0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
GDQ2BFAA-CQ

GDQ2BFAA-CQ

  • 厂商:

    GIGADEVICE(兆易创新)

  • 封装:

    FBGA-96

  • 描述:

    GDQ2BFAA-CQ

  • 数据手册
  • 价格&库存
GDQ2BFAA-CQ 数据手册
DDR4 SDRAM GDQ2BFAA GDQ2BFAA DATASHEET DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 1 June 2022 DDR4 SDRAM GDQ2BFAA Contents 1 2 3 FEATURES ....................................................................................................................................................................... 5 1.1 SPEED BINS ....................................................................................................................................................................... 6 1.2 ADDRESS TABLE ................................................................................................................................................................. 6 ORDERING INFORMATION ............................................................................................................................................. 7 2.1 PART NUMBER DECODING ................................................................................................................................................... 7 2.2 VALID PART NUMBERS ........................................................................................................................................................ 8 PACKAGE INFORMATION ................................................................................................................................................ 9 3.1 4 PACKAGE 96-BALL FBGA (X16) ........................................................................................................................................... 9 BALL ASSIGNMENTS ..................................................................................................................................................... 10 4.1 96-BALL FBGA (X16) BALL ASSIGNMENTS ............................................................................................................................ 10 4.2 BALL DESCRIPTION ............................................................................................................................................................ 11 5 FUNCTIONAL BLOCK DIAGRAM .................................................................................................................................... 14 6 ABSOLUTE MAXIMUM RATINGS ................................................................................................................................... 15 7 6.1 ABSOLUTE MAXIMUM DC RATINGS ..................................................................................................................................... 15 6.2 RECOMMENDED DC OPERATING CONDITIONS ....................................................................................................................... 15 6.3 DRAM COMPONENT OPERATING TEMPERATURE RANGE ......................................................................................................... 15 AC AND DC INPUT MEASUREMENT LEVELS .................................................................................................................. 17 7.1 AC AND DC LOGIC INPUT LEVELS FOR SINGLE-ENDED SIGNALS .................................................................................................. 17 7.2 AC AND DC LOGIC INPUT MEASUREMENT LEVELS: VREF TOLERANCES ........................................................................................ 18 7.3 AC AND DC LOGIC INPUT LEVELS FOR DIFFERENTIAL SIGNALS ................................................................................................... 18 7.3.1 AC and DC Logic Input Levels for Differential Signals .............................................................................................. 18 7.3.2 Differential Swing Requirements for Clock (CK_t - CK_c) ........................................................................................ 19 7.3.3 Differential Swing Requirements for Clock (CK_t - CK_c) ........................................................................................ 21 7.3.4 Address, Command, and Control Overshoot/Undershoot Specifications ............................................................... 22 7.3.5 Address, Command, and Control Overshoot/Undershoot Specifications ............................................................... 23 7.3.6 Data, Strobe and Mask Overshoot/Undershoot Specifications ............................................................................... 24 7.4 7.4.1 7.4.2 SLEW RATE DEFINITIONS FOR DIFFERENTIAL INPUT SIGNALS...................................................................................................... 25 Slew Rate Definitions for Differential Input Signals ................................................................................................. 25 Slew Rate Definitions for Differential Input Signals (CMD/ADD) ............................................................................. 25 7.5 CK DIFFERENTIAL INPUT POINT VOLTAGE .............................................................................................................................. 26 7.6 CMOS RAIL TO RAIL INPUT LEVELS FOR RESET_N ................................................................................................................. 27 7.7 AC&DC LOGIC INPUT LEVELS FOR DQS SIGNALS.................................................................................................................... 28 7.7.1 Differential Signal Definition.................................................................................................................................... 28 7.7.2 Differential Swing Requirements for DQS (DQS_t – DQS_c) .................................................................................... 28 7.7.3 Peak Voltage Calculation Method ........................................................................................................................... 29 7.7.4 Differential Input Cross Point Voltage ..................................................................................................................... 29 7.7.5 Differential Input Slew Rate Definition .................................................................................................................... 31 DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 2 June 2022 DDR4 SDRAM 8 AC&DC OUTPUT MEASUREMENT LEVELS ..................................................................................................................... 32 8.1 9 GDQ2BFAA OUTPUT DRIVER DC ELECTRONIC CHARACTERISTICS ................................................................................................................ 32 8.1.1 Alert_n Output Driver Characteristic ....................................................................................................................... 34 8.1.2 Output Driver Characteristic of Connectivity Test (CT) Mode ................................................................................. 35 8.2 SINGLE-ENDED AC& DC OUTPUT LEVELS .............................................................................................................................. 36 8.3 DIFFERENTIAL AC&DC OUTPUT LEVELS ................................................................................................................................ 36 8.4 SINGLE-ENDED OUTPUT SLEW RATE ..................................................................................................................................... 37 8.5 DIFFERENTIAL OUTPUT SLEW RATE ...................................................................................................................................... 38 8.6 SINGLE-ENDED AC& DC OUTPUT LEVELS OF CONNECTIVITY TEST MODE .................................................................................... 39 8.7 REFERENCE LOAD FOR CONNECTIVITY TEST MODE TIMING ....................................................................................................... 39 SPEED BIN .................................................................................................................................................................... 40 9.1 DDR4-1600 SPEED BINS AND OPERATIONS.......................................................................................................................... 40 9.2 DDR4-1866 SPEED BINS AND OPERATIONS.......................................................................................................................... 41 9.3 DDR4-2133 SPEED BINS AND OPERATIONS.......................................................................................................................... 42 9.4 DDR4-2400 SPEED BINS AND OPERATIONS.......................................................................................................................... 43 9.5 DDR4-2666 SPEED BINS AND OPERATIONS.......................................................................................................................... 44 9.6 DDR4-3200 SPEED BINS AND OPERATIONS.......................................................................................................................... 45 9.7 TREFI AND TRFC PARAMETERS ........................................................................................................................................... 47 10 IDD AND IDDQ SPECIFICATION PARAMETERS AND TEST CONDITIONS ...................................................................... 48 10.1 IDD, IPP AND IDDQ MEASUREMENT CONDITIONS................................................................................................................. 48 10.1.1 IDD0, IDD0A and IPP0 Measurement-Loop Pattern ............................................................................................ 58 10.1.2 IDD1, IDD1A and IPP1 Measurement-Loop Pattern ............................................................................................ 59 10.1.3 IDD2N, IDD2NA, IDD2NL, IDD2NG, IDD2ND, IDD2N_par, IPP2, IDD3N, IDD3NA and IDD3P Measurement-Loop Pattern 61 10.1.4 IDD2NT and IDDQ2NT Measurement-Loop Pattern ............................................................................................ 62 10.1.5 IDD4R, IDDR4RA, IDD4RB and IDDQ4R Measurement-Loop Pattern1 ................................................................. 63 10.1.6 IDD4W, IDDR4WA, IDD4WB and IDD4W_par Measurement-Loop Pattern ........................................................ 65 10.1.7 IDD4WC Measurement-Loop Pattern .................................................................................................................. 67 10.1.8 IDD5B Measurement-Loop Pattern ..................................................................................................................... 69 10.1.9 IDD7 Measurement-Loop Pattern ....................................................................................................................... 71 10.2 IDD SPECIFICATIONS ......................................................................................................................................................... 73 11 INPUT/OUTPUT CAPACITANCE ................................................................................................................................. 75 12 ELECTRICAL CHARACTERISTICS & AC TIMING ........................................................................................................... 77 12.1 REFERENCE LOAD FOR AC TIMING AND OUTPUT SLEW RATE .................................................................................................... 77 12.2 TREFI ............................................................................................................................................................................ 77 12.3 CLOCK SPECIFICATION........................................................................................................................................................ 77 12.3.1 Definition for tCK(abs) ......................................................................................................................................... 77 12.3.2 Definition for tCK(avg) ......................................................................................................................................... 78 12.3.3 Definition for tCH(avg) and Tcl(avg) ..................................................................................................................... 78 12.3.4 Definition for tERR(nper) ..................................................................................................................................... 78 12.4 TIMING PARAMETERS BY SPEED GRADE ................................................................................................................................ 79 DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 3 June 2022 DDR4 SDRAM 13 GDQ2BFAA 12.4.1 Timing Parameters by Speed Bin for DDR4-1600 to 2400 ................................................................................... 79 12.4.2 Timing Parameters by Speed Bin for DDR4-2666 to 3200 ................................................................................... 89 12.5 ROUNDING ALGORITHMS .................................................................................................................................................101 12.6 THE DQ INPUT RECEIVER COMPLIANCE MASK FOR VOLTAGE AND TIMING.................................................................................101 12.7 COMMAND, CONTROL, AND ADDRESS SETUP, HOLD, AND DERATING .......................................................................................106 REVISION HISTORY ................................................................................................................................................. 109 DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 4 June 2022 DDR4 SDRAM GDQ2BFAA 1 FEATURES ◆ Power supply : VDD = VDDQ = 1.2V (1.14V to 1.26V); VPP = 2.5V (2.375V to 2.75V) ◆ JEDEC standard package: x16 96-ball FBGA ◆ Array Configuration : 8 banks (x16) 2 groups of 4 banks ◆ 8n-bit prefetch architecture ◆ Burst Length (BL): 8 and 4 with Burst Chop (BC) ◆ Programmable CAS Latency (CL) ◆ Programmable CAS Write Latency (CWL) ◆ Internal generated Vref for data inputs ◆ On-Die Termination (ODT) : Support Nominal, Park and Dynamic ODT ◆ Differential clock and data strobe inputs (CK_t ,CK_c; DQS_t, DQS_c) ◆ Interface: 1.2V Pseudo Open Drain (POD) IO ◆ Per DRAM Addressability (PDA) ◆ Data Bus Inversion (DBI) ◆ Data Mask (DM) for write data ◆ Maximum Power Saving Mode (MPSM) ◆ Asynchronous reset for power up ◆ Precharge: Auto precharge option for each burst access ◆ Operating case temperature :-40°C ≤ TCase ≤95°C ◆ Support auto-refresh and self-refresh mode ◆ Average Refresh Period: - 7.8μs at -40°C ≤ TCase ≤ 85°C - 3.9μs at 85°C < TCase ≤ 95°C ◆ Fine granularity refresh 2x, 4x mode for smaller tRFC ◆ Programmable data strobe preambles ◆ Command Address (CA) Parity is supported ◆ Write Cyclic Redundancy Code (CRC) is supported ◆ Connectivity test mode (TEN) is supported ◆ Gear Down Mode ◆ Output driver calibration through ZQ pin (RZQ: 240ohm ± 1%) ◆ JEDEC JESD-79-4 compliant ◆ RoHS compliant Note: The functionality described and the timing specifications included in this datasheet are for the DLL Enabled mode of operation (normal operation), unless specifically stated otherwise. DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 5 June 2022 DDR4 SDRAM 1.1 GDQ2BFAA Speed Bins DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-3200 11-11-11 13-13-13 15-15-15 17-17-17 19-19-19 22-22-22 tCK (min) 1.25 1.071 0.937 0.833 0.75 0.625 ns CAS Latency 11 13 15 17 19 22 nCK tRCD (min) 13.75 13.92 14.06 14.16 14.25 13.75 ns tRP (min) 13.75 13.92 14.06 14.16 14.25 13.75 ns tRAS (min) 35 34 33 32 32 33 ns tRC (min) 48.75 47.92 47.06 46.16 46.25 46.75 ns Speed 1.2 Unit Address Table Parameter 256 Mb x16 Number of Bank Groups 2 Number of Banks per Bank Group 4 Bank Group Address BG0 Bank Address per Bank Group BA0~BA1 Row Address A0~A14 Column Address A0~A9 Page Size 2KB DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 6 June 2022 DDR4 SDRAM GDQ2BFAA 2 ORDERING INFORMATION 2.1 G Part Number Decoding D Q 2 B F A A - C Q Speed Type J: 3200 Mbps 22-22-22 Q: 2666 Mbps 19-19-19 E: 2400 Mbps 17-17-17 Operating Temperature C: Commercial Temperature (0°C ~ 95°C) W:Wide Temp. (-40 ~ 95°C) Product Version M: 1st version A: 2nd version Voltage A: 1.2V Bit Organization F: x16 Package Type B: 96-ball FBGA Density 2: 4Gb Product Type Q: DDR4 Product Family D: DRAM Company G: GigaDevice DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 7 June 2022 DDR4 SDRAM 2.2 GDQ2BFAA Valid Part Numbers Part Number Organization Data Rate CL-tRCD-tRP GDQ2BFAA-CE 256 Mb x 16 2400 Mbps 17-17-17 GDQ2BFAA-CQ 256 Mb x 16 2666 Mbps 19-19-19 GDQ2BFAA-CJ 256 Mb x 16 3200 Mbps 22-22-22 GDQ2BFAA-WQ 256 Mb x 16 2666 Mbps 19-19-19 GDQ2BFAA-WJ 256 Mb x 16 3200 Mbps 22-22-22 DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 8 June 2022 DDR4 SDRAM GDQ2BFAA 3 PACKAGE INFORMATION 3.1 Package 96-Ball FBGA (x16) 96*φ0.47 ± 0.05 φ0.15 CMM φ0.05 M BC A Unit mm PIN AI INDEX 0.1 PIN AI INDEX 3 2 1 9 8 7 0.8 TYP 13 ±0.10 12CTR A B C D E F G H J K L M N P R T B 0.34 ±0.10 0.8 TYP 1.2 Max 6.4 CTR C 7.5 ±0.10 Bottom view Side view Top view A DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 2 ±0.10 9 0.78 ±0.05 0.1 0.155 ±0.02 0.1 A June 2022 DDR4 SDRAM GDQ2BFAA 4 BALL ASSIGNMENTS 4.1 96-Ball FBGA (x16) ball assignments 1 2 3 4 5 6 7 8 9 A A VDDQ VSSQ DQU0 DQSU_c VSSQ VPP VSS VDD DQSU_t DQU1 VDDQ VDD B B C C VDDQ DQU4 DQU2 DQU3 DQU5 VSSQ DQU7 VSSQ VDDQ D D VDD VSSQ DQU6 E E VSS DMU_n VSSQ DBIU_n DML_n VSSQ DBIL_n VSS VSSQ VDDQ DQSL_c DQL1 VDDQ ZQ VDDQ DQL0 DQSL_t VDD VSS VDDQ VSSQ DQL4 DQL2 DQL3 DQL5 VSSQ VDD VDDQ DQL6 DQL7 VDDQ VDD VSS CKE ODT CK_t CK_c VSS VDD WE_n/ A14 ACT_n CS_n F F G G H H J J K K L L RAS_n/ VDD A16 M M VREFCA BG0 A12/ CAS_n/ BC_n A15 A10/AP VSS N N VSS BA0 A4 A3 BA1 TEN A0 A1 A5 ALERT_n A7 VPP P P RESET_n A6 R R VDD A8 A2 A9 VSS A11 PAR NC A13 VDD 2 3 7 8 9 T T 1 DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 4 5 10 6 June 2022 DDR4 SDRAM 4.2 GDQ2BFAA Ball Description Symbol CK_t, CK_c Type Input Function Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c. Clock Enable: CKE High activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power- Down and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE Input CKE is synchronous for Self-Refresh exit. After VREFCA and Internal DQ Vref have become stable during the power on and initialization sequence, they must be maintained during all operations (including Self-Refresh). CKE must be maintained high throughout Read and Write accesses. Input buffers, excluding CK_t, CK_c, ODT and CKE are disabled during powerdown. Input buffers, excluding CKE, are disabled during Self- Refresh. Chip Select: All commands are masked when CS_n is registered HIGH. CS_n CS_n Input provides for external Rank selection on systems with multiple Ranks. CS_n is considered part of the command code. On Die Termination: ODT (registered High) enables RTT_NOM termination resistance internal to the DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/TDQS_t, NU/TDQS_c (When TDQS is enabled via Mode Register A11=1 in ODT Input MR1) signal for x8 configurations. For x16 configuration ODT is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, DMU_n, and DML_n signal. The ODT pin will be ignored if MR1 is programmed to disable RTT_NOM. Activation Command Input: ACT_n defines the Activation command being entered along ACT_n Input with CS_n. The input into RAS_n/A16, CAS_n/A15 and WE_n/ A14 will be considered as Row Address A16, A15 and A14. Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being entered. These balls have multi function. For example, for activation with RAS_n/A16, CAS_n/A15, Input ACT_n Low, those are Addressing like A16,A15 and A14 but for non-activation command with ACT_n High, those are Command pins for Read, Write and other command defined in WE_n/A14 command truth table. Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is masked when DM_n is sampled LOW coincident with that input data during a Write access. DM_n is sampled on both edges of DQS. DM is muxed with DBI function by Mode DM_n, DBI_n (DMU_n, DBIU_n DML_n, DBIL_n) I/O Register A10, A11, A12 setting in MR5. For x8 device, the function of DM or TDQS is enabled by Mode Register A11 setting in MR1. DBI_n is an input/output identifying whether to store/output the true or inverted data. If DBI_n is LOW, the data will be stored/output after inversion inside the DDR4 SDRAM and not inverted if DBI_n is HIGH. TDQS is only supported in X8. Bank Group Inputs: BG0-BG1 define to which bank group an Active, Read, Write or BG0-BG1 Input Precharge command is being applied. BG0 also determines which mode register is to be accessed during a MRS cycle. x4/x8 have BG0 and BG1, but x16 has only BG0. DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 11 June 2022 DDR4 SDRAM Symbol Type BA0-BA1 Input GDQ2BFAA Function Bank Address Inputs: BA0-BA1 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines which mode register is to be accessed during a MRS cycle. Address Inputs: Provide the row address for ACTIVATE commands and the column address for Read/Write commands to select one location out of the memory array in the respective A0-A16 Input bank. (A10/AP, A12/BC_n, RAS_n/A16, CAS_n/A15 and WE_n/A14 have additional functions, see other rows. The address inputs also provide the op-code during Mode Register Set commands. A17 is only defined for the x4 configuration. Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH: A10/AP Input Auto-precharge; LOW: no Auto-precharge). A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses. Burst Chop: A12/BC_n is sampled during Read and Write commands to determine if burst A12/BC_n Input chop (on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See “Command Truth Table” of Operation Guide for details. Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive RESET_n Input when RESET_n is HIGH. RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail to rail signal with DC high and low at 80% and 20% of VDD. Data Input/Output: Bi-directional data bus. If CRC is enabled via mode register, then CRC code is added at the end of Data Burst. Any DQ from DQ3~DQ0 may indicate the internal Vref DQ I/O level during test via Mode Register Setting MR4 A4=High. During this mode, RTT value should be set to Hi-Z. Refer to vendor specific data sheets to determine which DQ is used. DQS_t, Data Strobe: Output with Read data, input with Write data. Edge-aligned with Read data, DQS_c, centered-aligned with Write data. For x16, DQSL corresponds to the data on DQL0-DQL7; DQSU_t, DQSU_c, DQSU corresponds to the data on DQU0-DQU7. The data strobe DQS_t, DQSL_t and I/O DQSU_t are paired with differential signals DQS_c, DQSL_c, and DQSU_c, respectively, to DQSL_t, provide differential pair signaling to the system during Reads and Writes. DDR4 SDRAM DQSL_c supports differential data strobe only and does not support single-ended. Termination Data Strobe: TDQS_t/TDQS_c is applicable for x8 DRAMs only. When enabled via Mode Register A11 = 1 in MR1, the DRAM will enable the same termination resistance TDQS_t, TDQS_c Output function on TDQS_t/TDQS_c that is applied to DQS_t/DQS_c. When disabled via mode register A11 = 0 in MR1, DM/DBI/TDQS will provide the data mask function or Data Bus Inversion depending on MR5; A11, A12, A10 and TDQS_c is not used. x4/ x16 DRAMs must dis able the TDQS function via mode register A11 = 0 in MR1. Command and Address Parity Input: DDR4 Supports Even Parity Check in DRAMs with MR setting. Once it is enabled via Register in MR5, then DRAM calculates Parity with ACT_n, PAR Input RAS_n/A16, CAS_n/A15, WE_n/A14, BG0-BG1, BA0-BA1, A0-A16. Command and address inputs shall have parity check performed when commands are latched via the rising edge of CK_t and when CS_n is low DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 12 June 2022 DDR4 SDRAM Symbol GDQ2BFAA Type Function ALERT: It has multi functions such as CRC error flag, Command and Address Parity error flag as output signal. If there is error in CRC, then Alert_n goes LOW for the period time interval and goes back HIGH. If there is error in Command Address Parity Check, then ALERT_n goes ALERT_n I/O LOW for relatively long period until on going DRAM internal recovery transaction to complete. During Connectivity Test mode, this pin works as an input. Using this signal or not is dependent on system. In case of not connected as Signal, ALERT_n pin must be bounded to VDD on board. Connectivity Test Mode Enable: Required on X16 devices and optional input on x4/x8 with densities equal to or greater than 8Gb. High in this pin will enable Connectivity Test Mode TEN Input operation along with other pins. It is a CMOS rail to rail signal with AC high and low at 80% and 20% of VDD. Using this signal or not is dependent on system. This pin may be DRAM internally pulled low through a weak pull-down resistor to VSS. NC No Connect: No internal electrical connection is present. VDDQ Supply DQ Power Supply: 1.2 V +/- 0.06 V VSSQ Supply DQ Ground VDD Supply Power Supply: 1.2 V +/- 0.06 V VSS Supply Ground VPP Supply DRAM Activating Power Supply: 2.5V (2.375V min, 2.75V max) VREFCA Supply Reference voltage for CA ZQ Supply Reference Pin for ZQ calibration DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 13 June 2022 DDR4 SDRAM GDQ2BFAA 5 Functional Block Diagram DDR4 SDRAM is a high-speed, CMOS dynamic random access memory. It is internally configured as an 16-bank (4-banks per Bank Group) DRAM. Figure 5-1. 256 Meg x 16 Functional Block Diagram CRC and parity control ODT To ODT/output drivers ZQ CAL RESET_n PAR TEN ODT control Bank 3 Bank 2 Bank 1 Bank 0 BG1 2(A12,A10) CS_n Command decode RAS_n, CAS_n,WE_n ACT_n Mode registers 15 Refresh counter 15 Rowaddress MUX 15 2 BG and BA control logic 1 A[16:0] BA[1:0] BG[0] 20 Address register 2 1 4 16 RTTN RTTW (0...15) DQ[15:0] Read drivers LDQS_t/LDQS_c; UDQS_t/UDQS_c DQ[7:0] DQ[15:8] VDDQ 128 128 READ FIFO and data MUX BC4 CK_t,CK_c Global I/O gating DBI RTTP RTTN RTTW CRC 16 LDQS_t/ LDQS_c Write drivers and Input logic UDQS_t/ UDQS_c VDDQ 128 8 10 RTTP DLL Columns 0,1,and 2 OTF I/O gating DM mask logic ZQ VDDQ CK_t,CK_c BC4 8192 16384 4 Column address counter/ latch Bank 3 Bank 2 Bank 1 Bank 0 Bank Group 1 Bank 3 Bank 3 Bank 2 Bank 2 Bank 1 Bank 1 Bank Bank Bank 00 Sense amplifiers Bank 0 0 Bank BG2 Bank Group Group 20 BG0 RowMemory array address 32,768(32,768 x 128 x 128) latch 32,768 and Sense amplifiers decoder 3(A16,A15,A14) 20 ZQ control To ZQ Control VrefDQ BC4 OTF CRC Parity Control logic CKE CK_t,CK_c ALERT VDDQ 7 128 128 x64 x128 Column 2 (BC4 nlbble) 3 Columns 0,1,and 2 DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx RTTP Data Interface Column decoder VrefDQ RTTN RTTW LDBI_n/ LDM_n UDBI_n/ UDM_n 14 June 2022 DDR4 SDRAM GDQ2BFAA 6 ABSOLUTE MAXIMUM RATINGS 6.1 Absolute Maximum DC Ratings Table 6-1. Absolute Maximum DC Ratings Symbol Parameter Min Max Unit Note VDD Voltage on VDD pin relative to Vss -0.3 1.5 V 1,3 VDDQ Voltage on VDDQ pin relative to Vss -0.3 1.5 V 1,3 VPP Voltage on VPP pin relative to Vss -0.3 3.0 V 4 VIN, VOUT Voltage on any pin except VrefCA relative to Vss -0.3 1.5 V 1,3,5 TSTG Storage Temperature -55 100 °C 1,2 Note: 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300 mV of each other at all times; and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500 mV; VREF may be equal to or less than 300 mV. 4. VPP must be equal or greater than VDD/VDDQ at all times. 5. Overshoot area above 1.5V is specified in Section 7.3.5 and Section 7.3.6. 6.2 Recommended DC Operating Conditions Table 6-2. Recommended DC Operating Conditions Symbol Parameter VDD Ratings Unit Note 1.26 V 1,2,3 1.2 1.26 V 1,2,3 2.5 2.75 V 3 Min Typ. Max Supply voltage 1.14 1.2 VDDQ Supply voltage for output 1.14 VPP Wordline supply voltage 2.375 Note: 1. Under all conditions VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together. 3. DC bandwidth is limited to 20MHz. 6.3 DRAM Component Operating Temperature Range Table 6-3. Operating Temperature Range Symbol TOPER Parameter Rating Unit Note Normal Temperature Range -40~85 °C 1,2 Extended Temperature Range 85~95 °C 1,3 Note: 1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 15 June 2022 DDR4 SDRAM GDQ2BFAA conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85°C under all operating conditions for the commercial offering; The industrial and automotive temperature offerings allow the case temperature to go below 0°C to -40°C. 3. Some applications require operation of the DRAM in the Extended Temperature Range between 85 °C and 95 °C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: • Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 μs. It is also possible to specify a component with 1X refresh (tREFI to 7.8μs) in the Extended Temperature Range. Please refer to the DIMM SPD for option availability. • If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0 and MR2 A7 = 1) the Manual or enable the optional Auto Self-Refresh mode (MR2 A6 = 1 and MR2 A7 = 1). DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 16 June 2022 DDR4 SDRAM GDQ2BFAA 7 AC AND DC INPUT MEASUREMENT LEVELS 7.1 AC and DC Logic Input Levels for Single-ended Signals Table 7-1. Single-ended AC and DC Input Levels for Command and Address 1600/1866/2133/2400 Symbol 2666/3200 Parameter Unit Min VREFCA + Max Min Max VDD - - V - - V VDD V Note VIH.CA(DC75) DC input logic high VIL.CA(DC75) DC input logic low VSS VIH.CA(DC65) DC input logic high - - VIL.CA(DC65) DC input logic low - - VSS VIH.CA(AC100) AC input logic high VREF + 0.1 Note 2 - - V 1 VIL.CA(AC100) AC input logic low Note 2 VREF - 0.1 - - V 1 VIH.CA(AC90) AC input logic high - - Note 2 V 1 VIL.CA(AC90) AC input logic low - - Note 2 VREF - 0.09 V 1 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V 2,3 VREFCA(DC) Reference voltage for ADD, CMD inputs 0.075 VREFCA 0.075 VREFCA + 0.065 VREF + 0.09 VREFCA 0.065 V Note: 1. See “Overshoot and Undershoot Specifications” 2. The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1%VDD (for reference: approx. ± 12mV) 3. For reference: approx. VDD/2 ± 12 mV DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 17 June 2022 DDR4 SDRAM 7.2 GDQ2BFAA AC and DC Logic Input Measurement Levels: Vref Tolerances The DC-tolerance limits and AC-noise limits for the reference voltages VrefCA is illustrated in the Figure 7-1 below. It shows a valid reference voltage Vref(t) as a function of time. (Vref stands for VrefCA). Vref(DC) is the linear average of Vref(t) over a very long period of time (for example, 1 second). This average has to meet the min/max requirement in Figure 7-1. Furthermore Vref(t) may temporarily deviate from Vref(DC) by no more than ± 1% VDD Voltage VDD Vref(t) Vref AC-noise Vref(DC)max Vref(DC) VDD/2 Vref(DC)min VSS Time Figure 7-1. Illustration of Vref(DC) Tolerance and Vref AC-noise Limits The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on Vref. “Vref” should be understood as Vref(DC) This clarifies that DC-variations of Vref affect the absolute voltage a signal has to reach to achieve a valid high or low level, and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for Vref(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with Vref AC-noise. Timing and voltage effects due to AC-noise on Vref up to the specified limit (± 1% of VDD) are included in DRAM timings and their associated deratings. 7.3 AC and DC Logic Input Levels for Differential Signals Differential Input Voltage(CK_t, CK_c) 7.3.1 AC and DC Logic Input Levels for Differential Signals tDVAC VIH.DIFF.AC.MIN VIH.DIFF.MIN half cycle 0.0 VIL.DIFF.MAX VIL.DIFF.AC.MAX tDVAC Time Figure 7-2. Definition of Differential AC-Swing and “Time above AC-Level” tDVAC DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 18 June 2022 DDR4 SDRAM GDQ2BFAA Note: 1. Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope. 2. Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope. 7.3.2 Differential Swing Requirements for Clock (CK_t - CK_c) Table 7-2. Differential Input Levels Requirements for CK_t - CK_c 1600/1866/2133 Symbol VIHdiff VILdiff VIHdiff(AC) VILdiff(AC) 2400/2666 3200 Parameter differential input high differential input low differential input high ad differential input low ac Unit Note Note 3 V 1 - 0.110 V 1 Note 3 V 2 V 2 Min Max Min Max Min Max + 0.150 Note 3 + 0.135 Note 3 + 0.110 Note 3 - 0.150 Note 3 - 0.135 Note 3 Note 3 (VIH(AC) - Note 3 (VIH(AC) 2x 2x (VIH(AC) VREF VREF 2x Note 3 2x (VIL(AC) - - VREF 2x Note 3 VREF (VIL(AC) VREF 2x Note 3 (VIL(AC) VREF Note: 1. Used to define a differential signal slew-rate. 2. for CK_t - CK_c use VIH.CA/VIL.CA(AC) of ADD/CMD and VREFCA; 3. These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (VIH.CA(DC) max, VIL.CA(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 19 June 2022 DDR4 SDRAM GDQ2BFAA Table 7-3. Allowed Time before Ringback (tDVAC) for CK_t - CK_c Slew Rate [V/ns] tDVAC [ps] @ |VIH/Ldiff(AC)| = 200mV tDVAC [ps] @ |VIH/Ldiff(AC)| = TBDmV Min Max Min Max > 4.0 120 - TBD - 4.0 115 - TBD - 3.0 110 - TBD - 2.0 105 - TBD - 1.8 100 - TBD - 1.6 95 - TBD - 1.4 90 - TBD - 1.2 85 - TBD - 1.0 80 - TBD - VDD/2 + 145 mV Differential Input Cross VIX(CK) Point Voltage relative to VDD/2 for CK_t, CK_c VDD/2 + 100mV ≤ VSEH ≤ VDD/2 + 145 mV VDD/2 - 145 mV ≤ VSEL ≤ VDD/2 – 100 mV VSEL < VDD/2 - 145mV Min Max N/A 120mV N/A (VSEH-VDD/2) – 25mV - (VDD/2-VSEL) + 25mV N/A -120mV N/A Table 7-10. Cross Point Voltage for CK Differential Input Signals at DDR4-2666 Symbol Parameter DDR4 – 2666/3200 Input Level VSEH > VDD/2 + 145 mV Differential Input Cross VIX(CK) Point Voltage relative to VDD/2 for CK_t, CK_c VDD/2 + 90mV ≤ VSEH ≤ VDD/2 + 145 mV VDD/2 - 145 mV ≤ VSEL ≤ VDD/2 – 90 mV VSEL < VDD/2 - 145mV DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 26 Min Max N/A 110mV N/A (VSEH-VDD/2) – 30mV - (VDD/2-VSEL) + 30mV N/A -110mV N/A June 2022 DDR4 SDRAM 7.6 GDQ2BFAA CMOS Rail to Rail Input Levels for RESET_n Table 7-11. CMOS Rail to Rail Input Levels for RESET_n Parameter Symbol Min Max Unit Note AC Input High Voltage VIH(AC)_RESET 0.8*VDD VDD V 6 DC Input High Voltage VIH(DC)_RESET 0.7*VDD VDD V 2 AC Input Low Voltage VIL(AC)_RESET VSS 0.2VDD V 7 DC Input Low Voltage VIL(DC)_RESET VSS 0.3VDD V 1 Rising Time TR_RESET - 1.0 μs 4 RESET Pulse Width tPW_RESET 1.0 - μs 3,5 Note: 1. After RESET_n is registered Low, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_ RESET, otherwise, SDRAM may not be reset. 2. Once RESET_n is registered High, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM operation will not be guaranteed until it is reset asserting RESET_n signal Low. 3. RESET is destructive to data contents. 4. No slope reversal (ringback) requirement during its level transition from Low to High. 5. This definition is applied only “Reset Procedure at Power Stable”. 6. Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings. 7. Undershoot might occur. It should be limited by Absolute Maximum DC Ratings. tPW_RESET 0.8*VDD 0.7*VDD 0.3*VDD 0.2*VDD TR_RESET Figure 7-10. RESET_n Input Slew Rate Definition DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 27 June 2022 DDR4 SDRAM 7.7 GDQ2BFAA AC&DC Logic Input Levels for DQS Signals Differential Signal Definition Differential Input Voltage: DQS_t, DQS_c 7.7.1 VIHDiffPeak 0.0 Half cycle VILDiffPeak Time Figure 7-11 DQS Differential Input Signal AC-swing Level 7.7.2 Differential Swing Requirements for DQS (DQS_t – DQS_c) Table 7-12. Differential Input Swing Requirements for DQS 1600/1866/2133 Symbol 2400 2666 3200 Parameter Min Max Min Max Min Max Min Max Unit Note VIHDiffPeak VIH.DIFF.Peak Voltage 186 Note2 160 Note2 150 Note2 140 Note2 mV 1 VILDiffPeak VIL.DIFF.Peak Voltage Note2 -186 Note2 -160 Note2 -150 Note2 -140 mV 1 Note: 1. Used to define a differential signal slew-rate. 2. These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective limits of Overshoot, Undershoot Specification for single-ended signals. DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 28 June 2022 DDR4 SDRAM 7.7.3 GDQ2BFAA Peak Voltage Calculation Method The peak voltage of Differential DQS signals are calculated in a following equation. VIH.DIFF.Peak Voltage = Max(f(t)) VIL.DIFF.Peak Voltage = Min(f(t)) f(t) = VDQS_t - VDQS_c The Max(f(t)) or Min(f(t)) used to determine the midpoint which to reference the +/-35% window of the exempt non-monotonic Single Ended Input Voltage: DQS_t and DQS_c signaling shall be the smallest peak voltage observed in all UI’s. DQS_t Max (f(t)) DQS_c +35% +50% +35% +50% Min (f(t)) Time Figure 7-12. Definition of Differential DQS Peak Voltage and Range of Exempt Nonmonotonic Signaling 7.7.4 Differential Input Cross Point Voltage To achieve tight RxMask input requirements as well as output skew parameters with respect to strobe, the cross point voltage of differential input signals (DQS_t, DQS_c) must meet the requirements in Table 7-13. The differential input cross point voltage VIX_DQS (VIX_DQS_FR and VIX_DQS_RF) is measured from the actual cross point of DQS_t, DQS_c relative to the VDQSmid of the DQS_t and DQS_c signals. VDQSmid is the midpoint of the minimum levels achieved by the transitioning DQS_t and DQS_c signals, and noted by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of the transitioning DQS signals. A nonmonotonic transitioning signal’s ledge is exempt or not used in determination of a horizontal tangent provided the said ledge occurs within +/- 35% of the midpoint of either VIH.DIFF. Peak Voltage (DQS_t rising) or VIL.DIFF.Peak Voltage (DQS_c rising), refer to Figure 7-12. A secondary horizontal tangent resulting from a ring-back transition is also exempt in determination of a horizontal tangent. That is, a falling transition’s horizontal tangent is derived from its negative slope to zero slope transition (point A in Figure 7-13) and a ring-back’s horizontal tangent derived from its positive slope to zero slope transition (point B in Figure 7-13) is not a valid horizontal tangent; and a rising transition’s horizontal tangent is derived from its positive slope to zero slope transition (point C in Figure 7-13) and a ring-back’s horizontal tangent derived from its negative slope to zero slope transition (point D in Figure 7-13) is not a valid horizontal tangent. DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 29 June 2022 GDQ2BFAA Lowest horizontal tangent above VDQSmid of the transitioning signals D VIX_DQS,FR VIX_DQS,RF VDQSmid VIX_DQS,RF VIX_DQS,FR B DQS_c VDQS_trans C DQS_t VDQS_trans2 DQS_t and DQS_c: Single-ended Input Voltage DDR4 SDRAM A Lowest horizontal tangent below VDQSmid of the transitioning signals VSSQ Time Figure 7-13. Vix Definition (DQS) Table 7-13. Cross Point Voltage for DQS Differential Input Signals 1600/1866/2133/2400/2666/3200 Symbol Vix_DQS_ratio VDQSmid_to_Vcent Parameter DQS Differential input crosspoint voltage ratio VDQSmid offset relative to Vcent_DQ(midpoint) Unit Note 25 % 1,2 min(VIHdiff,50) mV 3,4,5 Min Max - Note: 1. Vix_DQS_Ratio is DQS Vix crossing (Vix_DQS_FR or Vix_DQS_RF) divided by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of the transitioning DQS signals. 2. VDQSmid will be similar to the VREFDQ internal setting value obtained during Vref Training if the DQS and DQs drivers and paths are matched. 3. The maximum limit shall not exceed the smaller of VIHdiff minimum limit or 50mV. 4. Vix measurements are only applicable for transitioning DQS_t and DQS_c signals when toggling data, preamble and high-z states are not applicable conditions. 5 The parameter VDQSmid is defined for simulation and ATE testing purposes, it is not expected to be tested in a system. DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 30 June 2022 DDR4 SDRAM 7.7.5 GDQ2BFAA Differential Input Slew Rate Definition Differential Input Voltage: DQS_t, DQS_c Input slew rate for differential signals (DQS_t, DQS_c) are defined and measured as shown in Figure 7-14 and Table 7-14. VIHDiffPeak VIHDiff_DQS 0.0 VILDiff_DQS VILDiffPeak Delta TRdiff Delta TFdiff Time Figure 7-14. Differential Input Slew Rate Definition for DQS_t, DQS_c Note: 1. Differential signal rising edge from VILDiff_DQS to VIHDiff_DQS must be monotonic slope. 2. Differential signal falling edge from VIHDiff_DQS to VILDiff_DQS must be monotonic slope. Table 7-14. Differential Input Slew Rate Definition for DQS_t, DQS_c Description Differential input slew rate for rising edge(DQS_t – DQS_c) Differential input slew rate for falling edge(DQS_t – DQS_c) From To Defined by VILdiff_DQS VIHdiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTRdiff VIHdiff_DQS VILdiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTRdiff Table 7-15. Differential Input Level for DQS_t, DQS_c 1600/1866/2133 Symbol 2400/2666 Parameter Unit Min Max Min Max VIHdiff_DQS DC input logic high 136 - 130 - mV VILdiff_DQS DC input logic low - -136 - -130 mV Table 7-16. Differential Input Slew Rate for DQS_t, DQS_c 1600/1866/2133/2400 Symbol SRIdiff 2666/3200 Parameter Differential input slew rate DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx Unit Min Max Min Max 3 18 2.5 18 31 V/ns June 2022 DDR4 SDRAM GDQ2BFAA 8 AC&DC OUTPUT MEASUREMENT LEVELS 8.1 Output Driver DC Electronic Characteristics The DDR4 driver supports two different RON values. These RON values are referred as strong (low RON) and weak mode (high RON). A functional representation of the output buffer is shown in Figure 8-1 below. Output driver impedance RON is defined as the individual pull-up and pull- down resistors (RONPu and RONPd). RONPu= RONPd= VDDQ-Vout under the condition that RONPd is off | Iout | Vout under the condition that RONPu is off. | Iout | Chip In Drive Mode Output Drive VDDQ IPu To other circuity like RCV, ... RONPu DQ RONPd IPd Iout Vout VSSQ Figure 8-1. Output Driver DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 32 June 2022 DDR4 SDRAM GDQ2BFAA Table 8-1. Output Driver DC Electronical Characteristics, Assuming RZQ = 240ohm; Entire Operating Temperature Range; after Proper ZQ Calibration RONNOM Resistor RON34Pd 34Ω RON34Pu RON48Pd 48Ω RON48Pu Mismatch between pull-up and pull-down, MMPuPd Mismatch DQ-DQ within byte variation pull-up, MMPudd Mismatch DQ-DQ within byte variation pull-up, MMPddd Vout Min Nom Max Unit Note VOLdc=0.5*VDDQ 0.73 1.0 1.1 RZQ/7 1,2 VOMdc=0.8*VDDQ 0.83 1.0 1.1 RZQ/7 1,2 VOHdc=1.1*VDDQ 0.83 1.0 1.25 RZQ/7 1,2 VOLdc=0.5*VDDQ 0.9 1.0 1.25 RZQ/7 1,2 VOMdc=0.8*VDDQ 0.9 1.0 1.1 RZQ/7 1,2 VOHdc=1.1*VDDQ 0.8 1.0 1.1 RZQ/7 1,2 VOLdc=0.5*VDDQ 0.73 1.0 1.1 RZQ/5 1,2 VOMdc=0.8*VDDQ 0.83 1.0 1.1 RZQ/5 1,2 VOHdc=1.1*VDDQ 0.83 1.0 1.25 RZQ/5 1,2 VOLdc=0.5*VDDQ 0.9 1.0 1.25 RZQ/5 1,2 VOMdc=0.8*VDDQ 0.9 1.0 1.1 RZQ/5 1,2 VOHdc=1.1*VDDQ 0.8 1.0 1.1 RZQ/5 1,2 VOMdc=0.8*VDDQ -10 17 % 1,2,3,4 VOMdc=0.8*VDDQ 10 % 1,2,4 VOMdc=0.8*VDDQ 10 % 1,2,4 Note: 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity (TBD). 2. Pull-up and pull-dn output driver impedances are recommended to be calibrated at 0.8*VDDQ. Other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.5*VDDQ and 1.1*VDDQ. 3. Measurement definition for mismatch between pull-up and pull-down, MMPuPd: Measure RONPu and RONPD both at 0.8*VDD separately; RONnom is the nominal RON value. 4. MMPuPdd =[(RONPu–RONPd/RONNOM)] * 100 5. RON variance range ratio to RON Nominal value in a given component, including DQS_t and DQS_c. 6. MMPuPdd =[(RONPuMax–RONPuMin/RONNOM)] * 100 7. MMPdPdd =[(RONPdMax–RONPdMin/RONNOM)] * 100 8. This parameter of x16 device is specified for Upper byte and Lower byte. DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 33 June 2022 DDR4 SDRAM 8.1.1 GDQ2BFAA Alert_n Output Driver Characteristic A functional representation of the output buffer is shown in the figure below. Output driver impedance RON is defined as follows: RONPd= Vout under the condition that RONPu is off. | Iout | Alert Driver DRAM Alert RONPd IPd Iout Vout VSSQ Resister RONPd Vout Min Max Unit Note VOLdc=0.1*VDDQ 0.3 1.2 34Ω 1 VOMdc=0.8*VDDQ 0.4 1.2 34Ω 1 VOHdc=1.1*VDDQ 0.4 1.4 34Ω 1 Note: VDDQ voltage is at VDDQ DC. VDDQ DC definition is TBD. DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 34 June 2022 DDR4 SDRAM GDQ2BFAA Output Driver Characteristic of Connectivity Test (CT) Mode 8.1.2 Following output driver impedance RON will be applied Test Output Pin during Connectivity Test (CT) Mode. The individual pullup and pull-down resistors (RONPu_CT and RONPd_CT) are defined as follows: RONPu_CT = VDDQ-Vout | Iout | RONPd_CT = Vout | Iout | Chip In Drive Mode Output Drive VDDQ Ipu_CT To other circuity like RCV, ... RONPu_CT DQ RONPd_CT Iout Ipd_CT Vout VSSQ RONNOM_CT Vout Max Unit VOBdc=0.2*VDDQ 1.9 34Ω VOLdc=0.5*VDDQ 2.0 34Ω VOMdc=0.8*VDDQ 2.2 34Ω VOHdc=1.1*VDDQ 2.5 34Ω VOBdc=0.2*VDDQ 2.5 34Ω VOLdc=0.5*VDDQ 2.2 34Ω VOMdc=0.8*VDDQ 2.0 34Ω VOHdc=1.1*VDDQ 1.9 34Ω Resister RONPd_CT 34Ω RONPu_CT Note: Connectivity test mode uses un-calibrated drivers, showing the full range over PVT. No mismatch between pull up and pull down is defined. DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 35 June 2022 DDR4 SDRAM 8.2 GDQ2BFAA Single-ended AC& DC Output Levels Table 8-2. Single-ended AC&DC Output Levels Symbol Parameter DDR4-1600 to DDR4-3200 Unit VOH(DC) DC output high measurement level (for IV curve linearity) 1.1 x VDDQ V VOM(DC) DC output mid measurement level (for IV curve linearity) 0.8 x VDDQ V VOL(DC) DC output low measurement level (for IV curve linearity) 0.5 x VDDQ V VOH(AC) AC output high measurement level (for output SR) (0.7+0.15) x VDDQ V VOL(AC) AC output low measurement level (for output SR) (0.7-0.15) x VDDQ V Note: The swing of ± 0.15 × VDDQ is based on approximately 50% of the static single-ended output peak-to-peak swing with a driver impedance of RZQ/7Ω and an effective test load of 50Ω to VTT = VDDQ. 8.3 Differential AC&DC Output Levels Table 8-3. Differential AC&DC Output Levels Symbol Parameter DDR4-1600 to DDR4-3200 Unit VOHdiff(AC) AC differential output high measurement level (for output SR) + 0.3 x VDDQ V VOLdiff(AC) AC differential output low measurement level (for output SR) -0.3 x VDDQ V Note: The swing of ± 0.3 × VDDQ is based on approximately 50% of the static differential output peak-to-peak swing with a driver impedance of RZQ/7Ω and an effective test load of 50Ω to VTT = VDDQ at each of the differential outputs. DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 36 June 2022 DDR4 SDRAM GDQ2BFAA Single-ended Output Slew Rate 8.4 With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in Table 8-4 and Figure 8-2. Table 8-4. Single-ended Output Slew Rate Definition Measured Description Defined by From To Single ended output slew rate for rising edge VOL(AC) VOH(AC) [VOH(AC)- VOL(AC)]/Delta TRse Single ended output slew rate for falling edge VOH(AC) VOL(AC) [VOH(AC)- VOL(AC)]/Delta TFse Note: Output slew rate is verified by designed and characterization, and may not be subject to production test. VOH(AC) VOL(AC) delta TFse delta TRse Figure 8-2. Single-ended Output Slew Rate Definition Table 8-5. Single-ended Output Slew Rate Parameter Symbol Single ended output slew rate SRQse DDR4-1600 to DDR4-3200 Min Max 4 9 Unit V/ns Description: SR: Slew Rate; Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Singnals; For RON = RZQ/7 setting Note: In two cases, a maximum slew rate of 12 V/ns applies for a single DQ signal within a byte lane. • Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e. they stay at either high or low). • Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 9 V/ns applies). DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 37 June 2022 DDR4 SDRAM 8.5 GDQ2BFAA Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in Table 8-6 and Figure 8-3. Table 8-6. Differential Output Slew Rate Definition Measured Description Defined by From To Differential output slew rate for rising edge VOLdiff(AC) VOHdiff(AC) [VOHdiff(AC)- VOLdiff(AC)]/Delta TRdiff Differential output slew rate for falling edge VOHdiff(AC) VOLdiff(AC) [VOHdiff(AC)- VOLdiff(AC)]/Delta TFdiff Note: Output slew rate is verified by design and characterization, and may not be subject to production test. VOHdiff(AC) VOLdiff(AC) delta TFdiff delta TRdiff Figure 8-3. Differential Output Slew Rate Definition Table 8-7. Differential Output Slew Rate Parameter Symbol Differential output slew rate SRQdiff DDR4-1600 to DDR4-3200 Min Max 8 18 Unit V/ns Description: SR: Slew Rate; Q: Query Output (like in DQ, which stands for Data-in, Query-Output); Diff: Differential Singnals; For RON = RZQ/7 setting DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 38 June 2022 DDR4 SDRAM 8.6 GDQ2BFAA Single-ended AC& DC Output Levels of Connectivity Test Mode Following output parameters will be applied for DDR4 SDRAM Output Signal during Connectivity Test Mode. Table 8-8. Single-ended AC&DC Output Level of Connectivity Test Mode Symbol Parameter DDR4-1600 to DDR4-3200 Unit Note VOH(DC) DC output high measurement level (for IV curve linearity) 1.1 x VDDQ V VOM(DC) DC output mid measurement level (for IV curve linearity) 0.8 x VDDQ V VOL(DC) DC output low measurement level (for IV curve linearity) 0.5 x VDDQ V VOB(DC) DC output below measurement level (for IV curve linearity) 0.2 x VDDQ V VOH(AC) AC output high measurement level (for output SR ) VTT + (0.1 x VDDQ) V 1 VOL(AC) AC output below measurement level (for output SR) VTT - (0.1 x VDDQ) V 1 Note: The effective test load is 50Ω terminated by VTT = 0.5*VDDQ. VOH(AC) VTT 0.5*VDDQ VOL(AC) TR_output_CT TR_output_CT Figure 8-4. Output Slew Rate Definition of Connectivity Test Mode Table 8-9. Single-ended Output Slew Rate of Connectivity Test Mode 8.7 Parameter Symbol Output signal Falling time Output signal Rising time DDR4-1600 to DDR4-3200 Unit Min Max TF_output_CT - 10 ns/V TR_output_CT - 10 ns/V Reference Load for Connectivity Test Mode Timing The reference load for ODT timings is defined in Figure 8-5. DQ,DM DQSL_t,DQSL_c DQSU_t,DQSU_c DQS_t,DQS_c CT_INPUTS DUT 0.5*VDDQ Rterm=50 ohm VSSD Timing Reference Points Figure 8-5. Connectivity Test Mode Timing Reference Load DS-00808-GDQ2BFAA-Rev1.4DS-00808-GDQ2BFAA-Rev1.4.docx 39 June 2022 DDR4 SDRAM GDQ2BFAA 9 SPEED BIN 9.1 DDR4-1600 Speed Bins and Operations Table 9-1. DDR4-1600 Speed Bins and Operations Speed Bin DDR4-1600 CL-nRCD-nRP 11-11-11 Parameter Symbol Internal Read command to first data Internal Read command to first data with Read DBI enabled ACT to internal Read or write delay time PRE command period Normal CWL = 9 CWL = 9,11 CL = 9 ns 11 tAA(max) + 2nCK ns 11 - ns 11 - ns 11 9 x tREFI ns 11 - ns 11 1.6 ns 1,2,3,4,10,13 (13.50)5,11 tAA(min) + 2nCK 13.7513 tRCD (13.50)5,11 13.75 (13.50)5,11 tRAS ACT to ACT or REF command period 18 Max 13.7513 tRP ACT to PRE command period Note Min tAA tAA_DBI Unit 35 48.75 tRC (48.50)5,11 Read DBI CL = 11 (Optional)5 1.5 tCK(AVG) (Optional)5 CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4,10 CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4 CL = 11 CL = 13 tCK(AVG) 1.25
GDQ2BFAA-CQ 价格&库存

很抱歉,暂时无法提供与“GDQ2BFAA-CQ”相匹配的价格&库存,您可以联系我们找货

免费人工找货