0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
GD32VF103TBU6

GD32VF103TBU6

  • 厂商:

    GIGADEVICE(兆易创新)

  • 封装:

    QFN-36

  • 描述:

  • 数据手册
  • 价格&库存
GD32VF103TBU6 数据手册
GigaDevice Semiconductor Inc. GD32VF103 RISC-V 32-bit MCU Datasheet GD32VF103 Datasheet Table of Contents Table of Contents ........................................................................................................... 1 List of Figures ................................................................................................................ 4 List of Tables .................................................................................................................. 5 1. General description ................................................................................................. 7 2. Device overview ....................................................................................................... 8 2.1. Device information ...................................................................................................... 8 2.2. Block diagram ............................................................................................................ 10 2.3. Pinouts and pin assignment ..................................................................................... 11 2.4. Memory map .............................................................................................................. 14 2.5. Clock tree ................................................................................................................... 18 2.6. Pin definitions ............................................................................................................ 19 2.6.1. GD32VF103Vx LQFP100 pin definitions .............................................................................. 19 2.6.2. GD32VF103Rx LQFP64 pin definitions ................................................................................ 26 2.6.3. GD32VF103Cx LQFP48 pin definitions ................................................................................ 30 2.6.4. GD32VF103Tx QFN36 pin definitions .................................................................................. 34 3. Functional description .......................................................................................... 37 3.1. System and memory architecture ............................................................................ 37 3.2. On-chip memory ........................................................................................................ 37 3.3. Clock, reset and supply management ...................................................................... 37 3.4. Boot modes ................................................................................................................ 38 3.5. Power saving modes ................................................................................................. 39 3.6. Analog to digital converter (ADC) ............................................................................ 39 3.7. Digital to analog converter (DAC) ............................................................................. 40 3.8. DMA ............................................................................................................................ 40 3.9. General-purpose inputs/outputs (GPIOs) ................................................................ 40 3.10. Timers and PWM generation ................................................................................. 41 3.11. Real time clock (RTC) ............................................................................................ 42 3.12. Inter-integrated circuit (I2C) .................................................................................. 42 3.13. Serial peripheral interface (SPI) ............................................................................ 44 3.14. Universal synchronous asynchronous receiver transmitter (USART) ............... 44 1 GD32VF103 Datasheet 3.15. Inter-IC sound (I2S) ................................................................................................ 44 3.16. Universal serial bus full-speed (USBFS) .............................................................. 45 3.17. Controller area network (CAN) .............................................................................. 45 3.18. External memory controller (EXMC) ..................................................................... 45 3.19. Debug mode ........................................................................................................... 45 3.20. Package and operation temperature ..................................................................... 46 4. Electrical characteristics ....................................................................................... 47 4.1. Absolute maximum ratings ....................................................................................... 47 4.2. Operating conditions characteristics ....................................................................... 47 4.3. Power consumption .................................................................................................. 49 4.4. EMC characteristics .................................................................................................. 53 4.5. Power supply supervisor characteristics ................................................................ 54 4.6. Electrical sensitivity .................................................................................................. 55 4.7. External clock characteristics .................................................................................. 55 4.8. Internal clock characteristics ................................................................................... 57 4.9. PLL characteristics.................................................................................................... 58 4.10. Memory characteristics ......................................................................................... 59 4.11. NRST pin characteristics ....................................................................................... 59 4.12. GPIO characteristics .............................................................................................. 60 4.13. ADC characteristics ............................................................................................... 62 4.14. Temperature sensor characteristics ..................................................................... 63 4.15. DAC characteristics ............................................................................................... 63 4.16. I2C characteristics ................................................................................................. 64 4.17. SPI characteristics ................................................................................................. 65 4.18. I2S characteristics.................................................................................................. 67 4.19. USART characteristics ........................................................................................... 69 4.20. CAN characteristics ............................................................................................... 69 4.21. USBFS characteristics ........................................................................................... 70 4.22. EXMC characteristics............................................................................................. 70 4.23. TIMER characteristics ............................................................................................ 71 4.24. WDGT characteristics ............................................................................................ 72 2 GD32VF103 Datasheet 4.25. Parameter conditions............................................................................................. 72 5. Package information.............................................................................................. 73 5.1. LQFP100 package outline dimensions..................................................................... 73 5.2. LQFP64 package outline dimensions....................................................................... 75 5.3. LQFP48 package outline dimensions....................................................................... 77 5.4. QFN36 package outline dimensions ........................................................................ 79 5.5. Thermal characteristics ............................................................................................ 81 6. Ordering information ............................................................................................. 83 7. Revision History..................................................................................................... 84 3 GD32VF103 Datasheet List of Figures Figure 2-1. GD32VF103 block diagram ............................................................................................ 10 Figure 2-2. GD32VF103Vx LQFP100 pinouts.................................................................................... 11 Figure 2-3. GD32VF103Rx LQFP64 pinouts .................................................................................... 12 Figure 2-4. GD32VF103Cx LQFP48 pinouts .................................................................................... 13 Figure 2-5. GD32VF103Tx QFN36 pinouts ....................................................................................... 13 Figure 2-6. GD32VF103 clock tree .................................................................................................... 18 Figure 4-1. Recommended power supply decoupling capacitors (1)(2) .......................................... 48 Figure 4-2. Typical supply current consumption in Run mode ..................................................... 53 Figure 4-3. Typical supply current consumption in Sleep mode .................................................. 53 Figure 4-4. Recommended external NRST pin circuit(1) ................................................................. 60 Figure 4-5. I/O port AC characteristics definition ........................................................................... 61 Figure 4-6. I2C bus timing diagram .................................................................................................. 65 Figure 4-7. SPI timing diagram - master mode ............................................................................... 66 Figure 4-8. SPI timing diagram - slave mode .................................................................................. 67 Figure 4-9. I2S timing diagram - master mode ................................................................................ 68 Figure 4-10. I2S timing diagram - slave mode ................................................................................. 69 Figure 4-11. USBFS timings: definition of data signal rise and fall time ..................................... 70 Figure 5-1. LQFP100 package outline .............................................................................................. 73 Figure 5-2. LQFP100 recommended footprint ................................................................................. 74 Figure 5-3. LQFP64 package outline ................................................................................................ 75 Figure 5-4. LQFP64 recommended footprint ................................................................................... 76 Figure 5-5. LQFP48 package outline ................................................................................................ 77 Figure 5-6. LQFP48 recommended footprint ................................................................................... 78 Figure 5-7. QFN36 package outline .................................................................................................. 79 Figure 5-8. QFN36 recommended footprint ..................................................................................... 80 4 GD32VF103 Datasheet List of Tables Table 2-1. GD32VF103 devices features and peripheral list (LQFP64, LQFP100) ......................... 8 Table 2-2. GD32VF103 devices features and peripheral list (QFN36, LQFP48) ............................. 9 Table 2-3. GD32VF103 memory map ................................................................................................ 14 Table 2-4. GD32VF103Vx LQFP100 pin definitions......................................................................... 19 Table 2-5. GD32VF103Rx LQFP64 pin definitions .......................................................................... 26 Table 2-6. GD32VF103Cx LQFP48 pin definitions .......................................................................... 30 Table 2-7. GD32VF103Tx QFN36 pin definitions ............................................................................. 34 Table 4-1. Absolute maximum ratings(1)(4) ....................................................................................... 47 Table 4-2. DC operating conditions.................................................................................................. 47 Table 4-3. Clock frequency(1) ............................................................................................................ 48 Table 4-4. Operating conditions at Power up/ Power down(1) ....................................................... 48 Table 4-5. Start-up timings of Operating conditions (1)(2)(3) ............................................................. 48 Table 4-6. Power saving mode wakeup timings characteristics(1)(2) ............................................. 48 Table 4-7. Power consumption characteristics(2)(3)(4)(5) ................................................................... 49 Table 4-8. EMS characteristics(1) ...................................................................................................... 54 Table 4-9. Power supply supervisor characteristics ...................................................................... 54 Table 4-10. ESD characteristics(1) ..................................................................................................... 55 Table 4-11. Static latch-up characteristics(1) ................................................................................... 55 Table 4-12. High speed external clock (HXTAL) generated from a crystal/ceramic.................... 55 Table 4-13. High speed external clock characteristics (HXTAL in bypass mode) ...................... 56 Table 4-14. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics .................................................................................................................................... 56 Table 4-15. Low speed external user clock characteristics (LXTAL in bypass mode) ............... 57 Table 4-16. High speed internal clock (IRC8M) characteristics .................................................... 57 Table 4-17. Low speed internal clock (IRC40K) characteristics.................................................... 58 Table 4-18. PLL characteristics ........................................................................................................ 58 Table 4-19. PLL1/2 characteristics ................................................................................................... 58 Table 4-20. Flash memory characteristics ...................................................................................... 59 Table 4-21. NRST pin characteristics ............................................................................................... 59 Table 4-22. I/O port DC characteristics(1)(3) ...................................................................................... 60 Table 4-23. I/O port AC characteristics(1)(2) ...................................................................................... 61 Table 4-24. ADC characteristics ....................................................................................................... 62 Table 4-25. ADC RAIN max for fADC = 14 MHz(1).................................................................................. 62 Table 4-26. Temperature sensor characteristics(1) ......................................................................... 63 Table 4-27. DAC characteristics ....................................................................................................... 63 Table 4-28. I2C characteristics(1)(2) .................................................................................................... 64 Table 4-29. Standard SPI characteristics(1)...................................................................................... 65 Table 4-30. I2S characteristics(1)(2) .................................................................................................... 67 Table 4-31. USART0 characteristics(1).............................................................................................. 69 Table 4-32. USART1-2/UART3-4 characteristics(1) .......................................................................... 69 5 GD32VF103 Datasheet Table 4-33. USBFS start up time....................................................................................................... 70 Table 4-34. USBFS DC electrical characteristics ............................................................................ 70 Table 4-35. USBFS electrical characteristics(1) ............................................................................... 70 Table 4-36. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)(3) ..................................... 70 Table 4-37. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)(3) .................................... 71 Table 4-38. TIMER characteristics(1) ................................................................................................. 71 Table 4-39. FWDGT min/max timeout period at 40 kHz (IRC40K)(1)............................................... 72 Table 4-40. WWDGT min/max timeout value at 54 MHz (fPCLK1)(1) .................................................. 72 Table 5-1. LQFP100 package dimensions ....................................................................................... 73 Table 5-2. LQFP64 package dimensions ......................................................................................... 75 Table 5-3. LQFP48 package dimensions ......................................................................................... 77 Table 5-4. QFN36 package dimensions ........................................................................................... 79 Table 5-5. Package thermal characteristics(1) ................................................................................. 81 Table 6-1. Part ordering code for GD32VF103xx devices .............................................................. 83 Table 7-1. Revision history ............................................................................................................... 84 6 GD32VF103 Datasheet 1. General description The GD32VF103 device is a 32-bit general-purpose microcontroller based on the RISC-V core with best ratio in terms of processing power, reduced power consumption and peripheral set. The RISC-V processor core is tightly coupled with an Enhancement Core-Local Interrupt Controller (ECLIC), SysTick timer and advanced debug support. The GD32VF103 device incorporates the RISC-V 32-bit processor core operating at 108 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 128 KB on-chip Flash memory and 32 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connect to two APB buses. The devices offer up to two 12-bit ADCs, up to two 12-bit DACs, up to four general 16-bit timers, two basic timers plus a PWM advanced timer, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs, two UARTs, two I2Ss, two CANs, an USBFS. The device operates from a 2.6 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make the GD32VF103 devices suitable for a wide range of interconnection applications, especially in areas such as industrial control, motor drives, power monitor and alarm systems, consumer and handheld equipment, POS, vehicle GPS, LED display and so on. 7 GD32VF103 Datasheet 2. Device overview 2.1. Device information Table 2-1. GD32VF103 devices features and peripheral list (LQFP64, LQFP100) GD32VF103 Flash Part Number RB R8 R6 R4 VB V8 Code area (KB) 128 64 32 16 128 64 Data area (KB) 0 0 0 0 0 0 Total (KB) 128 64 32 16 128 64 32 20 10 6 32 20 ADC Connectivity Timers SRAM (KB) General 4 4 2 2 4 4 timer(16-bit) (1-4) (1-4) (1-2) (1-2) (1-4) (1-4) Advanced 1 1 1 1 1 1 timer(16-bit) (0) (0) (0) (0) (0) (0) SysTick 1 1 1 1 1 1 Basic timer(16- 2 2 2 2 2 2 bit) (5-6) (5-6) (5-6) (5-6) (5-6) (5-6) Watchdog 2 2 2 2 2 2 RTC 1 1 1 1 1 1 U(S)ART 5 5 2 2 5 5 2 2 1 1 2 2 (0-1) (0-1) (0-1) (0-1) 3/2 3/2 3/2 3/2 (0-2) / (1-2) (0-2) / (1-2) (0-2) / (1-2) (0-2) / (1-2) CAN 2 2 2 2 2 2 USBFS 1 1 1 1 1 1 GPIO 51 51 51 51 80 80 EXMC - - - - 1 1 EXTI 16 16 16 16 16 16 Units 2 2 2 2 2 2 Channels 16 16 16 16 16 16 DAC 2 2 2 2 2 2 I2C SPI/I2S Package 1/- LQFP64 1/- LQFP100 8 GD32VF103 Datasheet Table 2-2. GD32VF103 devices features and peripheral list (QFN36, LQFP48) GD32VF103 Part Number Code area Flash (KB) Data area (KB) Total (KB) ADC Connectivity Timers SRAM (KB) TB T8 T6 T4 CB C8 C6 C4 128 64 32 16 128 64 32 16 0 0 0 0 0 0 0 0 128 64 32 16 128 64 32 16 32 20 10 6 32 20 10 6 General 4 4 2 2 4 4 2 2 timer(16-bit) (1-4) (1-4) (1-2) (1-2) (1-4) (1-4) (1-2) (1-2) Advanced 1 1 1 1 1 1 1 1 timer(16-bit) (0) (0) (0) (0) (0) (0) (0) (0) SysTick 1 1 1 1 1 1 1 1 Basic 2 2 2 2 2 2 2 2 timer(16-bit) (5-6) (5-6) (5-6) (5-6) (5-6) (5-6) (5-6) (5-6) Watchdog 2 2 2 2 2 2 2 2 RTC 1 1 1 1 1 1 1 1 U(S)ART 2 2 2 2 3 3 2 2 I2C 1 1 1 1 2 2 1 1 (0-1) (0-1) 3/2 3/2 1/- 1/- (0-2) / (1-2) (0-2) / (1-2) SPI/I2S 1/- 1/- 1/- 1/- CAN 2 2 2 2 2 2 2 2 USBFS 1 1 1 1 1 1 1 1 GPIO 26 26 26 26 37 37 37 37 EXMC - - - - - - - - EXTI 16 16 16 16 16 16 16 16 Units 2 2 2 2 2 2 2 2 Channels 10 10 10 10 10 10 10 10 DAC 2 2 2 2 2 2 2 2 Package QFN36 LQFP48 9 GD32VF103 Datasheet 2.2. Block diagram Figure 2-1. GD32VF103 block diagram JTAG ECLIC ICode DCode System RISC_V CPU Fmax:108MHz POR/ PDR Flash Memory Controller Ibus Flash Memory PLL F max : 108MHz Dbus FMC Master Master GP DMA1 Slave Master Slave EXMC CRC LDO 1.2V RCU AHB Peripherals Slave AHB Matrix GP DMA0 USB FS SRAM Controller AHB to APB Bridge2 IRC 8MHz SRAM HXTAL 3-25MHz AHB to APB Bridge1 Slave LVD Interrput request CAN0 USART0 Slave 12-bit SAR ADC Slave SPI0 WWDGT ADC0~1 TIMER1~3 EXTI SPI1~2 GPIOA USART1~2 GPIOB I2C0 Powered By V DDA GPIOE APB1: Fmax = 54MHZ GPIOD APB2: Fmax = 108MHz GPIOC Powered By VDDA I2C1 FWDGT RTC DAC TIMER0 TIMER4~6 UART3~4 CAN1 10 GD32VF103 Datasheet 2.3. Pinouts and pin assignment Figure 2-2. GD32VF103Vx LQFP100 pinouts PA14 PA15 PC10 PC11 PC12 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PB4 PB3 PB5 PB6 PB7 BOOT0 PB8 PB9 PE0 PE1 VSS_3 VDD_3 PE2 1 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 PE3 PE4 2 74 VSS_2 3 73 NC PE5 PE6 4 72 PA13 5 71 PA12 VBAT 6 PC13-TAMPER-RTC PC14-OSC32IN 7 70 69 PA10 8 68 PA9 PC15-OSC32OUT 9 67 PA8 VSS_5 10 66 PC9 VDD_5 11 65 PC8 64 PC7 63 PC6 14 62 PD15 OSCIN 12 GigaDevice GD32VF103Vx LQFP100 VDD_2 PA11 OSCOUT NRST PC0 13 15 61 PD14 PC1 16 60 PD13 PC2 PC3 17 59 PD12 18 58 PD11 VSSA 19 57 PD10 VREFVREF+ 20 56 PD9 21 55 PD8 VDDA 22 54 PB15 PA0-WKUP 23 53 PB14 PA1 24 52 PB13 PA2 25 51 PB12 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VSS_1 VDD_1 PB11 PB10 PE15 PE14 PE13 PE11 PE12 PE10 PE9 PE8 PE7 PB2 PB1 PC5 PB0 PA7 PC4 PA6 PA5 PA4 VDD_4 PA3 VSS_4 11 GD32VF103 Datasheet Figure 2-3. GD32VF103Rx LQFP64 pinouts PA14 PA15 PC10 PC11 PC12 PD2 PB3 PB4 PB5 PB6 PB7 BOOT0 PB8 PB9 VSS_3 VDD_3 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 VBAT 1 48 VDD_2 PC13-TAMPER-RTC 2 47 VSS_2 PC14-OSC32IN 3 46 PA13 PC15-OSC32OUT PD0-OSCIN 4 45 PA12 5 44 PA11 PD1 OSCOUT 6 43 PA10 42 PA9 NRST PC0 7 PC1 9 PC2 PC3 VSSA GigaDevice GD32VF103Rx LQFP64 41 PA8 40 PC9 10 39 PC8 11 38 PC7 12 37 PC6 VDDA 13 36 PB15 PA0-WKUP 14 35 PB14 PA1 15 34 PB13 PA2 16 33 PB12 8 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VSS_1 VDD_1 PB11 PB10 PB2 PB1 PC5 PB0 PA7 PC4 PA6 PA5 PA4 VDD_4 PA3 VSS_4 12 GD32VF103 Datasheet Figure 2-4. GD32VF103Cx LQFP48 pinouts PA14 PA15 PB3 PB4 PB5 PB6 PB7 BOOT0 PB8 PB9 VSS_3 VDD_3 48 47 46 45 44 43 42 41 40 39 38 37 VBAT 1 36 VDD_2 PC13-TAMPER-RTC 2 35 VSS_2 PC14-OSC32IN 3 34 PA13 PC15-OSC32OUT PD0-OSCIN 4 33 PA12 5 32 PA11 PD1-OSCOUT NRST VSSA 6 31 PA10 30 PA9 8 29 VDDA 9 28 PA8 PB15 PA0-WKUP 10 27 PB14 PA1 PA2 11 26 PB13 12 25 PB12 GigaDevice GD32VF103Cx LQFP48 7 13 14 15 16 17 18 19 20 21 22 23 24 VSS_1 PA15 PA14 VDD_1 PB11 PB10 PB2 PB1 PA7 PB0 PA6 PA5 PA4 PA3 Figure 2-5. GD32VF103Tx QFN36 pinouts PA1 PA2 PB3 PB4 PA0-WKUP PB5 VDDA PB6 OSCIN/PD0 OSCOUT/PD1 NRST VSSA PB7 BOOT0 VSS_3 VDD_3 36 35 34 33 32 31 30 29 28 1 27 2 26 VDD_2 3 25 PA13 24 5 GigaDevice GD32VF103Tx 23 QFN36 6 22 7 21 PA12 PA9 8 PA8 4 20 9 19 10 11 12 13 14 15 16 17 18 VSS_2 PA11 PA10 VDD_1 VSS_1 PB2 PB0 PB1 PA7 PA6 PA5 PA4 PA3 13 GD32VF103 Datasheet 2.4. Memory map Table 2-3. GD32VF103 memory map Pre-defined Regions Bus External device AHB Address Peripherals 0xA000 0000 - 0xA000 0FFF EXMC_SWREG 0x9000 0000 - 0x9FFF FFFF Reserved 0x7000 0000 - 0x8FFF FFFF Reserved External RAM EXMC 0x6000 0000 - 0x6FFF FFFF NOR/PSRAM/SRA M Peripheral AHB 0x5000 0000 - 0x5003 FFFF USBFS 0x4008 0000 - 0x4FFF FFFF Reserved 0x4004 0000 - 0x4007 FFFF Reserved 0x4002 BC00 - 0x4003 FFFF Reserved 0x4002 B000 - 0x4002 BBFF Reserved 0x4002 A000 - 0x4002 AFFF Reserved 0x4002 8000 - 0x4002 9FFF Reserved 0x4002 6800 - 0x4002 7FFF Reserved 0x4002 6400 - 0x4002 67FF Reserved 0x4002 6000 - 0x4002 63FF Reserved 0x4002 5000 - 0x4002 5FFF Reserved 0x4002 4000 - 0x4002 4FFF Reserved 0x4002 3C00 - 0x4002 3FFF Reserved 0x4002 3800 - 0x4002 3BFF Reserved 0x4002 3400 - 0x4002 37FF Reserved 0x4002 3000 - 0x4002 33FF CRC 0x4002 2C00 - 0x4002 2FFF Reserved 0x4002 2800 - 0x4002 2BFF Reserved 0x4002 2400 - 0x4002 27FF Reserved 0x4002 2000 - 0x4002 23FF FMC 0x4002 1C00 - 0x4002 1FFF Reserved 0x4002 1800 - 0x4002 1BFF Reserved 0x4002 1400 - 0x4002 17FF Reserved 0x4002 1000 - 0x4002 13FF RCU 0x4002 0C00 - 0x4002 0FFF Reserved 0x4002 0800 - 0x4002 0BFF Reserved 0x4002 0400 - 0x4002 07FF DMA1 0x4002 0000 - 0x4002 03FF DMA0 0x4001 8400 - 0x4001 FFFF Reserved 14 GD32VF103 Datasheet Pre-defined Regions Bus APB2 APB1 Address Peripherals 0x4001 8000 - 0x4001 83FF Reserved 0x4001 7C00 - 0x4001 7FFF Reserved 0x4001 7800 - 0x4001 7BFF Reserved 0x4001 7400 - 0x4001 77FF Reserved 0x4001 7000 - 0x4001 73FF Reserved 0x4001 6C00 - 0x4001 6FFF Reserved 0x4001 6800 - 0x4001 6BFF Reserved 0x4001 5C00 - 0x4001 67FF Reserved 0x4001 5800 - 0x4001 5BFF Reserved 0x4001 5400 - 0x4001 57FF Reserved 0x4001 5000 - 0x4001 53FF Reserved 0x4001 4C00 - 0x4001 4FFF Reserved 0x4001 4800 - 0x4001 4BFF Reserved 0x4001 4400 - 0x4001 47FF Reserved 0x4001 4000 - 0x4001 43FF Reserved 0x4001 3C00 - 0x4001 3FFF Reserved 0x4001 3800 - 0x4001 3BFF USART0 0x4001 3400 - 0x4001 37FF Reserved 0x4001 3000 - 0x4001 33FF SPI0 0x4001 2C00 - 0x4001 2FFF TIMER0 0x4001 2800 - 0x4001 2BFF ADC1 0x4001 2400 - 0x4001 27FF ADC0 0x4001 2000 - 0x4001 23FF Reserved 0x4001 1C00 - 0x4001 1FFF Reserved 0x4001 1800 - 0x4001 1BFF GPIOE 0x4001 1400 - 0x4001 17FF GPIOD 0x4001 1000 - 0x4001 13FF GPIOC 0x4001 0C00 - 0x4001 0FFF GPIOB 0x4001 0800 - 0x4001 0BFF GPIOA 0x4001 0400 - 0x4001 07FF EXTI 0x4001 0000 - 0x4001 03FF AFIO 0x4000 CC00 - 0x4000 FFFF Reserved 0x4000 C800 - 0x4000 CBFF Reserved 0x4000 C400 - 0x4000 C7FF Reserved 0x4000 C000 - 0x4000 C3FF Reserved 0x4000 8000 - 0x4000 BFFF Reserved 0x4000 7C00 - 0x4000 7FFF Reserved 0x4000 7800 - 0x4000 7BFF Reserved 0x4000 7400 - 0x4000 77FF DAC 0x4000 7000 - 0x4000 73FF PMU 15 GD32VF103 Datasheet Pre-defined Regions Bus Address Peripherals 0x4000 6C00 - 0x4000 6FFF BKP 0x4000 6800 - 0x4000 6BFF CAN1 0x4000 6400 - 0x4000 67FF CAN0 0x4000 6000 - 0x4000 63FF 0x4000 5C00 - 0x4000 5FFF SRAM Code AHB AHB Shared USB/CAN SRAM 512bytes USB device FS registers 0x4000 5800 - 0x4000 5BFF I2C1 0x4000 5400 - 0x4000 57FF I2C0 0x4000 5000 - 0x4000 53FF UART4 0x4000 4C00 - 0x4000 4FFF UART3 0x4000 4800 - 0x4000 4BFF USART2 0x4000 4400 - 0x4000 47FF USART1 0x4000 4000 - 0x4000 43FF Reserved 0x4000 3C00 - 0x4000 3FFF SPI2/I2S2 0x4000 3800 - 0x4000 3BFF SPI1/I2S1 0x4000 3400 - 0x4000 37FF Reserved 0x4000 3000 - 0x4000 33FF FWDGT 0x4000 2C00 - 0x4000 2FFF WWDGT 0x4000 2800 - 0x4000 2BFF RTC 0x4000 2400 - 0x4000 27FF Reserved 0x4000 2000 - 0x4000 23FF Reserved 0x4000 1C00 - 0x4000 1FFF Reserved 0x4000 1800 - 0x4000 1BFF Reserved 0x4000 1400 - 0x4000 17FF TIMER6 0x4000 1000 - 0x4000 13FF TIMER5 0x4000 0C00 - 0x4000 0FFF TIMER4 0x4000 0800 - 0x4000 0BFF TIMER3 0x4000 0400 - 0x4000 07FF TIMER2 0x4000 0000 - 0x4000 03FF TIMER1 0x2007 0000 - 0x3FFF FFFF Reserved 0x2006 0000 - 0x2006 FFFF Reserved 0x2003 0000 - 0x2005 FFFF Reserved 0x2002 0000 - 0x2002 FFFF Reserved 0x2001 C000 - 0x2001 FFFF Reserved 0x2001 8000 - 0x2001 BFFF Reserved 0x2000 0000 - 0x2001 7FFF SRAM 0x1FFF F810 - 0x1FFF FFFF Reserved 0x1FFF F800 - 0x1FFF F80F Option Bytes 0x1FFF B000 - 0x1FFF F7FF Boot loader 16 GD32VF103 Datasheet Pre-defined Regions Bus Address Peripherals 0x1FFF 7A10 - 0x1FFF AFFF Reserved 0x1FFF 7800 - 0x1FFF 7A0F Reserved 0x1FFF 0000 - 0x1FFF 77FF Reserved 0x1FFE C010 - 0x1FFE FFFF Reserved 0x1FFE C000 - 0x1FFE C00F Reserved 0x1001 0000 - 0x1FFE BFFF Reserved 0x1000 0000 - 0x1000 FFFF Reserved 0x083C 0000 - 0x0FFF FFFF Reserved 0x0830 0000 - 0x083B FFFF Reserved 0x0802 0000 - 0x082F FFFF Reserved 0x0800 0000 - 0x0801 FFFF Main Flash 0x0030 0000 - 0x07FF FFFF Reserved 0x0000 0000 - 0x002F FFFF Aliased to Main Flash or Boot loader 17 GD32VF103 Datasheet 2.5. Clock tree Figure 2-6. GD32VF103 clock tree (to FMC) USB OTG Prescaler ÷1,1.5,2,2.5 1 SCS[1:0] CK_FMC CK_IRC8M 8 MHz IRC8M 0 1 PLLSEL PREDV0 0 1 CK_USBFS (to USBFS) 00 /2 3-25 MHz HXTAL 48 MHz ×2,3,4 …,32 PLL CK_PLL 10 AHB Prescaler ÷1,2...512 CK_SYS 108 MHz max CK_AHB 108 MHz max CK_EXMC EXMC enable (to EXMC) HCLK 01 PLLMF AHB enable /1,2,3… 15,16 (to AHB bus,RISC-V core,SRAM,DMA) CK_CST Clock Monitor ÷4 (to RISC-V core SysTick) FCLK PREDV0SEL EXT1 to CK_OUT (free running clock) CK_HXTAL APB1 Prescaler ÷1,2,4,8,16 CK_APB1 PCLK1 to APB1 peripherals 54 MHz max Peripheral enable ×8..14,16, 20 PLL1 TIMER1,2,3,4,5,6 if(APB1 prescale =1)x1 else x 2 CK_PLL1 ×8..14,16, 20 PLL2 0 CK_PLL2 x2 CK_I2S 1 APB2 Prescaler ÷1,2,4,8,16 CK_RTC 01 (to RTC) 10 RTCSRC[1:0] 40 KHz IRC40K CK_OUT0 CK_APB2 PCLK2 to APB2 peripherals 108 MHz max Peripheral enable I2S1/2SEL PLL2MF 11 32.768 KHz LXTAL to TIMER1,2,3,4, 5,6 PLL1MF /1,2,3… 15,16 PREDV1 /128 CK_TIMERx TIMERx enable TIMER0 if(APB2 prescale =1)x1 else x 2 ADC Prescaler ÷2,4,6,8,12,1 6 CK_TIMERx TIMERx enable to TIMER0 CK_ADCx to ADC0,1 14 MHz max CK_FWDGT (to FWDGT) 00xx 0100 0101 0110 0111 1000 1001 1010 1011 NO CLK CK_SYS CK_IRC8M CK_HXTAL /2 CK_PLL CK_PLL1 /2 CK_PLL2 EXT1 CK_PLL2 CKOUT0SEL[3:0] Legend: HXTAL: High speed external clock LXTAL: Low speed external clock IRC8M: High speed internal clock IRC40K: Low speed internal clock 18 GD32VF103 Datasheet 2.6. Pin definitions 2.6.1. GD32VF103Vx LQFP100 pin definitions Table 2-4. GD32VF103Vx LQFP100 pin definitions Pin I/O Type(1) Level(2) 1 I/O 5VT PE3 2 I/O 5VT PE4 3 I/O 5VT PE5 4 I/O 5VT PE6 5 I/O 5VT VBAT 6 P Pin Name Pins PE2 PC13TAMPER- Functions description Default: PE2 Alternate: EXMC_A23 Default: PE3 Alternate: EXMC_A19 Default: PE4 Alternate: EXMC_A20 Default: PE5 Alternate: EXMC_A21 Default: PE6 Alternate: EXMC_A22 Default: VBAT Default: PC13 7 I/O 8 I/O 9 I/O VSS_5 10 P Default: VSS_5 VDD_5 11 P Default: VDD_5 OSCIN 12 I OSCOUT 13 O NRST 14 I/O PC0 15 I/O PC1 16 I/O PC2 17 I/O PC3 18 I/O VSSA 19 P RTC PC14OSC32IN PC15OSC32OUT Alternate: TAMPER-RTC Default: PC14 Alternate: OSC32IN Default: PC15 Alternate: OSC32OUT Default: OSCIN Remap: PD0 Default: OSCOUT Remap: PD1 Default: NRST Default: PC0 Alternate: ADC01_IN10 Default: PC1 Alternate: ADC01_IN11 Default: PC2 Alternate: ADC01_IN12 Default: PC3 Alternate: ADC01_IN13 Default: VSSA 19 GD32VF103 Datasheet Pin I/O Type(1) Level(2) Pin Name Pins Functions description VREF- 20 P Default: VREF- VREF+ 21 P Default: VREF+ VDDA 22 P Default: VDDA Default: PA0 PA0-WKUP 23 I/O Alternate: WKUP, USART1_CTS, ADC01_IN0, TIMER1_CH0 _ETI, TIMER4_CH0, Default: PA1 PA1 24 I/O Alternate: USART1_RTS, ADC01_IN1, TIMER1_CH1, TIMER4_CH1, Default: PA2 PA2 25 I/O Alternate: USART1_TX, ADC01_IN2, TIMER1_CH2, TIMER4_CH2 Default: PA3 PA3 26 I/O Alternate: USART1_RX, ADC01_IN3, TIMER1_CH3, TIMER4_CH3 VSS_4 27 P Default: VSS_4 VDD_4 28 P Default: VDD_4 Default: PA4 PA4 29 I/O Alternate: SPI0_NSS, USART1_CK, ADC01_IN4, DAC_OUT0 Remap: SPI2_NSS, I2S2_WS Default: PA5 PA5 30 I/O Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1 Default: PA6 PA6 31 I/O Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0 Remap: TIMER0_BRKIN Default: PA7 PA7 32 I/O Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1 Remap: TIMER0_CH0_ON PC4 33 I/O PC5 34 I/O Default: PC4 Alternate: ADC01_IN14 Default: PC5 Alternate: ADC01_IN15 Default: PB0 PB0 35 I/O Alternate: ADC01_IN8, TIMER2_CH2 Remap: TIMER0_CH1_ON 20 GD32VF103 Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Default: PB1 PB1 36 I/O Alternate: ADC01_IN9, TIMER2_CH3 Remap: TIMER0_CH2_ON PB2 37 I/O 5VT Default: PB2, BOOT1 Default: PE7 PE7 38 I/O 5VT Alternate: EXMC_D4 Remap: TIMER0_ETI Default: PE8 PE8 39 I/O 5VT Alternate: EXMC_D5 Remap: TIMER0_CH0_ON Default: PE9 PE9 40 I/O 5VT Alternate: EXMC_D6 Remap: TIMER0_CH0 Default: PE10 PE10 41 I/O 5VT Alternate: EXMC_D7 Remap: TIMER0_CH1_ON Default: PE11 PE11 42 I/O 5VT Alternate: EXMC_D8 Remap: TIMER0_CH1 Default: PE12 PE12 43 I/O 5VT Alternate: EXMC_D9 Remap: TIMER0_CH2_ON Default: PE13 PE13 44 I/O 5VT Alternate: EXMC_D10 Remap: TIMER0_CH2 Default: PE14 PE14 45 I/O 5VT Alternate: EXMC_D11 Remap: TIMER0_CH3 Default: PE15 PE15 46 I/O 5VT Alternate: EXMC_D12 Remap: TIMER0_BRKIN Default: PB10 PB10 47 I/O 5VT Alternate: I2C1_SCL, USART2_TX, Remap: TIMER1_CH2 Default: PB11 PB11 48 I/O 5VT Alternate: I2C1_SDA, USART2_RX Remap: TIMER1_CH3 VSS_1 49 P Default: VSS_1 VDD_1 50 P Default: VDD_1 21 GD32VF103 Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Default: PB12 PB12 51 I/O 5VT Alternate: SPI1_NSS, I2C1_SMBA, USART2_CK, TIMER0_BRKIN, I2S1_WS, CAN1_RX Default: PB13 PB13 52 I/O 5VT Alternate: SPI1_SCK, USART2_CTS, TIMER0_CH0_ON, I2S1_CK, CAN1_TX, Default: PB14 PB14 53 I/O 5VT Alternate: SPI1_MISO, USART2_RTS, TIMER0_CH1_ON Default: PB15 PB15 54 I/O 5VT Alternate: SPI1_MOSI, TIMER0_CH2_ON, I2S1_SD Default: PD8 PD8 55 I/O 5VT Alternate: EXMC_D13 Remap: USART2_TX Default: PD9 PD9 56 I/O 5VT Alternate: EXMC_D14 Remap: USART2_RX Default: PD10 PD10 57 I/O 5VT Alternate: EXMC_D15 Remap: USART2_CK Default: PD11 PD11 58 I/O 5VT Alternate: EXMC_A16/EXMC_CLE Remap: USART2_CTS Default: PD12 PD12 59 I/O 5VT Alternate: EXMC_A17/EXMC_ALE Remap: TIMER3_CH0, USART2_RTS Default: PD13 PD13 60 I/O 5VT Alternate: EXMC_A18 Remap: TIMER3_CH1 Default: PD14 PD14 61 I/O 5VT Alternate: EXMC_D0 Remap: TIMER3_CH2 Default: PD15 PD15 62 I/O 5VT Alternate: EXMC_D1 Remap: TIMER3_CH3 Default: PC6 PC6 63 I/O 5VT Alternate: I2S1_MCK Remap: TIMER2_CH0 22 GD32VF103 Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Default: PC7 PC7 64 I/O 5VT Alternate: I2S2_MCK Remap: TIMER2_CH1 PC8 65 I/O 5VT PC9 66 I/O 5VT Default: PC8 Remap: TIMER2_CH2 Default: PC9 Remap: TIMER2_CH3 Default: PA8 PA8 67 I/O 5VT Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, USBFS_SOF Default: PA9 PA9 68 I/O 5VT Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS Default: PA10 PA10 69 I/O 5VT Alternate: USART0_RX, TIMER0_CH2, USBFS_ID Default: PA11 PA11 70 I/O 5VT Alternate: USART0_CTS, CAN0_RX, USBFS_DM, TIMER0_CH3 Default: PA12 PA12 71 I/O 5VT Alternate: USART0_RTS, USBFS_DP, CAN0_TX, TIMER0_ETI I/O 5VT Default: JTMS PA13 72 NC 73 VSS_2 74 P Default: VSS_2 VDD_2 75 P Default: VDD_2 PA14 76 I/O Remap: PA13 - 5VT Default: JTCK Remap: PA14 Default: JTDI PA15 77 I/O 5VT Alternate: SPI2_NSS, I2S2_WS Remap: TIMER1_CH0_ETI, PA15, SPI0_NSS Default: PC10 PC10 78 I/O 5VT Alternate: UART3_TX Remap: USART2_TX, SPI2_SCK, I2S2_CK Default: PC11 PC11 79 I/O 5VT Alternate: UART3_RX Remap: USART2_RX, SPI2_MISO PC12 80 I/O 5VT Default: PC12 Alternate: UART4_TX 23 GD32VF103 Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Remap: USART2_CK, SPI2_MOSI, I2S2_SD Default: PD0 PD0 81 I/O 5VT Alternate: EXMC_D2 Remap: CAN0_RX Default: PD1 PD1 82 I/O 5VT Alternate: EXMC_D3 Remap: CAN0_TX PD2 83 I/O 5VT PD3 84 I/O 5VT Default: PD2 Alternate: TIMER2_ETI, UART4_RX Default: PD3 Remap: USART1_CTS Default: PD4 PD4 85 I/O 5VT Alternate: EXMC_NOE Remap: USART1_RTS Default: PD5 PD5 86 I/O 5VT Alternate: EXMC_NWE Remap: USART1_TX Default: PD6 PD6 87 I/O 5VT Alternate: EXMC_NWAIT Remap: USART1_RX Default: PD7 PD7 88 I/O 5VT Alternate: EXMC_NE0 Remap: USART1_CK Default: JTDO PB3 89 I/O 5VT Alternate:SPI2_SCK, I2S2_CK Remap: PB3, TIMER1_CH1, SPI0_SCK Default: NJTRST PB4 90 I/O 5VT Alternate: SPI2_MISO Remap: TIMER2_CH0, PB4, SPI0_MISO Default: PB5 PB5 91 Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD I/O Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX Default: PB6 PB6 92 I/O 5VT Alternate: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX, CAN1_TX Default: PB7 PB7 93 I/O 5VT Alternate: I2C0_SDA , TIMER3_CH1, EXMC_NADV 24 GD32VF103 Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Remap: USART0_RX BOOT0 94 I Default: BOOT0 Default: PB8 PB8 95 I/O 5VT Alternate: TIMER3_CH2 Remap: I2C0_SCL, CAN0_RX Default: PB9 PB9 96 I/O 5VT Alternate: TIMER3_CH3 Remap: I2C0_SDA, CAN0_TX Default: PE0 PE0 97 I/O 5VT PE1 98 I/O 5VT VSS_3 99 P Default: VSS_3 VDD_3 100 P Default: VDD_3 Alternate: TIMER3_ETI, EXMC_NBL0 Default: PE1 Alternate: EXMC_NBL1 Notes: (1) Type: I = input, O = output, P = power. (2) I/O Level: 5VT = 5 V tolerant. 25 GD32VF103 Datasheet 2.6.2. GD32VF103Rx LQFP64 pin definitions Table 2-5. GD32VF103Rx LQFP64 pin definitions Pin I/O Type(1) Level(2) Pin Name Pins VBAT 1 P 2 I/O 3 I/O 4 I/O OSCIN 5 I OSCOUT 6 O NRST 7 I/O PC0 8 I/O PC1 9 I/O PC2 10 I/O PC3 11 I/O VSSA 12 P Default: VSSA VDDA 13 P Default: VDDA PA0-WKUP 14 I/O PC13TAMPER-RTC PC14OSC32IN PC15OSC32OUT Functions description Default: VBAT Default: PC13 Alternate: TAMPER-RTC Default: PC14 Alternate: OSC32IN Default: PC15 Alternate: OSC32OUT Default: OSCIN Remap: PD0 Default: OSCOUT Remap: PD1 Default: NRST Default: PC0 Alternate: ADC01_IN10 Default: PC1 Alternate: ADC01_IN11 Default: PC2 Alternate: ADC01_IN12 Default: PC3 Alternate: ADC01_IN13 Default: PA0 Alternate: WKUP, USART1_CTS, ADC01_IN0, TIMER1_CH0 _ETI, TIMER4_CH0(3) Default: PA1 PA1 15 I/O Alternate: USART1_RTS, ADC01_IN1, TIMER1_CH1, TIMER4_CH1(3) Default: PA2 PA2 16 I/O Alternate: USART1_TX, ADC01_IN2, TIMER1_CH2, TIMER4_CH2(3) Default: PA3 PA3 17 I/O Alternate: USART1_RX, ADC01_IN3, TIMER1_CH3, TIMER4_CH3(3) VSS_4 18 P Default: VSS_4 VDD_4 19 P Default: VDD_4 26 GD32VF103 Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Default: PA4 PA4 20 Alternate: SPI0_NSS, USART1_CK, ADC01_IN4, I/O DAC_OUT0 Remap:SPI2_NSS(3), I2S2_WS(3) PA5 21 Default: PA5 I/O Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1 Default: PA6 PA6 22 I/O Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0 Remap: TIMER0_BRKIN Default: PA7 PA7 23 I/O Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1 Remap: TIMER0_CH0_ON PC4 24 I/O PC5 25 I/O Default: PC4 Alternate: ADC01_IN14 Default: PC5 Alternate: ADC01_IN15 Default: PB0 PB0 26 I/O Alternate: ADC01_IN8, TIMER2_CH2, Remap: TIMER0_CH1_ON Default: PB1 PB1 27 I/O Alternate: ADC01_IN9, TIMER2_CH3, Remap: TIMER0_CH2_ON PB2 28 I/O 5VT Default: PB2, BOOT1 Default: PB10 PB10 29 I/O 5VT Alternate: I2C1_SCL(3), USART2_TX(3), Remap: TIMER1_CH2 Default: PB11 PB11 30 I/O 5VT Alternate: I2C1_SDA(3), USART2_RX(3), Remap: TIMER1_CH3 VSS_1 31 P Default: VSS_1 VDD_1 32 P Default: VDD_1 Default: PB12 PB12 33 I/O 5VT Alternate: SPI1_NSS(3), I2C1_SMBA(3), USART2_CK(3), TIMER0_BRKIN, I2S1_WS(3), CAN1_RX Default: PB13 PB13 34 I/O 5VT Alternate: SPI1_SCK(3), USART2_CTS(3), TIMER0_CH0_ON, I2S1_CK(3), CAN1_TX PB14 35 I/O 5VT Default: PB14 Alternate: SPI1_MISO(3), USART2_RTS(3), 27 GD32VF103 Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description TIMER0_CH1_ON Default: PB15 PB15 36 I/O 5VT Alternate: SPI1_MOSI(3), TIMER0_CH2_ON, I2S1_SD(3) Default: PC6 PC6 37 I/O 5VT Alternate: I2S1_MCK(3) Remap: TIMER2_CH0 Default: PC7 PC7 38 I/O 5VT Alternate: I2S2_MCK(3) Remap: TIMER2_CH1 PC8 39 I/O 5VT PC9 40 I/O 5VT Default: PC8 Remap: TIMER2_CH2 Default: PC9 Remap: TIMER2_CH3 Default: PA8 PA8 41 I/O 5VT Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, USBFS_SOF Default: PA9 PA9 42 I/O 5VT Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS PA10 43 I/O 5VT Default: PA10 Alternate: USART0_RX, TIMER0_CH2, USBFS_ID Default: PA11 PA11 44 I/O 5VT Alternate: USART0_CTS, CAN0_RX, USBFS_DM, TIMER0_CH3 Default: PA12 PA12 45 I/O 5VT Alternate: USART0_RTS, USBFS_DP, CAN0_TX, TIMER0_ETI 5VT Default: JTMS PA13 46 I/O VSS_2 47 P Default: VSS_2 VDD_2 48 P Default: VDD_2 PA14 49 I/O 5VT Remap: PA13 Default: JTCK Remap: PA14 Default: JTDI PA15 50 I/O 5VT Alternate: SPI2_NSS(3), I2S2_WS(3) Remap: TIMER1_CH0 _ETI, PA15, SPI0_NSS Default: PC10 PC10 51 I/O 5VT Alternate: UART3_TX(3) Remap: USART2_TX(3), SPI2_SCK(3), I2S2_CK(3) 28 GD32VF103 Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Default: PC11 PC11 52 I/O 5VT Alternate: UART3_RX(3) Remap: USART2_RX(3), SPI2_MISO(3) Default: PC12 PC12 53 I/O 5VT Alternate: UART4_TX(3) Remap: USART2_CK(3), SPI2_MOSI(3), I2S2_SD(3) PD2 54 I/O 5VT Default: PD2 Alternate: TIMER2_ETI, UART4_RX(3) Default: JTDO PB3 55 I/O 5VT Alternate:SPI2_SCK(3), I2S2_CK(3) Remap: PB3, TIMER1_CH1, SPI0_SCK Default: NJTRST PB4 56 I/O 5VT Alternate: SPI2_MISO(3) Remap: TIMER2_CH0, PB4, SPI0_MISO Default: PB5 PB5 57 Alternate: I2C0_SMBA, SPI2_MOSI(3), I2S2_SD(3) I/O Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX Default: PB6 PB6 58 I/O 5VT Alternate: I2C0_SCL, TIMER3_CH0(3) Remap: USART0_TX, CAN1_TX Default: PB7 PB7 59 I/O 5VT Alternate: I2C0_SDA , TIMER3_CH1(3) Remap: USART0_RX BOOT0 60 I Default: BOOT0 Default: PB8 PB8 61 I/O 5VT Alternate: TIMER3_CH2(3) Remap: I2C0_SCL, CAN0_RX Default: PB9 PB9 62 I/O 5VT Alternate: TIMER3_CH3(3) Remap: I2C0_SDA, CAN0_TX VSS_3 63 P Default: VSS_3 VDD_3 64 P Default: VDD_3 Notes: (1) Type: I = input, O = output, P = power. (2) I/O Level: 5VT = 5 V tolerant. (3) Functions are available in GD32VF103R8/B devices. 29 GD32VF103 Datasheet 2.6.3. GD32VF103Cx LQFP48 pin definitions Table 2-6. GD32VF103Cx LQFP48 pin definitions Pin I/O Type(1) Level(2) Pin Name Pins VBAT 1 P 2 I/O 3 I/O 4 I/O OSCIN 5 I OSCOUT 6 O NRST 7 I/O VSSA 8 P Default: VSSA VDDA 9 P Default: VDDA PC13TAMPERRTC PC14OSC32IN PC15OSC32OUT Functions description Default: VBAT Default: PC13 Alternate: TAMPER-RTC Default: PC14 Alternate: OSC32IN Default: PC15 Alternate: OSC32OUT Default: OSCIN Remap: PD0 Default: OSCOUT Remap: PD1 Default: NRST Default: PA0 PA0-WKUP 10 I/O Alternate: WKUP, USART1_CTS, ADC01_IN0, TIMER1_CH0_ETI, TIMER4_CH0(3) Default: PA1 PA1 11 I/O Alternate: USART1_RTS, ADC01_IN1, TIMER4_CH1(3) ,TIMER1_CH1 Default: PA2 PA2 12 I/O Alternate: USART1_TX, TIMER4_CH2(3),ADC01_IN2, TIMER1_CH2 Default: PA3 PA3 13 I/O Alternate: USART1_RX, TIMER4_CH3(3), ADC01_IN3, TIMER1_CH3 Default: PA4 PA4 14 I/O Alternate: SPI0_NSS, USART1_CK, ADC01_IN4 DAC_OUT0 Remap: SPI2_NSS(3),I2S2_WS(3) PA5 15 I/O PA6 16 I/O Default: PA5 Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1 Default: PA6 30 GD32VF103 Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0 Remap: TIMER0_BRKIN Default: PA7 PA7 17 I/O Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1 Remap: TIMER0_CH0_ON Default: PB0 PB0 18 I/O Alternate: ADC01_IN8, TIMER2_CH2 Remap: TIMER0_CH1_ON Default: PB1 PB1 19 I/O Alternate: ADC01_IN9, TIMER2_CH3 Remap: TIMER0_CH2_ON PB2 20 I/O 5VT Default: PB2, BOOT1 Default: PB10 PB10 21 I/O 5VT Alternate: I2C1_SCL(3), USART2_TX(3) Remap: TIMER1_CH2 Default: PB11 PB11 22 I/O 5VT Alternate: I2C1_SDA(3), USART2_RX(3) Remap: TIMER1_CH3 VSS_1 23 P Default: VSS_1 VDD_1 24 P Default: VDD_1 Default: PB12 PB12 25 I/O 5VT Alternate: SPI1_NSS(3), I2S1_WS(3), I2C1_SMBA(3), USART2_CK(3), TIMER0_BRKIN, CAN1_RX Default: PB13 PB13 26 I/O 5VT Alternate: SPI1_SCK(3), I2S1_CK(3), USART2_CTS(3), TIMER0_CH0_ON, CAN1_TX Default: PB14 PB14 27 I/O 5VT Alternate: SPI1_MISO(3), USART2_RTS(3), TIMER0_CH1_ON PB15 28 I/O 5VT Default: PB15 Alternate: SPI1_MOSI(3), TIMER0_CH2_ON, I2S1_SD(3) Default: PA8 PA8 29 I/O 5VT Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, USBFS_SOF PA9 30 I/O 5VT PA10 31 I/O 5VT PA11 32 I/O 5VT Default: PA9 Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS Default: PA10 Alternate: USART0_RX, TIMER0_CH2, USBFS_ID Default: PA11 Alternate: USART0_CTS, CAN0_RX, TIMER0_CH3, 31 GD32VF103 Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description USBFS_DM Default: PA12 PA12 33 I/O 5VT Alternate: USART0_RTS, CAN0_TX, TIMER0_ETI, USBFS_DP 5VT Default: JTMS PA13 34 I/O VSS_2 35 P Default: VSS_2 VDD_2 36 P Default: VDD_2 PA14 37 I/O 5VT Remap: PA13 Default: JTCK Remap: PA14 Default: JTDI PA15 38 I/O 5VT Alternate:SPI2_NSS(3), I2S2_WS(3) Remap: TIMER1_CH0 _ETI, PA15, SPI0_NSS Default: JTDO PB3 39 I/O 5VT Alternate:SPI2_SCK(3),I2S2_CK(3) Remap: PB3, TIMER1_CH1, SPI0_SCK Default: NJTRST PB4 40 I/O 5VT Alternate:SPI2_MISO(3) Remap: TIMER2_CH0, PB4, SPI0_MISO Default: PB5 PB5 41 Alternate: I2C0_SMBA ,SP12_MOSI(3), I2S2_SD(3) I/O Remap: TIMER2_CH1, SPI0_MOSI,CAN1_RX Default: PB6 PB6 42 I/O 5VT Alternate: I2C0_SCL, TIMER3_CH0(3) Remap: USART0_TX,CAN1_TX Default: PB7 PB7 43 I/O 5VT Alternate: I2C0_SDA , TIMER3_CH1(3) Remap: USART0_RX BOOT0 44 I Default: BOOT0 Default: PB8 PB8 45 I/O 5VT Alternate: TIMER3_CH2(3) Remap: I2C0_SCL, CAN0_RX Default: PB9 PB9 46 I/O 5VT Alternate: TIMER3_CH3(3) Remap: I2C0_SDA, CAN0_TX VSS_3 47 P Default: VSS_3 VDD_3 48 P Default: VDD_3 Notes: (1) Type: I = input, O = output, P = power. (2) I/O Level: 5VT = 5 V tolerant. 32 GD32VF103 Datasheet (3) Functions are available in GD32VF103C8/B devices. 33 GD32VF103 Datasheet 2.6.4. GD32VF103Tx QFN36 pin definitions Table 2-7. GD32VF103Tx QFN36 pin definitions Pin I/O Type(1) Level(2) Pin Name Pins Functions description OSCIN 2 I OSCOUT 3 O NRST 4 I/O VSSA 5 P Default: VSSA VDDA 6 P Default: VDDA Default: OSCIN Remap: PD0 Default: OSCOUT Remap: PD1 Default: NRST Default: PA0 PA0-WKUP 7 I/O Alternate: WKUP, USART1_CTS, ADC01_IN0, TIMER1_CH0_ETI,TIMER4_CH0(3) Default: PA1 PA1 8 I/O Alternate: USART1_RTS, ADC01_IN1, TIMER1_CH1, TIMER4_CH1(3) Default: PA2 PA2 9 I/O Alternate: USART1_TX, ADC01_IN2, TIMER1_CH2, TIMER4_CH2(3) Default: PA3 PA3 10 I/O Alternate: USART1_RX, ADC01_IN3, TIMER1_CH3, TIMER4_CH3(3) Default: PA4 PA4 11 I/O Alternate: SPI0_NSS, USART1_CK, ADC01_IN4, DAC_OUT0 PA5 12 I/O Default: PA5 Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1 Default: PA6 PA6 13 I/O Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0 Remap: TIMER0_BRKIN Default: PA7 PA7 14 I/O Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1 Remap: TIMER0_CH0_ON Default: PB0 PB0 15 I/O Alternate: ADC01_IN8, TIMER2_CH2 Remap: TIMER0_CH1_ON Default: PB1 PB1 16 I/O Alternate: ADC01_IN9, TIMER2_CH3 Remap: TIMER0_CH2_ON 34 GD32VF103 Datasheet Pin I/O Type(1) Level(2) 17 I/O 5VT VSS_1 18 P Default: VSS_1 VDD_1 19 P Default: VDD_1 Pin Name Pins PB2 Functions description Default: PB2,BOOT1 Default: PA8 PA8 20 I/O 5VT Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, USBFS_SOF PA9 21 I/O 5VT PA10 22 I/O 5VT Default: PA9 Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS Default: PA10 Alternate: USART0_RX, TIMER0_CH2, USBFS_ID Default: PA11 PA11 23 I/O 5VT Alternate: USART0_CTS, CAN0_RX, TIMER0_CH3, USBFS_DM Default: PA12 PA12 24 I/O 5VT Alternate: USART0_RTS, CAN0_TX, TIMER0_ETI, USBFS_DP 5VT Default: JTMS PA13 25 I/O VSS_2 26 P Default: VSS_2 VDD_2 27 P Default: VDD_2 PA14 28 I/O 5VT PA15 29 I/O 5VT PB3 30 I/O 5VT PB4 31 I/O 5VT Remap: PA13 Default: JTCK Remap: PA14 Default: JTDI Remap: TIMER1_CH0 _ETI, PA15, SPI0_NSS Default: JTDO Remap: PB3, TIMER1_CH1, SPI0_SCK Default: NJTRST Remap: TIMER2_CH0, PB4, SPI0_MISO Default: PB5 PB5 32 I/O Alternate: I2C0_SMBA Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX Default: PB6 PB6 33 I/O 5VT Alternate: I2C0_SCL, TIMER3_CH0(3) Remap: USART0_TX, CAN1_TX Default: PB7 PB7 34 I/O 5VT Alternate: I2C0_SDA , TIMER3_CH1(3) Remap: USART0_RX BOOT0 35 I Default: BOOT0 VSS_3 36 P Default: VSS_3 35 GD32VF103 Datasheet Pin Name Pins VDD_3 1 Pin I/O Type(1) Level(2) P Functions description Default: VDD_3 Notes: (1) Type: I = input, O = output, P = power. (2) I/O Level: 5VT = 5 V tolerant. (3) Functions are available in GD32VF103T8/B devices. 36 GD32VF103 Datasheet 3. Functional description 3.1. System and memory architecture The devices of GD32VF103 series are 32-bit general-purpose microcontrollers based on the 32bit RISC-V processor. The RISC-V processor includes three AHB buses known as I-Code, D-Code and System buses. All memory accesses of the RISC-V processor are executed on the three buses according to the different purposes and the target memory spaces. The memory organization uses a Harvard architecture, pre-defined memory map and up to 4 GB of memory space, making the system flexible and extendable. 3.2. On-chip memory  Up to 128 Kbytes of Flash memory  All memory region of the MCU executes instructions without waiting time  32 Kbytes of SRAM The RISC-V processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 128 Kbytes of inner Flash at most, which includes code Flash and data Flash, is available for storing programs and data, and there is no waiting time within code Flash area when CPU executes instructions. The Table 2-3. GD32VF103 memory map shows the memory map of the GD32VF103 series of devices, including code, SRAM, peripheral, and other pre-defined regions. 3.3. Clock, reset and supply management  Internal 8 MHz factory-trimmed RC and external 3 to 25 MHz crystal oscillator  Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator  Integrated system clock PLL  2.6 to 3.6 V application supply and I/Os  Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD) The Clock Control unit provides a range of frequencies and clock functions. These include an Internal 8M RC oscillator (IRC8M), a High Speed crystal oscillator (HXTAL), a Low Speed Internal 40K RC oscillator (IRC40K), a Low Speed crystal oscillator (LXTAL), a Phase Lock Loop (PLL), a HXTAL clock monitor, clock prescalers, clock multiplexers and clock gating circuitry. The frequency of AHB, APB2 and the APB1 domains can be configured by each prescaler. The maximum frequency of the AHB, APB2 and APB1 domains is 108 MHz/108 MHz/54 MHz. See Figure 2-6. GD32VF103 clock tree for details. GD32VF103 Reset Control includes the control of three kinds of reset: power reset, system 37 GD32VF103 Datasheet reset and backup domain reset. The system reset resets the processor core and peripheral IP components except for the JTAG-DP controller and the Backup domain. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from/down to 2.6 V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security. Power supply schemes:  VDD range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.  VDDA range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.  VBAT range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when VDD is not present. 3.4. Boot modes At startup, boot pins are used to select one of three boot options:  Boot from main flash memory (default)  Boot from system memory  Boot from on-chip SRAM The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10), USART1 (PD5 and PD6), USBFS in device mode (PA9, PA11 and PA12). It also can be used to transfer and update the Flash memory code, the data and the vector table sections. 38 GD32VF103 Datasheet 3.5. Power saving modes The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.  Sleep mode In sleep mode, only clock of core is off. All peripherals continue to operate and any interrupt/event can wake up the system.  Deep-sleep mode In deep-sleep mode, all clocks in the 1.2V domain are off, and all of IRC8M, HXTAL and PLLs are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm/ time stamp/ tamper, the LVD output, USB Wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.  Standby mode In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLLs are disabled. The contents of SRAM and registers (except Backup registers) are lost. There are four wakeup sources for the Standby mode, including the external reset from NRST pin, the RTC alarm/ time stamp/ tamper, the FWDGT reset, and the rising edge on WKUP pin. 3.6. Analog to digital converter (ADC)  12-bit SAR ADC engine with up to 1MSPS conversion rate  12-bit, 10-bit, 8-bit or 6-bit configurable resolution  Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit  Conversion range: VSSA to VDDA (2.6 to 3.6 V)  Temperature sensor Up to two 12-bit 1MSPS multi-channel ADCs are integrated in the device. Each is a total of up to 16 multiplexed external channels with 2 internal channels for temperature sensor and voltage reference measurement. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block of analog inputs also can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced usages. The ADCs can be triggered from the events generated by the general level 0 timers (TIMERx=1,2,3) and the advanced timers (TIMER0) with internal connection. The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2.6 V < VDDA < 3.6 V. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. 39 GD32VF103 Datasheet To ensure a high accuracy on ADC and DAC, the ADC/DAC independent external reference voltage should be connected to VREF+/VREF- pins. According to the different packages, VREF+ pin can be connected to VDDA pin, or external reference voltage, VREF- pin must be connected to VSSA pin. The VREF+ pin is only available on no less than 100-pin packages, or else the VREF+ pin is not available and internally connected to VDDA. The VREF- pin is only available on no less than 100-pin packages, or else the VREF- pin is not available and internally connected to VSSA. 3.7. Digital to analog converter (DAC)  Two 12-bit DAC converters of independent output channel  8-bit or 12-bit mode in conjunction with the DMA controller The two 12-bit buffered DAC channels are used to generate variable analog outputs. The DACs are designed with integrated resistor strings structure. The DAC channels can be triggered by the timer TRGO outputs or EXTI with DMA support. In dual DAC channel operation, conversions could be done independently or simultaneously. The maximum output value of the DAC is VREF+. 3.8. DMA  7 channel DMA0 controller and 5 channel DMA1 controller  Peripherals supported: TIMERs, ADC, SPIs, I2Cs, USARTs, DAC, I2S The direct memory access (DMA) controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable. 3.9. General-purpose inputs/outputs (GPIOs)  Up to 80 fast GPIOs, all mappable on 16 external interrupt lines  Analog input/output configurable  Alternate function input/output configurable There are up to 80 general purpose I/O pins (GPIO), named PA0 ~ PA15, PB0 ~ PB15, PC0 ~ PC15, PD0 ~ PD15, PE0 ~ PE15 for the device to implement logic input/output functions. Each GPIO port has related control and configuration registers to satisfy the requirements of specific applications. The external interrupt on the GPIO pins of the device have related control and configuration registers in the Interrupt/event Controller Unit (EXTI). The GPIO 40 GD32VF103 Datasheet ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the AF input or output pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), input, peripheral alternate function or analog mode. Each GPIO pin can be configured as pull-up, pull-down or no pullup/pull-down. All GPIOs are high-current capable except for analog mode. 3.10. Timers and PWM generation  Up to one 16-bit advanced timer (TIMER0), four 16-bit general timers(TIMERx=1,2,3,4), and two 16-bit basic timer (TIMER5 & TIMER6)  Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input  16-bit, motor control PWM advanced timer with programmable dead-time generation for output match  Encoder interface controller with two inputs using quadrature decoder  64-bit SysTick timer up counter  2 watchdog timers (Free watchdog timer and window watchdog timer) The advanced timer (TIMER0) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for  Input capture  Output compare  PWM generation (edge-aligned or center-aligned counting modes)  Single pulse mode output If configured as a general 16-bit timer, it can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features. The general timer, known as TIMERx=1,2,3,4 can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. The general timer also supports an encoder interface with two inputs using quadrature decoder. The basic timer, known as TIMER5 and TIMER6 are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base. The GD32VF103 have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy. The free watchdog timer includes a 12-bit down-counting counter and a 3-bit prescaler, it is clocked from an independent 40 KHz internal RC and as it operates independently of the 41 GD32VF103 Datasheet main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. The window watchdog timer is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode. The SysTick timer is dedicated for OS, but could also be used as a standard up counter. The features are shown below:  A 64-bit up counter  Maskable system interrupt generation when the counter and comparison values are equal  3.11. Programmable clock source Real time clock (RTC)  32-bit up-counter with a programmable 20-bit prescaler  Alarm function  Interrupt and wake-up event The real time clock is an independent timer which provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and an expected interrupt. The RTC features a 32-bit programmable counter for long-term measurement using the compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 KHz from external crystal oscillator. 3.12. Inter-integrated circuit (I2C)  Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 400 KHz  Provide arbitration function, optional PEC (packet error checking) generation and checking  Supports 7-bit and 10-bit addressing mode and general call addressing mode The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides transfer rate of up to 100 KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to 42 GD32VF103 Datasheet transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data. 43 GD32VF103 Datasheet 3.13. Serial peripheral interface (SPI)  Up to three SPI interfaces with a frequency of up to 27 MHz  Support both master and slave mode  Hardware CRC calculation and transmit automatic CRC error checking The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. 3.14. Universal synchronous asynchronous receiver transmitter (USART)  Up to three USARTs and two UARTs with operating frequency up to 6.75 MHz  Supports both asynchronous and clocked synchronous serial communication modes  IrDA SIR encoder and decoder support  LIN break generation and detection  USARTs support ISO 7816-3 compliant smart card interface The USART (USART0, USART1 and USART2) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication except UART4. 3.15. Inter-IC sound (I2S)  Two I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz  Support either master or slave mode The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32VF103 contain two I2S-bus interfaces that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1 and SPI2. The audio sampling frequency from 8 KHz to 192 KHz is supported with less than 0.5% accuracy error. 44 GD32VF103 Datasheet 3.16. Universal serial bus full-speed (USBFS)  One USB device/host/OTG full-speed Interface with frequency up to 12 Mbit/s  Internal main PLL for USB CLK compliantly The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device controller enables 12 Mbit/s data exchange with integrated transceivers in device/host/OTG mode. Full-speed peripheral is compliant with the USB 2.0 specification. Transaction formatting is performed by the hardware, including CRC generation and checking. The status of a completed USB transfer or error condition is indicated by status registers. An interrupt is also generated if enabled. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HXTAL crystal oscillator) and the operating frequency divided from APB1 should be 12 MHz above. 3.17. Controller area network (CAN)  Two CAN2.0B interface with communication frequency up to 1 Mbit/s  Internal main PLL for USB CLK compliantly Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three mailboxes for transmission and two FIFOs of three message deep for reception. It also provides 28 scalable/configurable identifier filter banks for selecting the incoming messages needed and discarding the others. 3.18. External memory controller (EXMC)  Supported external memory: SRAM, PSRAM, ROM and NOR-Flash  Up to 16-bit data bus  Support to interface with Motorola 6800 and Intel 8080 type LCD directly External memory controller (EXMC) is an abbreviation of external memory controller. It has one bank for external device support. The EXMC also can be configured to interface with the most common LCD module of Motorola 6800 and Intel 8080 series and reduce the system cost and complexity. 3.19. Debug mode  Support standard JTAG debugging interface and mature interactive debugging tool GDB  Support up to four hardware breakpoints 45 GD32VF103 Datasheet The RISC-V Core does not support trace debugging. Hardware breakpoints are mainly used to set breakpoints at read-only sections (such as Flash). 3.20. Package and operation temperature  LQFP100 (GD32VF103Vx), LQFP64 (GD32VF103Rx), LQFP48 (GD32VF103Cx), QFN36 (GD32VF103Tx)  Operation temperature range: -40°C to +85°C (industrial level) 46 GD32VF103 Datasheet 4. Electrical characteristics 4.1. Absolute maximum ratings The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. Table 4-1. Absolute maximum ratings(1)(4) Symbol VDD External voltage range(2) Min Max Unit VSS - 0.3 VSS + 3.6 V VDDA External analog supply voltage VSSA - 0.3 VSSA + 3.6 V VBAT External battery supply voltage VSS - 0.3 VSS + 3.6 V VSS - 0.3 VDD + 3.6 V Input voltage on other I/O VSS - 0.3 3.6 V |ΔVDDX| Variations between different VDD power pins — 50 mV |VSSX −VSS| Variations between different ground pins — 50 mV IIO Maximum current for GPIO pins — ±25 mA TA Operating temperature range -40 +85 °C Power dissipation at TA = 85°C of LQFP100 — 697 Power dissipation at TA = 85°C of LQFP64 — 647 Power dissipation at TA = 85°C of LQFP48 — 621 Power dissipation at TA = 85°C of QFN36 — 926 TSTG Storage temperature range -65 +150 °C TJ Maximum junction temperature — 125 °C VIN PD (1) (2) (3) (4) 4.2. Parameter Input voltage on 5V tolerant pin(3) mW Guaranteed by design, not tested in production. All main power and ground pins should be connected to an external power source within the allowable range. VIN maximum value cannot exceed 5.5 V. It is recommended that VDD and VDDA are powered by the same source. The maximum difference between VDD and VDDA does not exceed 300 mV during power-up and operation. Operating conditions characteristics Table 4-2. DC operating conditions Min(1) Typ Max(1) Unit Symbol Parameter Conditions VDD Supply voltage — 2.6 3.3 3.6 V VDDA Analog supply voltage Same as VDD 2.6 3.3 3.6 V VBAT Battery supply voltage — 1.8 — 3.6 V (1) Based on characterization, not tested in production. 47 GD32VF103 Datasheet Figure 4-1. Recommended power supply decoupling capacitors(1)(2) VBAT 100 nF VSS N * VDD 4.7 μF + N * 100 nF VSS VDDA 1 μF 10 nF VSSA VREF+ 1 μF (1) (2) 10 nF VREF- The VREF+ and VREF- pins are only available on no less than 100-pin packages, or else the VREF+ and VREF- pins are not available and internally connected to VDDA and VSSA pins. All decoupling capacitors need to be as close as possible to the pins on the PCB board. Table 4-3. Clock frequency(1) Symbol Parameter Conditions Min Max Unit fHCLK AHB clock frequency — — 108 MHz fAPB1 APB1 clock frequency — — 54 MHz fAPB2 APB2 clock frequency — — 108 MHz Min Max Unit 0 ∞ 20 ∞ (1) Guaranteed by design, not tested in production. Table 4-4. Operating conditions at Power up/ Power down(1) Symbol tVDD (1) Parameter Conditions VDD rise time rate — VDD fall time rate μs/V Guaranteed by design, not tested in production. Table 4-5. Start-up timings of Operating conditions (1)(2)(3) (1) (2) (3) Symbol Parameter tstart-up Start-up time Conditions Typ Clock source from HXTAL 132 Clock source from IRC8M 132 Unit ms Based on characterization, not tested in production. After power-up, the start-up time is the time between the rising edge of NRST high and the main function. PLL is off. Table 4-6. Power saving mode wakeup timings characteristics(1)(2) Symbol Parameter Typ tSleep Wakeup from Sleep mode 4.5 Wakeup from Deep-sleep mode(LDO On) 6.0 Wakeup from Deep-sleep mode(LDO in low power mode) 6.0 Wakeup from Standby mode 118.8 tDeep-sleep tStandby Unit μs ms 48 GD32VF103 Datasheet (1) (2) 4.3. Based on characterization, not tested in production. The wakeup time is measured from the wakeup event to the point at which the application code reads the first instruction under the below conditions: VDD = VDDA = 3.3 V, IRC8M = System clock = 8 MHz. Power consumption The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications. Table 4-7. Power consumption characteristics(2)(3)(4)(5) Symbol Parameter Conditions Min Typ(1) Max Unit VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 108 MHz, All peripherals — 35.00 — mA — 20.05 — mA — 32.30 — mA — 18.90 — mA — 23.50 — mA — 13.40 — mA — 16.60 — mA — 9.90 — mA — 13.10 — mA — 8.10 — mA — 9.80 — mA enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 108 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 96 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 96 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 72 MHz, All peripherals enabled IDD+IDDA Supply current VDD = VDDA = 3.3 V, HXTAL = 25 MHz, (Run mode) System clock = 72 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 48 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 48 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock =36 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 36 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 24 MHz, All peripherals 49 GD32VF103 Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 24 MHz, All peripherals — 6.50 — mA — 7.60 — mA — 5.30 — mA — 5.30 — mA — 4.10 — mA — 1.80 — mA — 1.30 — mA — 1.30 — mA — 1.00 — mA — 26.20 — mA — 11.35 — mA — 24.10 — mA — 10.70 — mA — 18.70 — mA disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 16 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 16 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 8 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 8 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 4 MHz, System clock = 4 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 4 MHz, System clock = 4 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 2 MHz, System clock = 2 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 2 MHz, System clock = 2 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 108 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 108 MHz, CPU clock off, Supply current (Sleep mode) All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 96 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 96 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, 50 GD32VF103 Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit System Clock = 72 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 72 MHz, CPU clock off, All — 8.70 — mA — 13.40 — mA — 6.70 — mA — 1.80 — mA — 5.70 — mA — 8.30 — mA — 4.90 — mA — 6.50 — mA — 4.30 — mA — 4.70 — mA — 3.60 — mA — 1.40 — mA — 0.90 — mA peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 48 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 48 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 36 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 36 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 24 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 24 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 16 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 16 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 8 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 8 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 4 MHz, System Clock = 4 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 4 MHz, System Clock = 4 MHz, CPU clock off, All peripherals disabled 51 GD32VF103 Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit VDD = VDDA = 3.3 V, HXTAL = 2 MHz, System Clock = 2 MHz, CPU clock off, All — 1.00 — mA — 0.70 — mA 2200 μA peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 2 MHz, System Clock = 2 MHz, CPU clock off, All peripherals disabled 460.0 VDD = VDDA = 3.3 V, LDO in normal power Supply current (Deep-Sleep mode) and normal driver mode, IRC40K off, RTC — 0 off, All GPIOs analog mode 427.5 VDD = VDDA = 3.3 V, LDO in normal power and low driver mode, IRC40K off, RTC off, — 0 2200 μA — 7.62 22 μA — 7.49 22 μA — 6.32 22 μA — 2.18 — μA — 2.10 — μA — 1.97 — μA All GPIOs analog mode VDD = VDDA = 3.3 V, LDO off, LXTAL off, IRC40K on, RTC on Supply current VDD = VDDA = 3.3 V, LDO off, LXTAL off, (Standby mode) IRC40K on, RTC off VDD = VDDA = 3.3 V, LDO off, LXTAL off, IRC40K off, RTC off VDD off, VDDA off, VBAT = 3.6 V, LXTAL on Battery supply IBAT current (Backup mode) with external crystal, RTC on VDD off, VDDA off, VBAT = 3.3 V, LXTAL on with external crystal, RTC on VDD off, VDDA off, VBAT = 2.6 V, LXTAL on with external crystal, RTC on (1) (2) (3) (4) (5) Based on characterization, not tested in production. Unless otherwise specified, all values given for TA = 25 °C and test result is mean value. When System Clock is less than 4 MHz, an external source is used, and the HXTAL bypass function is needed, no PLL. When System Clock is greater than 8 MHz, a crystal 8 MHz is used, and the HXTAL bypass function is closed, using PLL. When analog peripheral blocks such as ADCs, DACs, HXTAL, LXTAL, IRC8M, or IRC40K are ON, an additional power consumption should be considered. 52 GD32VF103 Datasheet Figure 4-2. Typical supply current consumption in Run mode Figure 4-3. Typical supply current consumption in Sleep mode 4.4. EMC characteristics EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in the Table 4-8. EMS characteristics, based on the EMS levels and classes compliant with IEC 61000 series standard. 53 GD32VF103 Datasheet Table 4-8. EMS characteristics Symbol VESD (1) Parameter Conditions Voltage applied to all device pins to induce a functional disturbance VDD = 3.3 V, TA = 25 °C LQFP100, fHCLK = 108 MHz (1) 4.5. 3A conforms to IEC 61000-4-2 Fast transient voltage burst applied to VFTB Level/Class VDD = 3.3 V, TA = 25 °C induce a functional disturbance through LQFP100, fHCLK = 108 MHz 100 pF on VDD and VSS pins conforms to IEC 61000-4-2 4A Based on characterization, not tested in production Power supply supervisor characteristics Table 4-9. Power supply supervisor characteristics Symbol VLVD(1) Parameter Conditions Min Typ Max LVDT = 000(rising edge) — 2.18 — LVDT = 000(falling edge) — 2.08 — LVDT = 001(rising edge) — 2.29 — LVDT = 001(falling edge) — 2.19 — LVDT = 010(rising edge) — 2.38 — LVDT = 010(falling edge) — 2.28 — LVDT = 011(rising edge) — 2.49 — Low voltage LVDT = 011(falling edge) — 2.38 — Detector level selection LVDT = 100(rising edge) — 2.58 — LVDT = 100(falling edge) — 2.48 — LVDT = 101(rising edge) — 2.68 — LVDT = 101(falling edge) — 2.58 — LVDT = 110(rising edge) — 2.78 — LVDT = 110(falling edge) — 2.68 — LVDT = 111(rising edge) — 2.88 — LVDT = 111(falling edge) — 2.78 — — — 100 — mV — 2.44 — V — 1.86 — V VLVDhyst(2) LVD hystersis VPOR(1) Power on reset threshold Unit V — VPDR(1) Power down reset 54 GD32VF103 Datasheet Symbol Parameter Conditions Min Typ Max Unit threshold VPDRhyst(2) PDR hysteresis — 600 — mV tRSTTEMPO(2) Reset temporization — 2 — ms (1) (2) 4.6. Based on characterization, not tested in production Guaranteed by design, not tested in production Electrical sensitivity The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up (LU) test is based on the two measurement methods. Table 4-10. ESD characteristics(1) Symbol VESD(HBM) VESD(CDM) (1) Parameter Conditions Electrostatic discharge TA = 25 °C; voltage (human body model) JESD22-A114 Electrostatic discharge TA = 25 °C; voltage (charge device model) JESD22-C101 Min Typ Max Unit — — 5000 V — — 500 V Min Typ Max Unit — — ±200 mA — — 5.4 V Based on characterization, not tested in production. Table 4-11. Static latch-up characteristics(1) Symbol Parameter Conditions I-test LU TA = 25 °C; JESD78 Vsupply over voltage (1) 4.7. Based on characterization, not tested in production. External clock characteristics Table 4-12. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics 55 GD32VF103 Datasheet Symbol fHXTAL RF (1) Parameter Conditions Min Typ Max Unit Crystal or ceramic frequency 2.6 V ≤ VDD ≤ 3.6 V 3 8 25 MHz Feedback resistor VDD = 3.3 V — 400 — kΩ — — 20 30 pF Crystal or ceramic duty cycle — 48 50 52 % Oscillator transconductance Startup — 35 — mA/V — 1.4 — mA — 1.8 — ms (2) Recommended matching CHXTAL (2)(3) capacitance on OSCIN and OSCOUT Ducy(HXTAL) (2) gm(2) IDDHXTAL (1) Crystal or ceramic operating VDD = 3.3 V, fHCLK = fIRC8M = 8 MHz current TA = 25 °C VDD = 3.3 V, fHCLK = tSUHXTAL (1) Crystal or ceramic startup time fIRC8M = 8 MHz TA = 25 °C (1) (2) (3) Based on characterization, not tested in production. Guaranteed by design, not tested in production. CHXTAL1 = CHXTAL2 = 2*(CLOAD - CS), For CHXTAL1 and CHXTAL2, it is recommended matching capacitance on OSCIN and OSCOUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For CS, it is PCB and MCU pin stray capacitance. Table 4-13. High speed external clock characteristics (HXTAL in bypass mode) Symbol Parameter fHXTAL_ext(1) External clock source or oscillator frequency Conditions Min Typ Max Unit VDD = 3.3 V 1 — 50 MHz 0.7 VDD — VDD V VSS — 0.3 VDD V OSCIN input pin high level VHXTALH(2) voltage VHXTALL(2) VDD = 3.3 V OSCIN input pin low level voltage tH/L(HXTAL) (2) OSCIN high or low time — 5 — — ns tR/F(HXTAL) (2) OSCIN rise or fall time — — — 10 ns OSCIN input capacitance — — 5 — pF Duty cycle — 40 — 60 % CIN(2) Ducy(HXTAL) (1) (2) (2) Based on characterization, not tested in production. Guaranteed by design, not tested in production. Table 4-14. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics Symbol fLXTAL (1) Parameter Conditions Min Typ Max Unit Crystal or ceramic frequency VDD = 3.3 V — 32.768 — kHz — — 10 20 pF — 48 50 52 % — 11 — μA/V — 1.97 — μA Recommended matching CLXTAL (2) (3) capacitance on OSC32IN and OSC32OUT Ducy(LXTAL) (2) gm(2) IDDLXTAL (1) Crystal or ceramic duty cycle Oscillator transconductance Crystal or ceramic operating current — 56 GD32VF103 Datasheet tSULXTAL (1) (2) (3) (4) (1) (4) Crystal or ceramic startup time — — 1.8 — s Based on characterization, not tested in production. Guaranteed by design, not tested in production. CLXTAL1 = CLXTAL2 = 2*(CLOAD - CS), For CLXTAL1 and CLXTAL2, it is recommended matching capacitance on OSC32IN and OSC32OUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For CS, it is PCB and MCU pin stray capacitance. tSULXTAL is the startup time measured from the moment it is enabled (by software) to the 32.768 kHz oscillator stabilization flags is SET. This value varies significantly with the crystal manufacturer. Table 4-15. Low speed external user clock characteristics (LXTAL in bypass mode) Symbol Parameter External clock source or oscillator fLXTAL_ext(1) frequency OSC32IN input pin high level VLXTALH(2) VLXTALL voltage tR/F(LXTAL) (2) CIN(2) Ducy(LXTAL) (1) (2) 4.8. (2) Typ Max Unit VDD = 3.3 V — 32.768 1000 kHz — 0.7 VDD — VDD — VSS — 0.3 VDD OSC32IN high or low time — 450 — — OSC32IN rise or fall time — — — 50 OSC32IN input capacitance — — 5 — pF Duty cycle — 30 50 70 % voltage tH/L(LXTAL) (2) Min V OSC32IN input pin low level (2) Conditions ns Based on characterization, not tested in production. Guaranteed by design, not tested in production. Internal clock characteristics Table 4-16. High speed internal clock (IRC8M) characteristics Symbol Parameter Conditions Min Typ Max Unit VDD = VDDA = 3.3 V — 8 — MHz -2.5 — +1.5 % -1.2 — +1.2 % VDD = VDDA = 3.3 V, TA = 25 °C -1 — +1 % — — 0.5 — % DucyIRC8M(2) IRC8M oscillator duty cycle VDD = VDDA = 3.3 V 48 50 52 % IRC8M oscillator operating VDD = VDDA = 3.3 V, current fHCLK = fHXTAL_PLL = 108 MHz — 80 — μA IRC8M oscillator startup VDD = VDDA = 3.3 V, time fHCLK = fHXTAL_PLL = 108 MHz — 2 — μs High Speed Internal fIRC8M Oscillator (IRC8M) frequency VDD = VDDA = 3.3 V, IRC8M oscillator Frequency accuracy, Factory-trimmed ACCIRC8M TA = -40°C ~ +85 °C(1) VDD = VDDA = 3.3 V, TA = 0°C ~ +85 °C(1) IRC8M oscillator Frequency accuracy, User trimming step(1) IDDAIRC8M(1) tSUIRC8M(1) 57 GD32VF103 Datasheet (1) (2) Based on characterization, not tested in production. Guaranteed by design, not tested in production. Table 4-17. Low speed internal clock (IRC40K) characteristics Symbol fIRC40K(1) IDDAIRC40K(2) tSUIRC40K(2) (1) (2) 4.9. Parameter Conditions Low Speed Internal oscillator VDD = VDDA = 3.3 V, (IRC40K) frequency TA = -40 °C ~ +85 °C IRC40K oscillator operating current IRC40K oscillator startup time Min Typ Max Unit 30 40 60 kHz — 2 — μA — 100 — μs VDD = VDDA = 3.3 V, fHCLK = fHXTAL_PLL = 108 MHz TA = 25 °C VDD = VDDA = 3.3 V, fHCLK = fHXTAL_PLL = 108 MHz TA = 25 °C Guaranteed by design, not tested in production. Based on characterization, not tested in production. PLL characteristics Table 4-18. PLL characteristics Symbol fPLLIN (1) fPLLOUT (2) fVCO(2) tLOCK(2) IDDA(1)(3) Parameter Conditions Min Typ Max Unit PLL input clock frequency — 1 — 25 MHz PLL output clock frequency — 16 — 108 MHz — 32 — — MHz — — — 400 μs VCO freq = 216 MHz — 906 — μA — 35 — PLL VCO output clock frequency PLL lock time Current consumption on VDDA Cycle to cycle Jitter JitterPLL(1)(4) (rms) Cycle to cycle Jitter System clock (peak to peak) (1) (2) (3) (4) ps — 371 — Based on characterization, not tested in production. Guaranteed by design, not tested in production. System clock = HXTAL = 8 MHz, fPLLOUT = 108 MHz. Value given with main PLL running. Table 4-19. PLL1/2 characteristics Symbol fPLLIN (1) fPLLOUT (2) Parameter Conditions Min Typ Max Unit PLL input clock frequency — 1 — 25 MHz PLL output clock frequency — 16 — 108 MHz fVCO(2) VCO output frequency — 32 — 216 MHz tLOCK(2) PLL lock time — — — 400 μs VCO freq = 216 MHz — 145 — μA IDDA(1)(3) Current consumption on VDDA 58 GD32VF103 Datasheet Cycle to cycle Jitter JitterPLL(1)(4) — (rms) 4.10. — System clock Cycle to cycle Jitter ps — (peak to peak) (1) (2) (3) (4) 35 371 — Based on characterization, not tested in production. Guaranteed by design, not tested in production. System clock = HXTAL = 8 MHz, fPLLOUT = 108 MHz. Value given with main PLL running Memory characteristics Table 4-20. Flash memory characteristics Symbol Parameter Conditions Min(1) Typ(1) Max(2) Unit Number of guaranteed PECYC program /erase cycles TA = -40 °C ~ +85 °C 100 — — kcycles before failure (Endurance) tRET Data retention time TA = 125 °C — 20 — years wtPROG Word programming time TA = -40 °C ~ +85 °C — 37.5 86 μs tERASE Page erase time TA = -40 °C ~ +85 °C — 45 300 ms tMERASE(128K) Mass erase time TA = -40 °C ~ +85 °C — 1 3.2 s Min Typ Max -0.5 — 0.3 VDD 0.7 VDD — VDD + 0.5 — 210 — mV — 40 — kΩ (1) (2) 4.11. Based on characterization, not tested in production. Guaranteed by design, not tested in production. NRST pin characteristics Table 4-21. NRST pin characteristics Symbol VIL(NRST) (1) VIH(NRST) Vhyst(1) Rpu (1) (2) (2) (1) Parameter NRST Input low level voltage NRST Input high level voltage Conditions 2.6 V ≤ VDD = VDDA ≤ Schmidt trigger Voltage hysteresis Pull-up equivalent resistor 3.6 V — Unit V Based on characterization, not tested in production. Guaranteed by design, not tested in production. 59 GD32VF103 Datasheet Figure 4-4. Recommended external NRST pin circuit VDD (1) VDD External reset circuit 10 kΩ RPU NRST K 100 nF GND (1) 4.12. Unless the voltage on NRST pin go below VIL(NRST) level, the device would not generate a reliable reset. GPIO characteristics Table 4-22. I/O port DC characteristics(1)(3) Symbol Parameter Conditions Min Typ Max Unit 2.6 V ≤ VDD = VDDA ≤ 3.6 V — — 0.3 VDD V 2.6 V ≤ VDD = VDDA ≤ 3.6 V — — 0.3 VDD V 2.6 V ≤ VDD = VDDA ≤ 3.6 V 0.7 VDD — — V 2.6 V ≤ VDD = VDDA ≤ 3.6 V 0.7 VDD — — V Low level output voltage VDD = 2.6 V — — 0.3 for each IO Pins VDD = 3.3 V — — 0.3 (IIO = +8 mA) VDD = 3.6 V — — 0.3 Low level output voltage VDD = 2.6 V — — 1 for each IO Pins VDD = 3.3 V — — 0.8 (IIO = +20 mA) VDD = 3.6 V — — 0.7 High level output voltage VDD = 2.6 V 2.3 — — for each IO Pins VDD = 3.3 V 3.0 — — (IIO = +8 mA) VDD = 3.6 V 3.3 — — High level output voltage VDD = 2.6 V 1.5 — — for each IO Pins VDD = 3.3 V 2.6 — — (IIO = +20 mA) VDD = 3.6 V 2.8 — — Standard IO Low level input VIL voltage 5V-tolerant IO Low level input voltage Standard IO High level VIH input voltage 5V-tolerant IO High level input voltage VOL VOL VOH VOH RPU(2) RPD(2) Internal pull-up All pins VIN = VSS — 40 — resistor PA10 — — 10 — Internal pull- All pins VIN = VDD — 40 — V V V V kΩ kΩ 60 GD32VF103 Datasheet down resistor (1) (2) (3) — PA10 — 10 — Based on characterization, not tested in production. Guaranteed by design, not tested in production. All pins except PC13 / PC14 / PC15. Since PC13 to PC15 are supplied through the Power Switch, which can only be obtained by a small current, the speed of GPIOs PC13 to PC15 should not exceed 2 MHz when they are in output mode(maximum load: 30 pF). Table 4-23. I/O port AC characteristics(1)(2) GPIOx_MDy[1:0] bit value(3) GPIOx_CTL->MDy[1:0] = 10 (IO_Speed = 2 MHz) GPIOx_CTL->MDy[1:0] = 01 (IO_Speed = 10 MHz) GPIOx_CTL->MDy[1:0] = 11 (IO_Speed = 50 MHz) Parameter Conditions Maximum frequency(4) Maximum frequency(4) Maximum frequency(4) Max Unit VDD =2.6 V, CL = 10 pF 6 VDD =2.6 V, CL = 30 pF 4 VDD =2.6 V, CL = 50 pF 2 VDD =3.3 V, CL = 10 pF 8 VDD =3.3 V, CL = 30 pF 6 VDD =3.3 V, CL = 50 pF 4 VDD =2.6 V, CL = 10 pF 16 VDD =2.6 V, CL = 30 pF 12 VDD =2.6 V, CL = 50 pF 10 VDD =3.3 V, CL = 10 pF 20 VDD =3.3 V, CL = 30 pF 16 VDD =3.3 V, CL = 50 pF 14 VDD =2.6 V, CL = 10 pF 108 VDD =2.6 V, CL = 30 pF 100 VDD =2.6 V, CL = 50 pF 72 VDD =3.3 V, CL = 10 pF 108 VDD =3.3 V, CL = 30 pF 100 VDD =3.3 V, CL = 50 pF 80 MHz MHz MHz Based on characterization, not tested in production. Unless otherwise specified, all test results given for TA = 25 ℃. The I/O speed is configured using the GPIOx_CTL -> MDy[1:0] bits. Refer to the GD32VF103xx user manual which is selected to set the GPIO port output speed. (4) The maximum frequency is defined in Figure 4-5 and maximum frequency cannot exceed 108 MHz. (1) (2) (3) Figure 4-5. I/O port AC characteristics definition 90% EXTERNAL OUTPU T ON 50pF 90% 50% 50% 10% tr(IO)out 10% tf(IO)out T If (tr + tf) ≤ 2/3 T, then maximum frequency is achieved . The duty cycle is (45%-55%)when loaded by 50 pF 61 GD32VF103 Datasheet 4.13. ADC characteristics Table 4-24. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA(1) Operating voltage — 2.6 3.3 3.6 V VIN(1) ADC input voltage range — 0 — VREF+ V fADC(1) ADC clock — 0.6 — 14 MHz 12-bit 0.04 — 1 10-bit 0.05 — 1.17 8-bit 0.06 — 1.4 6-bit 0.08 — 1.75 fS(1) Sampling rate VAIN(1) Analog input voltage 16 external; 2 internal 0 — VDDA V VREF+(2) Positive Reference Voltage — 2.4 — VDDA V — — VSSA — V See Equation 1 — — 320 kΩ — — — 0.55 kΩ — — 5.5 pF fADC = 14 MHz 0.1 — 17.1 μs 12-bit — 14 — 10-bit — 12 — 8-bit — 10 — 6-bit — 8 — — — — 1 VREF-(2) RAIN(2) RADC(2) Negative Reference Voltage External input impedance Input sampling switch resistance CADC(2) Input sampling capacitance ts(2) Sampling time No pin/pad capacitance included Total conversion tCONV(2) time(including sampling time) tSU(2) (1) (2) MSPS Startup time 1/ fADC μs Based on characterization, not tested in production. Guaranteed by design, not tested in production. Equation 1: RAIN max formula RAIN < Ts fADC *CADC *ln(2N+2 ) -RADC The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 4-25. ADC RAIN max for fADC = 14 MHz(1) Ts(cycles) ts(us) RAINmax (kΩ) 1.5 0.11 1.46 7.5 0.54 9.49 13.5 0.96 17.5 28.5 2.04 37.6 41.5 2.96 55 55.5 3.96 73.7 71.5 5.11 95 62 GD32VF103 Datasheet (1) 4.14. Ts(cycles) ts(us) RAINmax (kΩ) 239.5 17.11 320 Guaranteed by design, not tested in production. Temperature sensor characteristics Table 4-26. Temperature sensor characteristics(1) Symbol Parameter Min Typ Max Unit TL VSENSE linearity with temperature — ±1.5 — °C Avg_Slope Average slope — 4.1 — mV/°C V25 Voltage at 25 °C — 1.45 — V ADC sampling time when reading the temperature — 17.1 — μs tS_temp (1) (2) 4.15. (2) Based on characterization, not tested in production. Shortest sampling time can be determined in the application by multiple iterations. DAC characteristics Table 4-27. DAC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA(1) Operating voltage — 2.6 3.3 3.6 V VREF+(2) Positive Reference Voltage — 2.4 — VDDA V — — VSSA — V 5 — — kΩ — — 15 kΩ — — 50 pF — 0.2 — — V — — — — — 0.5 — — — — 470 — μA — 570 — μA VREF-(2) RLOAD(2) Ro(2) CLOAD(2) Negative Reference Voltage Load resistance Impedance output with buffer OFF Load capacitance DAC_OUT Lower DAC_OUT voltage min(2) with buffer ON DAC_OUT Higher DAC_OUT voltage (2) max with buffer ON DAC_OUT Lower DAC_OUT voltage min(2) with buffer OFF DAC_OUT Higher DAC_OUT voltage max(2) with buffer OFF Resistive load with buffer ON — No pin/pad capacitance included VDDA0.2 — VDDA1LSB V mV V With no load, middle IDDA(1) DAC current consumption in quiescent mode code(0x800) on the input, VREF+ = 3.6 V With no load, worst code(0xF1C) on the input, 63 GD32VF103 Datasheet Symbol Parameter Conditions Min Typ Max Unit — 90 — μA — 298 — μA DAC in 12-bit mode — — ±3 LSB VREF+ = 3.6 V With no load, middle code(0x800) on the input, IDDVREF+(1) DAC current consumption VREF+ = 3.6 V in quiescent mode With no load, worst code(0xF1C) on the input, VREF+ = 3.6 V DNL(1) error INL(1) Integral non-linearity DAC in 12-bit mode — — ±4 LSB Offset(1) Offset error DAC in 12-bit mode — — ±12 LSB GE(1) Gain error DAC in 12-bit mode — — ±0.5 % Tsetting(1) Settling time — 0.3 1 μs Twakeup(2) Wakeup from off state — 5 10 μs — — 4 MS/s 55 80 — dB Update rate(2) PSRR(2) (1) (2) 4.16. Differential non-linearity CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ — Max frequency for a correct DAC_OUT change from CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ code i to i ± 1 LSBs Power supply rejection — ratio (to VDDA) Based on characterization, not tested in production. Guaranteed by design, not tested in production. I2C characteristics Table 4-28. I2C characteristics(1)(2) Standard Symbol tSCL(H) Parameter SCL clock high time tSCL(L) SCL clock low time tsu(SDA) SDA setup time th(SDA) SDA data hold time tr(SDA/SCL) tf(SDA/SCL) th(STA) SDA and SCL rise time SDA and SCL fall time Start condition hold mode Conditions Fast mode Fast mode plus Unit Min Max Min Max Min Max — 4.0 — 0.6 — 0.2 — μs — 4.7 — 1.3 — 0.5 — μs 250 — 100 — 50 — ns 0(3) 3450 0 900 0 450 ns — — 1000 — 300 — 120 ns — — 300 — 300 — 120 ns — 4.0 — 0.6 — 0.26 — μs — — 64 GD32VF103 Datasheet Standard Symbol Parameter Conditions mode Fast mode Fast mode plus Unit Min Max Min Max Min Max — 4.7 — 0.6 — 0.26 — μs — 4.0 — 0.6 — 0.26 — μs — 4.7 — 1.3 — 0.5 — μs time Repeated Start ts(STA) condition setup time Stop condition ts(STO) setup time Stop to Start tbuff condition time (bus free) (1) (2) (3) Guaranteed by design, not tested in production. To ensure the standard mode I2C frequency, f PCLK1 must be at least 2 MHz. To ensure the fast mode I2C frequency, fPCLK1 must be at least 4 MHz. To ensure the fast mode plus I2C frequency, fPCLK1 must be at least a multiple of 10 MHz. The device should provide a data hold time of 300 ns at least in order to bridge the undefined region of the falling edge of SCL. Figure 4-6. I2C bus timing diagram tsu(STA) SDA 70% 30% tf(SDA) tr(SDA) tSCL(H) th(STA) SCL tbuff th(SDA) tsu(SDA) 70% 30% tSCL(L) 4.17. tr(SCL) tf(SCL) tsu(STO) SPI characteristics Table 4-29. Standard SPI characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency — — — 27 MHz tSCK(H) SCK clock high time 35 37 39 ns tSCK(L) SCK clock low time 35 37 39 ns Master mode, fPCLKx = 108 MHz, presc = 8 Master mode, fPCLKx = 108 MHz, presc = 8 SPI master mode tV(MO) Data output valid time — — 7 — ns tH(MO) Data output hold time — — 4 — ns 65 GD32VF103 Datasheet tSU(MI) Data input setup time — 1 — — ns tH(MI) Data input hold time — 0 — — ns SPI slave mode (1) tSU(NSS) NSS enable setup time fPCLK = 54 MHz 0 — — ns tH(NSS) NSS enable hold time fPCLK = 54 MHz 1 — — ns tA(SO) Data output access time — — 9 — ns tDIS(SO) Data output disable time — — 8 — ns tV(SO) Data output valid time — — 10 — ns tH(SO) Data output hold time — — 10 — ns tSU(SI) Data input setup time — 0 — — ns tH(SI) Data input hold time — 1 — — ns Based on characterization, not tested in production. Figure 4-7. SPI timing diagram - master mode tSCK SCK (CKPH=0 CKPL=0) SCK (CKPH=0 CKPL=1) SCK (CKPH=1 CKPL=0) tSCK(H) tSCK(L) SCK (CKPH=1 CKPL=1) tSU(MI) MISO D[0] LF=1,FF16=0 D[7] tH(MI) MOSI D[0] D[7] tV(MO) tH(MO) 66 GD32VF103 Datasheet Figure 4-8. SPI timing diagram - slave mode NSS tSCK tSU(NSS) SCK (CKPH=0 CKPL=0) tSCK(H) SCK (CKPH=0 CKPL=1) tSCK(L) tH(NSS) tH(SO) tDIS(SO) tV(SO) tA(SO) MISO D[0] D[7] tSU(SI) D[0] MOSI D[7] tH(SI) 4.18. I2S characteristics Table 4-30. I2S characteristics(1)(2) Symbol Parameter Conditions Master mode (data: 16 bits, fCK Clock frequency Audio frequency = 96 kHz) Slave mode Min 3.070 Typ Max 3.072 3.074 Unit MHz — 10 — — 162 — ns — 163 — ns tH Clock high time tL Clock low time tV(WS) WS valid time Master mode — 2 — ns tH(WS) WS hold time Master mode — 2 — ns tSU(WS) WS setup time Slave mode 0 — — ns tH(WS) WS hold time Slave mode 1 — — ns Slave mode — 50 — % Ducy(SCK) I2S slave input clock duty cycle — tSU(SD_MR) Data input setup time Master mode 3 — — ns tsu(SD_SR) Data input setup time Slave mode 0 — — ns Master receiver 0 — — ns Slave receiver 1 — — ns — 12 — ns — 10 — ns tH(SD_MR) tH(SD_SR) Data input hold time tV(SD_ST) Data output valid time tH(SD_ST) Data output hold time Slave transmitter (after enable edge) Slave transmitter 67 GD32VF103 Datasheet Symbol Parameter Conditions Min Typ Max Unit — 10 — ns — 7 — ns (after enable edge) tV(SD_MT) Data output valid time tH(SD_MT) Data output hold time (1) (2) Master transmitter (after enable edge) Master transmitter (after enable edge) Guaranteed by design, not tested in production. Based on characterization, not tested in production. Figure 4-9. I2S timing diagram - master mode tCK CPOL=0 tL CPOL=1 tV(WS) tH tH(WS) WS output tV(SD_MT) SD transmit SD receive tH(SD_MT) D[0] D[0] tSU(SD_MR) tH(SD_MR) 68 GD32VF103 Datasheet Figure 4-10. I2S timing diagram - slave mode tCK CPOL=0 tL CPOL=1 tH tH(WS) WS input tSU(WS) tH(SD_ST) tV(SD_ST) SD transmit D[0] SD receive D[0] tSU(SD_SR) tH(SD_SR) 4.19. USART characteristics Table 4-31. USART0 characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency fPCLKx = 108 MHz — — 54 MHz tSCK(H) SCK clock high time fPCLKx = 108 MHz 4.63 — — ns tSCK(L) SCK clock low time fPCLKx = 108 MHz 4.63 — — ns (1) Guaranteed by design, not tested in production. Table 4-32. USART1-2/UART3-4 characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency fPCLKx = 108 MHz — — 54 MHz tSCK(H) SCK clock high time fPCLKx = 108 MHz 9.26 — — ns tSCK(L) SCK clock low time fPCLKx = 108 MHz 9.26 — — ns (1) 4.20. Guaranteed by design, not tested in production. CAN characteristics Refer to Table 4-22. I/O port DC characteristics(1) for more details on the input/output alternate function characteristics (CANTX and CANRX). 69 GD32VF103 Datasheet 4.21. USBFS characteristics Table 4-33. USBFS start up time Symbol Parameter Max Unit tSTARTUP(1) USBFS startup time 1 μs (1) Guaranteed by design, not tested in production. Table 4-34. USBFS DC electrical characteristics Symbol Parameter Conditions Min Typ Max Unit VDD USBFS operating voltage — 3 — 3.6 V VDI Differential input sensitivity I(USBDP, USBDM) 0.2 — — VCM Differential common mode range Includes VDI range 0.8 — 2.5 VSE Single ended receiver threshold — 1.3 — 2.0 Input levels(1) Output VOL Static output level low RL of 1.55 kΩ to 3.3 V — 0.04 0.3 levels(2) VOH Static output level high RL of 21 kΩ to VSS 2.8 3.3 3.6 (1) (2) V V Guaranteed by design, not tested in production. Based on characterization, not tested in production. Table 4-35. USBFS electrical characteristics(1) (1) Symbol Parameter Conditions Min Typ Max Unit tR Rise time CL = 50 pF 4 — 20 ns tF Fall time CL = 50 pF 4 — 20 ns tRFM Rise / fall time matching tR / tF 90 — 110 % vCRS Output signal crossover voltage — 1.3 — 2.0 V Guaranteed by design, not tested in production. Figure 4-11. USBFS timings: definition of data signal rise and fall time Crossover points Differential data lines VCRS VSS tf 4.22. tr EXMC characteristics Table 4-36. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)(3) Symbol Parameter Min Max Unit tw(NE) EXMC_NE low time 64.1 66.1 ns tV(NOE_NE) EXMC_NEx low to EXMC_NOE low 26.9 — ns tw(NOE) EXMC_NOE low time 36.2 38.2 ns th(NE_NOE) EXMC_NOE high to EXMC_NE high hold time 0 — ns 70 GD32VF103 Datasheet tv(A_NE) EXMC_NEx low to EXMC_A valid 0 — ns tv(A_NOE) Address hold time after EXMC_NOE high 0 — ns tv(BL_NE) EXMC_NEx low to EXMC_BL valid 0 — ns th(BL_NOE) EXMC_BL hold time after EXMC_NOE high 0 — ns tsu(DATA_NE) Data to EXMC_NEx high setup time 37.2 — ns tsu(DATA_NOE) Data to EXMC_NOEx high setup time 37.2 — ns th(DATA_NOE) Data hold time after EXMC_NOE high 0 — ns th(DATA_NE) Data hold time after EXMC_NEx high 0 — ns tv(NADV_NE) EXMC_NEx low to EXMC_NADV low 0 — ns tw(NADV) EXMC_NADV low time 8.3 10.3 ns 8.3 10.3 ns Th(AD_NADV) (1) (2) (3) EXMC_AD(address) valid hold time after EXMC_NADV high CL = 30 pF. Guaranteed by design, not tested in production. Based on configure: fHCLK = 108 MHz, AddressSetupTime = 0, AddressHoldTime = 1, DataSetupTime = 1. Table 4-37. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)(3) Symbol Parameter Min Max Unit tw(NE) EXMC_NE low time 45.5 47.5 ns tV(NWE_NE) EXMC_NEx low to EXMC_NWE low 8.3 — ns tw(NWE) EXMC_NWE low time 26.9 28.9 ns th(NE_NWE) EXMC_NWE high to EXMC_NE high hold time 8.3 — ns tv(A_NE) EXMC_NEx low to EXMC_A valid 0 — ns tV(NADV_NE) EXMC_NEx low to EXMC_NADV low 0 — ns tw(NADV) EXMC_NADV low time 8.3 10.3 ns 8.3 — ns th(AD_NADV) EXMC_NADV high th(A_NWE) Address hold time after EXMC_NWE high 8.3 — ns th(BL_NWE) EXMC_BL hold time after EXMC_NWE high 8.3 — ns tv(BL_NE) EXMC_NEx low to EXMC_BL valid 0 — ns tv(DATA_NADV) EXMC_NADV high to DATA valid 8.3 — ns th(DATA_NWE) Data hold time after EXMC_NWE high 8.3 — ns (1) (2) (3) 4.23. EXMC_AD(address) valid hold time after CL = 30 pF. Guaranteed by design, not tested in production. Based on configure: fHCLK = 108 MHz, AddressSetupTime = 0, AddressHoldTime = 1, DataSetupTime = 1. TIMER characteristics Table 4-38. TIMER characteristics(1) Symbol Parameter tres Timer resolution time fEXT Timer external clock Conditions Min Max Unit — 1 — tTIMERxCLK fTIMERxCLK = 108 MHz 9.26 — ns — 0 fTIMERxCLK / 2 MHz 71 GD32VF103 Datasheet Symbol Parameter Conditions Min Max Unit frequency fTIMERxCLK = 108 MHz 0 54 MHz Timer resolution — — 16 bit 16-bit counter clock period — 1 65536 tTIMERxCLK 607 μs RES tCOUNTER when internal clock is selected tMAX_COUNT (1) 4.24. Maximum possible count fTIMERxCLK = 108 MHz 0.0093 — — fTIMERxCLK = 108 MHz — 65536x65536 tTIMERxCLK 39.8 s Guaranteed by design, not tested in production. WDGT characteristics Table 4-39. FWDGT min/max timeout period at 40 kHz (IRC40K)(1) Prescaler divider PR[2:0] bits 1/4 (1) Min timeout RLD[11:0] = Max timeout RLD[11:0] 0x000 = 0xFFF 000 0.025 409.525 1/8 001 0.025 819.025 1/16 010 0.025 1638.025 1/32 011 0.025 3276.025 1/64 100 0.025 6552.025 1/128 101 0.025 13104.025 1/256 110 or 111 0.025 26208.025 Unit ms Guaranteed by design, not tested in production. Table 4-40. WWDGT min/max timeout value at 54 MHz (fPCLK1)(1) PSC[1:0] 1/1 00 75.8 1/2 01 151.7 1/4 10 303.4 1/8 11 606.8 (1) 4.25. Min timeout value Prescaler divider CNT[6:0] = 0x40 Unit Max timeout value CNT[6:0] = 0x7F Unit 4.85 μs 9.7 19.4 ms 38.8 Guaranteed by design, not tested in production. Parameter conditions Unless otherwise specified, all values given for VDD = VDDA = 3.3 V, TA = 25 °C. 72 GD32VF103 Datasheet 5. Package information 5.1. LQFP100 package outline dimensions Figure 5-1. LQFP100 package outline A3 A2 A c θ A1 F eB D D1 51 75 0.25 50 76 L L1 DETAIL: F E1 E b b1 100 c1 c 26 BASE METAL 1 25 b e WITH PLATING B B SECTION B-B Table 5-1. LQFP100 package dimensions Symbol Min Typ Max A — — 1.60 A1 0.05 — 0.15 A2 1.35 1.40 1.45 A3 0.59 0.64 0.69 b 0.18 — 0.26 b1 0.17 0.20 0.23 c 0.13 — 0.17 c1 0.12 0.13 0.14 D 15.80 16.00 16.20 D1 13.90 14.00 14.10 E 15.80 16.00 16.20 E1 13.90 14.00 14.10 e — 0.50 — eB 15.05 — 15.35 L 0.45 — 0.75 L1 — 1.00 — θ 0° — 7° 73 GD32VF103 Datasheet (Original dimensions are in millimeters) Figure 5-2. LQFP100 recommended footprint 16.70 76 100 14.30 75 25 51 50 26 12.30 16.70 0.30 1 1.20 0.50 (Original dimensions are in millimeters) 74 GD32VF103 Datasheet 5.2. LQFP64 package outline dimensions Figure 5-3. LQFP64 package outline A3 A2 A θ c A1 F eB D D1 33 48 0.25 32 49 L L1 DETAIL: F E1 E b b1 c1 c BASE METAL 64 17 WITH PLATING 1 e b SECTION B-B 16 B B Table 5-2. LQFP64 package dimensions Symbol Min Typ Max A — — 1.60 A1 0.05 — 0.15 A2 1.35 1.40 1.45 A3 0.59 0.64 0.69 b 0.18 — 0.26 b1 0.17 0.20 0.23 c 0.13 — 0.17 c1 0.12 0.13 0.14 D 11.80 12.00 12.20 D1 9.90 10.00 10.10 E 11.80 12.00 12.20 E1 9.90 10.00 10.10 e — 0.50 — eB 11.25 — 11.45 L 0.45 — 0.75 L1 — 1.00 — θ 0° — 7° (Original dimensions are in millimeters) 75 GD32VF103 Datasheet Figure 5-4. LQFP64 recommended footprint 12.70 64 49 10.30 48 16 33 17 32 7.80 12.70 0.30 1 1.20 0.50 (Original dimensions are in millimeters) 76 GD32VF103 Datasheet LQFP48 package outline dimensions Figure 5-5. LQFP48 package outline A3 A2 A θ A1 c 5.3. F eB D D1 36 0.25 25 L 24 37 L1 DETAIL: F E1 E b b1 13 48 c1c BASE METAL WITH PLATING 1 12 b e SECTION B-B BB Table 5-3. LQFP48 package dimensions Symbol Min Typ Max A — — 1.60 A1 0.05 — 0.15 A2 1.35 1.40 1.45 A3 0.59 0.64 0.69 b 0.18 — 0.26 b1 0.17 0.20 0.23 c 0.13 — 0.17 c1 0.12 0.13 0.14 D 8.80 9.00 9.20 D1 6.90 7.00 7.10 E 8.80 9.00 9.20 E1 6.90 7.00 7.10 e — 0.50 — eB 8.10 — 8.25 L 0.45 — 0.75 L1 — 1.00 — θ 0° — 7° (Original dimensions are in millimeters) 77 GD32VF103 Datasheet Figure 5-6. LQFP48 recommended footprint 9.70 37 48 7.30 36 12 25 24 13 5.80 9.70 0.30 1 1.20 0.50 (Original dimensions are in millimeters) 78 GD32VF103 Datasheet QFN36 package outline dimensions Figure 5-7. QFN36 package outline Nd D2 D 36 36 1 1 h PIN 1# Laser Mark 2 e b1 b L1 L E2 Ne h E 2 EXPOSED THERMAL PAD ZONE TOP VIEW BOTTOM VIEW A1 A c 5.4. SIDE VIEW Table 5-4. QFN36 package dimensions Symbol Min Typ Max A 0.80 0.85 0.90 A1 0 0.02 0.05 b 0.18 0.23 0.30 b1 — 0.16 — c 0.18 0.20 0.23 D 5.90 6.00 6.10 D2 3.80 3.90 4.00 E 5.90 6.00 6.10 E2 3.80 3.90 4.00 e — 0.50 — h 0.30 0.35 0.40 L 0.50 0.55 0.60 L1 — 0.10 — Nd 3.95 4.00 4.05 Ne 3.95 4.00 4.05 (Original dimensions are in millimeters) 79 GD32VF103 Datasheet Figure 5-8. QFN36 recommended footprint 6.70 36 28 4.80 27 4.28 6.70 3.85 0.28 1 3.85 19 10 18 9 0.95 0.50 (Original dimensions are in millimeters) 80 GD32VF103 Datasheet 5.5. Thermal characteristics Thermal resistance is used to characterize the thermal performance of the package device, which is represented by the Greek letter “θ”. For semiconductor devices, thermal resistance represents the steady-state temperature rise of the chip junction due to the heat dissipated on the chip surface. θJA: Thermal resistance, junction-to-ambient. θJB: Thermal resistance, junction-to-board. θJC: Thermal resistance, junction-to-case. ᴪJB: Thermal characterization parameter, junction-to-board. ᴪJT: Thermal characterization parameter, junction-to-top center. θJA =(TJ -TA )/PD (5-1) θJB =(TJ -TB )/PD (5-2) θJC =(TJ -TC )/PD (5-3) Where, TJ = Junction temperature. TA = Ambient temperature TB = Board temperature TC = Case temperature which is monitoring on package surface PD = Total power dissipation θJA represents the resistance of the heat flows from the heating junction to ambient air. It is an indicator of package heat dissipation capability. Lower θJA can be considerate as better overall thermal performance. θJA is generally used to estimate junction temperature. θJB is used to measure the heat flow resistance between the chip surface and the PCB board. θJC represents the thermal resistance between the chip surface and the package top case. θJC is mainly used to estimate the heat dissipation of the system (using heat sink or other heat dissipation methods outside the device package). Table 5-5. Package thermal characteristics(1) Symbol θJA θJB Condition Natural convection, 2S2P PCB Cold plate, 2S2P PCB Package Value LQFP100 57.42 LQFP64 61.80 LQFP48 64.40 QFN36 43.20 LQFP100 31.68 LQFP64 42.83 Unit °C/W °C/W 81 GD32VF103 Datasheet Symbol θJC ᴪJB ᴪJT (1) Condition Cold plate, 2S2P PCB Natural convection, 2S2P PCB Natural convection, 2S2P PCB Package Value LQFP48 42.32 QFN36 16.51 LQFP100 13.85 LQFP64 21.98 LQFP48 22.47 QFN36 16.18 LQFP100 41.28 LQFP64 43.05 LQFP48 42.42 QFN36 16.64 LQFP100 0.75 LQFP64 1.58 LQFP48 1.74 QFN36 1.07 Unit °C/W °C/W °C/W Thermal characteristics are based on simulation, and meet JEDEC specification. 82 GD32VF103 Datasheet 6. Ordering information Table 6-1. Part ordering code for GD32VF103xx devices Ordering code Flash (KB) Package Package type GD32VF103VBT6 128 LQFP100 Green GD32VF103V8T6 64 LQFP100 Green GD32VF103RBT6 128 LQFP64 Green GD32VF103R8T6 64 LQFP64 Green GD32VF103R6T6 32 LQFP64 Green GD32VF103R4T6 16 LQFP64 Green GD32VF103CBT6 128 LQFP48 Green GD32VF103C8T6 64 LQFP48 Green GD32VF103C6T6 32 LQFP48 Green GD32VF103C4T6 16 LQFP48 Green GD32VF103TBU6 128 QFN36 Green GD32VF103T8U6 64 QFN36 Green GD32VF103T6U6 32 QFN36 Green GD32VF103T4U6 16 QFN36 Green Temperature operating range Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C 83 GD32VF103 Datasheet 7. Revision History Table 7-1. Revision history Revision No. Description Date 1.0 Initial Release Jun.5, 2019 1. 1.1 Clock tree modification, the factor for CK_CST changes from 8 to 4, refers to Clock tree. 2. Add I2C fast mode plus related information, refers to I2C Sep.16,2019 characteristics. 1. Chapter Electrical characteristics electrical characteristics update. 1.2 2. Chapter Package information package information update. 3. Feb.15,2020 Delete the PD0,PD1 remap to OSC pins information in packages no less than100 pins, refers to Pin definitions. 1. Chapter PLL characteristics modification. 2. Add description of VREF+ and VREF- connection in chapter Analog to digital converter (ADC). 1.3 3. Modify the LDO mode conditions in Power consumption. 4. Delete EXMC characteristics comments in chapter EXMC Dec.15,2020 characteristics. 5. TSTG range changes to -65°C~+150°C in Absolute maximum ratings. 1. 1.4 Add I2C, SPI, I2S timing diagrams, refers to I2C characteristics, SPI characteristics and I2S Mar.29,2021 characteristics. 1. Update SPI and I2S timing diagrams, refers to SPI characteristics and I2S characteristics. 2. 1.5 Update package information and ordering information, refers to Package information and Ordering Dec.14, 2021 information. 3. Modify WDGT characteristics, refers to WDGT characteristics. 1. Add PD parameter in Table 4-1. Absolute maximum ratings(1)(4) . 2. 1.6 Modify I2C timing diagrams, refers to I2C characteristics. 3. Modify LQFP64 package information, refer to LQFP64 Jun.7, 2022 package outline dimensions. 4. Update NRST external pin circuit, refer to Figure 4-4. Recommended external NRST pin circuit(1) 84 GD32VF103 Datasheet 5. EXMC related pin update, refer to Pin definitions. 85 GD32VF103 Datasheet Important Notice This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only. The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products. Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice. © 2022 GigaDevice – All rights reserved 86
GD32VF103TBU6 价格&库存

很抱歉,暂时无法提供与“GD32VF103TBU6”相匹配的价格&库存,您可以联系我们找货

免费人工找货