0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
G650-06076-01

G650-06076-01

  • 厂商:

    CORAL

  • 封装:

  • 描述:

    CORAL - G650-06076-01 - M.2 Accelerator, Dual Edge TPU, Raspberry Pi

  • 数据手册
  • 价格&库存
G650-06076-01 数据手册
    M.2 Accelerator with Dual Edge TPU  datasheet  Version 1.3      Features    ● ● ● ● ● ● 2x Google Edge TPU ML accelerator  ○ 8 TOPS total peak performance (int8)  ○ 2 TOPS per watt  Integrated power management  2x PCIe Gen2 x1 interface (one per Edge TPU)  M.2-2230-D3-E module  Size: 22.0 x 30.0 x 2.8 mm  Operating temp: -40 to +85 °C    Description    The Coral M.2 Accelerator with Dual Edge TPU is an M.2 module (E-key) that includes two Edge TPU ML accelerators, each  with their own PCIe Gen2 x1 interface.    The Edge TPU is a small ASIC designed by Google that accelerates TensorFlow Lite models in a power efficient manner:  each one is capable of performing 4 trillion operations per second (4 TOPS), using 2 watts of power—that's 2 TOPS per  watt. For example, one Edge TPU can execute state-of-the-art mobile vision models such as MobileNet v2 at almost 400  frames per second. This on-device ML processing reduces latency, increases data privacy, and removes the need for a  constant internet connection.    With the two Edge TPUs in this module, you can double the inferences per second (8 TOPS) in several ways, such as by  running two models in parallel or pipelining one model across both Edge TPUs.    Notice: Because this module uses two PCIe x1 connections, it is not compatible with all M.2 E-key card slots. The dual  Edge TPUs also result in special power requirements that you must carefully review.    Ordering information    Part number  Description  G650-06076-01  Coral M.2 Accelerator with Dual Edge TPU    See https://coral.ai/products/m2-accelerator-dual-edgetpu.       Coral.ai | Copyright 2020 Google LLC.      M.2 Accelerator with Dual Edge TPU datasheet v1.3  G650-06076-01        Table of contents    Features 1  Description 1  Ordering information 1  Table of contents 2  1 Specifications 3  2 Dimensions 4  3 Electrical characteristics 4  3.1 Absolute maximum ratings 3.2 Power consumption 3.3 Peak performance 4  5  5  4 Connector pinout 6  5 Application details 7  5.1 Software requirements 5.2 Power delivery and management 5.3 Thermal management 5.3.1 Thermal limits 5.3.2 Top-side cooling options 5.3.3 Bottom-side cooling options 5.3.4 Temperature warnings and frequency scaling 6 Document revisions       7  7  7  8  8  9  9  10         Coral.ai | Copyright 2020 Google LLC.    2    M.2 Accelerator with Dual Edge TPU datasheet v1.3  G650-06076-01        1 Specifications    For in-depth mechanical details, refer to the PCI-SIG's PCI Express M.2 specification.    Table 1. Technical specifications  Physical specifications  Dimensions  22.00 x 30.00 x 2.80 mm  Weight  2.5 g  Host interface  Hardware interface  M.2 E key (M.2-2230-D3-E)  Serial interface  Two PCIe Gen2 x1  Operating voltage  DC supply  3.3 V +/- 10 %  Environmental  Storage temperature  -40 to +85 °C  Operating temperature   -40 to +85 °C 1  Relative humidity  0 to 90% (non-condensing)  Mechanical (non-op)  Shock  100 G, 11 ms (persistent)  1000 G, 0.5 ms (stress)  1000 G, 1.0 ms (stress)  Vibration  (random/sinusoidal)  0.5 Grms, 5 - 500 Hz (persistent)  3 Grms, 5 - 800 Hz (stress)  Compliance  Countries 2  Unit shipped as a component. Final system certification/compliance to be done by the  customer.  ESD 3  1 kV HBM, 250 V CDM    The max operating temperature depends on the power consumption and thermal management in your system.  We can provide a certification example to show that a reasonably designed system can meet certification requirements.  3 Always handle in a static safe environment.        1 2      Coral.ai | Copyright 2020 Google LLC.    3    M.2 Accelerator with Dual Edge TPU datasheet v1.3  G650-06076-01        2 Dimensions    ● ● ● ● ● PCB width: 22.00 mm ± 0.15 mm  PCB height: 30.00 mm ± 0.15 mm  PCB thickness: 0.80 mm ± 0.08 mm  Top-side component height: 1.00 mm ± 0.10 mm  Bottom-side component height: 1.00 mm ± 0.10 mm    For in-depth mechanical specs, refer to the PCI Express M.2 Specification.    Figure 1. Card module dimensions (in millimeters)    3 Electrical characteristics    3.1 Absolute maximum ratings    Exceeding the absolute ratings can cease operation and possibly cause permanent damage. Exposure to absolute ratings  for extended periods of time can also adversely affect reliability.     Table 2. Absolute maximum ratings  Parameter  Min  Max  Storage temperature  -40 °C  85 °C  Operating temperature  -40 °C  85 °C 1  Edge TPU junction temperature (Tj)  -40 °C  115 °C  Power supply (3.3 V)  -0.3 V  6.0 V   The maximum operating temperature is for the entire assembly and assumes that the Edge TPU junction temperature (Tj)  does not exceed its absolute maximum rating, which depends on the power consumption and thermal management in your  system.  1            Coral.ai | Copyright 2020 Google LLC.    4    M.2 Accelerator with Dual Edge TPU datasheet v1.3  G650-06076-01        3.2 Power consumption    The power consumed by the card module depends on the ML model, the number of inferences per second, and the  operating frequency of each Edge TPU. For some examples of average sustained power consumption from a single Edge  TPU, see table 3. However, it's also important that you consider the peak current transients that occur during inferencing.    The maximum current drawn by each Edge TPU is typically much higher than the average current. That's because when the  Edge TPU executes an ML model, it repeatedly activates a large number of arithmetic logic units (ALUs) simultaneously,  resulting in a pattern of brief but large current transients. Each model architecture also activates a different set and different  number of ALUs, meaning the magnitude and the shape of the transient current very much depends on the model.    Although the average current drawn from the 3.3V supply by each Edge TPU is typically less than 500 mA, brief current  transients that occur during inferencing can reach roughly 3 A. These spikes also occur suddenly: even a simple model can  generate current transients in excess of 1 A/μs from a single Edge TPU. However, these numbers are representative of only  the models tested at Google, and your numbers will vary. To determine the actual peak supply current, you should observe  the current when running the models you will deploy in production, and compare the currents when running one Edge TPU  or both Edge TPUs in parallel.     For more information, see section 5.2 Power delivery and management.    Table 3. Examples of long-term sustained power during inferencing from one Edge TPU  1 Model 1  Low operating frequency  125 MHz  Reduced operating frequency  250 MHz  Max operating frequency  500 MHz  MobileNet v2  0.6 W (7.1 ms @ 141 fps)  0.9 W (3.9 ms @ 256 fps)  1.4 W (2.4 ms @ 416 fps)  Inception v3  0.5 W (58.7 ms @ 17 fps)  0.6 W (51.7 ms @ 19.3 fps)  0.7 W (48.2 ms @ 20.7 fps)  Pre-compiled models were tested using models_benchmark.cc    Typical idle power consumption is 375 - 400 mW.    3.3 Peak performance    Peak performance when both Edge TPUs are running at the maximum operating frequency:    ● 8 trillion operations per second (TOPS), 8-bit fixed-point math  ● 2 TOPS per watt          Coral.ai | Copyright 2020 Google LLC.    5    M.2 Accelerator with Dual Edge TPU datasheet v1.3  G650-06076-01        4 Connector pinout    Table 4. Card module E-key pinout  Bottom side pins  Top side pins  Pin  Signal  Signal  Pin  74  3.3V  GND  75  72  3.3V  REFCLKn1  73  70  NC  REFCLKp1  71  68  CLKREQ1# (3.3V)  GND  69  66  PERST1# (3.3V)  PETn1  67  64  NC  PETp1  65  62  ALERT# (3.3V)  GND  63  60  NC  PERp1  61  58  NC  PERn1  59  56  NC  GND  57  54  NC  GND  55  52  PERST0# (3.3V)  CLKREQ0# (3.3V)  53  50  NC  GND  51  48  NC  REFCLKn0  49  46  NC  REFCLKp0    47  44  NC  GND  45  42  NC  PETn0   43  40  NC  PETp0   41  38  RST_EN  GND  39  36  NC  PERp0  37  34  NC  PERn0  35  32  NC  GND  33  30  Key E Slot  Key E Slot  31  28  Key E Slot  Key E Slot  29  26  Key E Slot  Key E Slot  27  24  Key E Slot  Key E Slot  25  22  NC  NC  23  20  NC  NC  21  18  GND  NC  19  16  NC  NC  17  14  NC  NC  15  12  NC  NC  13  10  NC  NC  11  8  NC  NC  9  6  NC  GND  7  4  3.3V  NC  5  2  3.3V  NC  3      GND  1             Coral.ai | Copyright 2020 Google LLC.    6    M.2 Accelerator with Dual Edge TPU datasheet v1.3  G650-06076-01        Table 5. Product-specific pin descriptions  Pin  Signal  38  RST_EN  Description  Optional module reset. Active high. Has internal 10k pull-down.    5 Application details    5.1 Software requirements    The M.2 Accelerator with Dual Edge TPU must be operated by the Edge TPU runtime and Coral PCIe driver, which is  compatible with the following systems:    ● Linux:  ○ 64-bit version of Debian 10 or Ubuntu 16.04 (or newer)  ○ x86-64 or ARMv8 system architecture  ● Windows:  ○ 64-bit version of Windows 10  ○ x86-64 system architecture  ● All systems require support for MSI-X as defined in the PCI 3.0 specification    5.2 Power delivery and management    Caution: If you do not carefully consider the power demands of the ML models running on each Edge TPU, along with  the ability of your host to handle the corresponding current transients, the peak currents might cause brownouts or other  abnormal behavior in the upstream power regulator.    As described in section 3.2 Power consumption, the current drawn by each Edge TPU is highly variable and depends on  the model being executed. Although the average current drawn by a single Edge TPU might seem low (less than 500 mA),  it can repeatedly and rapidly spike up to 3 A, depending on the model you're running. Of course, if you're running both  Edge TPUs simultaneously, you might see even larger combined current spikes. These spikes also occur suddenly: even a  simple model can generate current transients in excess of 1 A/μs, which can last several tens of microseconds.     Ideally, your host system and M.2 socket can be designed to tolerate these higher currents, and your power supply can  provide fast transient response performance. Alternatively, you may use some software strategies to mitigate the effects of  the peak currents, such as the following:    ● Schedule inferencing between the Edge TPUs so they do not draw peak currents simultaneously. In our testing, as  little as a millisecond delay between inferences on each Edge TPU is enough to avoid excessive power rail current.  ● Underclock one or both of the Edge TPUs to reduce the maximum of all current transients.    5.3 Thermal management    Each Edge TPU dissipates power roughly proportional to its computational load. The resulting heat in the Edge TPU die  must be safely and reliably conducted away to avoid excessive die temperatures that can affect performance and reliability.     The primary heat-generating components on the card are the two Edge TPUs and two power ICs, indicated in figure 2.  During typical operation, approximately 90% of the system power is distributed evenly across the two Edge TPUs, and the  remaining 10% dissipates from the two power ICs. Total power dissipation depends on the operating frequency and  computational load.       Coral.ai | Copyright 2020 Google LLC.    7    M.2 Accelerator with Dual Edge TPU datasheet v1.3  G650-06076-01          Figure 2. Location of the Edge TPUs and power ICs (PMICs), which are the primary heat sources    5.3.1 Thermal limits    Each Edge TPU’s junction temperature Tj must stay below the maximum operating specification:    ● Maximum Edge TPU junction temperature Tj: 115 °C    Warning: Exceeding the maximum temperature can result in permanent damage to the Edge TPU and surrounding  components, and can possibly cause fire and serious damage, injury, or death.    For information about how to read the Edge TPU temperature, see Manage the PCIe module temperature.    5.3.2 Top-side cooling options    To ensure successful long-term operation, we recommended you couple the four heat-producing components to a heat  sink or metal enclosure through individual thermal pads. When selecting a thermal pad for the top side of the card module,  consider the junction-to-case thermal resistance and component dimensions indicated in table 6.    Table 6. Thermal properties and dimensions for top-side cooling solutions  Component  Top-face dimensions (X-Y)  Top-face height from PCB (Z)  Junction-to-case thermal resistance θj-c  Edge TPU (x2)  5.0 x 5.0 mm  0.55 ± 0.03 mm  2.2 °C/W  Power IC (x2)  2.6 x 3.0 mm  0.48 ± 0.03 mm  0.5 °C/W  Other  N/A  1.00 ± 0.10 mm  N/A    Notice that other top-side components are taller than the primary heat-producing components, so your heat sink or other  enclosure must clear those components. For improved thermal conductivity, consider adding metal stubs that extend from  the heat sink to the surface of the Edge TPU, and fill the remaining gap to the Edge TPU with a thermal coupling material.    Caution: It's important that the heat sink or enclosure has sufficient clearance above the tallest top-side components to  prevent the risk of contact and electrical shorting.        Coral.ai | Copyright 2020 Google LLC.    8    M.2 Accelerator with Dual Edge TPU datasheet v1.3  G650-06076-01        Be sure to consider the distance between the PCB and heat sink or enclosure. This distance determines the minimum  allowable thermal pad thickness, as well as the maximum compressive force that can be exerted on the card. To ensure  safe operation, the sustained compressive pressure onto each component from the thermal pads should not exceed 30 PSI  (assuming there is an air gap below the card, and thermal pads on the entire top face of each Edge TPU and power IC).     5.3.3 Bottom-side cooling options    A secondary thermal path for cooling the Edge TPUs is a thermal epoxy or soft thermal pad on the underside of the card,  directly below the Edge TPUs. This can dissipate some of the power through the M.2 card and into the base PCB below.    Figure 3. Side view of the card module, connected to host with a top-side heat sink (not included)    The bottom-side cooling solution is less effective than the top-side solution and should be considered a supplemental  thermal path. In order to approximate the effectiveness of a bottom-side thermal path, you should use the junction-to-board  thermal resistance θj-b indicated in table 7.    Table 7. Thermal properties for bottom-side cooling solutions  Component  Top-face dimensions (X-Y)  Junction-to-board thermal resistance θj-b   Edge TPU (x2)  5.0 x 5.0 mm  15 °C/W 1  In this case, θj-b is the temperature difference between each Edge TPU junction and the surface of the card module when  measured from the bottom of the card, directly underneath the Edge TPU.    1 Note: Card components mounted underneath the Edge TPUs can make cooling through the bottom side of the card  more difficult. We recommended using a thermal epoxy or soft thermal pad to fill-in the space around the components  and make contact with the bottom side of the M.2 card.    5.3.4 Temperature warnings and frequency scaling    Each Edge TPU includes an internal temperature sensor to help you make power management decisions. You can manually  read the temperature, configure parameters that specify when each Edge TPU should shut down, and specify trip-points for  dynamic frequency scaling (DFS).     For details, read Manage the PCIe module temperature.               Coral.ai | Copyright 2020 Google LLC.    9    M.2 Accelerator with Dual Edge TPU datasheet v1.3  G650-06076-01        6 Document revisions    Table 8. History of changes to this document  Version  Changes  1.3 (September 2020)  Updated pinout as per PVT changes that disconnected two VENDOR_DEFINED pins to reduce  the risk of unexpected interactions in user systems.  1.2 (August 2020)  Changed max Edge TPU junction temperature (Tj) to 115 °C (was 125 °C, which is actually used  for HTOL and other qualifications).  1.1 (August 2020)  Corrected operating temperature and thickness tolerance.   Added measurements for component locations in figure 2.  Miscellaneous copyedits.  1.0 (July 2020)  Initial release.           Coral.ai | Copyright 2020 Google LLC.    10 
G650-06076-01 价格&库存

很抱歉,暂时无法提供与“G650-06076-01”相匹配的价格&库存,您可以联系我们找货

免费人工找货