[1]
IEE
supply current
-
±20
mA
ICC
supply current
-
50
mA
IGND
ground current
-
−50
mA
Tstg
storage temperature
−65
+150
°C
-
500
mW
-
100
mW
Ptot
total power dissipation
Tamb = −40 °C to +125 °C
P
power dissipation
per switch
[1]
[2]
[2]
To avoid drawing VCC current out of pins nZ, when switch current flows in pins nYn, the voltage drop across the bidirectional switch must
not exceed 0.4 V. If the switch current flows into pins nZ, no VCC current will flow out of pins nYn. In this case there is no limit for the
voltage drop across the switch, but the voltages at pins nYn and nZ may not exceed VCC or VEE.
For DIP16 packages: above 70 °C the value of Ptot derates linearly with 12 mW/K.
For SO16 packages: above 70 °C the value of Ptot derates linearly with 8 mW/K.
For SSOP16 and TSSOP16 packages: above 60 °C the value of Ptot derates linearly with 5.5 mW/K.
For DHVQFN16 packages: above 60 °C the value of Ptot derates linearly with 4.5 mW/K.
http://www.hgsemi.com.cn
5
2018 AUG
74HC4052/
74HCT4052
8. Recommended operating conditions
Table 5.
Recommended operating conditions
Symbol
Parameter
VCC
Conditions
supply voltage
74HC4052
74HCT4052
Unit
Min
Typ
Max
Min
Typ
Max
VCC − GND
2.0
5.0
10.0
4.5
5.0
5.5
V
VCC − VEE
2.0
5.0
10.0
2.0
5.0
10.0
V
see Figure 7
and Figure 8
VI
input voltage
GND
-
VCC
GND
-
VCC
V
VSW
switch voltage
VEE
-
VCC
VEE
-
VCC
V
Tamb
ambient temperature
−40
+25
+125
−40
+25
+125
°C
Δt/ΔV
input transition rise and fall
rate
VCC = 2.0 V
-
1.67
625
-
1.67
139
ns/V
VCC = 4.5 V
-
1.67
139
-
1.67
139
ns/V
VCC = 6.0 V
-
1.67
83
-
1.67
139
ns/V
VCC = 10.0 V
-
1.67
31
-
1.67
139
ns/V
mnb044
12
mnb045
12
VCC − GND
(V)
10
VCC − GND
(V)
8
8
operating area
6
operating area
4
4
2
0
0
4
8
0
12
0
VCC − VEE (V)
Fig 7.
Guaranteed operating area as a function of the
supply voltages for 74HC4052
http://www.hgsemi.com.cn
Fig 8.
6
4
8
VCC − VEE (V)
12
Guaranteed operating area as a function of the
supply voltages for 74HCT4052
2018 AUG
74HC4052/
74HCT4052
9. Static characteristics
Table 6.
RON resistance per switch for 74HC4052 and 74HCT4052
VI = VIH or VIL; for test circuit see Figure 9.
Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
For 74HC4052: VCC − GND or VCC − VEE = 2.0 V, 4.5 V, 6.0 V and 9.0 V.
For 74HCT4052: VCC − GND = 4.5 V and 5.5 V, VCC − VEE = 2.0 V, 4.5 V, 6.0 V and 9.0 V.
Symbol
Parameter
Tamb = −40 °C to +85
Conditions
RON(peak) ON resistance (peak)
Typ
Max
Unit
-
-
-
Ω
-
100
225
Ω
Vis = VCC to VEE
VCC = 2.0 V; VEE = 0 V; ISW = 100 μA
[2]
VCC = 4.5 V; VEE = 0 V; ISW = 1 000 μA
RON(rail)
Min
°C[1]
ON resistance (rail)
VCC = 6.0 V; VEE = 0 V; ISW = 1 000 μA
-
90
200
Ω
VCC = 4.5 V; VEE = −4.5 V; ISW = 1 000 μA
-
70
165
Ω
-
150
-
Ω
Vis = VEE
VCC = 2.0 V; VEE = 0 V; ISW = 100 μA
[2]
VCC = 4.5 V; VEE = 0 V; ISW = 1 000 μA
-
80
175
Ω
VCC = 6.0 V; VEE = 0 V; ISW = 1 000 μA
-
70
150
Ω
VCC = 4.5 V; VEE = −4.5 V; ISW = 1 000 μA
-
60
130
Ω
Vis = VCC
ΔRON
ON resistance mismatch
between channels
VCC = 2.0 V; VEE = 0 V; ISW = 100 μA
-
150
-
Ω
VCC = 4.5 V; VEE = 0 V; ISW = 1 000 μA
-
90
200
Ω
VCC = 6.0 V; VEE = 0 V; ISW = 1 000 μA
-
80
175
Ω
VCC = 4.5 V; VEE = −4.5 V; ISW = 1 000 μA
-
65
150
Ω
-
-
-
Ω
VCC = 4.5 V; VEE = 0 V
-
9
-
Ω
VCC = 6.0 V; VEE = 0 V
-
8
-
Ω
VCC = 4.5 V; VEE = −4.5 V
-
6
-
Ω
-
-
-
Ω
Vis = VCC to VEE
VCC = 2.0 V; VEE = 0 V
[2]
Tamb = −40 °C to +125 °C
RON(peak) ON resistance (peak)
Vis = VCC to VEE
VCC = 2.0 V; VEE = 0 V; ISW = 100 μA
http://www.hgsemi.com.cn
[2]
VCC = 4.5 V; VEE = 0 V; ISW = 1 000 μA
-
-
270
Ω
VCC = 6.0 V; VEE = 0 V; ISW = 1 000 μA
-
-
240
Ω
VCC = 4.5 V; VEE = −4.5 V; ISW = 1 000 μA
-
-
195
Ω
7
2018 AUG
74HC4052/
74HCT4052
Table 6.
RON resistance per switch for 74HC4052 and 74HCT4052 …continued
VI = VIH or VIL; for test circuit see Figure 9.
Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
For 74HC4052: VCC − GND or VCC − VEE = 2.0 V, 4.5 V, 6.0 V and 9.0 V.
For 74HCT4052: VCC − GND = 4.5 V and 5.5 V, VCC − VEE = 2.0 V, 4.5 V, 6.0 V and 9.0 V.
Symbol
Parameter
Conditions
RON(rail)
ON resistance (rail)
Vis = VEE
Min
VCC = 2.0 V; VEE = 0 V; ISW = 100 μA
Typ
Max
Unit
-
-
-
Ω
VCC = 4.5 V; VEE = 0 V; ISW = 1 000 μA
-
-
210
Ω
VCC = 6.0 V; VEE = 0 V; ISW = 1 000 μA
-
-
180
Ω
VCC = 4.5 V; VEE = −4.5 V; ISW = 1 000 μA
-
-
160
Ω
-
-
-
Ω
VCC = 4.5 V; VEE = 0 V; ISW = 1 000 μA
-
-
240
Ω
VCC = 6.0 V; VEE = 0 V; ISW = 1 000 μA
-
-
210
Ω
VCC = 4.5 V; VEE = −4.5 V; ISW = 1 000 μA
-
-
180
Ω
[2]
Vis = VCC
VCC = 2.0 V; VEE = 0 V; ISW = 100 μA
[2]
[1]
All typical values are measured at Tamb = 25 °C.
[2]
When supply voltages (VCC − VEE) near 2.0 V the analog switch ON resistance becomes extremely non-linear. When using a supply of
2 V, it is recommended to use these devices only for transmitting digital signals.
001aai068
100
(1)
RON
(Ω)
80
60
(2)
Vsw
V
(3)
40
VCC
Sn
from select
input
nYn
Vis
20
nZ
GND
VEE
Isw
0
0
1.8
3.6
5.4
7.2
9.0
Vis (V)
001aah826
Vis = 0 V to (VCC − VEE).
Vis = 0 V to (VCC − VEE).
(1) VCC = 4.5 V
V sw
R ON = --------I sw
(2) VCC = 6 V
(3) VCC = 9 V
Fig 9.
Test circuit for measuring RON
http://www.hgsemi.com.cn
Fig 10. Typical RON as a function of input voltage Vis
8
2018 AUG
74HC4052/
74HCT4052
Table 7.
Static characteristics for 74HC4052
Voltages are referenced to GND (ground = 0 V).
Vis is the input voltage at pins nYn or nZ, whichever is assigned as an input.
Vos is the output voltage at pins nZ or nYn, whichever is assigned as an output.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VCC = 2.0 V
1.5
1.2
-
V
VCC = 4.5 V
3.15
2.4
-
V
VCC = 6.0 V
4.2
3.2
-
V
VCC = 9.0 V
6.3
4.7
-
V
VCC = 2.0 V
-
0.8
0.5
V
VCC = 4.5 V
-
2.1
1.35
V
VCC = 6.0 V
-
2.8
1.8
V
VCC = 9.0 V
-
4.3
2.7
V
VCC = 6.0 V
-
-
±1.0
μA
VCC = 10.0 V
-
-
±2.0
μA
per channel
-
-
±1.0
μA
all channels
-
-
±2.0
μA
-
-
±2.0
μA
VCC = 6.0 V
-
-
80.0
μA
VCC = 10.0 V
-
-
160.0
μA
-
3.5
-
pF
Tamb = −40 °C to +85 °C[1]
VIH
VIL
HIGH-level input
voltage
LOW-level input
voltage
input leakage current
II
IS(OFF)
OFF-state leakage
current
VEE = 0 V; VI = VCC or GND
VCC = 10.0 V; VEE = 0 V; VI = VIH or VIL;
|VSW| = VCC − VEE; see Figure 11
IS(ON)
ON-state leakage
current
VI = VIH or VIL; |VSW| = VCC − VEE;
VCC = 10.0 V; VEE = 0 V; see Figure 12
ICC
supply current
VEE = 0 V; VI = VCC or GND; Vis = VEE or VCC;
Vos = VCC or VEE
CI
input capacitance
Csw
switch capacitance
independent pins nYn
-
5
-
pF
common pins nZ
-
12
-
pF
VCC = 2.0 V
1.5
-
-
V
VCC = 4.5 V
3.15
-
-
V
VCC = 6.0 V
4.2
-
-
V
VCC = 9.0 V
6.3
-
-
V
VCC = 2.0 V
-
-
0.5
V
VCC = 4.5 V
-
-
1.35
V
VCC = 6.0 V
-
-
1.8
V
VCC = 9.0 V
-
-
2.7
V
VCC = 6.0 V
-
-
±1.0
μA
VCC = 10.0 V
-
-
±2.0
μA
Tamb = −40 °C to +125 °C
VIH
VIL
II
HIGH-level input
voltage
LOW-level input
voltage
input leakage current
http://www.hgsemi.com.cn
VEE = 0 V; VI = VCC or GND
9
2018 AUG
74HC4052/
74HCT4052
Table 7.
Static characteristics for 74HC4052 …continued
Voltages are referenced to GND (ground = 0 V).
Vis is the input voltage at pins nYn or nZ, whichever is assigned as an input.
Vos is the output voltage at pins nZ or nYn, whichever is assigned as an output.
Symbol
Parameter
Conditions
IS(OFF)
OFF-state leakage
current
VCC = 10.0 V; VEE = 0 V; VI = VIH or VIL;
|VSW| = VCC − VEE; see Figure 11
Min
Typ
Max
Unit
per channel
-
-
±1.0
μA
all channels
-
-
±2.0
μA
-
-
±2.0
μA
VCC = 6.0 V
-
-
160.0
μA
VCC = 10.0 V
-
-
320.0
μA
Conditions
Min
Typ
Max
Unit
IS(ON)
ON-state leakage
current
VI = VIH or VIL; |VSW| = VCC − VEE;
VCC = 10.0 V; VEE = 0 V; see Figure 12
ICC
supply current
VEE = 0 V; VI = VCC or GND; Vis = VEE or VCC;
Vos = VCC or VEE
[1]
All typical values are measured at Tamb = 25 °C.
Table 8.
Static characteristics for 74HCT4052
Voltages are referenced to GND (ground = 0 V).
Vis is the input voltage at pins nYn or nZ, whichever is assigned as an input.
Vos is the output voltage at pins nZ or nYn, whichever is assigned as an output.
Symbol
Parameter
Tamb = −40 °C to +85 °C[1]
VIH
HIGH-level input
voltage
VCC = 4.5 V to 5.5 V
2.0
1.6
-
V
VIL
LOW-level input
voltage
VCC = 4.5 V to 5.5 V
-
1.2
0.8
V
II
input leakage current
VI = VCC or GND; VCC = 5.5 V; VEE = 0 V
-
-
±1.0
μA
IS(OFF)
OFF-state leakage
current
VCC = 10.0 V; VEE = 0 V; VI = VIH or VIL;
|VSW| = VCC − VEE; see Figure 11
per channel
-
-
±1.0
μA
all channels
-
-
±2.0
μA
-
-
±2.0
μA
VCC = 5.5 V; VEE = 0 V
-
-
80.0
μA
VCC = 5.0 V; VEE = −5.0 V
-
-
160.0
μA
per input; VI = VCC − 2.1 V; other inputs at VCC
or GND; VCC = 4.5 V to 5.5 V; VEE = 0 V
-
45
202.5
μA
-
3.5
-
pF
independent pins nYn
-
5
-
pF
common pins nZ
-
12
-
pF
VCC = 4.5 V to 5.5 V
2.0
-
-
V
IS(ON)
ON-state leakage
current
VCC = 10.0 V; VEE = 0 V; VI = VIH or VIL;
|VSW| = VCC − VEE; see Figure 12
ICC
supply current
VI = VCC or GND; Vis = VEE or VCC;
Vos = VCC or VEE
ΔICC
additional supply
current
CI
input capacitance
Csw
switch capacitance
Tamb = −40 °C to +125 °C
VIH
HIGH-level input
voltage
http://www.hgsemi.com.cn
10
2018 AUG
74HC4052/
74HCT4052
Table 8.
Static characteristics for 74HCT4052 …continued
Voltages are referenced to GND (ground = 0 V).
Vis is the input voltage at pins nYn or nZ, whichever is assigned as an input.
Vos is the output voltage at pins nZ or nYn, whichever is assigned as an output.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VIL
LOW-level input
voltage
VCC = 4.5 V to 5.5 V
-
-
0.8
V
ILI
input leakage current
VI = VCC or GND; VCC = 5.5 V; VEE = 0 V
-
-
±1.0
μA
IS(OFF)
OFF-state leakage
current
VCC = 10.0 V; VEE = 0 V; VI = VIH or VIL;
|VSW| = VCC − VEE; see Figure 11
per channel
-
-
±1.0
μA
all channels
-
-
±2.0
μA
-
-
±2.0
μA
VCC = 5.5 V; VEE = 0 V
-
-
160.0
μA
VCC = 5.0 V; VEE = −5.0 V
-
-
320.0
μA
-
-
220.5
μA
IS(ON)
ON-state leakage
current
VCC = 10.0 V; VEE = 0 V; VI = VIH or VIL;
|VSW| = VCC − VEE; see Figure 12
ICC
supply current
VI = VCC or GND; Vis = VEE or VCC;
Vos = VCC or VEE
ΔICC
[1]
additional supply
current
per input; VI = VCC − 2.1 V; other inputs at VCC
or GND; VCC = 4.5 V to 5.5 V; VEE = 0 V
All typical values are measured at Tamb = 25 °C.
VCC
Sn
from select
input
Isw
A
Isw
nYn
nZ
GND
Vis
A
VEE
Vos
001aah827
Vis = VCC and Vos = VEE.
Vis = VEE and Vos = VCC.
Fig 11. Test circuit for measuring OFF-state current
VCC
HIGH
from select
input
Sn
Isw
A
nYn
nZ
GND
Vis
Vos
VEE
001aah828
Vis = VCC and Vos = open-circuit.
Vis = VEE and Vos = open-circuit.
Fig 12. Test circuit for measuring ON-state current
http://www.hgsemi.com.cn
11
2018 AUG
74HC4052/
74HCT4052
10. Dynamic characteristics
Table 9.
Dynamic characteristics for 74HC4052
GND = 0 V; tr = tf = 6 ns; CL = 50 pF; for test circuit see Figure 15.
Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VCC = 2.0 V; VEE = 0 V
-
14
75
ns
VCC = 4.5 V; VEE = 0 V
-
5
15
ns
VCC = 6.0 V; VEE = 0 V
-
4
13
ns
-
4
10
ns
VCC = 2.0 V; VEE = 0 V
-
105
405
ns
VCC = 4.5 V; VEE = 0 V
-
38
81
ns
VCC = 6.0 V; VEE = 0 V
-
30
69
ns
-
26
58
ns
VCC = 2.0 V; VEE = 0 V
-
74
315
ns
VCC = 4.5 V; VEE = 0 V
-
27
63
ns
VCC = 6.0 V; VEE = 0 V
-
22
54
ns
VCC = 4.5 V; VEE = −4.5 V
-
22
48
ns
-
57
-
pF
VCC = 2.0 V; VEE = 0 V
-
-
90
ns
VCC = 4.5 V; VEE = 0 V
-
-
18
ns
VCC = 6.0 V; VEE = 0 V
-
-
15
ns
VCC = 4.5 V; VEE = −4.5 V
-
-
12
ns
VCC = 2.0 V; VEE = 0 V
-
-
490
ns
VCC = 4.5 V; VEE = 0 V
-
-
98
ns
VCC = 6.0 V; VEE = 0 V
-
-
83
ns
VCC = 4.5 V; VEE = −4.5 V
-
-
69
ns
Tamb = −40 °C to +85 °C[1]
tpd
propagation delay Vis to Vos; RL = ∞ Ω; see Figure 13
[2]
VCC = 4.5 V; VEE = −4.5 V
ton
turn-on time
E, Sn to Vos; RL = ∞ Ω; see Figure 14
[3]
VCC = 4.5 V; VEE = −4.5 V
toff
CPD
turn-off time
E, Sn to Vos; RL = 1 kΩ; see Figure 14
[4]
[5]
power dissipation per switch; VI = GND to VCC
capacitance
Tamb = −40 °C to +125 °C
tpd
ton
propagation delay Vis to Vos; RL = ∞ Ω; see Figure 13
turn-on time
http://www.hgsemi.com.cn
E, Sn to Vos; RL = ∞ Ω; see Figure 14
12
[2]
[3]
2018 AUG
74HC4052/
74HCT4052
Table 9.
Dynamic characteristics for 74HC4052 …continued
GND = 0 V; tr = tf = 6 ns; CL = 50 pF; for test circuit see Figure 15.
Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
Symbol
toff
Parameter
turn-off time
Conditions
Min
Typ
Max
Unit
VCC = 2.0 V; VEE = 0 V
-
-
375
ns
VCC = 4.5 V; VEE = 0 V
-
-
75
ns
VCC = 6.0 V; VEE = 0 V
-
-
64
ns
VCC = 4.5 V; VEE = −4.5 V
-
-
57
ns
Min
Typ
Max
Unit
-
5
15
ns
-
4
10
ns
VCC = 4.5 V; VEE = 0 V
-
41
88
ns
VCC = 4.5 V; VEE = −4.5 V
-
28
60
ns
-
26
63
ns
E, Sn to Vos; RL = 1 kΩ; see Figure 14
[1]
All typical values are measured at Tamb = 25 °C.
[2]
tpd is the same as tPHL and tPLH.
[3]
ton is the same as tPZH and tPZL.
[4]
toff is the same as tPHZ and tPLZ.
[5]
[4]
CPD is used to determine the dynamic power dissipation (PD in μW).
PD = CPD × VCC2 × fi × N + Σ{(CL + Csw) × VCC2 × fo} where:
fi = input frequency in MHz;
fo = output frequency in MHz;
N = number of inputs switching;
Σ{(CL + Csw) × VCC2 × fo} = sum of outputs;
CL = output load capacitance in pF;
Csw = switch capacitance in pF;
VCC = supply voltage in V.
Table 10. Dynamic characteristics for 74HCT4052
GND = 0 V; tr = tf = 6 ns; CL = 50 pF; for test circuit see Figure 15.
Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
Symbol
Parameter
Tamb = −40 °C to +85
tpd
Conditions
°C[1]
propagation delay Vis to Vos; RL = ∞ Ω; see Figure 13
[2]
VCC = 4.5 V; VEE = 0 V
VCC = 4.5 V; VEE = −4.5 V
ton
toff
turn-on time
turn-off time
E, Sn to Vos; RL = 1 kΩ; see Figure 14
E, Sn to Vos; RL = 1 kΩ; see Figure 14
[3]
[4]
VCC = 4.5 V; VEE = 0 V
VCC = 4.5 V; VEE = −4.5 V
CPD
-
21
48
ns
-
57
-
pF
VCC = 4.5 V; VEE = 0 V
-
-
18
ns
VCC = 4.5 V; VEE = −4.5 V
-
-
12
ns
power dissipation per switch; VI = GND to VCC − 1.5 V
capacitance
[5]
Tamb = −40 °C to +125 °C
tpd
propagation delay Vis to Vos; RL = ∞ Ω; see Figure 13
http://www.hgsemi.com.cn
13
[2]
2018 AUG
74HC4052/
74HCT4052
Table 10. Dynamic characteristics for 74HCT4052 …continued
GND = 0 V; tr = tf = 6 ns; CL = 50 pF; for test circuit see Figure 15.
Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.
Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.
Symbol
Parameter
Conditions
ton
turn-on time
E, Sn to Vos; RL = 1 kΩ; see Figure 14
Min
Typ
Max
Unit
-
-
105
ns
-
-
72
ns
VCC = 4.5 V; VEE = 0 V
-
-
75
ns
VCC = 4.5 V; VEE = −4.5 V
-
-
57
ns
[3]
VCC = 4.5 V; VEE = 0 V
VCC = 4.5 V; VEE = −4.5 V
toff
turn-off time
E, Sn to Vos; RL = 1 kΩ; see Figure 14
[1]
All typical values are measured at Tamb = 25 °C.
[2]
tpd is the same as tPHL and tPLH.
[3]
ton is the same as tPZH and tPZL.
[4]
toff is the same as tPHZ and tPLZ.
[5]
[4]
CPD is used to determine the dynamic power dissipation (PD in μW).
PD = CPD × VCC2 × fi × N + Σ{(CL + Csw) × VCC2 × fo} where:
fi = input frequency in MHz;
fo = output frequency in MHz;
N = number of inputs switching;
Σ{(CL + Csw) × VCC2 × fo} = sum of outputs;
CL = output load capacitance in pF;
Csw = switch capacitance in pF;
VCC = supply voltage in V.
Vis input
50 %
tPLH
Vos output
tPHL
50 %
001aad555
Fig 13. Input (Vis) to output (Vos) propagation delays
http://www.hgsemi.com.cn
14
2018 AUG
74HC4052/
74HCT4052
VI
VM
E, Sn inputs
0V
tPZL
tPLZ
50 %
Vos output
10 %
tPHZ
tPZH
90 %
50 %
Vos output
switch ON
switch ON
switch OFF
001aae330
For 74HC4052: VM = 0.5 × VCC.
For 74HCT4052: VM = 1.3 V.
Fig 14. Turn-on and turn-off times
VI
tW
90 %
negative
pulse
VM
0V
VI
tf
tr
tr
tf
90 %
positive
pulse
0V
VM
10 %
VM
VM
10 %
tW
VCC Vis
PULSE
GENERATOR
VI
VCC
Vos
RL
S1
open
DUT
RT
CL
GND
VEE
001aae382
Definitions for test circuit; see Table 11:
RT = termination resistance should be equal to the output impedance Zo of the pulse generator.
CL = load capacitance including jig and probe capacitance.
RL = load resistance.
S1 = Test selection switch.
Fig 15. Test circuit for measuring AC performance
http://www.hgsemi.com.cn
15
2018 AUG
74HC4052/
74HCT4052
Table 11.
Test data
Test
Input
VI
tPHL, tPLH
[2]
tPZH, tPHZ
[2]
tPZL, tPLZ
[2]
Load
Vis
tr, tf
S1 position
CL
RL
at fmax
other[1]
pulse
< 2 ns
6 ns
50 pF
1 kΩ
open
VCC
< 2 ns
6 ns
50 pF
1 kΩ
VEE
VEE
< 2 ns
6 ns
50 pF
1 kΩ
VCC
[1]
tr = tf = 6 ns; when measuring fmax, there is no constraint to tr and tf with 50 % duty factor.
[2]
VI values:
a) For 74HC4052: VI = VCC
b) For 74HCT4052: VI = 3 V
11. Additional dynamic characteristics
Table 12. Additional dynamic characteristics
Recommended conditions and typical values; GND = 0 V; Tamb = 25 °C; CL = 50 pF.
Vis is the input voltage at pins nYn or nZ, whichever is assigned as an input.
Vos is the output voltage at pins nYn or nZ, whichever is assigned as an output.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
dsin
sine-wave distortion
fi = 1 kHz; RL = 10 kΩ; see Figure 16
Vis = 4.0 V (p-p); VCC = 2.25 V; VEE = −2.25 V
-
0.04
-
%
Vis = 8.0 V (p-p); VCC = 4.5 V; VEE = −4.5 V
-
0.02
-
%
Vis = 4.0 V (p-p); VCC = 2.25 V; VEE = −2.25 V
-
0.12
-
%
Vis = 8.0 V (p-p); VCC = 4.5 V; VEE = −4.5 V
-
0.06
-
%
fi = 10 kHz; RL = 10 kΩ; see Figure 16
αiso
isolation (OFF-state)
Xtalk
crosstalk
crosstalk voltage
Vct
f(−3dB)
−3 dB frequency response
RL = 600 Ω; fi = 1 MHz; see Figure 17
VCC = 2.25 V; VEE = −2.25 V
[1]
-
−50
-
dB
VCC = 4.5 V; VEE = −4.5 V
[1]
-
−50
-
dB
VCC = 2.25 V; VEE = −2.25 V
[1]
-
−60
-
dB
VCC = 4.5 V; VEE = −4.5 V
[1]
-
−60
-
dB
VCC = 4.5 V; VEE = 0 V
-
110
-
mV
VCC = 4.5 V; VEE = −4.5 V
-
220
-
mV
between two switches/multiplexers;
RL = 600 Ω; fi = 1 MHz; see Figure 18
peak-to-peak value; between control and any
switch; RL = 600 Ω; fi = 1 MHz; E or Sn square
wave between VCC and GND; tr = tf = 6 ns;
see Figure 19
RL = 50 Ω; see Figure 20
VCC = 2.25 V; VEE = −2.25 V
[2]
-
170
-
MHz
VCC = 4.5 V; VEE = −4.5 V
[2]
-
180
-
MHz
[1]
Adjust input voltage Vis to 0 dBm level (0 dBm = 1 mW into 600 Ω).
[2]
Adjust input voltage Vis to 0 dBm level at Vos for 1 MHz (0 dBm = 1 mW into 50 Ω).
http://www.hgsemi.com.cn
16
2018 AUG
74HC4052/
74HCT4052
VCC
Sn
10 μF
Vis
nYn/nZ
nZ/nYn
VEE
GND
RL
Vos
CL
dB
001aah829
Fig 16. Test circuit for measuring sine-wave distortion
VCC
Sn
0.1 μF
Vis
nYn/nZ
nZ/nYn
VEE
GND
RL
Vos
CL
dB
001aah871
VCC = 4.5 V; GND = 0 V; VEE = −4.5 V; RL = 50 Ω; RS = 1 kΩ.
a. Test circuit
001aae332
0
αiso
(dB)
−20
−40
−60
−80
−100
10
102
103
104
105
106
fi (kHz)
b. Isolation (OFF-state) as a function of frequency
Fig 17. Test circuit for measuring isolation (OFF-state)
http://www.hgsemi.com.cn
17
2018 AUG
74HC4052/
74HCT4052
VCC
Sn
0.1 μF
Vis
RL
nYn/nZ
nZ/nYn
VEE
GND
RL
CL
VCC
Sn
nYn/nZ
nZ/nYn
VEE
RL
GND
RL
Vos
CL
dB
001aah873
Fig 18. Test circuits for measuring crosstalk between any two switches/multiplexers
2RL
2RL
VCC
Sn, E
Vct
nYn
G
2RL
nZ
VEE
GND
2RL
oscilloscope
001aah913
Fig 19. Test circuit for measuring crosstalk between control input and any switch
http://www.hgsemi.com.cn
18
2018 AUG
74HC4052/
74HCT4052
VCC
Sn
10 μF
Vis
nYn/nZ
nZ/nYn
VEE
GND
RL
Vos
CL
dB
001aah829
VCC = 4.5 V; GND = 0 V; VEE = −4.5 V; RL = 50 Ω; RS = 1 kΩ.
a. Test circuit
001aad551
5
Vos
(dB)
3
1
−1
−3
−5
10
102
103
104
105
106
f (kHz)
b. Typical frequency response
Fig 20. Test circuit for frequency response
http://www.hgsemi.com.cn
19
2018 AUG