0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
GD32F350G6U6TR

GD32F350G6U6TR

  • 厂商:

    GIGADEVICE(兆易创新)

  • 封装:

    QFN-28-EP(4x4)

  • 描述:

    CPU内核:ARM Cortex-M4;CPU最大主频:108MHz;工作电压范围:2.6V~3.6V;内部振荡器:有;外部时钟频率范围:4MHz~32MHz;程序 FLASH容量:32KB;RAM总...

  • 数据手册
  • 价格&库存
GD32F350G6U6TR 数据手册
GigaDevice Semiconductor Inc. GD32F350xx ARM® Cortex®-M4 32-bit MCU Datasheet GD32F350xx Datasheet Table of Contents Table of Contents ........................................................................................................... 1 List of Figures ................................................................................................................ 4 List of Tables .................................................................................................................. 5 1 General description ................................................................................................. 7 2 Device overview ....................................................................................................... 8 3 2.1 Device information ...................................................................................................... 8 2.2 Block diagram ............................................................................................................ 10 2.3 Pinouts and pin assignment ..................................................................................... 11 2.4 Memory map .............................................................................................................. 13 2.5 Clock tree ................................................................................................................... 15 2.6 Pin definitions ............................................................................................................ 17 2.6.1 GD32F350Rx LQFP64 pin definitions .................................................................................. 17 2.6.2 GD32F350Cx LQFP48 pin definitions .................................................................................. 21 2.6.3 GD32F350Kx QFN32 pin definitions .................................................................................... 24 2.6.4 GD32F350Gx QFN28 pin definitions .................................................................................... 26 2.6.5 GD32F350xx pin alternate functions .................................................................................... 30 Functional description .......................................................................................... 34 3.1 ARM® Cortex®-M4 core .............................................................................................. 34 3.2 On-chip memory ........................................................................................................ 34 3.3 Clock, reset and supply management ...................................................................... 35 3.4 Boot modes ................................................................................................................ 35 3.5 Power saving modes ................................................................................................. 36 3.6 Analog to digital converter (ADC) ............................................................................ 36 3.7 Digital to analog converter (DAC) ............................................................................. 37 3.8 DMA ............................................................................................................................ 37 3.9 General-purpose inputs/outputs (GPIOs) ................................................................ 37 3.10 Timers and PWM generation ................................................................................. 38 3.11 Real time clock (RTC) ............................................................................................ 39 3.12 Inter-integrated circuit (I2C) .................................................................................. 39 3.13 Serial peripheral interface (SPI) ............................................................................ 40 3.14 Universal synchronous asynchronous receiver transmitter (USART) ............... 40 1 GD32F350xx Datasheet 4 3.15 Inter-IC sound (I2S) ................................................................................................ 40 3.16 HDMI CEC ............................................................................................................... 41 3.17 Universal serial bus full-speed interface (USBFS) ............................................... 41 3.18 Touch sensing interface (TSI) ............................................................................... 41 3.19 Comparators (CMP)................................................................................................ 42 3.20 Debug mode ........................................................................................................... 42 3.21 Package and operation temperature ..................................................................... 42 Electrical characteristics ....................................................................................... 43 4.1 Absolute maximum ratings ....................................................................................... 43 4.2 Operating conditions characteristics ....................................................................... 43 4.3 Power consumption .................................................................................................. 45 4.4 EMC characteristics .................................................................................................. 52 4.5 Power supply supervisor characteristics ................................................................ 52 4.6 Electrical sensitivity .................................................................................................. 53 4.7 External clock characteristics .................................................................................. 54 4.8 Internal clock characteristics ................................................................................... 55 4.9 PLL characteristics.................................................................................................... 57 4.10 Memory characteristics ......................................................................................... 58 4.11 NRST pin characteristics ....................................................................................... 58 4.12 GPIO characteristics .............................................................................................. 59 4.13 ADC characteristics ............................................................................................... 61 4.14 Temperature sensor characteristics ..................................................................... 63 4.15 Comparators characteristics ................................................................................. 63 4.16 DAC characteristics ............................................................................................... 64 4.17 I2C characteristics ................................................................................................. 65 4.18 SPI characteristics ................................................................................................. 65 4.19 I2S characteristics.................................................................................................. 66 4.20 USART characteristics ........................................................................................... 67 4.21 USBFS characteristics ........................................................................................... 67 4.22 TIMER characteristics ............................................................................................ 68 4.23 WDGT characteristics ............................................................................................ 68 4.24 Parameter conditions............................................................................................. 69 2 GD32F350xx Datasheet 5 Package information.............................................................................................. 70 5.1 LQFP48 package outline dimensions....................................................................... 70 5.1. QFN32 package outline dimensions ........................................................................ 72 5.2. QFN28 package outline dimensions ........................................................................ 73 6 Ordering information ............................................................................................. 74 7 Revision history ..................................................................................................... 75 3 GD32F350xx Datasheet List of Figures Figure 2-1. GD32F350xx block diagram .................................................................................................. 10 Figure 2-2. GD32F350Rx LQFP64 pinouts ............................................................................................... 11 Figure 2-3. GD32F350Cx LQFP48 pinouts ............................................................................................... 11 Figure 2-4. GD32F350Kx QFN32 pinouts ................................................................................................ 12 Figure 2-5. GD32F350Gx QFN28 pinouts ................................................................................................ 12 Figure 2-6. GD32F350xx clock tree .......................................................................................................... 15 Figure 4-1. Recommended power supply decoupling capacitors (1) (2) ................................................. 43 Figure 4-2. Typical supply current consumption in Run mode ............................................................ 50 Figure 4-3. Typical supply current consumption in Sleep mode .......................................................... 50 Figure 4-4. Recommended external NRST pin circuit............................................................................ 59 Figure 4-5. I/O port AC characteristics definition................................................................................... 61 Figure 4-6. USB FS timings: definition of data signal rise and fall time .............................................. 67 Figure 5-1. LQFP48 package outline ....................................................................................................... 70 Figure 5-2 QFN32 package outline........................................................................................................... 72 Figure 5-3 QFN28 package outline........................................................................................................... 73 4 GD32F350xx Datasheet List of Tables Table 2-1. GD32F350xx devices features and peripheral list .................................................................. 8 Table 2-2. GD32F350xx memory map ...................................................................................................... 13 Table 2-3. GD32F350Rx LQFP64 pin definitions ..................................................................................... 17 Table 2-4. GD32F350Cx LQFP48 pin definitions ..................................................................................... 21 Table 2-5. GD32F350Kx QFN32 pin definitions ....................................................................................... 24 Table 2-6. GD32F350Gx QFN28 pin definitions ...................................................................................... 26 Table 2-7. Port A alternate functions summary ...................................................................................... 30 Table 2-8. Port B alternate functions summary ...................................................................................... 31 Table 2-9. Port C alternate functions summary ...................................................................................... 32 Table 2-10. Port D alternate functions summary .................................................................................... 32 Table 2-11. Port F alternate functions summary .................................................................................... 33 Table 4-1. Absolute maximum ratings(1) (4)............................................................................................... 43 Table 4-2. DC operating conditions ......................................................................................................... 43 Table 4-3. Clock frequency(1) .................................................................................................................... 44 Table 4-4. Operating conditions at Power up/ Power down(1) ............................................................... 44 Table 4-5. Start-up timings of Operating conditions (1) (2) (3) .................................................................... 44 Table 4-6. Power saving mode wakeup timings characteristics(1) (2) .................................................... 44 Table 4-7. Power consumption characteristics (1) (2) (3) (3) (4) (5) Table 4-8. Peripheral current consumption characteristics ............................................................... 45 (1) .............................................................. 50 Table 4-9. EMS characteristics ................................................................................................................. 52 Table 4-10. Power supply supervisor characteristics............................................................................ 53 Table 4-11. ESD characteristics (1) ............................................................................................................ 54 Table 4-12. Static latch-up characteristics (1) .......................................................................................... 54 Table 4-13. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics . 54 Table 4-14. High speed external user clock characteristics (HXTAL in bypass mode) ...................... 54 Table 4-15. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics .. 55 Table 4-16. Low speed external user clock characteristics (LXTAL in bypass mode) ....................... 55 Table 4-17. High speed internal clock (IRC8M) characteristics ............................................................ 55 Table 4-18. Low speed internal clock (IRC40K) characteristics ........................................................... 56 Table 4-19. High speed internal clock (IRC28M) characteristics .......................................................... 56 Table 4-20. High speed internal clock (IRC48M) characteristics .......................................................... 57 Table 4-21. PLL characteristics ................................................................................................................ 57 Table 4-22. Flash memory characteristics .............................................................................................. 58 Table 4-23. NRST pin characteristics....................................................................................................... 58 Table 4-24. I/O port DC characteristics .................................................................................................... 60 Table 4-25. I/O port AC characteristics (1) (2) ............................................................................................. 60 Table 4-26. ADC characteristics ............................................................................................................... 61 Table 4-27. ADC RAIN max for fADC = 40 MHz (1) ........................................................................................ 62 Table 4-28. ADC dynamic accuracy at fADC = 28 MHz (1) ......................................................................... 62 Table 4-29. ADC dynamic accuracy at fADC = 30 MHz (1) ......................................................................... 62 5 GD32F350xx Datasheet Table 4-30. ADC dynamic accuracy at fADC = 36 MHz Table 4-31. ADC static accuracy at fADC = 14 MHz Table 4-32. Temperature sensor characteristics (1) (1) (1) ......................................................................... 62 .............................................................................. 62 ................................................................................ 63 Table 4-33. CMP characteristics ............................................................................................................... 63 Table 4-34. DAC characteristics ............................................................................................................... 64 Table 4-35. I2C characteristics (1) (2) (3) ....................................................................................................... 65 Table 4-36. Standard SPI characteristics (1) ............................................................................................ 65 Table 4-37. I2S characteristics (1) .............................................................................................................. 66 Table 4-38. USART characteristics (1)....................................................................................................... 67 Table 4-39. USB FS start up time ............................................................................................................. 67 Table 4-40. USBFS DC electrical characteristics ................................................................................... 67 Table 4-41. USB FS electrical characteristics (1) ..................................................................................... 67 Table 4-42. TIMER characteristics (1) ........................................................................................................ 68 Table 4-43. FWDGT min/max timeout period at 40 kHz (IRC40K) (1) ..................................................... 68 Table 4-44. WWDGT min-max timeout value at 108 MHz (fPCLK1) (1) ....................................................... 68 Table 5-1. LQFP48 package dimensions ................................................................................................. 70 Table 5-2. QFN32 package dimensions ................................................................................................... 72 Table 5-3. QFN28 package dimensions ................................................................................................... 73 Table 6-1. Part ordering code for GD32F350xx devices ........................................................................ 74 Table 7-1. Revision history ....................................................................................................................... 75 6 GD32F350xx Datasheet 1 General description The GD32F350xx device belongs to the value line of GD32 MCU family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M4 RISC core with best costperformance ratio in terms of enhanced processing capacity, reduced power consumption and peripheral set. The Cortex®-M4 core features implement a full set of DSP instructions to address digital signal control markets that demand an efficient, easy-to-use blend of control and signal processing capabilities. It also provides a powerful trace technology for enhanced application security and advanced debug support. The GD32F350xx device incorporates the ARM® Cortex®-M4 32-bit processor core operating at 108 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 128 KB on-chip Flash memory and up to 16 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer one 12-bit ADC, one 12-bit DAC and two comparators, up to five general 16-bit timers, a general 32-bit timer, a basic timer, a PWM advanced timer, as well as standard and advanced communication interfaces: up to two SPIs, two I2Cs, two USARTs, an I2S, a HDMI-CEC, a TSI and an USBFS. The device operates from a 2.6 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make the GD32F350xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike and so on. 7 GD32F350xx Datasheet 2 Device overview 2.1 Device information Table 2-1. GD32F350xx devices features and peripheral list GD32F350xx Part Number G4 G6 G8 K4 K6 K8 C4 C6 C8 CB R4 R6 R8 RB 16 32 64 16 32 64 16 32 64 64 16 32 64 64 0 0 0 0 0 0 0 0 0 64 0 0 0 64 16 32 64 16 32 64 16 32 64 128 16 32 64 128 4 6 8 4 6 8 4 6 8 16 4 8 16 16 General timer 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (32-bit) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) General timer 5 5 5 5 5 5 5 5 5 5 5 5 5 5 (16-bit) (2,13-16) (2,13-16) (2,13-16) (2,13-16) (2,13-16) (2,13-16) (2,13-16) (2,13-16) (2,13-16) (2,13-16) (2,13-16) (2,13-16) (2,13-16) (2,13-16) Advanced 1 1 1 1 1 1 1 1 1 1 1 1 1 1 timer (16-bit) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) Basic timer 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (16-bit) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) SysTick 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Watchdog 2 2 2 2 2 2 2 2 2 2 2 2 2 2 RTC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Code area Flash (KB) Data area (KB) Total (KB) Timers SRAM (KB) 1 2 2 1 2 2 1 2 2 2 1 2 2 2 (0) (0-1) (0-1) (0) (0-1) (0-1) (0) (0-1) (0-1) (0-1) (0) (0-1) (0-1) (0-1) 1 1 2 1 1 2 1 1 2 2 1 1 2 2 (0) (0) (0-1) (0) (0) (0-1) (0) (0) (0-1) (0-1) (0) (0) (0-1) (0-1) 1/1 1/1 2/1 1/1 1/1 2/1 1/1 1/1 2/1 2/1 1/1 1/1 2/1 2/1 (0)/(0) (0)/(0) (0-1)/(0) (0)/(0) (0)/(0) (0-1)/(0) (0)/(0) (0)/(0) (0-1)/(0) (0-1)/(0) (0)/(0) (0)/(0) (0-1)/(0) (0-1)/(0) USBFS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 HDMI-CEC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 GPIO 24 24 24 27 27 27 39 39 39 39 55 55 55 55 TSI (Channels) 14 14 14 14 14 14 17 17 17 17 18 18 18 18 CMP 2 2 2 2 2 2 2 2 2 2 2 2 2 2 EXTI 16 16 16 16 16 16 16 16 16 16 16 16 16 16 Connectivity USART I2C SPI/I2S 8 GD32F350xx Datasheet GD32F350xx ADC Part Number G4 G6 G8 K4 K6 K8 C4 C6 C8 CB R4 R6 R8 RB Units 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Channels (External) 10 10 10 10 10 10 10 10 10 10 16 16 16 16 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Channels (Internal) DAC Package QFN28 QFN32 LQFP48 LQFP64 9 GD32F350xx Datasheet 2.2 Block diagram Figure 2-1. GD32F350xx block diagram LDO 1.2V TPIU SW AHB Matrix NVIC ICode DCode System ARM Cortex-M4 Processor Fmax: 108MHz AHB2: Fma x = 108MHz IBus GPIO Ports A, B, C, D, F SRAM Controller SRAM Flash Memory Controller Flash Memory POR/PDR LVD PLL USBFS Touch Sensing Interface DBus GP DMA 7chs AHB1: Fma x = 108MHz AHB to APB Bridge 2 CRC AHB to APB Bridge 1 RST/CLK Controller IRC28M 28MHz IRC48M 48MHz PMU EXTI FWDGT ADC HDMI-CEC TIMER0 TIMER14 APB1: Fmax = 54MHz CMP APB2: Fmax = 54MHz SYS Config Powered by V DD/VDDA RTC SPI0/I2S0 CMP0 IRC40K 40KHz WWDGT USART0 CMP1 HXTAL 4-32MHz IRC8M 8MHz Powered by LDO (1.2V) 12-bit SAR ADC Fmax: 108MHz I2C0 I2C1 CTC USART1 DAC TIMER15 12-bit DAC SPI1 TIMER16 TIMER5 TIMER1 TIMER2 TIMER13 10 GD32F350xx Datasheet 2.3 Pinouts and pin assignment Figure 2-2. GD32F350Rx LQFP64 pinouts PA14 PA15 PC10 PC11 PC12 PD2 PB3 PB4 PB5 PB6 PB7 BOOT0 PB8 PB9 VSS VDD 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 VBAT 1 48 PF6 PF7 PC13 2 47 PC14-OSC32IN 3 46 PA13 PC15-OSC32OUT PF0-OSCIN 4 45 PA12 5 44 PA11 PF1-OSCOUT 6 43 PA10 NRST 7 42 PA9 PC0 8 PC1 9 PC2 PC3 VSSA GigaDevice GD32F350Rx LQFP64 41 PA8 40 PC9 10 39 PC8 11 38 PC7 12 37 PC6 VDDA 13 36 PB15 PA0 14 35 PB14 PA1 15 34 PB13 PA2 16 33 PB12 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VDD VSS PB11 PB10 PB2 PB1 PB0 PC5 PA7 PC4 PA6 PA5 PA4 PF5 PF4 PA3 Figure 2-3. GD32F350Cx LQFP48 pinouts PA14 PB3 PA15 PB4 PB5 PB6 PB7 BOOT0 PB8 PB9 VSS VDD 48 47 46 45 44 43 42 41 40 39 38 37 1 36 PF7 PC13 2 35 PF6 PC14-OSC32IN 3 34 PA13 PC15-OSC32OUT PF0-OSCIN 4 33 PA12 5 32 PA11 PF1-OSCOUT NRST VSSA 6 31 PA10 30 PA9 8 29 VDDA 9 28 PA8 PB15 PA0 10 27 PB14 PA1 PA2 11 26 PB13 25 PB12 VBAT GigaDevice GD32F350Cx LQFP48 7 12 13 14 15 16 17 18 19 20 21 22 23 24 VDD VSS PB11 PB10 PB2 PB1 PA7 PB0 PA6 PA5 PA4 PA3 11 GD32F350xx Datasheet Figure 2-4. GD32F350Kx QFN32 pinouts PA15 PB3 PB4 PB5 PB6 PB7 BOOT0 PB8 VDD 1 32 31 30 29 28 27 26 25 24 PA14 23 PA13 22 PA12 21 PA11 20 PA10 19 PA9 18 PA8 17 VDD OSCIN/PF0 2 OSCOUT/PF1 NRST 3 VDDA PA0 5 PA1 7 PA2 8 GigaDevice GD32F350Kx QFN32 4 6 VSS, VSSA 9 10 11 12 13 14 15 16 PB2 PB1 PB0 PA7 PA6 PA5 PA4 PA3 Figure 2-5. GD32F350Gx QFN28 pinouts PA14 PA15 PB3 PB4 PB5 PB6 PB7 BOOT0 1 28 27 26 25 24 23 22 21 PA13 OSCIN/PF0 2 20 PA12 OSCOUT/PF1 NRST 3 19 PA11 18 VDDA 5 GigaDevice GD32F350Gx QFN28 PA10 PA9 PA0 6 VSS,VSSA 16 VDD PA1 7 15 9 10 11 12 13 14 PB1 4 8 17 PB0 PA7 PA6 PA5 PA4 PA3 PA2 12 GD32F350xx Datasheet 2.4 Memory map Table 2-2. GD32F350xx memory map Pre-defined Address Peripherals 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals External Device 0xA000 0000 - 0xDFFF FFFF Reserved External RAM 0x6000 0000 - 0x9FFF FFFF Reserved 0x5004 0000 - 0x5FFF FFFF Reserved 0x5000 0000 - 0x5003 FFFF USBFS 0x4800 1800 - 0x4FFF FFFF Reserved 0x4800 1400 - 0x4800 17FF GPIOF 0x4800 1000 - 0x4800 13FF Reserved 0x4800 0C00 - 0x4800 0FFF GPIOD 0x4800 0800 - 0x4800 0BFF GPIOC 0x4800 0400 - 0x4800 07FF GPIOB 0x4800 0000 - 0x4800 03FF GPIOA 0x4002 4400 - 0x47FF FFFF Reserved 0x4002 4000 - 0x4002 43FF TSI 0x4002 3400 - 0x4002 3FFF Reserved 0x4002 3000 - 0x4002 33FF CRC 0x4002 2400 - 0x4002 2FFF Reserved 0x4002 2000 - 0x4002 23FF FMC 0x4002 1400 - 0x4002 1FFF Reserved 0x4002 1000 - 0x4002 13FF RCU 0x4002 0400 - 0x4002 0FFF Reserved 0x4002 0000 - 0x4002 03FF DMA 0x4001 8000 - 0x4001 FFFF Reserved 0x4001 5C00 - 0x4001 7FFF Reserved 0x4001 4C00 - 0x4001 5BFF Reserved 0x4001 4800 - 0x4001 4BFF TIMER16 0x4001 4400 - 0x4001 47FF TIMER15 0x4001 4000 - 0x4001 43FF TIMER14 0x4001 3C00 - 0x4001 3FFF Reserved 0x4001 3800 - 0x4001 3BFF USART0 0x4001 3400 - 0x4001 37FF Reserved 0x4001 3000 - 0x4001 33FF SPI0/I2S0 0x4001 2C00 - 0x4001 2FFF TIMER0 0x4001 2800 - 0x4001 2BFF Reserved 0x4001 2400 - 0x4001 27FF ADC 0x4001 0800 - 0x4001 23FF Reserved Regions Bus AHB1 AHB2 AHB1 Peripherals APB2 13 GD32F350xx Datasheet Pre-defined Regions Bus APB1 SRAM Code Address Peripherals 0x4001 0400 - 0x4001 07FF EXTI 0x4001 0000 - 0x4001 03FF SYSCFG + CMP 0x4000 CC00 - 0x4000 FFFF Reserved 0x4000 C800 - 0x4000 CBFF CTC 0x4000 C400 - 0x4000 C7FF Reserved 0x4000 C000 - 0x4000 C3FF Reserved 0x4000 8000 - 0x4000 BFFF Reserved 0x4000 7C00 - 0x4000 7FFF Reserved 0x4000 7800 - 0x4000 7BFF CEC 0x4000 7400 - 0x4000 77FF DAC 0x4000 7000 - 0x4000 73FF PMU 0x4000 6400 - 0x4000 6FFF Reserved 0x4000 6000 - 0x4000 63FF Reserved 0x4000 5C00 - 0x4000 5FFF Reserved 0x4000 5800 - 0x4000 5BFF I2C1 0x4000 5400 - 0x4000 57FF I2C0 0x4000 4800 - 0x4000 53FF Reserved 0x4000 4400 - 0x4000 47FF USART1 0x4000 4000 - 0x4000 43FF Reserved 0x4000 3C00 - 0x4000 3FFF Reserved 0x4000 3800 - 0x4000 3BFF SPI1 0x4000 3400 - 0x4000 37FF Reserved 0x4000 3000 - 0x4000 33FF FWDGT 0x4000 2C00 - 0x4000 2FFF WWDGT 0x4000 2800 - 0x4000 2BFF RTC 0x4000 2400 - 0x4000 27FF Reserved 0x4000 2000 - 0x4000 23FF TIMER13 0x4000 1400 - 0x4000 1FFF Reserved 0x4000 1000 - 0x4000 13FF TIMER5 0x4000 0800 - 0x4000 0FFF Reserved 0x4000 0400 - 0x4000 07FF TIMER2 0x4000 0000 - 0x4000 03FF TIMER1 0x2000 4000 - 0x3FFF FFFF Reserved 0x2000 0000 - 0x2000 3FFF SRAM 0x1FFF FC00 - 0x1FFF FFFF Reserved 0x1FFF F800 - 0x1FFF FBFF Option bytes 0x1FFF EC00 - 0x1FFF F7FF System memory 0x0810 0000 - 0x1FFF EBFF Reserved 0x0800 0000 - 0x0801 FFFF Main Flash memory 0x0010 0000 - 0x07FF FFFF Reserved 14 GD32F350xx Datasheet Pre-defined Bus Regions 2.5 Address Peripherals 0x0000 0000 - 0x000F FFFF Aliased to Flash or system memory Clock tree Figure 2-6. GD32F350xx clock tree CTC CK_IRC48M CK_ CTC 48 MHz IRC48M 48 MHz CK48 MSEL CK_ USBFS 1 USBFS Prescaler ÷1,1.5,2,2.5 3,3.5 ( to USBFS) 0 CK_ LXTAL ÷244 1 CK_ CEC ( to CEC) 0 CECSEL CK_I2S (to I2S) CK_FMC SCS[1:0] FMC enable ( by hardware) ( to FMC) HCLK CK_IRC8M 00 8 MHz IRC8M 0 /2 1 ×2,3,4 …,64 PLL CK_PLL 10 AHB enable CK_ SYS 108MHz max AHB Prescaler ÷1,2... 512 ( to AHB bus, Cortex-M4, SRAM, DMA) CK_ CST CK_ AHB ÷8 108MHz max ( to Cortex-M 4 SysTick) FCLK PLLMF PREDV PLLSEL PLLPRESEL CK_IRC48M 01 1 4- 32 MHz HXTAL Clock Monitor ÷1,2. ..16 0 TIMER1,2,5,13 if(APB1 prescaler =1) = AHB else = AHB / (APB1 ( free running clock ) CK_TIMERx TIMERx enable to TIMER1,2,5,13 prescaler /2) CK_HXTAL /32 APB1 Prescaler ÷1,2,4,8,16 11 32. 768 KHz LXTAL CK_ RTC 01 ( to RTC) 10 TIMER0,14,15,16 if(APB2 prescaler =1) = AHB else = AHB / (APB2 CK_ APB1 PCLK1 54 MHz max to APB1 peripherals Peripheral enable CK_TIMERx TIMERx enable to TIMER0,14,15,16 prescaler /2) 40 KHz IRC40K RTCSRC[1:0] CK_F WDGT ( to F WDGT) APB2 Prescaler ÷1,2,4,8,16 CK_ APB2 PCLK2 to APB2 peripherals 54 MHz max Peripheral enable CK_ OUT ÷1,2,4... 128 CKOUTDIV 0 CK_IRC28M CK_ IRC40K CK_ LXTAL CK_SYS CK_IRC8M CK_ HXTAL /1,2 CK_PLL CK_ IRC8M 11 CK_L XTAL 10 CK_ SYS 01 CK_ USART0 to USART0 00 ADCSEL 28 MHz IRC28M ÷1,2 0 CK_ ADC to ADC 1 40 MHz max ADC Prescaler ÷2,4,6,8 ADC Prescaler ÷3,5,7,9 Note: If the APB prescaler is 1, the timer clock frequencies are set to AHB frequency divide by 1. Otherwise, they are set to the AHB frequency divide by half of APB prescaler. Legend: HXTAL: High speed crystal oscillator LXTAL: Low speed crystal oscillator IRC8M: Internal 8M RC oscillators 15 GD32F350xx Datasheet IRC40K: Internal 40K RC oscillator IRC48M: Internal 48M RC oscillators IRC28M: Internal 28M RC oscillators 16 GD32F350xx Datasheet 2.6 Pin definitions 2.6.1 GD32F350Rx LQFP64 pin definitions Table 2-3. GD32F350Rx LQFP64 pin definitions Pin I/O Type(1) Level(2) Pin Name Pins VBAT 1 P 2 I/O 3 I/O 4 I/O Default: VBAT PC13TAMPER- Functions description Default: PC13 Additional: RTC_TAMP0, RTC_TS, RTC_OUT, WKUP1 RTC PC14OSC32IN PC15OSC32OUT Default: PC14 Additional: OSC32IN Default: PC15 Additional: OSC32OUT Default: PF0 PF0-OSCIN 5 I/O 5VT Alternate: CTC_SYNC Additional: OSCIN PF1OSCOUT NRST 6 I/O 7 I/O 5VT Default: PF1 Additional: OSCOUT Default: NRST Default: PC0 PC0 8 I/O Alternate: EVENTOUT Additional: ADC_IN10 Default: PC1 PC1 9 I/O Alternate: EVENTOUT Additional: ADC_IN11 Default: PC2 PC2 10 I/O Alternate: EVENTOUT Additional: ADC_IN12 Default: PC3 PC3 11 I/O Alternate: EVENTOUT Additional: ADC_IN13 VSSA 12 P Default: VSSA VDDA 13 P Default: VDDA Default: PA0 Alternate: USART0_CTS(3), USART1_CTS(4), PA0-WKUP 14 I/O TIMER1_CH0, TIMER1_ETI, CMP0_OUT, TSI_G0_IO0, I2C1_SCL(5) Additional: ADC_IN0, CMP0_IM6, RTC_TAMP1, WKUP0 Default: PA1 PA1 15 I/O Alternate: USART0_RTS(3), USART1_RTS(4), TIMER1_CH1, TSI_G0_IO1, I2C1_SDA(5), EVENTOUT Additional: ADC_IN1, CMP0_IP 17 GD32F350xx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Default: PA2 Alternate: USART0_TX(3), USART1_TX(4), PA2 16 TIMER1_CH2, TIMER14_CH0 , I/O CMP1_OUT,TSI_G0_IO2 Additional: ADC_IN2, CMP1_IM6 Default: PA3 PA3 17 Alternate: USART0_RX(3), USART1_RX(4), I/O TIMER1_CH3, TIMER14_CH1, TSI_G0_IO3 Additional: ADC_IN3, CMP1_IP PF4 18 I/O 5VT PF5 19 I/O 5VT Default: PF4 Alternate: EVENTOUT Default: PF5 Alternate: EVENTOUT Default: PA4 Alternate: SPI0_NSS, I2S0_WS, USART0_CK(3), PA4 20 I/O USART1_CK(4), TIMER13_CH0, TSI_G1_IO0, SPI1_NSS(5) Additional: ADC_IN4, CMP0_IM4, CMP1_IM4, DAC0_OUT Default: PA5 PA5 21 I/O Alternate: SPI0_SCK, I2S0_CK, CEC, TIMER1_CH0, TIMER1_ETI, TSI_G1_IO1 Additional: ADC_IN5, CMP0_IM5, CMP1_IM5 Default: PA6 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, PA6 22 I/O TIMER0_BKIN, TIMER15_CH0, CMP0_OUT, TSI_G1_IO2, EVENTOUT Additional: ADC_IN6 Default: PA7 Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1, PA7 23 I/O TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0, CMP1_OUT, TSI_G1_IO3, EVENTOUT Additional: ADC_IN7 Default: PC4 PC4 24 I/O Alternate: EVENTOUT Additional: ADC_IN14 Default: PC5 PC5 25 I/O Alternate: TSI_G2_IO0 Additional: ADC_IN15, WKUP4 Default: PB0 PB0 26 I/O Alternate: TIMER2_CH2, TIMER0_CH1_ON, TSI_G2_IO1, USART1_RX(4), EVENTOUT Additional: ADC_IN8 Default: PB1 PB1 27 I/O Alternate: TIMER2_CH3, TIMER13_CH0, TIMER0_CH2_ON, TSI_G2_IO2, SPI1_SCK(5) 18 GD32F350xx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Additional: ADC_IN9 PB2 28 I/O 5VT PB10 29 I/O 5VT Default: PB2 Alternate: TSI_G2_IO3 Default: PB10 Alternate: I2C0_SCL(3),I2C1_SCL(5), CEC, TIMER1_CH2, TSITG, SPI1_IO2(5) Default: PB11 PB11 30 I/O 5VT Alternate: I2C0_SDA(3),I2C1_SDA(5), TIMER1_CH3, TSI_G5_IO0, EVENTOUT, SPI1_IO3(5) VSS 31 P Default: VSS VDD 32 P Default: VDD Default: PB12 PB12 33 I/O 5VT Alternate: SPI0_NSS(3), SPI1_NSS(5), TIMER0_BKIN, TSI_G5_IO1, I2C1_SMBA(5), EVENTOUT Default: PB13 PB13 34 I/O 5VT Alternate: SPI0_SCK(3), SPI1_SCK(5), TIMER0_CH0_ON, TSI_G5_IO2 Default: PB14 PB14 35 I/O 5VT Alternate: SPI0_MISO(3), SPI1_MISO(5), TIMER0_CH1_ON, TIMER14_CH0, TSI_G5_IO3 Default: PB15 Alternate: SPI0_MOSI(3), SPI1_MOSI(5), PB15 36 I/O 5VT TIMER0_CH2_ON, TIMER14_CH0_ON, TIMER14_CH1 Additional: RTC_REFIN, WKUP6 PC6 37 I/O 5VT PC7 38 I/O 5VT PC8 39 I/O 5VT PC9 40 I/O 5VT Default: PC6 Alternate: TIMER2_CH0, I2S0_MCK Default: PC7 Alternate: TIMER2_CH1 Default: PC8 Alternate: TIMER2_CH2 Default: PC9 Alternate: TIMER2_CH3 Default: PA8 PA8 41 I/O 5VT Alternate: USART0_CK, TIMER0_CH0, CK_OUT, USART1_TX(4), EVENTOUT,USBFS_SOF,CTC_SYNC Default: PA9 PA9 42 I/O 5VT Alternate: USART0_TX, TIMER0_CH1, TIMER14_BKIN, TSI_G3_IO0, I2C0_SCL,USBFS_VBUS Default: PA10 PA10 43 I/O 5VT Alternate: USART0_RX, TIMER0_CH2, TIMER16_BKIN, TSI_G3_IO1, I2C0_SDA, USBFS_ID Default: PA11 PA11 44 I/O 5VT Alternate: USART0_CTS, TIMER0_CH3, CMP0_OUT, TSI_G3_IO2, EVENTOUT, SPI1_IO2(5) Additional: USBFS_DM 19 GD32F350xx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Default: PA12 PA12 45 I/O 5VT Alternate: USART0_RTS, TIMER0_ETI, CMP1_OUT, TSI_G3_IO3, EVENTOUT, SPI1_IO3(5) Additional: USBFS_DP PA13 46 I/O 5VT PF6 47 I/O 5VT PF7 48 I/O 5VT Default: PA13 Alternate: IFRP_OUT, SWDIO, SPI1_MISO(5) Default: PF6 Alternate: I2C0_SCL(3), I2C1_SCL(5) Default: PF7 Alternate: I2C0_SDA(3), I2C1_SDA(5) Default: PA14 PA14 49 I/O 5VT Alternate: USART0_TX(3), USART1_TX(4), SWCLK, SPI1_MOSI(5) Default: PA15 PA15 50 I/O 5VT Alternate: SPI0_NSS, I2S0_WS, USART0_RX(3), USART1_RX(4), TIMER1_CH0, TIMER1_ETI, SPI1_NSS(5), EVENTOUT PC10 51 I/O 5VT Default: PC10 PC11 52 I/O 5VT Default: PC11 PC12 53 I/O 5VT Default: PC12 PD2 54 I/O 5VT Default: PD2 Alternate: TIMER2_ETI Default: PB3 PB3 55 I/O 5VT Alternate: SPI0_SCK, I2S0_CK, TIMER1_CH1, TSI_G4_IO0, EVENTOUT Default: PB4 PB4 56 I/O 5VT Alternate: SPI0_MISO,I2S0_MCK, TIMER2_CH0, TSI_G4_IO1, EVENTOUT Default: PB5 PB5 57 I/O 5VT Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BKIN, TIMER2_CH1 Additional:WKUP5 Default: PB6 PB6 58 I/O 5VT Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON, TSI_G4_IO2 Default: PB7 PB7 59 I/O 5VT Alternate:I2C0_SDA,USART0_RX,TIMER16_CH0_ON,T SI_G4_IO3 BOOT0 60 I PB8 61 I/O Default: BOOT0 5VT Default: PB8 Alternate: I2C0_SCL, CEC, TIMER15_CH0, TSITG Default: PB9 PB9 62 I/O 5VT Alternate: I2C0_SDA, IFRP_OUT, TIMER16_CH0, EVENTOUT, I2S0_MCK VSS 63 P Default: VSS 20 GD32F350xx Datasheet Pin Name Pins VDD 64 Pin I/O Type(1) Level(2) Functions description Default: VDD P Notes: (1) Type: I = input, O = output, P = power. (2) I/O Level: 5VT = 5 V tolerant. (3) Functions are available on GD32F350R4 devices only. (4) Functions are available on GD32F350RB/8/6 devices. (5) Functions are available on GD32F350RB/8 devices. 2.6.2 GD32F350Cx LQFP48 pin definitions Table 2-4. GD32F350Cx LQFP48 pin definitions Pin I/O Type(1) Level(2) Pin Name Pins VBAT 1 P 2 I/O 3 I/O 4 I/O 5 I/O Default: VBAT PC13TAMPER- Default: PC13 Additional: RTC_TAMP0, RTC_TS, RTC_OUT, WKUP1 RTC PC14OSC32IN PC15OSC32OUT Functions description Default: PC14 Additional: OSC32IN Default: PC15 Additional: OSC32OUT Default: PF0 PF0-OSCIN 5VT Alternate: CTC_SYNC Additional: OSCIN PF1- 5VT Default: PF1 6 I/O NRST 7 I/O VSSA 8 P Default: VSSA VDDA 9 P Default: VDDA OSCOUT Additional: OSCOUT Default: NRST Default: PA0 Alternate: USART0_CTS(3), USART1_CTS(4), PA0-WKUP 10 I/O TIMER1_CH0, TIMER1_ETI, CMP0_OUT, TSI_G0_IO0, I2C1_SCL(5) Additional: ADC_IN0, CMP0_IM6, RTC_TAMP1, WKUP0 Default: PA1 PA1 11 I/O Alternate: USART0_RTS(3), USART1_RTS(4), TIMER1_CH1, TSI_G0_IO1, I2C1_SDA(5), EVENTOUT Additional: ADC_IN1, CMP0_IP Default: PA2 PA2 12 I/O Alternate: USART0_TX(3), USART1_TX(4), TIMER1_CH2, TIMER14_CH0 , CMP1_OUT,TSI_G0_IO2 Additional: ADC_IN2, CMP1_IM6 PA3 13 I/O Default: PA3 21 GD32F350xx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Alternate: USART0_RX(3), USART1_RX(4), TIMER1_CH3, TIMER14_CH1, TSI_G0_IO3 Additional: ADC_IN3, CMP1_IP Default: PA4 Alternate: SPI0_NSS, I2S0_WS, USART0_CK(3), PA4 14 USART1_CK(4), TIMER13_CH0, TSI_G1_IO0, I/O SPI1_NSS(5) Additional: ADC_IN4, CMP0_IM4, CMP1_IM4, DAC0_OUT Default: PA5 PA5 15 Alternate: SPI0_SCK, I2S0_CK, CEC, TIMER1_CH0, I/O TIMER1_ETI, TSI_G1_IO1 Additional: ADC_IN5, CMP0_IM5, CMP1_IM5 Default: PA6 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, PA6 16 TIMER0_BKIN, TIMER15_CH0, CMP0_OUT, I/O TSI_G1_IO2, EVENTOUT Additional: ADC_IN6 Default: PA7 Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1, PA7 17 TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0, I/O CMP1_OUT, TSI_G1_IO3, EVENTOUT Additional: ADC_IN7 Default: PB0 PB0 18 Alternate: TIMER2_CH2, TIMER0_CH1_ON, I/O TSI_G2_IO1, USART1_RX(4), EVENTOUT Additional: ADC_IN8 Default: PB1 PB1 19 Alternate: TIMER2_CH3, TIMER13_CH0, I/O TIMER0_CH2_ON, TSI_G2_IO2, SPI1_SCK(5) Additional: ADC_IN9 PB2 20 I/O 5VT Default: PB2 Alternate: TSI_G2_IO3 Default: PB10 PB10 21 I/O 5VT Alternate: I2C0_SCL(3),I2C1_SCL(5), CEC, TIMER1_CH2, TSITG, SPI1_IO2(5) Default: PB11 PB11 22 I/O 5VT Alternate: I2C0_SDA(3),I2C1_SDA(5), TIMER1_CH3, TSI_G5_IO0, EVENTOUT, SPI1_IO3(5) VSS 23 P Default: VSS VDD 24 P Default: VDD Default: PB12 PB12 25 I/O 5VT Alternate: SPI0_NSS(3), SPI1_NSS(5), TIMER0_BKIN, TSI_G5_IO1, I2C1_SMBA(5), EVENTOUT PB13 26 I/O 5VT Default: PB13 22 GD32F350xx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Alternate: SPI0_SCK(3), SPI1_SCK(5), TIMER0_CH0_ON, TSI_G5_IO2 Default: PB14 PB14 27 I/O 5VT Alternate: SPI0_MISO(3), SPI1_MISO(5), TIMER0_CH1_ON, TIMER14_CH0, TSI_G5_IO3 Default: PB15 Alternate: SPI0_MOSI(3), SPI1_MOSI(5), PB15 28 I/O 5VT TIMER0_CH2_ON, TIMER14_CH0_ON, TIMER14_CH1 Additional: RTC_REFIN, WKUP6 Default: PA8 PA8 29 I/O 5VT Alternate: USART0_CK, TIMER0_CH0, CK_OUT, USART1_TX(4), EVENTOUT,USBFS_SOF,CTC_SYNC Default: PA9 PA9 30 I/O 5VT Alternate: USART0_TX, TIMER0_CH1, TIMER14_BKIN, TSI_G3_IO0, I2C0_SCL,USBFS_VBUS Default: PA10 PA10 31 I/O 5VT Alternate: USART0_RX, TIMER0_CH2, TIMER16_BKIN, TSI_G3_IO1, I2C0_SDA, USBFS_ID Default: PA11 PA11 32 I/O 5VT Alternate: USART0_CTS, TIMER0_CH3, CMP0_OUT, TSI_G3_IO2, EVENTOUT, SPI1_IO2(5) Additional: USBFS_DM Default: PA12 PA12 33 I/O 5VT Alternate: USART0_RTS, TIMER0_ETI, CMP1_OUT, TSI_G3_IO3, EVENTOUT, SPI1_IO3(5) Additional: USBFS_DP PA13 34 I/O 5VT PF6 35 I/O 5VT PF7 36 I/O 5VT Default: PA13 Alternate: IFRP_OUT, SWDIO, SPI1_MISO(5) Default: PF6 Alternate: I2C0_SCL(3), I2C1_SCL(5) Default: PF7 Alternate: I2C0_SDA(3), I2C1_SDA(5) Default: PA14 PA14 37 I/O 5VT Alternate: USART0_TX(3), USART1_TX(4), SWCLK, SPI1_MOSI(5) Default: PA15 PA15 38 I/O 5VT Alternate: SPI0_NSS, I2S0_WS, USART0_RX(3), USART1_RX(4), TIMER1_CH0, TIMER1_ETI, SPI1_NSS(5), EVENTOUT Default: PB5 PB5 41 I/O 5VT Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BKIN, TIMER2_CH1 Additional:WKUP5 PB6 42 I/O 5VT Default: PB6 Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON, 23 GD32F350xx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description TSI_G4_IO2 Default: PB7 PB7 43 I/O BOOT0 44 I PB8 45 I/O 5VT Alternate:I2C0_SDA,USART0_RX,TIMER16_CH0_ON,T SI_G4_IO3 Default: BOOT0 5VT Default: PB8 Alternate: I2C0_SCL, CEC, TIMER15_CH0, TSITG Default: PB9 PB9 46 I/O 5VT Alternate: I2C0_SDA, IFRP_OUT, TIMER16_CH0, EVENTOUT, I2S0_MCK VSS 47 P Default: VSS VDD 48 P Default: VDD Notes: (1) Type: I = input, O = output, P = power. (2) I/O Level: 5VT = 5 V tolerant. (3) Functions are available on GD32F350C4 devices only. (4) Functions are available on GD32F350CB/8/6 devices. (5) Functions are available on GD32F350CB/8 devices. 2.6.3 GD32F350Kx QFN32 pin definitions Table 2-5. GD32F350Kx QFN32 pin definitions Pin Name Pins PF0-OSCIN 2 Pin I/O Type(1) Level(2) I/O 5VT Functions description Default: PF0 Alternate: CTC_SYNC Additional: OSCIN PF1- 3 I/O NRST 4 I/O VDDA 5 P OSCOUT 5VT Default: PF1 Additional: OSCOUT Default: NRST Default: VDDA Default: PA0 Alternate: USART0_CTS(3), USART1_CTS(4), PA0-WKUP 6 I/O TIMER1_CH0, TIMER1_ETI, CMP0_OUT, TSI_G0_IO0, I2C1_SCL(5) Additional: ADC_IN0, CMP0_IM6, RTC_TAMP1, WKUP0 Default: PA1 PA1 7 I/O Alternate: USART0_RTS(3), USART1_RTS(4), TIMER1_CH1, TSI_G0_IO1, I2C1_SDA(5), EVENTOUT Additional: ADC_IN1, CMP0_IP Default: PA2 PA2 8 I/O Alternate: USART0_TX(3), USART1_TX(4), TIMER1_CH2, TIMER14_CH0 , CMP1_OUT,TSI_G0_IO2 Additional: ADC_IN2, CMP1_IM6 24 GD32F350xx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Default: PA3 PA3 9 Alternate: USART0_RX(3), USART1_RX(4), I/O TIMER1_CH3, TIMER14_CH1, TSI_G0_IO3 Additional: ADC_IN3, CMP1_IP Default: PA4 Alternate: SPI0_NSS, I2S0_WS, USART0_CK(3), PA4 10 USART1_CK(4), TIMER13_CH0, TSI_G1_IO0, I/O SPI1_NSS(5) Additional: ADC_IN4, CMP0_IM4, CMP1_IM4, DAC0_OUT Default: PA5 PA5 11 Alternate: SPI0_SCK, I2S0_CK, CEC, TIMER1_CH0, I/O TIMER1_ETI, TSI_G1_IO1 Additional: ADC_IN5, CMP0_IM5, CMP1_IM5 Default: PA6 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, PA6 12 TIMER0_BKIN, TIMER15_CH0, CMP0_OUT, I/O TSI_G1_IO2, EVENTOUT Additional: ADC_IN6 Default: PA7 Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1, PA7 13 TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0, I/O CMP1_OUT, TSI_G1_IO3, EVENTOUT Additional: ADC_IN7 Default: PB0 PB0 14 Alternate: TIMER2_CH2, TIMER0_CH1_ON, I/O TSI_G2_IO1, USART1_RX(4), EVENTOUT Additional: ADC_IN8 Default: PB1 PB1 15 Alternate: TIMER2_CH3, TIMER13_CH0, I/O TIMER0_CH2_ON, TSI_G2_IO2, SPI1_SCK(5) Additional: ADC_IN9 PB2 16 I/O VDD 17 P PA8 18 I/O 5VT Default: PB2 Alternate: TSI_G2_IO3 Default: VDD Default: PA8 5VT Alternate: USART0_CK, TIMER0_CH0, CK_OUT, USART1_TX(4), EVENTOUT,USBFS_SOF,CTC_SYNC Default: PA9 PA9 19 I/O 5VT Alternate: USART0_TX, TIMER0_CH1, TIMER14_BKIN, TSI_G3_IO0, I2C0_SCL,USBFS_VBUS Default: PA10 PA10 20 I/O 5VT Alternate: USART0_RX, TIMER0_CH2, TIMER16_BKIN, TSI_G3_IO1, I2C0_SDA, USBFS_ID PA11 21 I/O 5VT Default: PA11 Alternate: USART0_CTS, TIMER0_CH3, CMP0_OUT, 25 GD32F350xx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description TSI_G3_IO2, EVENTOUT, SPI1_IO2(5) Additional: USBFS_DM Default: PA12 PA12 22 I/O 5VT Alternate: USART0_RTS, TIMER0_ETI, CMP1_OUT, TSI_G3_IO3, EVENTOUT, SPI1_IO3(5) Additional: USBFS_DP PA13 23 I/O 5VT Default: PA13 Alternate: IFRP_OUT, SWDIO, SPI1_MISO(5) Default: PA14 PA14 24 I/O 5VT Alternate: USART0_TX(3), USART1_TX(4), SWCLK, SPI1_MOSI(5) Default: PA15 PA15 25 I/O 5VT Alternate: SPI0_NSS, I2S0_WS, USART0_RX(3), USART1_RX(4), TIMER1_CH0, TIMER1_ETI, SPI1_NSS(5), EVENTOUT Default: PB3 PB3 26 I/O 5VT Alternate: SPI0_SCK, I2S0_CK, TIMER1_CH1, TSI_G4_IO0, EVENTOUT Default: PB4 PB4 27 I/O 5VT Alternate: SPI0_MISO,I2S0_MCK, TIMER2_CH0, TSI_G4_IO1, EVENTOUT Default: PB5 PB5 28 I/O 5VT Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BKIN, TIMER2_CH1 Additional:WKUP5 Default: PB6 PB6 29 I/O 5VT Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON, TSI_G4_IO2 Default: PB7 PB7 30 I/O 5VT Alternate:I2C0_SDA,USART0_RX,TIMER16_CH0_ON,T SI_G4_IO3 BOOT0 31 I PB8 32 I/O VDD 1 P Default: BOOT0 5VT Default: PB8 Alternate: I2C0_SCL, CEC, TIMER15_CH0, TSITG Default: VDD Notes: (1) Type: I = input, O = output, P = power. (2) I/O Level: 5VT = 5 V tolerant. (3) Functions are available on GD32F350K4 devices only. (4) Functions are available on GD32F350K8/6 devices. (5) Functions are available on GD32F350K8 devices. 2.6.4 GD32F350Gx QFN28 pin definitions Table 2-6. GD32F350Gx QFN28 pin definitions 26 GD32F350xx Datasheet Pin Name Pins PF0-OSCIN 2 Pin I/O Type(1) Level(2) I/O 5VT Functions description Default: PF0 Alternate: CTC_SYNC Additional: OSCIN PF1- 3 I/O NRST 4 I/O VDDA 5 P OSCOUT 5VT Default: PF1 Additional: OSCOUT Default: NRST Default: VDDA Default: PA0 Alternate: USART0_CTS(3), USART1_CTS(4), PA0-WKUP 6 I/O TIMER1_CH0, TIMER1_ETI, CMP0_OUT, TSI_G0_IO0, I2C1_SCL(5) Additional: ADC_IN0, CMP0_IM6, RTC_TAMP1, WKUP0 Default: PA1 PA1 7 I/O Alternate: USART0_RTS(3), USART1_RTS(4), TIMER1_CH1, TSI_G0_IO1, I2C1_SDA(5), EVENTOUT Additional: ADC_IN1, CMP0_IP Default: PA2 PA2 8 I/O Alternate: USART0_TX(3), USART1_TX(4), TIMER1_CH2, TIMER14_CH0 , CMP1_OUT,TSI_G0_IO2 Additional: ADC_IN2, CMP1_IM6 Default: PA3 PA3 9 I/O Alternate: USART0_RX(3), USART1_RX(4), TIMER1_CH3, TIMER14_CH1, TSI_G0_IO3 Additional: ADC_IN3, CMP1_IP Default: PA4 Alternate: SPI0_NSS, I2S0_WS, USART0_CK(3), PA4 10 I/O USART1_CK(4), TIMER13_CH0, TSI_G1_IO0, SPI1_NSS(5) Additional: ADC_IN4, CMP0_IM4, CMP1_IM4, DAC0_OUT Default: PA5 PA5 11 I/O Alternate: SPI0_SCK, I2S0_CK, CEC, TIMER1_CH0, TIMER1_ETI, TSI_G1_IO1 Additional: ADC_IN5, CMP0_IM5, CMP1_IM5 Default: PA6 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, PA6 12 I/O TIMER0_BKIN, TIMER15_CH0, CMP0_OUT, TSI_G1_IO2, EVENTOUT Additional: ADC_IN6 Default: PA7 Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1, PA7 13 I/O TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0, CMP1_OUT, TSI_G1_IO3, EVENTOUT Additional: ADC_IN7 PB0 14 I/O Default: PB0 Alternate: TIMER2_CH2, TIMER0_CH1_ON, 27 GD32F350xx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description TSI_G2_IO1, USART1_RX(4), EVENTOUT Additional: ADC_IN8 Default: PB1 PB1 15 I/O VDD 16 P Alternate: TIMER2_CH3, TIMER13_CH0, TIMER0_CH2_ON, TSI_G2_IO2, SPI1_SCK(5) Additional: ADC_IN9 Default: VDD Default: PA9 PA9 17 I/O 5VT Alternate: USART0_TX, TIMER0_CH1, TIMER14_BKIN, TSI_G3_IO0, I2C0_SCL,USBFS_VBUS Default: PA10 PA10 18 I/O 5VT Alternate: USART0_RX, TIMER0_CH2, TIMER16_BKIN, TSI_G3_IO1, I2C0_SDA, USBFS_ID Default: PA11 PA11 19 I/O 5VT Alternate: USART0_CTS, TIMER0_CH3, CMP0_OUT, TSI_G3_IO2, EVENTOUT, SPI1_IO2(5) Additional: USBFS_DM Default: PA12 PA12 20 I/O 5VT Alternate: USART0_RTS, TIMER0_ETI, CMP1_OUT, TSI_G3_IO3, EVENTOUT, SPI1_IO3(5) Additional: USBFS_DP PA13 21 I/O 5VT Default: PA13 Alternate: IFRP_OUT, SWDIO, SPI1_MISO(5) Default: PA14 PA14 22 I/O 5VT Alternate: USART0_TX(3), USART1_TX(4), SWCLK, SPI1_MOSI(5) Default: PA15 PA15 23 I/O 5VT Alternate: SPI0_NSS, I2S0_WS, USART0_RX(3), USART1_RX(4), TIMER1_CH0, TIMER1_ETI, SPI1_NSS(5), EVENTOUT Default: PB3 PB3 24 I/O 5VT Alternate: SPI0_SCK, I2S0_CK, TIMER1_CH1, TSI_G4_IO0, EVENTOUT Default: PB4 PB4 25 I/O 5VT Alternate: SPI0_MISO,I2S0_MCK, TIMER2_CH0, TSI_G4_IO1, EVENTOUT Default: PB5 PB5 26 I/O 5VT Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BKIN, TIMER2_CH1 Additional:WKUP5 Default: PB6 PB6 27 I/O 5VT Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON, TSI_G4_IO2 PB7 28 I/O 5VT Default: PB7 Alternate:I2C0_SDA,USART0_RX,TIMER16_CH0_ON,T 28 GD32F350xx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description SI_G4_IO3 BOOT0 1 I Default: BOOT0 Notes: (1) Type: I = input, O = output, P = power. (2) I/O Level: 5VT = 5 V tolerant. (3) Functions are available on GD32F350G4 devices only. (4) Functions are available on GD32F350G8/6 devices. (5) Functions are available on GD32F350G8 devices 29 GD32F350xx Datasheet 2.6.5 GD32F350xx pin alternate functions Table 2-7. Port A alternate functions summary Pin Name AF0 PA2 PA3 PA4 PA5 AF2 USART1_CTS(2) TIMER1_ETI EVENTOU USART0_RTS(1) T USART1_RTS(2) TIMER14_ USART0_TX(1) CH0 USART1_TX(2) TIMER14_ USART0_RX(1) CH1 USART1_RX(2) TIMER1_CH1 TIMER1_CH2 TIMER1_CH3 SPI0_NSS/ USART0_CK(1) I2S0_WS SPI0_SCK/ I2S0_CK CEC PA6 O/I2S0_MC TIMER2_CH0 I/ TIMER2_CH1 I2S0_SD PA8 PA9 PA10 PA11 PA12 CK_OUT TIMER14_ BKIN TIMER16_ BKIN EVENTOU T EVENTOU T PA13 SWDIO PA14 SWCLK PA15 _IO1 AF6 CMP0 I2C1_SCL(3) _OUT ) CMP1 _IO2 _OUT TSI_G0 _IO3 SPI1_N SS(3) CH0 TIMER1_CH0, TSI_G1 TIMER1_ETI TIMER0_BKIN _IO1 TSI_G1 TIMER15 EVENT CMP0 _IO2 _CH0 OUT _OUT TIMER0_CH0_ TSI_G1 TIMER13_ TIMER16 EVENT CMP1 ON USART0_CK TIMER0_CH0 USART0_TX TIMER0_CH1 USART0_RX TIMER0_CH2 USART0_CTS TIMER0_CH3 USART0_RTS TIMER0_ETI _IO3 CH0 _CH0 OUT _OUT EVENT USART1_T USBFS_S CTC_S OUT TSI_G3 _IO0 TSI_G3 _IO1 TSI_G3 _IO2 TSI_G3 _IO3 X(2) I2C0_SCL I2C0_SDA OF YNC USBFS_V BUS USBFS_I D SPI1_IO CMP0 2(3) _OUT SPI1_IO CMP1 3(3) _OUT SPI1_MI IFRP_OUT SO(3) USART0_TX(1) SPI1_M USART1_TX(2) OSI(3) USART1_RX(2) AF7 TSI_G0 SPI0_NSS/ USART0_RX(1) TIMER1_CH0, EVENT I2S0_WS AF5 TSI_G0 I2C1_SDA(3 _IO0 K SPI0_MOS _IO0 AF4 TSI_G1 TIMER13_ USART1_CK(2) SPI0_MIS PA7 AF3 USART0_CTS(1) TIMER1_CH0, TSI_G0 PA0 PA1 AF1 TIMER1_ETI OUT SPI1_N SS(3) 30 GD32F350xx Datasheet Table 2-8. Port B alternate functions summary Pin Name PB0 PB1 AF0 AF1 EVENTOUT TIMER2_CH2 TIMER13_C H0 TIMER2_CH3 AF2 TIMER0_CH1_ ON TIMER0_CH2_ ON PB2 PB3 PB4 PB5 AF3 TSI_G2_IO1 SPI0_SCK / I2S0_CK SPI0_MISO / I2S0_MCK SPI0_MOSI / I2S0_SD EVENTOUT TIMER1_CH1 TSI_G4_IO0 TIMER2_CH0 EVENTOUT TSI_G4_IO1 TIMER2_CH1 TIMER15_BKI N TIMER15_CH0 I2C0_SDA PB8 CEC I2C0_SCL TIMER15_CH0 TSITG PB9 IFRP_OUT I2C0_SDA TIMER16_CH0 EVENTOUT PB10 CEC TIMER1_CH2 TSITG TIMER1_CH3 TSI_G5_IO0 TIMER0_BKIN TSI_G5_IO1 PB11 EVENTOUT PB15 USART1_ RX SPI1_SC K(3) I2C0_SMBA PB7 USART0_RX PB14 AF6 TSI_G2_IO3 I2C0_SCL PB13 AF5 TSI_G2_IO2 PB6 USART0_TX PB12 AF4 SPI0_NSS(1) SPI1_NSS(3) I2C0_SCL(1), I2C1_SCL(3) I2C0_SDA(1), I2C1_SDA(3) EVENTOUT _ON TIMER16_CH0 _ON SPI0_SCK(1) TIMER0_CH0_ SPI1_SCK(3) ON SPI0_MISO(1) SPI1_MISO(3) SPI0_MOSI(1) SPI1_MOSI(3) TIMER14_CH0 TIMER14_CH1 TIMER0_CH1_ ON TSI_G4_IO2 TSI_G4_IO3 I2S0_MC K SPI1_IO2 (3) SPI1_IO3 (3) I2C1_SMB A(3) TSI_G5_IO2 TSI_G5_IO3 TIMER0_CH2_ TIMER14_CH0 ON _ON 31 GD32F350xx Datasheet Table 2-9. Port C alternate functions summary Pin Name AF0 PC0 EVENTOUT PC1 EVENTOUT PC2 EVENTOUT PC3 EVENTOUT PC4 EVENTOUT PC5 TSI_G2_IO0 PC6 TIMER2_CH0 PC7 TIMER2_CH1 PC8 TIMER2_CH2 PC9 TIMER2_CH3 AF1 AF2 AF3 AF4 AF5 AF6 AF4 AF5 AF6 I2S0_MCK PC10 PC11 PC12 PC13 PC14 PC15 Table 2-10. Port D alternate functions summary Pin Name AF0 AF1 AF2 AF3 PD0 PD1 PD2 TIMER2_ETI PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD11 PD12 PD13 PD14 PD15 32 GD32F350xx Datasheet Table 2-11. Port F alternate functions summary Pin Name PF0 AF0 AF1 AF2 AF3 AF4 AF5 AF6 CTC_SYNC PF1 PF2 PF3 PF4 EVENTOUT PF5 EVENTOUT PF6 PF7 I2C0_SCL(1) I2C1_SCL(3) I2C0_SDA(1) I2C1_SDA(3) PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 Notes: (1) Functions are available on GD32F350x4 devices only. (2) Functions are available on GD32F350xB/8/6 devices. (3) Functions are available on GD32F350xB/8 devices. 33 GD32F350xx Datasheet 3 Functional description 3.1 ARM® Cortex®-M4 core The ARM® Cortex®-M4 processor is a high performance embedded processor with DSP instructions which allow efficient signal processing and complex algorithm execution. It brings an efficient, easy-to-use blend of control and signal processing capabilities to meet the digital signal control markets demand. The processor is highly configurable enabling a wide range of implementations from those requiring memory protection and powerful trace technology to cost sensitive devices requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts. 32-bit ARM® Cortex®-M4 processor core  Up to 108 MHz operation frequency  Single-cycle multiplication and hardware divider  Integrated DSP instructions  Integrated Nested Vectored Interrupt Controller (NVIC)  24-bit SysTick timer The Cortex®-M4 processor is based on the ARMv7-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M4:  Internal Bus Matrix connected with ICode bus, DCode bus, system bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP) 3.2  Nested Vectored Interrupt Controller (NVIC)  Flash Patch and Breakpoint (FPB)  Data Watchpoint and Trace (DWT)  Instrument Trace Macrocell (ITM)  Serial Wire JTAG Debug Port (SWJ-DP)  Trace Port Interface Unit (TPIU) On-chip memory  Up to 128 Kbytes of Flash memory  Up to 16 Kbytes of SRAM with hardware parity checking The ARM® Cortex®-M4 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 128 Kbytes of inner Flash and 16 Kbytes of inner SRAM at most is available for storing programs and data, both accessed (R/W) at CPU clock speed with zero wait states. Table 2-2. GD32F350xx memory map shows the memory map of the GD32F350xx series of devices, including code, SRAM, peripheral, and other pre-defined regions. 34 GD32F350xx Datasheet 3.3 Clock, reset and supply management  Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator  Internal 48 MHz RC oscillator  Internal 28 MHz RC oscillator  Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator  Integrated system clock PLL  2.6 to 3.6 V application supply and I/Os  Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD) The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB, APB2 and APB1 domains is 108 MHz/54 MHz/54 MHz. See Figure 2-6. GD32F350xx clock tree for details on the clock tree. The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 2.6 V and down to 1.8V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security. Power supply schemes:  VDD range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.  VSSA, VDDA range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL.  VBAT range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when VDD is not present. 3.4 Boot modes At startup, boot pins are used to select one of three boot options:  Boot from main Flash memory (default)  Boot from system memory  Boot from on-chip SRAM In default condition, boot from main Flash memory is selected. The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10) or USART1 (PA14 and PA15). 35 GD32F350xx Datasheet 3.5 Power saving modes The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.  Sleep mode In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.  Deep-sleep mode In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, RTC tamper and timestamp, CMP0/CMP1 output, LVD output, USART wakeup, CEC wakeup and USB wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.  Standby mode In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except backup registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pin. 3.6 Analog to digital converter (ADC)  12-bit SAR ADC's conversion rate is up to 2.86 MSPS  12-bit, 10-bit, 8-bit or 6-bit configurable resolution  Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit  Input voltage range: VSSA to VDDA (2.6 to 3.6 V)  Temperature sensor One 12-bit 2.86 MSPS multi-channel ADCs are integrated in the device. It has a total of 19 multiplexed channels: 16 external channels, 1 channel for internal temperature sensor (VSENSE), 1 channel for internal reference voltage (VREFINT) and 1 channel for battery voltage (VBAT). The input voltage range is between VSSA and VDDA. An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use. The ADC can be triggered from the events generated by the general level 0 timers (TIMERx) 36 GD32F350xx Datasheet and the advanced timer (TIMER0) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value. 3.7 Digital to analog converter (DAC)  12-bit DAC converter of independent output channel  8-bit or 12-bit mode in conjunction with the DMA controller The 12-bit buffered DAC channel is used to generate variable analog outputs. The DAC is designed with integrated resistor strings structure. The DAC channels can be triggered by the timer update outputs or EXTI with DMA support. The maximum output value of the DAC is VREF+. 3.8 DMA  7 channel DMA controller  Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs, DAC and I2S The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory. Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable. 3.9 General-purpose inputs/outputs (GPIOs)  Up to 55 fast GPIOs, all mappable on 16 external interrupt lines  Analog input/output configurable  Alternate function input/output configurable There are up to 55 general purpose I/O pins (GPIO) in GD32F350xx, named PA0 ~ PA15 and PB0 ~ PB15, PC0 ~ PC15, PD2, PF0, PF1, PF4-PF7 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (pushpull open-drain or analog), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. 37 GD32F350xx Datasheet All GPIOs are high-current capable except for analog inputs. 3.10 Timers and PWM generation  One 16-bit advanced timer (TIMER0), one 32-bit general timer (TIMER1), five 16-bit general timers (TIMER2, TIMER13 ~ TIMER16), and one 16-bit basic timer (TIMER5)  Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input  16-bit, motor control PWM advanced timer with programmable dead-time generation for output match  Encoder interface controller with two inputs using quadrature decoder  24-bit SysTick timer down counter  2 watchdog timers (Free watchdog timer and window watchdog timer) The advanced timer (TIMER0) can be used as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge- or center- aligned counting modes) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features. The general timer can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER1 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIMER2 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. TIMER13 ~ TIMER16 is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder. The basic timer, known as TIMER5, is mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base. The GD32F350xx have two watchdog peripherals, free watchdog and window watchdog. They offer a combination of high safety level, flexibility of use and timing accuracy. The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler. It is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode. 38 GD32F350xx Datasheet The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below: 3.11  A 24-bit down counter  Auto reload capability  Maskable system interrupt generation when the counter reaches 0  Programmable clock source Real time clock (RTC)  Independent binary-coded decimal (BCD) format timer/counter with five 32-bit backup registers.  Calendar with subsecond, seconds, minutes, hours, week day, date, year and month automatically correction  Alarm function with wake up from deep-sleep and standby mode capability  On-the-fly correction for synchronization with master clock. Digital calibration with 0.954 ppm resolution for compensation of quartz crystal inaccuracy. The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. In the RTC unit, there are two prescalers used for implementing the calendar and other functions. One prescaler is a 7-bit asynchronous prescaler and the other is a 15-bit synchronous prescaler. 3.12 Inter-integrated circuit (I2C)  Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)  Provide arbitration function, optional PEC (packet error checking) generation and checking  Supports 7-bit and 10-bit addressing mode and general call addressing mode The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides different data transfer rates: up to 100 KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data. 39 GD32F350xx Datasheet 3.13 Serial peripheral interface (SPI)  Up to two SPI interfaces with a frequency of up to 30 MHz  Support both master and slave mode  Hardware CRC calculation and transmit automatic CRC error checking The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. 3.14 Universal synchronous asynchronous receiver transmitter (USART)  Up to two USARTs with operating frequency up to 6.75 MB/s  Supports both asynchronous and clocked synchronous serial communication modes  IrDA SIR encoder and decoder support  LIN break generation and detection  ISO 7816-3 compliant smart card interface The USART (USART0, USART1) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication. 3.15 Inter-IC sound (I2S)  One I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz, multiplexed with SPI0  Support either master or slave mode The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32F350xx contain an I2S-bus interface that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI0. The audio sampling frequency from 8 KHz to 192 KHz is supported with less than 0.5% accuracy error. 40 GD32F350xx Datasheet 3.16 HDMI CEC  Hardware support Consumer Electronics Control (CEC) protocol (HDMI standard rev1.4) The CEC protocol provides high-level control functions between the audiovisual products linked with HDMI cables. GD32F350xx contain a HDMI-CEC controller which has an independent clock domain and can wake up the MCU from deep-sleep mode on data reception. 3.17 Universal serial bus full-speed interface (USBFS)  One USB device/host/OTG full-speed Interface with frequency up to 12 Mbit/s  Internal 48 MHz oscillator (IRC48M) support crystal-less operation  Internal main PLL for USB CLK compliantly  Internal USBFS PHY support The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device controller enables 12 Mbit/s data exchange with integrated transceivers. Transaction formatting is performed by the hardware, including CRC generation and checking. It supports both host and device modes, as well as OTG mode with Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The controller contains a full-speed USB PHY internal. For full-speed or low-speed operation, no more external PHY chip is needed. It supports all the four types of transfer (control, bulk, Interrupt and isochronous) defined in USB 2.0 protocol. The required precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use a HXTAL crystal oscillator) or by the internal 48 MHz oscillator (IRC48M) in automatic trimming mode that allows crystal-less operation. 3.18 Touch sensing interface (TSI)  Charge transfer sequence fully controlled by hardware  6 fully parallel groups implemented  18 IOs configurable for capacitive sensing Channel Pins and 6 for Sample Pins  Configurable transfer sequence frequency  Able to implement the user specific charge transfer sequences  Sequence end and error flags / configurable interrupts  Spread spectrum function implemented Capacitive sensing technology can be used for the detection of a finger (or any conductive object) presence near an electrode. The capacitive variation of the electrode introduced by the finger can be measured by charging and detecting the voltage across the sampling capacitor. GD32F350xx contain a hardware touch sensing interface (TSI) and only requires few external components to operate. The sensing channels are distributed over 6 analog I/O groups including: Group0 (PA0 ~ PA3), Group1 (PA4 ~ PA7), Group2 (PC5, PB0 ~ PB2), 41 GD32F350xx Datasheet Group3 (PA9 ~ PA12), Group4 (PB3, PB4, PB6, PB7) and Group5 (PB11 ~ PB14), 3.19 Comparators (CMP)  Two fast rail-to-rail low-power comparators with software configurable  Programmable reference voltage (internal, external I/O or DAC output pin) Two Comparators (CMP) are implemented within the devices. Both comparators can wake up from deep-sleep mode to generate interrupts and breaks for the timers and also can be combined as a window comparator. The internal voltage reference is also connected to ADC_IN17 input channel of the ADC. 3.20 Debug mode  Serial wire JTAG debug port (SWJ-DP) The ARM® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. 3.21 Package and operation temperature  LQFP64 (GD32F350Rx), LQFP48 (GD32F350Cx), QFN32 (GD32F350Kx) and QFN28 (GD32F350Gx)  Operation temperature range: -40°C to +85°C (industrial level) 42 GD32F350xx Datasheet 4 Electrical characteristics 4.1 Absolute maximum ratings The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. Table 4-1. Absolute maximum ratings(1) (4) Symbol VDD Parameter External voltage range(2) Min Max Unit VSS - 0.3 VSS + 3.6 V VDDA External analog supply voltage VSSA - 0.3 VSSA + 3.6 V VBAT External battery supply voltage VSS - 0.3 VSS + 3.6 V VSS - 0.3 VDD + 3.6 V Input voltage on other I/O VSS - 0.3 3.6 V |ΔVDDx| Variations between different VDD power pins — 50 mV |VSSX −VSS| Variations between different ground pins — 50 mV IIO Maximum current for GPIO pin — ±25 mA TA Operating temperature range -40 +85 °C TSTG Storage temperature range -55 +150 °C TJ Maximum junction temperature — 125 °C VIN Input voltage on 5V tolerant pin(3) (1). Guaranteed by design, not tested in production. (2). All main power and ground pins should be connected to an external power source within the allowable range. (3). VIN maximum value cannot exceed 6.5 V. (4). It is recommended that VDD and VDDA are powered by the same source. The maximum difference between VDD and VDDA does not exceed 300 mV during power-up and operation. 4.2 Operating conditions characteristics Table 4-2. DC operating conditions Min(1) Typ Max(1) Unit Symbol Parameter Conditions VDD Supply voltage — 2.6 3.3 3.6 V VDDA Analog supply voltage Same as VDD 2.6 3.3 3.6 V VBAT Battery supply voltage — 1.8 — 3.6 V (1). Based on characterization, not tested in production. Figure 4-1. Recommended power supply decoupling capacitors (1) (2) 43 GD32F350xx Datasheet VBAT 100 nF VSS N * VDD 4.7 μF + N * 100 nF VSS VDDA 1 μF VSSA 10 nF (1). The VREF+ and VREF- pins are only available on no less than 100-pin packages, or else the VREF+ and VREF- pins are not available and internally connected to VDDA and VSSA pins. (2). All decoupling capacitors need to be as close as possible to the pins on the PCB board. Table 4-3. Clock frequency(1) Symbol Parameter Conditions Min Max Unit fHCLK1 AHB1 clock frequency — 0 108 MHz fHCLK2 AHB2 clock frequency — 0 108 MHz fAPB1 APB1 clock frequency — 0 54 MHz fAPB2 APB2 clock frequency — 0 54 MHz Min Max Unit 0 ∞ 20 ∞ (1). Guaranteed by design, not tested in production. Table 4-4. Operating conditions at Power up/ Power down(1) Symbol tVDD Parameter Conditions VDD rise time rate — VDD fall time rate μs /V (1). Based on characterization, not tested in production. Table 4-5. Start-up timings of Operating conditions (1) (2) (3) Symbol Parameter tstart-up Start-up time Conditions Typ Clock source from HXTAL 37 Clock source from IRC8M 37 Unit ms (1). Based on characterization, not tested in production. (2). After power-up, the start-up time is the time between the rising edge of NRST high and the main function. (3). PLL is off. Table 4-6. Power saving mode wakeup timings characteristics(1) (2) Symbol Parameter Typ tSleep Wakeup from Sleep mode 3.4 Wakeup from Deep-sleep mode(LDO On) 5.3 Wakeup from Deep-sleep mode(LDO in low power mode) 5.3 tDeep-sleep Unit μs 44 GD32F350xx Datasheet Symbol Parameter Typ Unit tStandby Wakeup from Standby mode 37.9 ms (1). Based on characterization, not tested in production. (2). The wakeup time is measured from the wakeup event to the point at which the application code reads the first instruction under the below conditions: VDD = VDDA = 3.3 V, IRC8M = System clock = 8 MHz. 4.3 Power consumption The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications. Table 4-7. Power consumption characteristics Symbol Parameter (1) (2) (3) (3) (4) (5) Conditions Min Typ Max Unit — 25.12 — mA — 19.04 — mA — 22.46 — mA — 17.08 — mA — 19.86 — mA — 15.14 — mA — 17.22 — mA — 13.18 — mA — 11.99 — mA — 9.30 — mA VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System clock = 108 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System clock = 108 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System clock = 96 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System Clock = 96 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System clock = 84 MHz, All peripherals IDD + IDDA Supply current (Run mode) enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System Clock = 84 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System clock = 72 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System Clock = 72 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System clock = 48 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System Clock = 48 MHz, All peripherals disabled 45 GD32F350xx Datasheet Symbol Parameter Conditions Min Typ Max Unit — 9.36 — mA — 7.36 — mA — 6.72 — mA — 5.38 — mA — 4.96 — mA — 4.06 — mA — 3.22 — mA — 2.78 — mA — 0.94 — mA — 0.75 — mA — 0.56 — mA — 0.48 — mA — 13.22 — mA — 6.30 — mA VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System clock = 36 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System Clock = 36 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System clock = 24 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System Clock = 24 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 16 MHz , All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System Clock = 16 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System clock = 8 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , System Clock = 8 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 4 MHz , System clock = 4 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 4 MHz , System Clock = 4 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 2 MHz , System clock = 2 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 2 MHz , System Clock = 2 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System clock = 108 MHz, All Supply current peripherals enabled (Sleep mode) VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System clock = 108 MHz, All peripherals disabled 46 GD32F350xx Datasheet Symbol Parameter Conditions Min Typ Max Unit — 11.86 — mA — 5.76 — mA — 10.60 — mA — 5.24 — mA — 9.28 — mA — 4.68 — mA — 6.70 — mA — 3.62 — mA — 5.36 — mA — 3.08 — mA — 4.06 — mA — 2.52 — mA -— 3.20 — mA — 2.18 — mA VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System clock = 96 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System Clock = 96 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System clock = 84 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System Clock = 84 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System clock = 72 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System Clock = 72 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System clock = 48 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System Clock = 48 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System clock = 36 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System Clock = 36 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 24 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System Clock = 24 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System clock = 16 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System Clock = 16 MHz, All peripherals disabled 47 GD32F350xx Datasheet Symbol Parameter Conditions Min Typ Max Unit — 2.32 — mA — 1.84 — mA — 0.56 — mA — 0.36 — mA — 0.37 — mA — 0.27 — mA VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System clock = 8 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz , CPU clock off, System Clock = 8 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 4 MHz, CPU clock off, System clock = 4 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 4 MHz, CPU clock off, System Clock = 4 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 2 MHz, CPU clock off, System clock = 2 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 2 MHz, CPU clock off, System Clock = 2 MHz, All peripherals disabled VDD = VDDA = 3.3 V, LDO in run mode, IRC40K off, RTC off, All GPIOs analog — 117.06 330 μA — 91.98 330 μA — 110.78 330 μA — 85.92 330 μA — 7.83 12.1 μA — 7.54 12.1 μA — 6.85 12.1 μA — 4.46 12.1 μA — 1.74 — μA — 1.59 — μA mode VDD = VDDA = 3.3 V, LDO in low power Supply current (Deep-sleep mode) mode, IRC40K off, RTC off, All GPIOs analog mode VDD = VDDA = 3.3 V, Main LDO in under drive mode, IRC40K off, RTC off, All GPIOs analog mode VDD = VDDA = 3.3 V, Low Power LDO in under drive mode, IRC40K off, RTC off, All GPIOs analog mode VDD = VDDA = 3.3 V, LXTAL off, IRC40K on, RTC on VDD = VDDA = 3.3 V, LXTAL off, IRC40K on, Supply current RTC off (Standby mode) VDD = VDDA = 3.3 V, LXTAL off, IRC40K off, RTC off, VDDA Monitor on VDD = VDDA = 3.3 V, LXTAL off, IRC40K off, RTC off, VDDA Monitor off VDD off, VDDA off, VBAT = 3.6 V, LXTAL on with external crystal, RTC on, LXTAL High IBAT Battery supply driving current VDD off, VDDA off, VBAT = 3.3 V, LXTAL on with external crystal, RTC on, LXTAL High driving 48 GD32F350xx Datasheet Symbol Parameter Conditions Min Typ Max Unit — 1.38 — μA — 1.44 — μA — 1.29 — μA — 1.09 — μA — 1.15 — μA — 1.00 — μA — 0.80 — μA — 1.07 — μA — 0.92 — μA — 0.72 — μA VDD off, VDDA off, VBAT = 2.6 V, LXTAL on with external crystal, RTC on, LXTAL High driving VDD off, VDDA off, VBAT = 3.6 V, LXTAL on with external crystal, RTC on, LXTAL Medium High driving VDD off, VDDA off, VBAT = 3.3 V, LXTAL on with external crystal, RTC on, LXTAL Medium High driving VDD off, VDDA off, VBAT = 2.6 V, LXTAL on with external crystal, RTC on, LXTAL Medium High driving VDD off, VDDA off, VBAT = 3.6 V, LXTAL on with external crystal, RTC on, LXTAL Medium Low driving VDD off, VDDA off, VBAT = 3.3 V, LXTAL on with external crystal, RTC on, LXTAL Medium Low driving VDD off, VDDA off, VBAT = 2.6 V, LXTAL on with external crystal, RTC on, LXTAL Medium Low driving VDD off, VDDA off, VBAT = 3.6 V, LXTAL on with external crystal, RTC on, LXTAL Low driving VDD off, VDDA off, VBAT = 3.3 V, LXTAL on with external crystal, RTC on, LXTAL Low driving VDD off, VDDA off, VBAT = 2.6 V, LXTAL on with external crystal, RTC on, LXTAL Low driving (1). Based on characterization, not tested in production. (2). Unless otherwise specified, all values given for TA = 25 ℃ and test result is mean value. (3). When System Clock is less than 4 MHz, an external source is used, and the HXTAL bypass function is needed, no PLL. (4). When System Clock is greater than 8 MHz, a crystal 8 MHz is used, and the HXTAL bypass function is closed, using PLL. (5). When analog peripheral blocks such as ADCs, DACs, HXTAL, LXTAL, IRC8M, or IRC40K are ON, an additional power consumption should be considered. 49 GD32F350xx Datasheet Figure 4-2. Typical supply current consumption in Run mode Figure 4-3. Typical supply current consumption in Sleep mode Table 4-8. Peripheral current consumption characteristics (1) 50 GD32F350xx Datasheet Peripherials(5) APB1 APB2 AHB ADDAPB1 Typical consumption at 25℃ (TYP)(1) CEC 0.6 DAC(2) 0.84 PMU 0.95 I2C1 0.7 I2C0 0.73 USART1 0.68 SPI2 0.59 SPI1 0.63 WWDGT 0.59 TIMER13 0.65 TIMER 5 0.62 TIMER 2 0.93 TIMER 1 1.01 TIMER 16 0.76 TIMER 15 0.77 TIMER 14 0.86 USART0 0.84 SPI0 0.7 TIMER0 1.15 ADC(3) 1.42 CFG & CMP(4) 1.06 TSI 0.86 GPIOF 0.66 GPIOD 0.66 GPIOC 0.71 GPIOB 0.71 GPIOA 0.71 USBFS 1.93 CRC 0.66 DMA 1.01 CTC 0.39 I2C2 0.34 Unit mA (1). Based on characterization, not tested in production. (2). DEN0 and DEN1 bits in the DAC_CTL register are set to 1, and the converted value set to 0x800. (3). system clock = fHCLK = 108 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/2, ADCON bit is set to 1. (4). CMP0 or CMP1 enabled by setting CMP0EN and CMP1EN bit in CMP_CS,CMP0 or CMP1 mode setted to High Speed. (5). If there is no other description, then HXTAL = 8 MHz, system clock = fHCLK = 108MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK. 51 GD32F350xx Datasheet 4.4 EMC characteristics EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in Table 4-9. EMS characteristics, based on the EMS levels and classes compliant with IEC 61000 series standard. Table 4-9. EMS characteristics Symbol VESD Parameter Voltage applied to all device pins to induce a functional disturbance Fast transient voltage burst applied to VFTB 4.5 Conditions Level/Class VDD = 3.3 V, TA = +25 °C, LQFP64, fHCLK = 108 MHz 3A conforms to IEC 61000-4-2 VDD = 3.3 V, TA = + 25 °C, induce a functional disturbance through LQFP64, fHCLK = 108 MHz 100 pF on VDD and VSS pins conforms to IEC 61000-4-4 3A Power supply supervisor characteristics 52 GD32F350xx Datasheet Table 4-10. Power supply supervisor characteristics Symbol VLVD(1) VLVDhyst(2) VPOR(1) VPDR(1) Parameter Conditions Min Typ Max Unit LVDT[2:0] = 000, rising edge 3.03 3.11 3.19 V LVDT[2:0] = 000, falling edge 2.94 3.01 3.07 V LVDT[2:0] = 001, rising edge 2.9 2.97 3.04 V LVDT[2:0] = 001, falling edge 2.8 2.87 2.93 V LVDT[2:0] = 010, rising edge 2.76 2.83 2.9 V LVDT[2:0] = 010, falling edge 2.66 2.73 2.79 V LVDT[2:0] = 011, rising edge 2.63 2.69 2.76 V Low Voltage Detector LVDT[2:0] = 011, falling edge 2.53 2.59 2.66 V Threshold LVDT[2:0] = 100, rising edge 2.49 2.55 2.62 V LVDT[2:0] = 100, falling edge 2.39 2.45 2.52 V LVDT[2:0] = 101, rising edge 2.36 2.42 2.47 V LVDT[2:0] = 101, falling edge 2.26 2.32 2.37 V LVDT[2:0] = 110, rising edge 2.22 2.28 2.33 V LVDT[2:0] = 110, falling edge 2.13 2.17 2.22 V LVDT[2:0] = 111, rising edge 2.08 2.14 2.19 V LVDT[2:0] = 111, falling edge 1.99 2.03 2.08 V — — 100 — mV — 2.37 — V — 1.82 — V LVD hysteresis Power on reset threshold Power down reset threshold — VPDRhyst(2) PDR hysteresis — 600 — mV tRSTTEMPO(2) Reset temporization — 2 — ms (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. 4.6 Electrical sensitivity The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up (LU) test is based on the two measurement methods. 53 GD32F350xx Datasheet Table 4-11. ESD characteristics Symbol VESD(HBM) VESD(CDM) (1) Parameter Conditions Electrostatic discharge TA = 25 °C; voltage (human body model) JESD22-A114 Electrostatic discharge TA = 25 °C; voltage (charge device model) JESD22-C101 Min Typ Max Unit — — 6000 V — — 2000 V Min Typ Max Unit — — ±200 mA — — 5.4 V (1). Based on characterization, not tested in production. Table 4-12. Static latch-up characteristics (1) Symbol Parameter Conditions I-test LU TA = 25 °C; JESD78 Vsupply over voltage (1). Based on characterization, not tested in production. 4.7 External clock characteristics Table 4-13. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics Symbol fHXTAL RF (1) (2) Parameter Conditions Min Typ Max Unit Crystal or ceramic frequency 2.6 V ≤ VDD ≤ 3.6 V 4 8 32 MHz Feedback resistor VDD = 3.3 V — 400 — kΩ — — 20 30 pF — 30 50 70 % VDD = 3.3 V, TA = 25 °C — 1.3 — mA VDD = 3.3 V, TA = 25 °C — 1.8 — ms Recommended matching CHXTAL (2)(3) capacitance on OSCIN and OSCOUT Ducy(HXTAL) (2) IDD(HXTAL)(1) tSUHXTAL(1) Crystal or ceramic duty cycle Crystal or ceramic operating current Crystal or ceramic startup time (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. (3). CHXTAL1 = CHXTAL2 = 2*(CLOAD - CS), For CHXTAL1 and CHXTAL2, it is recommended matching capacitance on OSCIN and OSCOUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For CS, it is PCB and MCU pin stray capacitance. Table 4-14. High speed external user clock characteristics (HXTAL in bypass mode) Symbol fHXTAL_ext(1) Parameter External clock source or oscillator frequency VHXTALH(2) OSCIN input pin high level voltage (2) OSCIN input pin low level voltage VHXTALL tH/L(HXTAL)(2) tR/F(HXTAL) CIN(1) (2) Conditions Min Typ Max Unit VDD = 3.3 V 1 8 50 MHz 0.7 VDD — VDD VDD = 3.3 V VSS — 0.3 VDD OSCIN high or low time — 5 — — OSCIN rise or fall time — — — 10 OSCIN input capacitance — — 5 — V ns pF 54 GD32F350xx Datasheet Symbol Parameter Conditions Min Typ Max Unit Ducy(HXTAL) (2) Duty cycle — 30 50 70 % (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. Table 4-15. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics Symbol Parameter Conditions Min Typ Max Unit fLXTAL(1) Crystal or ceramic frequency — — 32.768 — kHz — — 15 — pF — 30 — 70 % LXTALDRI[1:0] = 11 — 1.3 — Crystal or ceramic operating LXTALDRI[1:0] = 10 — 1.0 — current LXTALDRI[1:0] = 01 — 0.7 — LXTALDRI[1:0] = 00 — 0.6 — — — 1.8 — Recommended matching CLXTAL(2)(3) capacitance on OSC32IN and OSC32OUT Ducy(LXTAL) (2) Crystal or ceramic duty cycle IDDLXTAL (1) Crystal or ceramic startup tSULXTAL(1)(4) time μA s (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. (3). CLXTAL1 = CLXTAL2 = 2*(CLOAD - CS), For CLXTAL1 and CLXTAL2, it is recommended matching capacitance on OSC32IN and OSC32OUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For CS, it is PCB and MCU pin stray capacitance. (4). tSULXTAL is the startup time measured from the moment it is enabled (by software) to the 32.768 kHz oscillator stabilization flags is SET. This value varies significantly with the crystal manufacturer. Table 4-16. Low speed external user clock characteristics (LXTAL in bypass mode) Symbol Parameter External clock source or fLXTAL_ext oscillator frequency Conditions Min Typ Max Unit — — 32.768 1000 kHz 0.7 VDD — VDD OSC32IN input pin high level VLXTALH(1) voltage OSC32IN input pin low level VLXTALL(1) — VSS voltage tH/L(LXTAL) (1) OSC32IN high or low time V — 450 — 0.3 VDD — — ns tR/F(LXTAL) (1) OSC32IN rise or fall time — — — 50 CIN(1) OSC32IN input capacitance — — 5 — pF Duty cycle — 30 50 70 % Ducy(LXTAL) (1) (1). Guaranteed by design, not tested in production. 4.8 Internal clock characteristics Table 4-17. High speed internal clock (IRC8M) characteristics 55 GD32F350xx Datasheet Symbol Parameter Conditions Min Typ Max Unit VDD = VDDA = 3.3 V — 8 — MHz -4.0 — +5.0 % -2.0 — +2.0 % VDD = VDDA = 3.3 V, TA = 25°C -1.0 — +1.0 % — — 0.5 — % 45 50 55 % — 66 — μA — 2 — μs Min Typ Max Unit 20 40 45 kHz — 0.4 — μA — 110 — μs High Speed Internal fIRC8M Oscillator (IRC8M) frequency VDD = VDDA = 3.3 V, TA = -40 °C ~ +85 °C(1) IRC8M oscillator Frequency accuracy, Factory-trimmed ACCIRC8M VDD = VDDA = 3.3 V, TA = 0°C ~ +85°C IRC8M oscillator Frequency accuracy, User trimming step(1) VDD = VDDA = 3.3 V, DucyIRC8M(2) IRC8M oscillator duty cycle IDDAIRC8M(1) tSUIRC8M(1) fIRC8M = 8 MHz IRC8M oscillator operating VDD = VDDA = 3.3 V, current fIRC8M = 8 MHz IRC8M oscillator startup VDD = VDDA = 3.3 V, time fIRC8M = 8 MHz (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. Table 4-18. Low speed internal clock (IRC40K) characteristics Symbol fIRC40K(1) IDDAIRC40K(2) tSUIRC40K(2) Parameter Conditions Low Speed Internal oscillator VDD = VDDA = 3.3 V, (IRC40K) frequency TA = -40 °C ~ +85 °C IRC40K oscillator operating VDD = VDDA = 3.3 V, TA = current 25 °C IRC40K oscillator startup VDD = VDDA = 3.3 V, TA = time 25 °C (1). Guaranteed by design, not tested in production. (2). Based on characterization, not tested in production. Table 4-19. High speed internal clock (IRC28M) characteristics Symbol fIRC28M Parameter High Speed Internal Oscillator (IRC28M) frequency Conditions Min Typ Max Unit VDD = VDDA = 3.3 V — 28 — MHz -4.0 — +5.0 % -2.0 — +2.0 % -1.0 — +1.0 % — 0.5 — % VDD = VDDA = 3.3 V, TA = -40 °C ~ +85 °C(2) IRC28M oscillator Frequency VDD = VDDA = 3.3 V, TA = accuracy, Factory-trimmed 0°C ~ +85°C ACCIRC28M VDD = VDDA = 3.3 V, TA = 25°C IRC28M oscillator Frequency accuracy, User trimming step(1) — 56 GD32F350xx Datasheet Symbol Parameter DIRC28M(2) (3) IRC28M oscillator duty cycle IDDAIRC28M(1) (3) tSUIRC28M(1)(3) Conditions Min Typ Max Unit 45 50 55 % — 120 — μA — 1.6 — μs Conditions Min Typ Max Unit VDD = VDDA = 3.3 V — 48 — MHz -4.0 — +5.0 % -3.0 — +3.0 % VDD = VDDA = 3.3 V, TA = 25°C -2.0 — +2.0 % — — 0.12 — % 45 50 55 % — 260 — μA — 1.5 — μs Max Unit VDD = VDDA = 3.3 V, fIRC28M = 28 MHz IRC28M oscillator operating VDD = VDDA = 3.3 V, current fIRC28M = 28 MHz VDD = VDDA = 3.3 V, IRC28M oscillator startup time fIRC28M = 28 MHz (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. (3). HXTAL = 8 MHz, system clock = fHCLK = 108 MHz. Table 4-20. High speed internal clock (IRC48M) characteristics Symbol Parameter High Speed Internal fIRC48M Oscillator (IRC48M) frequency VDD = VDDA = 3.3 V, TA = -40 °C ~+85 °C(1) IRC48M oscillator Frequency accuracy, Factory-trimmed ACCIRC48M VDD = VDDA = 3.3 V, TA = 0°C ~ +85°C IRC48M oscillator Frequency accuracy, User trimming (1) step DIRC48M(2) IRC48M oscillator duty cycle IDDAIRC48M(1) tSUIRC48M(1) VDD = VDDA = 3.3 V, fIRC28M = 16 MHz IRC48M oscillator operating VDD = VDDA = 3.3 V, current fIRC28M = 16 MHz IRC48M oscillator startup VDD = VDDA = 3.3 V, time fIRC28M = 16 MHz (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. 4.9 PLL characteristics Table 4-21. PLL characteristics Symbol fPLLIN (1) fPLLOUT fVCO tLOCK IDDA(1) (3) Parameter Conditions Min Typ PLL input clock frequency — 1 — 25 PLL output clock frequency — 16 — 108 MHz — — — 108 MHz — — — 320 μs VCO freq = 108 MHz — 320 — μA PLL VCO output clock frequency PLL lock time Current consumption on VDDA MHz 57 GD32F350xx Datasheet Cycle to cycle Jitter JitterPLL(4) — (rms) — 32.1 System clock Cycle to cycle Jitter ps — (peak to peak) — 255.6 (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. (3). System clock = IRC8M = 8 MHz, fPLLOUT = 108 MHz. (4). Value given with main PLL running. 4.10 Memory characteristics Table 4-22. Flash memory characteristics Symbol Parameter Conditions Min(1) Typ(1) Max(2) Unit Number of guaranteed PECYC program /erase cycles — 100 — — kcycles before failure (Endurance) tRET Data retention time — — 20 — years wtPROG Word programming time TA = -40 °C ~ +85 °C — 37.5 86 μs tERASE Page erase time TA = -40 °C ~ +85 °C — 45 300 ms tMERASE(64KB) Mass erase time TA = -40 °C ~ +85 °C — 0.5 1.6 s Min Typ Max -0.5 — 0.3 VDD 0.7 VDD — VDD + 0.5 — 140 — mV — 40 — kΩ (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. 4.11 NRST pin characteristics Table 4-23. NRST pin characteristics Symbol VIL(NRST) (1) VIH(NRST) (1) Parameter Conditions NRST Input low level voltage NRST Input high level voltage Vhyst Schmidt trigger Voltage hysteresis Rpu(2) Pull-up equivalent resistor 2.6 V ≤ VDD = VDDA ≤ 3.6 V — Unit V (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. 58 GD32F350xx Datasheet Figure 4-4. Recommended external NRST pin circuit VDD VDD External reset circuit RPU 10kΩ NRST K 100 nF GND 4.12 GPIO characteristics 59 GD32F350xx Datasheet Table 4-24. I/O port DC characteristics Symbol Parameter Conditions Min Typ Max Unit 2.6 V ≤ VDD = VDDA ≤ 3.6 V — — 0.3 VDD V 2.6 V ≤ VDD = VDDA ≤ 3.6 V — — 0.3 VDD V 2.6 V ≤ VDD = VDDA ≤ 3.6 V 0.7 VDD — — V 2.6 V ≤ VDD = VDDA ≤ 3.6 V 0.7 VDD — — V Low level output voltage VDD = 2.6 V — — 0.21 for 8 IO Pins VDD = 3.3 V — — 0.19 (each IIO = +8 mA) VDD = 3.6 V — — 0.18 Low level output voltage VDD = 2.6 V — — 0.54 for 8 IO Pins VDD = 3.3 V — — 0.47 (each IIO = +20 mA) VDD = 3.6 V — — 0.45 High level output voltage VDD = 2.6 V 2.40 — — for 8 IO Pins VDD = 3.3 V 3.10 — — (each IIO = +8 mA) VDD = 3.6 V 3.40 — — High level output voltage VDD = 2.6 V 1.95 — — for 8 IO Pins VDD = 3.3 V 2.73 — — (each IIO = +20 mA) VDD = 3.6 V 3.07 — — Standard IO Low level input voltage VIL 5V-tolerant IO Low level input voltage Standard IO High level input voltage VIH 5V-tolerant IO High level input voltage VOL (1) VOL VOH VOH(1) RPU(2) RPD(2) V V V V Internal pull- All pins VIN = VSS 30 40 50 kΩ up resistor PA10 — 7.5 10 13.5 kΩ Internal pull- All pins VIN = VDD 30 40 50 kΩ down resistor PA10 — 7.5 10 13.5 kΩ (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. Table 4-25. I/O port AC characteristics (1) (2) GPIOx_OSPD[1:0] bit value(3) Parameter GPIOx_OSPD0->OSPDy[1:0] = X0 Maximum (IO_Speed = 2 MHz) frequency(4) GPIOx_OSPD0->OSPDy[1:0] = 01 Maximum (IO_Speed = 10 MHz) frequency(4) GPIOx_OSPD0->OSPDy[1:0] = 11 Maximum (IO_Speed = 50 MHz) frequency(4) GPIOx_OSPD0->OSPDy[1:0] = 11 and GPIOx_OSPD1->SPDy = 1 (IO_Speed mode = MAX) Maximum Conditions Max VDD = 3.3 V, CL = 10 pF 20 VDD = 3.3 V, CL = 30 pF 10 VDD = 3.3 V, CL = 50 pF 8 VDD = 3.3 V, CL = 10 pF 46 VDD = 3.3 V, CL = 30 pF 40 VDD = 3.3 V, CL = 50 pF 30 VDD = 3.3 V, CL = 10 pF 128 VDD = 3.3 V, CL = 30 pF 120 VDD = 3.3 V, CL = 50 pF 112 VDD = 3.3 V, CL = 10 pF 144 VDD = 3.3 V, CL = 30 pF 128 VDD = 3.3 V, CL = 50 pF 116 Unit MHz MHz MHz MHz frequency(4) 60 GD32F350xx Datasheet (1). Based on characterization, not tested in production. (2). Unless otherwise specified, all test results given for TA = 25 ℃. (3). The I/O speed is configured using the GPIOx_OSPD0->OSPDy [1:0] bits. Refer to the GD32F3x0 user manual which is selected to set the GPIO port output speed. (4). The maximum frequency is defined in in Figure 4-5 and maximum frequency cannot exceed 108 MHz. Figure 4-5. I/O port AC characteristics definition 90% EXTERNAL OUTPU T ON 50pF 50% 10% 10% 50% 90% tr(IO)out tr(IO)out If (tr+tf)≤2/3 T,then maximum frequency is achieved . The duty cycle is (45%-55%)when loaded by 50 pF 4.13 ADC characteristics Table 4-26. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA(1) Operating voltage — 2.6 3.3 3.6 V VIN(1) ADC input voltage range — 0 — VDDA V fADC(1) ADC clock — 0.1 — 40 MHz 12-bit 0.007 — 2.86 10-bit 0.008 — 3.33 8-bit 0.01 — 4.00 6-bit 0.011 — 5.00 Analog input voltage 16 external; 2 internal 0 — VDDA V External input impedance See Equation 1 — — 24 kΩ — — — 0.2 kΩ — — 5.5 pF fS(1) VAIN(1) (2) RAIN RADC(2) Sampling rate Input sampling switch resistance No pin/pad capacitance MSPS CADC(2) Input sampling capacitance tCAL(2) Calibration time fADC = 40 MHz — 3.12 — μs Sampling time fADC = 40 MHz 0.036 — 5.7 μs 12-bit — 14 — 10-bit — 12 — 8-bit — 10 — 6-bit — 8 — — — — 1 (2) ts Total conversion tCONV(2) time(including sampling time) tSU(2) Startup time included 1/ fADC μs (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. 61 GD32F350xx Datasheet Equation 1 :RAIN max formula R AIN < Ts fADC ∗CADC ∗ln(2N+2 ) − R ADC The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 4-27. ADC RAIN max for fADC = 40 MHz (1) Ts(cycles) ts(μs) RAINmax (kΩ) 1.5 0.04 0.47 7.5 0.18 3.15 13.5 0.32 5.82 28.5 0.68 12.55 41.5 0.99 18.35 55.5 1.32 24.55 71.5 1.70 NA 239.5 5.70 NA (1). Based on characterization, not tested in production. Table 4-28. ADC dynamic accuracy at fADC = 28 MHz (1) Symbol Parameter Test conditions Min Typ Max Unit ENOB Effective number of bits fADC = 28 MHz — 10.3 — bits SNDR Signal-to-noise and distortion ratio VDDA = VDD = 3.3 V — 63.8 — SNR Signal-to-noise ratio Input Frequency = 20 kHz — 64.5 — THD Total harmonic distortion Temperature = 25℃ — -67.5 — dB (1). Based on characterization, not tested in production. Table 4-29. ADC dynamic accuracy at fADC = 30 MHz (1) Symbol Parameter Test conditions Min Typ Max Unit ENOB Effective number of bits fADC = 30 MHz — 10.3 — SNDR Signal-to-noise and distortion ratio VDDA = VDD = 3.3 V — 63.8 — SNR Signal-to-noise ratio Input Frequency = 20 kHz — 64.5 — THD Total harmonic distortion Temperature = 25 ℃ — -67.5 — bits dB (1). Based on characterization, not tested in production. Table 4-30. ADC dynamic accuracy at fADC = 36 MHz (1) Symbol Parameter Test conditions Min Typ ENOB Effective number of bits fADC = 36 MHz 10.3 10.4 — SNDR Signal-to-noise and distortion ratio VDDA = VDD = 3.3 V 63.8 64.4 — SNR Signal-to-noise ratio Input Frequency = 20 64.2 65 — -70 -72 — kHz THD Total harmonic distortion Temperature = 25℃ Max Unit bits dB (1). Based on characterization, not tested in production. Table 4-31. ADC static accuracy at fADC = 14 MHz (1) Symbol Parameter Test conditions Typ Max Offset Offset error fADC = 14 MHz ±1 — DNL Differential linearity error VDDA = VDD = 3.3 V ±1 — Unit LSB 62 GD32F350xx Datasheet INL Integral linearity error ±3 — (1). Based on characterization, not tested in production. 4.14 Temperature sensor characteristics Table 4-32. Temperature sensor characteristics (1) Symbol Parameter Min Typ Max Unit TL VSENSE linearity with temperature — ±1.5 — ℃ Avg_Slope Average slope — 4.3 — mV/℃ V25 Voltage at 25 °C — 1.45 — V ADC sampling time when reading the temperature — 17.1 — μs tS_temp (2) (1). Based on characterization, not tested in production. (2). Shortest sampling time can be determined in the application by multiple iterations. 4.15 Comparators characteristics Table 4-33. CMP characteristics Max(1) Unit Symbol Parameter Conditions Min Typ VDDA Operating voltage — 2.6 3.3 3.6 V VIN Input voltage range — 0 — VDDA V Ultra low power mode — 0.93 — μs Propagation delay for 200mv Low power mode — 0.47 — μs step with 100mV overdrive Medium power mode — 0.17 — μs High speed power mode — 37 — ns Ultra low power mode — 1.57 — μs Low power mode — — μs Medium power mode — 0.21 — μs High speed power mode — 46 — ns Ultra low power mode — 1.53 — Low power mode — 2.84 — Medium power mode — 8.11 — High speed power mode — 66.00 — — — ±12 — No Hysteresis — 0 — Low Hysteresis — 10 — Medium Hysteresis — 18 — High Hysteresis — 36 — tD Propagation delay for full range step with 100mV overdrive IDD Voffset Vhyst Current consumption Offset error Hysteresis Voltage 0.80 μA mV mV (1). Guaranteed by design, not tested in production. 63 GD32F350xx Datasheet 4.16 DAC characteristics Table 4-34. DAC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA(1) Operating voltage — 2.6 3.3 3.6 V RLOAD(2) Load resistance 5 — — kΩ — — 15 kΩ — — 50 pF — 0.2 — — V — — — — — 0.5 — — — — 380 — μA — 460 — μA — 120 — μA — 320 — μA DAC in 12-bit mode — — ±3 LSB Ro(2) CLOAD(2) Impedance output with buffer OFF Load capacitance DAC_OUT Lower DAC_OUT voltage min(2) with buffer ON DAC_OUT Higher DAC_OUT voltage max(2) with buffer ON DAC_OUT Lower DAC_OUT voltage min(2) with buffer OFF DAC_OUT Higher DAC_OUT voltage max(2) with buffer OFF Resistive load with buffer ON — No pin/pad capacitance included VDDA0.2 — VDDA1LSB V mV V With no load, middle code(0x800) on the input, VREF+ IDDA(1) DAC current consumption in quiescent mode = 3.6 V With no load, worst code(0xF1C) on the input, VREF+ = 3.6 V With no load, middle code(0x800) on the input, VREF+ IDDVREF+(1) DAC current consumption = 3.6 V in quiescent mode With no load, worst code(0xF1C) on the input, VREF+ = 3.6 V DNL(1) Differential non-linearity error INL(1) Integral non-linearity DAC in 12-bit mode — — ±4 LSB Offset(1) Offset error DAC in 12-bit mode — — ±12 LSB GE(1) Gain error DAC in 12-bit mode — — ±0.5 % Settling time CLOAD ≤ 50 pF, RLOAD≥5 kΩ — 0.3 1 μs Wakeup from off state — — 5 10 μs CLOAD ≤ 50 pF, RLOAD≥5 kΩ — — 4 MS/s — 55 80 — dB Tsetting (1) Twakeup (2) Update rate(2) PSRR(2) Max frequency for a correct DAC_OUT change from code i to i±1LSBs Power supply rejection 64 GD32F350xx Datasheet Symbol Parameter Conditions Min Typ Max Unit ratio (to VDDA) (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. 4.17 I2C characteristics Table 4-35. I2C characteristics (1) (2) (3) Symbol tSCL(H) Parameter Conditi SCL clock high time ons Standard mode Fast mode Fast mode plus Unit Min Max Min Max Min Max — 4.0 — 0.6 — 0.2 — μs tSCL (L) SCL clock low time — 4.7 — 1.3 — 0.5 — μs tsu(SDA) SDA setup time — 2 — 0.8 — 0.1 — μs — 250 — 250 — 130 — ns — — 1000 20 300 — 120 ns — 4 300 2 300 2 120 ns — 4.0 — 0.6 — 0.26 — μs th(SDA) tr(SDA/SCL) tf(SDA/SCL) th(STA) SDA data hold time SDA and SCL rise time SDA and SCL fall time Start condition hold time (1). Guaranteed by design, not tested in production. (2). Test condition: GPIO_SPEED set 2MHz and external pull-up resistor value is 1kΩ when operate EEPROM with I2C. (3). The device should provide a data hold time of 300 ns at least in order to bridge the undefined region of the falling edge of SCL. 4.18 SPI characteristics Table 4-36. Standard SPI characteristics (1) Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency — — — 27 MHz tSCK(H) SCK clock high time tSCK(L) SCK clock low time Master mode, fPCLKx = 108 MHz, presc = 8 Master mode, fPCLKx = 108 MHz, presc = 8 35.04 37.04 39.04 ns 35.04 37.04 39.04 ns SPI master mode tV(MO) Data output valid time — — 5 6 ns tH(MO) Data output hold time — 3 — — ns tSU(MI) Data input setup time — 1 — — ns 65 GD32F350xx Datasheet Symbol Parameter Conditions Min Typ Max Unit tH(MI) Data input hold time — 0 — — ns SPI slave mode tSU(NSS) NSS enable setup time — 0 — — ns tH(NSS) NSS enable hold time — 1 — — ns tA(SO) Data output access time — 9 — 13 ns tDIS(SO) Data output disable time — 9 — 13 ns tV(SO) Data output valid time — — 14 16 ns tH(SO) Data output hold time — 11 — — ns tSU(SI) Data input setup time — 0 — — ns tH(SI) Data input hold time — 3 — — ns Conditions Min Typ Max Unit (1) .Based on characterization, not tested in production. 4.19 I2S characteristics Table 4-37. I2S characteristics (1) Symbol Parameter Master mode (data: 16 bits, fCK Clock frequency Audio frequency = 96 kHz) Slave mode 3.084 3.086 3.088 MHz 0 — 10 162 — — ns 162 — — ns tH Clock high time tL Clock low time tV(WS) WS valid time Master mode 0 — — ns tH(WS) WS hold time Master mode 0 — — ns tSU(WS) WS setup time Slave mode 0 — — ns tH(WS) WS hold time Slave mode 2 — — ns Slave mode — 50 — % DuCy(sck) — I2S slave input clock duty cycle tSU(SD_MR) Data input setup time Master mode 2 — — ns tsu(SD_SR) Data input setup time Slave mode 0 — — ns Master receiver 0 — — ns Slave receiver 1 — — ns — — 12 ns 7 — — ns — — 7 ns 4 — — ns tH(SD_MR) tH(SD_SR) Data input hold time tv(SD_ST) Data output valid time th(SD_ST) Data output hold time tv(SD_MT) Data output valid time th(SD_MT) Data output hold time Slave transmitter (after enable edge) Slave transmitter (after enable edge) Master transmitter (after enable edge) Master transmitter (after enable edge) (1) .Based on characterization, not tested in production. 66 GD32F350xx Datasheet 4.20 USART characteristics Table 4-38. USART characteristics (1) Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency fPCLKx = 108 MHz — — 54 MHz tSCK(H) SCK clock high time fPCLKx = 108 MHz 9.26 — — ns tSCK(L) SCK clock low time fPCLKx = 108 MHz 9.26 — — ns (1) .Based on characterization, not tested in production. 4.21 USBFS characteristics Table 4-39. USB FS start up time Symbol (1) tSTARTUP Parameter Max Unit USBFS startup time 1 μs (1). Guaranteed by design, not tested in production. Table 4-40. USBFS DC electrical characteristics Symbol Parameter Conditions Min Typ USBFS operating voltage — 3 — VDI Differential input sensitivity — 0.2 — Includes VDI range 0.8 — 2.5 — 1.3 — 2.0 VDD Input levels(1) VCM VSE Differential common mode range Single ended receiver threshold Max Unit 3.6 Output VOL Static output level low RL of 1.0K to 3.6 V — 0.06 0.3 Levels(2) VOH Static output level high RL of 15 K to VSS 2.8 3.3 3.6 17 21 24 0.65 — 2.0 1.5 1.6 2.1 0.25 0.35 0.55 RPD(2) RPU(2) PA11, PA12(USB_DM/DP) PA9(USB_VBUS) PA11, PA12(USB_DM/DP) PA9(USB_VBUS) VIN = VDD VIN = VSS V V V kΩ (1). Guaranteed by design, not tested in production. (2). Based on characterization, not tested in production. Table 4-41. USB FS electrical characteristics (1) Symbol Parameter Conditions Min Typ Max Unit tR Rise time CL = 50 pF 4 — 20 ns tF Fall time CL = 50 pF 4 — 20 ns tRFM Rise/ fall time matching tR / tF 90 — 110 % VCRS Output signal crossover voltage — 1.3 — 2.0 V (1). Guaranteed by design, not tested in production. Figure 4-6. USB FS timings: definition of data signal rise and fall time 67 GD32F350xx Datasheet Crossover points Differential data lines VCRS VSS tf 4.22 tr TIMER characteristics Table 4-42. TIMER characteristics (1) Symbol Parameter tres Timer resolution time fEXT RES tCOUNTER Conditions Min Max Unit — 1 — tTIMERxCLK fTIMERxCLK = 108 MHz 9.26 — ns Timer external clock — 0 fTIMERxCLK/2 MHz frequency fTIMERxCLK = 108 MHz 0 54 MHz Timer resolution — — 16/32 bit 16-bit counter clock — 1 65536 tTIMERxCLK fTIMERxCLK = 108 MHz 0.0093 606.8 μs — — fTIMERxCLK = 108 MHz — period when internal clock is selected tMAX_COUNT Maximum possible count 65536 × 65536 tTIMERxCLK 39.8 s (1). Guaranteed by design, not tested in production. 4.23 WDGT characteristics Table 4-43. FWDGT min/max timeout period at 40 kHz (IRC40K) (1) Min timeout RLD[11:0] Max timeout RLD[11:0] = Prescaler divider PR[2:0] bits 1/4 000 0.1 409.6 1/8 001 0.2 819.2 1/16 010 0.4 1638.4 1/32 011 0.8 3276.8 1/64 100 1.6 6553.6 1/128 101 3.2 13107.2 1/256 110 or 111 6.4 26214.4 = 0x000 0xFFF Unit ms (1). Guaranteed by design, not tested in production. Table 4-44. WWDGT min-max timeout value at 108 MHz (fPCLK1) (1) 68 GD32F350xx Datasheet Min timeout value Prescaler divider PSC[2:0] 1/1 00 37.9 1/2 01 75.9 1/4 10 151.7 1/8 11 303.4 CNT[6:0] = 0x40 Unit Max timeout value CNT[6:0] = 0x7F Unit 2.43 μs 4.85 9.71 ms 19.42 (1). Guaranteed by design, not tested in production. 4.24 Parameter conditions Unless otherwise specified, all values given for VDD = VDDA = 3.3 V, TA = 25 ℃. 69 GD32F350xx Datasheet 5 Package information 5.1 LQFP48 package outline dimensions Figure 5-1. LQFP48 package outline Table 5-1. LQFP48 package dimensions Symbol Min Typ Max A — — 1.60 A1 0.05 — 0.15 A2 1.35 1.40 1.45 A3 0.59 0.64 0.69 b 0.18 — 0.26 b1 0.17 0.20 0.23 c 0.13 — 0.17 c1 0.12 0.13 0.14 D 8.80 9.00 9.20 D1 6.90 7.00 7.10 E 8.80 9.00 9.20 70 GD32F350xx Datasheet eB 8.10 — 8.25 E1 6.90 7.00 7.10 e L 0.50 BSC 0.45 L1 θ — 0.75 1.00 REF 0 — 7° (Original dimensions are in millimeters) 71 GD32F350xx Datasheet 5.1. QFN32 package outline dimensions Figure 5-2 QFN32 package outline Table 5-2. QFN32 package dimensions Symbol Min Typ Max A 0.70 0.75 0.80 A1 — 0.02 0.05 D 4.90 5.00 5.10 D2 3.40 3.50 3.60 E 4.90 5.00 5.10 E2 3.40 3.50 3.60 b 0.18 0.25 0.30 c 0.18 0.20 0.25 e 0.50 BSC Ne 3.50 BSC L 0.35 0.40 0.45 h 0.30 0.35 0.40 (Original dimensions are in millimeters) 72 GD32F350xx Datasheet 5.2. QFN28 package outline dimensions Figure 5-3 QFN28 package outline Table 5-3. QFN28 package dimensions Symbol Min Typ Max A 0.70 0.75 0.80 A1 0 0.02 0.05 b 0.15 0.20 0.25 b1 0.14 REF c 0.18 0.20 0.25 D 3.90 4.00 4.10 D2 2.70 2.80 2.90 E 3.90 4.00 4.10 E2 2.70 2.80 2.90 e 0.40 BSC Ne 2.40 BSC Nd 2.40 BSC L 0.25 0.35 0.45 h 0.30 0.35 0.40 (Original dimensions are in millimeters) 73 GD32F350xx Datasheet 6 Ordering information Table 6-1. Part ordering code for GD32F350xx devices Ordering code Flash (KB) Package Package type GD32F350G4U6 16 QFN28 Green GD32F350G6U6 32 QFN28 Green GD32F350G8U6 64 QFN28 Green GD32F350K4U6 16 QFN32 Green GD32F350K6U6 32 QFN32 Green GD32F350K8U6 64 QFN32 Green GD32F350C4T6 16 LQFP48 Green GD32F350C6T6 32 LQFP48 Green GD32F350C8T6 64 LQFP48 Green GD32F350CBT6 128 LQFP48 Green GD32F350R4T6 16 LQFP64 Green GD32F350R6T6 32 LQFP64 Green GD32F350R8T6 64 LQFP64 Green GD32F350RBT6 128 LQFP64 Green Temperature operating range Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C 74 GD32F350xx Datasheet 7 Revision history Table 7-1. Revision history Revision No. Description Date 1.0 Initial Release Jun.6, 2017 1.1 Characteristics values updated Jun.20, 2017 1.2 Repair history accumulation error Jan.24, 2018 1.3 Characteristics values updated Jun.1, 2019 1.4 Characteristics values, logo, package information and ordering information updated Oct.8, 2019 75 GD32F350xx Datasheet Important Notice This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only. The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products. Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice. © 2019 GigaDevice – All rights reserved 76
GD32F350G6U6TR 价格&库存

很抱歉,暂时无法提供与“GD32F350G6U6TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
GD32F350G6U6TR
    •  国内价格
    • 1+13.60800
    • 10+10.46520

    库存:1085

    GD32F350G6U6TR
      •  国内价格
      • 1+16.11610

      库存:20