GigaDevice Semiconductor Inc.
GD32F190xx
ARM® Cortex®-M3 32-bit MCU
Datasheet
GD32F190xx
Table of Contents
List of Figures ............................................................................................................................. 3
List of Tables ............................................................................................................................... 4
1
General description ......................................................................................................... 5
2
Device overview ............................................................................................................... 6
2.1
Device information .............................................................................................................................. 6
2.2
Block diagram ...................................................................................................................................... 7
2.3
Pinouts and pin assignment .............................................................................................................. 8
2.4
Memory map ...................................................................................................................................... 10
2.5
Clock tree ........................................................................................................................................... 11
2.6
Pin definitions .................................................................................................................................... 12
Functional description .................................................................................................. 20
3
3.1
ARM® Cortex®-M3 core .................................................................................................................... 20
3.2
On-chip memory................................................................................................................................ 20
3.3
Clock, reset and supply management ........................................................................................... 21
3.4
Boot modes ........................................................................................................................................ 21
3.5
Power saving modes ........................................................................................................................ 22
3.6
Analog to digital converter (ADC) ................................................................................................... 22
3.7
Digital to analog converter (DAC) ................................................................................................... 23
3.8
DMA .................................................................................................................................................... 23
3.9
General-purpose inputs/outputs (GPIOs) ...................................................................................... 23
3.10
Timers and PWM generation........................................................................................................... 24
3.11
Real time clock (RTC) ...................................................................................................................... 25
3.12
Inter-integrated circuit (I2C) ............................................................................................................. 25
3.13
Serial peripheral interface (SPI)...................................................................................................... 26
3.14
Universal synchronous asynchronous receiver transmitter (USART) ....................................... 26
3.15
Inter-IC sound (I2S) .......................................................................................................................... 26
3.16
HDMI CEC ......................................................................................................................................... 27
3.17
Touch sensing interface (TSI) ......................................................................................................... 27
3.18
Comparators (CMP) ......................................................................................................................... 27
3.19
Operational amplifiers (OP-AMP) ................................................................................................... 27
3.20
LCD controller (LCD) ........................................................................................................................ 28
3.21
Controller area network (CAN) ........................................................................................................ 28
3.22
Debug mode ...................................................................................................................................... 28
3.23
Package and operation temperature.............................................................................................. 28
Electrical characteristics .............................................................................................. 29
4
4.1
Absolute maximum ratings .............................................................................................................. 29
4.2
Recommended DC characteristics ................................................................................................. 29
4.3
Power consumption .......................................................................................................................... 30
1 / 46
GD32F190xx
4.4
EMC characteristics .......................................................................................................................... 31
4.5
Power supply supervisor characteristics ....................................................................................... 31
4.6
Electrical sensitivity........................................................................................................................... 32
4.7
External clock characteristics .......................................................................................................... 32
4.8
Internal clock characteristics ........................................................................................................... 33
4.9
PLL characteristics ........................................................................................................................... 34
4.10
Memory characteristics .................................................................................................................... 34
4.11
GPIO characteristics......................................................................................................................... 35
4.12
ADC characteristics .......................................................................................................................... 36
4.13
DAC characteristics .......................................................................................................................... 37
4.14
SPI characteristics ............................................................................................................................ 38
4.15
I2C characteristics ............................................................................................................................ 38
4.16
USART characteristics ..................................................................................................................... 38
4.17
Operational amplifier characteristics .............................................................................................. 39
4.18
Comparators characteristics............................................................................................................ 40
Package information ..................................................................................................... 41
5
5.1
QFN package outline dimensions .................................................................................................. 41
5.2
LQFP package outline dimensions ................................................................................................ 42
6
Ordering Information ..................................................................................................... 44
7
Revision History............................................................................................................. 45
2 / 46
GD32F190xx
List of Figures
Figure 1. GD32F190xx block diagram ...................................................................................................................... 7
Figure 2. GD32F190Rx LQFP64 pinouts ................................................................................................................. 8
Figure 3. GD32F190Cx LQFP48 pinouts ................................................................................................................. 8
Figure 4. GD32F190Tx QFN36 pinouts ................................................................................................................... 9
Figure 5. GD32F190xx memory map ..................................................................................................................... 10
Figure 6. GD32F190xx clock tree............................................................................................................................ 11
Figure 7. QFN package outline ................................................................................................................................ 41
Figure 8. LQFP package outline .............................................................................................................................. 42
3 / 46
GD32F190xx
List of Tables
Table 1. GD32F190xx devices features and peripheral list ................................................................................... 6
Table 2. GD32F190xx pin definitions ...................................................................................................................... 12
Table 3. Port A alternate functions summary ........................................................................................................ 17
Table 4. Port B alternate functions summary ........................................................................................................ 18
Table 5. Port C & D & F alternate functions summary ......................................................................................... 19
Table 6. Absolute maximum ratings ........................................................................................................................ 29
Table 7. DC operating conditions ............................................................................................................................ 29
Table 8. Power consumption characteristics ......................................................................................................... 30
Table 9. EMS characteristics ................................................................................................................................... 31
Table 10. EMI characteristics................................................................................................................................... 31
Table 11. Power supply supervisor characteristics .............................................................................................. 31
Table 12. ESD characteristics.................................................................................................................................. 32
Table 13. Static latch-up characteristics ................................................................................................................ 32
Table 14. High speed external clock (HSE) generated from a crystal/ceramic characteristics ...................... 32
Table 15. Low speed external clock (LSE) generated from a crystal/ceramic characteristics ....................... 33
Table 16. High speed internal clock (HSI) characteristics ................................................................................... 33
Table 17. Low speed internal clock (LSI) characteristics ..................................................................................... 33
Table 18. PLL characteristics ................................................................................................................................... 34
Table 19. Flash memory characteristics ................................................................................................................. 34
Table 20. I/O port characteristics ............................................................................................................................. 35
Table 21. ADC characteristics .................................................................................................................................. 36
Table 22. ADC RAIN max for fADC=28MHz ................................................................................................................. 36
Table 23. DAC characteristics ................................................................................................................................. 37
Table 24. SPI characteristics .................................................................................................................................... 38
Table 25. I2C characteristics .................................................................................................................................... 38
Table 26. USART characteristics ............................................................................................................................ 38
Table 27. OP-AMP characteristics .......................................................................................................................... 39
Table 28. CMP characteristics ................................................................................................................................. 40
Table 29. QFN package dimensions ....................................................................................................................... 41
Table 30. LQFP package dimensions ..................................................................................................................... 43
Table 31. Part ordering code for GD32F190xx devices ....................................................................................... 44
Table 32. Revision history......................................................................................................................................... 45
4 / 46
GD32F190xx
1
General description
The GD32F190xx device belongs to the 5V value line of GD32 MCU family. It is a 32-bit
general-purpose microcontroller based on the high performance ARM® Cortex®-M3 RISC
core with best ratio in terms of processing power, reduced power consumption and peripheral
set. The Cortex®-M3 is a next generation processor core which is tightly coupled with a Nested
Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support.
The GD32F190xx device incorporates the ARM® Cortex®-M3 32-bit processor core operating
at 72 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It
provides up to 64 KB on-chip Flash memory and up to 8 KB SRAM memory. An extensive
range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up
to five general-purpose 16-bit timers, a general-purpose 32-bit timer, a basic timer, a PWM
advanced-control timer, as well as standard and advanced communication interfaces: up to
three SPIs, three I2Cs and two USARTs, two I2S, two CAN2.0B with a CAN PHY, and a
segment LCD controller. Advanced analog peripherals including one 12-bit ADC, two 12-bit
DACs, three OP-AMPs and two comparators.
The device operates from a 2.5 to 5.5V power supply and available in –40 to +85 °C
temperature range. Several power saving modes provide the flexibility for maximum
optimization between wakeup latency and power consumption, an especially important
consideration in low power applications.
The above features make the GD32F190xx devices suitable for a wide range of applications,
especially in areas such as industrial control, motor drives, user interface, power monitor and
alarm systems, consumer and handheld equipment, home appliances, E-bike and so on.
5 / 46
GD32F190xx
2
Device overview
2.1
Device information
Table 1. GD32F190xx devices features and peripheral list
GD32F190xx
Part Number
T6
T8
C4
C6
C8
R4
R6
R8
Flash (KB)
16
32
64
16
32
64
16
32
64
SRAM (KB)
4
6
8
4
6
8
4
6
8
32-bit GP
1
1
1
1
1
1
1
1
1
16-bit GP
5
5
5
5
5
5
5
5
5
16-bit Adv.
1
1
1
1
1
1
1
1
1
16-bit Basic
1
1
1
1
1
1
1
1
1
SysTick
1
1
1
1
1
1
1
1
1
Watchdog
2
2
2
2
2
2
2
2
2
RTC
1
1
1
1
1
1
1
1
1
USART
1
2
2
1
2
2
1
2
2
I2C
1
1
3
1
1
3
1
1
3
SPI
1
1
3
1
1
3
1
1
3
I2S
1
1
2
1
1
2
1
1
2
CAN 2.0B
2
2
2
2
2
2
2
2
2
LCD
0
0
0
4x18
4x18
4x18
8x32
8x32
8x32
GPIO
28
28
28
39
39
39
55
55
55
Capacitive Touch
Channels
14
14
14
17
17
17
18
18
18
OP-AMP
2
2
2
2
2
2
3
3
3
Analog
Comparator
2
2
2
2
2
2
2
2
2
EXTI
16
16
16
16
16
16
16
16
16
Units
1
1
1
1
1
1
1
1
1
Channels
(Ext.)
10
10
10
10
10
10
16
16
16
Channels (Int.)
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
ADC
Connectivity
Timers
T4
DAC
Package
QFN36
LQFP48
LQFP64
6 / 46
GD32F190xx
2.2
Block diagram
Figure 1. GD32F190xx block diagram
LDO
1.8V
TPIU
SW
System
NVIC
AHB Matrix
ICode DCode
ARM Cortex-M3
Processor
Fmax: 72MHz
AHB2: Fma x = 72MHz
IBus
GPIO Ports
A, B, C, D, F
SRAM
Controller
SRAM
Flash
Memory
Controller
Flash
Memory
POR/PDR
LVD
PLL
Touch
Sensing
Interface
DBus
GP DMA 7chs
AHB1: Fma x = 72MHz
AHB to APB
Bridge 2
CRC
AHB to APB
Bridge 1
Fmax: 72MHz
HSE
4-32MHz
HSI
8MHz
RST/CLK
Controller
HSI28
28MHz
LSI
40KHz
Powered by LDO (1.8V)
Powered by V DD/VDDA
PWR
EXTI
IWDG
12-bit
SAR ADC
ADC
WWDG
RTC
USART1
BXCAN1
SPI1/I2S1
TIMER1
TIMER15
TIMER16
TIMER17
APB1: Fmax = 72MHz
Comparator 2
CMP
APB2: Fmax = 72MHz
SYS Config
Comparator 1
CAN SRAM
BXCAN2
HDMI-CEC
I2C1~3
DAC1~2
12-bit
DAC
USART2
SPI2
SPI3/I2S3
TIMER6
TIMER2
TIMER3
TIMER14
LCD
OPAMP
IVREF
7 / 46
GD32F190xx
2.3
Pinouts and pin assignment
Figure 2. GD32F190Rx LQFP64 pinouts
PA14
PA15
PC10
PC11
PC12
PD2
PB3
PB4
PB6
PB5
PB7
BOOT0
PB8
PB9
VSS
VDD
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
VBAT
1
48
PC13
2
47
PF6
PC14-OSC32_IN
3
46
PA13
PC15-OSC32_OUT
PF0-OSC_IN
4
45
PA12
5
44
PA11
PF1-OSC_OUT
6
43
PA10
7
42
PA9
NRST
PC0
8
PC1
9
PC2
PC3
VSSA
GigaDevice GD32F190Rx
LQFP64
PF7
41
PA8
40
PC9
10
39
PC8
11
38
PC7
12
37
PC6
VDDA
13
36
PB15
PA0
14
35
PB14
PA1
15
34
PB13
PA2
16
33
PB12
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
VDD
VSS
PB11
PB10
PB2
PB1
PB0
PC5
PA7
PC4
PA5
PA6
PA4
PF5
PF4
PA3
Figure 3. GD32F190Cx LQFP48 pinouts
PA14
PA15
PB3
PB4
PB6
PB5
PB7
BOOT0
PB8
PB9
VSS
VDD
48 47 46 45 44 43 42 41 40 39 38 37
VBAT
1
36
PF7
PF6
PC13
2
35
PC14-OSC32_IN
3
34
PA13
PC15-OSC32_OUT
PF0-OSC_IN
4
33
PA12
5
32
PA11
PF1-OSC_OUT
NRST
VSSA
6
31
PA10
30
PA9
8
29
VDDA
9
28
PA8
PB15
PA0
10
27
PB14
PA1
PA2
11
26
PB13
12
25
PB12
GigaDevice GD32F190Cx
LQFP48
7
13 14 15 16 17 18 19 20 21 22 23 24
VDD
VSS
PB11
PB10
PB2
PB1
PA7
PB0
PA6
PA5
PA4
PA3
8 / 46
GD32F190xx
Figure 4. GD32F190Tx QFN36 pinouts
PA2
PA14
PA1
PA15
PA0-WKUP
PB3
PB4
VDDA
PB5
OSC_OUT/PF1
NRST
VSSA
PB6
OSC_IN/PF0
PB7
BOOT0
VSS
VDD
36 35 34 33 32 31 30 29 28
1
27
2
26
PF7
PF6
3
25
PA13
4
24
PA12
5 GigaDevice GD32F190Tx 23
QFN36
6
22
7
21
PA11
PA9
8
PA8
20
9
19
10 11 12 13 14 15 16 17 18
PA10
VDD
VSS
PB2
PB1
PA7
PB0
PA6
PA5
PA4
PA3
9 / 46
GD32F190xx
2.4
Memory map
Figure 5. GD32F190xx memory map
0x5000 0000
0x4800 1800
0x4800 1400
0x4800 1000
0x4800 0C00
0x4800 0800
0x4800 0400
0x4800 0000
0x4002 4400
0x4002 4000
0x4002 3400
0x4002 3000
0x4002 2400
0x4002 2000
0x4002 1400
0x4002 1000
0x4002 0400
0x4002 0000
0x4001 4C00
0x4001 4800
0x4001 4400
0x4001 4000
0x4001 3C00
0x4001 3800
0x4001 3400
0x4001 3000
0x4001 2C00
0x4001 2800
0x4001 2400
0x4001 0800
0xFFFF FFFF
7
0xE010 0000
0x1FFF FFFF
0x1FFF F80F
reserved
Option
Bytes
reserved
0xE000 0000
Cortex-M3 Internal
Peripherals
6
reserved
0x1FFF F800
0x4001 0400
0x4001 0000
0x4000 C400
0x4000 C000
0x4000 8000
0x4000 7C00
0x4000 7800
0xC000 0000
System
memory
0x4000 7400
0x4000 7000
5
reserved
0x4000 6C00
0x4000 6800
0x1FFF EC00
0xA000 0000
0x4000 6400
0x4000 6000
4
reserved
0x4000 5C00
0x4000 5800
reserved
0x8000 0000
0x4000 5400
0x4000 4800
3
reserved
0x4000 4400
0x4000 4000
0x6000 0000
2
0x5000 0000
0x4000 3C00
reserved
Peripherals
0x4000 0000
0x0801 FFFF
1
Flash
memory
0x0800 0000
Aliased to Flash or
system memory
according to BOOT
0x0000 0000 pins configuration
0x2000 0000
0x4000 3800
0x4000 3400
0x4000 3000
0x4000 2C00
reserved
SRAM
0x4000 2800
0x4000 2400
0x4000 2000
0x4000 1400
0x4000 1000
0
reserved
0x4000 0800
0x4000 0400
0x0000 0000
0x4000 0000
reserved
Port F
reserved
Port D
Port C
Port B
Port A
reserved
TSI
reserved
CRC
reserved
FMC
reserved
RCC
reserved
DMA
reserved
TIMER17
TIMER16
TIMER15
reserved
USART1
reserved
SPI1/I2S1
TIMER1
reserved
ADC
reserved
EXTI
SYSCFG + CMP
reserved
I2C3
reserved
OPAMP+IVREF
CEC
DAC1~2
PWR
reserved
BXCAN2
BXCAN1
CAN SRAM (256B)
reserved
I2C2
I2C1
reserved
USART2
reserved
SPI3/I2S3
SPI2
reserved
IWDG
WWDG
RTC
LCD
TIMER14
reserved
TIMER6
reserved
TIMER3
TIMER2
10 / 46
GD32F190xx
2.5
Clock tree
Figure 6. GD32F190xx clock tree
CK_LSE
÷24
4
1
CK_CEC
(to CEC)
0
CECSEL
CK_I2S
(to I2S)
CK_FMC
SCS[1:0
]
FMC enable
(by hardware)
(to FMC)
HCLK
CK_HSI
00
8 MHz
HSI RC
/
2
0
PLL
1
CK_PLL 1
0
AHB enable
CK_SYS
72 MHz max
AHB
Prescaler
÷1,2...512
(to AHB bus,Cortex-M3,SRAM,DMA)
CK_CST
CK_AHB
÷8
72 MHz max
(to Cortex-M3 SysTick)
FCLK
HSEPRED
V
4-32 MHz
HSE XTAL
PLLSEL
PLLEN
01
Clock
Monitor
÷1,2.
..16
(free running clock)
TIMER2,3,6,1
4
÷[apb1
prescaler/2]
CK_TIMERx
TIMERx
enable
to TIM2,3,6,14
CK_HSE
/32
APB1
Prescaler
÷1,2,4,8,16
11
CK_APB1
PCLK1
to APB1
peripherals
72 MHz max
Peripheral enable
32.768 KHz
LSE OSC
0
1
CK_RTC(CK_LCD)
(to RTC or LCD)
10
RTCSRC[1:0]
40 KHz
LSI RC
CK_IWDG
(to IWDG)
TIMER1,15,1
6,17
÷[apb2
prescaler/2]
APB2
Prescaler
÷1,2,4,8,16
CK_TIMERx
to
TIM1,15,16,17
TIMERx
enable
CK_APB2
PCLK2
to APB2
peripherals
72 MHz max
Peripheral enable
CK_OUT
÷1,2,4...128
CKOUTDIV
CK_OUT2
÷1,2,3...64
CKOUT2DIV
0
CK_HSI28
CK_LSI
CK_LSE
CK_SYS
CK_HSI
CK_HSE
CK_PLL
*1,2
0
CK_HSI28
CK_LSI
CK_LSE
CK_SYS
CK_HSI
CK_HSE
CK_PLL
*1,2
ADC
Prescaler
÷2,4,6,8
1
CK_ADCX to ADC1
0
28 MHz max
ADCSEL
28 MHz
HSI RC
÷1,2
CK_HSI
11
CK_LSE
10
0
1
00
CK_SYS
CK_USART
1
to
USART1
Legend:
HSE = High speed external clock
HSI = High speed internal clock
LSE = Low speed external clock
LSI = Low speed internal clock
11 / 46
GD32F190xx
2.6
Pin definitions
Table 2. GD32F190xx pin definitions
RTC
PC14-OSC32_IN
PC15OSC32_OUT
PF0-OSC_IN
1
1
-
P
2
2
-
I/O
3
3
-
I/O
4
4
-
I/O
5
5
2
I/O
PF1-OSC_OUT
6
6
3
I/O
NRST
7
7
4
I/O
I/O(2) Level
Pin Type(1)
PC13-TAMPER-
QFN36
VLCD/VBAT
LQFP48
Pin Name
LQFP64
Pins
Functions description
Default: VLCD/VBAT
Default: PC13
Additional: RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2
Default: PC14
Additional: OSC32_IN
Default: PC15
Additional: OSC32_OUT
HVT
HVT
Default: PF0
Additional: OSC_IN
Default: PF1
Additional: OSC_OUT
Default: NRST
Default: PC0
PC0
8
-
-
I/O
Alternate: EVENTOUT, I2C3_SCL, SEG18
Additional: ADC_IN10
Default: PC1
PC1
9
-
-
I/O
Alternate: EVENTOUT, I2C3_SDA, SEG19
Additional: ADC_IN11, OPAMP3_VINP
Default: PC2
PC2
10
-
-
I/O
Alternate: EVENTOUT, I2C3_SMBA, SEG20
Additional: ADC_IN12, OPAMP3_VINM
Default: PC3
PC3
11
-
-
I/O
Alternate: EVENTOUT
Additional: ADC_IN13, OPAMP3_VOUT, SEG21, I2C3_TXFRAME
VSSA
12
8
5
P
Default: VSSA
VDDA
13
9
6
P
Default: VDDA
Default: PA0
PA0-WKUP
14 10
7
I/O
Alternate: USART1_CTS(3), USART2_CTS(4), TM2_CH1_ETR,
I2C2_SCL, CMP1_OUT, TSI_G1_IO1
Additional: ADC_IN0, RTC_TAMP2, WKUP1, CMP1_INM6
Default: PA1
PA1
15 11
8
I/O
Alternate: USART1_RTS(3), USART2_RTS(4), TM2_CH2, I2C2_SDA,
EVENTOUT, SEG0, TSI_G1_IO2
Additional: ADC_IN1, CMP1_INP, OPAMP1_VINP
Default: PA2
PA2
16 12
9
I/O
Alternate: USART1_TX(3), USART2_TX(4), TM2_CH3, TM15_CH1,
SEG1, CMP2_OUT, TSC_G1_IO3, I2C2_SMBA
12 / 46
GD32F190xx
I/O(2) Level
Pin Type(1)
QFN36
LQFP48
Pin Name
LQFP64
Pins
Functions description
Additional: ADC_IN2, CMP2_INM6, OPAMP1_VINM
Default: PA3
PA3
17 13 10
Alternate: USART1_RX(3), USART2_RX(4), TM2_CH4, TM15_CH2,
I/O
SEG2, TSI_G1_IO4, I2C2_TXFRAME
Additional: ADC_IN3, CMP2_INP, OPAMP1_VOUT
PF4
PF5
18
19
-
-
I/O
I/O
HVT
HVT
Default: PF4
Alternate: EVENTOUT, SEG28
Default: PF5
Alternate: EVENTOUT, SEG29
Default: PA4
PA4
20 14 11
I/O
Alternate: SPI1_NSS, USART1_CK(3), USART2_CK(4), TM14_CH1,
SPI2_NSS, I2S1_WS, TSI_G2_IO1, SPI3_NSS, I2S3_WS
Additional: ADC_IN4, CMP1_INM4, CMP2_INM4, DAC1_OUT
Default: PA5
PA5
21 15 12
I/O
Alternate: SPI1_SCK, TM2_CH1_ETR, I2S1_CK, CEC, TSI_G2_IO2
Additional: ADC_IN5, CMP1_INM5, CMP2_INM5, DAC2_OUT,
CANH
Default: PA6
PA6
22 16 13
I/O
Alternate: SPI1_MISO, TM3_CH1, TM1_BKIN, TM16_CH1,
EVENTOUT, I2S1_MCK, CMP1_OUT, TSI_G2_IO3, SEG3
Additional: ADC_IN6, OPAMP2_VINP, CANL
Default: PA7
Alternate: SPI1_MOSI, TM3_CH2, TM14_CH1, TM1_CH1N,
PA7
23 17 14
I/O
TM17_CH1, EVENTOUT, I2S1_SD, CMP2_OUT, TSI_G2_IO4,
SEG4
Additional: ADC_IN7, OPAMP2_VINM
Default: PC4
PC4
24
-
-
I/O
Alternate: EVENTOUT, SEG22
Additional: ADC_IN14
Default: PC5
PC5
25
-
-
I/O
Alternate: TSI_G3_IO1, SEG23
Additional: ADC_IN15
Default: PB0
PB0
26 18 15
I/O
Alternate: TM3_CH3, TM1_CH2N, USART2_RX, EVENTOUT
TSI_G3_IO2, SPI3_NSS, I2S3_WS, SEG5
Additional: ADC_IN8, VLCD_Rail3, IREF, OPAMP2_VOUT
Default: PB1
PB1
27 19 16
I/O
Alternate: TM3_CH4, TM14_CH1, TM1_CH3N, SPI2_SCK,
TSI_G3_IO3, SEG6
Additional: ADC_IN9, VREF
Default: PB2
PB2
28 20 17
I/O
HVT Alternate: TSI_G3_IO4
Additional: VLCD_Rail2
13 / 46
GD32F190xx
I/O(2) Level
Pin Type(1)
QFN36
LQFP48
Pin Name
LQFP64
Pins
Functions description
Default: PB10
PB10
29 21
-
I/O
HVT Alternate: I2C2_SCL(4), CEC, TIM2_CH3, TSI_SYNC, I2C1_SCL(3),
SEG10, SPI2_IO2
Default: PB11
PB11
30 22
-
I/O
HVT Alternate: I2C2_SDA(4), TM2_CH4, EVENTOUT, TSI_G6_IO1,
I2C1_SDA(3), SEG11, SPI2_IO3
VSS
31 23 18
P
Default: VSS
VDD
32 24 19
P
Default: VDD
Default: PB12
Alternate: SPI1_NSS(3), SPI2_NSS(4), TM1_BKIN, I2C2_SMBA,
PB12
33 25
-
I/O
HVT
EVENTOUT, TSI_G6_IO2, SEG12, CAN2_RX
Additional: VLCD_Rail1
Default: PB13
PB13
34 26
-
I/O
PB14
35 27
-
I/O
(3)
(4)
HVT Alternate: SPI1_SCK , SPI2_SCK , TM1_CH1N, TSI_G6_IO3,
SEG13, I2C2_TXFRAME, CAN2_TX
Default: PB14
HVT Alternate: SPI1_MISO(3), SPI2_MISO(4), TM1_CH2N, TM15_CH1
TSI_G6_IO4, SEG14
Default: PB15
Alternate: SPI1_MOSI(3), SPI2_MOSI(4), TIM1_CH3N, TM15_CH1N,
PB15
36 28
-
I/O
HVT
TM15_CH2, SEG15
Additional: RTC_REFIN
PC6
37
-
-
I/O
HVT
PC7
38
-
-
I/O
HVT
PC8
39
-
-
I/O
HVT
PC9
40
-
-
I/O
HVT
Default: PC6
Alternate: TM3_CH1, SEG24, I2C3_TXFRAME
Default: PC7
Alternate: TM3_CH2, I2C3_SCL, SEG25
Default: PC8
Alternate: TM3_CH3, I2C3_SDA, SEG26
Default: PC9
Alternate: TM3_CH4, I2C3_SMBA, SEG27, MCO2
Default: PA8
PA8
41 29 20
I/O
HVT Alternate: USART1_CK, TM1_CH1, MCO, USART2_TX,
EVENTOUT, COM0, I2C1_TXFRAME
Default: PA9
PA9
42 30 21
I/O
HVT Alternate: USART1_TX, TM1_CH2, TM15_BKIN , I2C1_SCL,
TSI_G4_IO1, COM1, SPI2_IO2
Default: PA10
PA10
43 31 22
I/O
HVT Alternate: USART1_RX, TM1_CH3, TM17_BKIN, I2C1_SDA,
TSI_G4_IO2, COM2, SPI2_IO3
PA11
44 32 23
I/O
HVT Alternate: USART1_CTS, TM1_CH4, EVENTOUT, CMP1_OUT,
Default: PA11
TSI_G4_IO3, CAN1_RX
14 / 46
GD32F190xx
I/O(2) Level
Pin Type(1)
QFN36
LQFP48
Pin Name
LQFP64
Pins
Functions description
Default: PA12
PA12
45 33 24
I/O
HVT Alternate: USART1_RTS, TM1_ETR, EVENTOUT, CMP2_OUT,
TSI_G4_IO4, CAN1_TX
PA13
46 34 25
I/O
HVT
PF6
47 35 26
I/O
HVT
PF7
48 36 27
I/O
HVT
PA14
49 37 28
I/O
HVT
Default: PA13/SWDAT
Alternate: IR_OUT, SWDAT,SPI2_MISO, I2C1_SMBA
Default: PF6
Alternate: I2C2_SCL(4), I2C1_SCL(3), SEG30
Default: PF7
Alternate: I2C2_SDA(4), I2C1_SDA(3), SEG31
Default: PA14/SWCLK
Alternate: USART1_TX(3), USART2_TX(4), SWCLK, SPI2_MOSI
Default: PA15
PA15
50 38 29
I/O
HVT
Alternate: SPI1_NSS , USART1_RX(3), USART2_RX(4),
TM2_CH1_ETR, SPI2_NSS, EVENTOUT, I2S1_WS, SPI3_NSS,
I2S3_WS, SEG17, I2C1_SMBA
Default: PC10
PC10
51
-
-
I/O
HVT
PC11
52
-
-
I/O
HVT
PC12
53
-
-
I/O
HVT
PD2
54
-
-
I/O
HVT
PB3
55 39 30
I/O
HVT Alternate: SPI1_SCK, TM2_CH2, EVENTOUT, I2S1_CK,
Alternate: SPI3_SCK, I2S3_CK, COM4, SEG28
Default: PC11
Alternate: SPI3_MISO, I2S3_MCK, COM5, SEG29
Default: PC12
Alternate: SPI3_MOSI, I2S3_SD, COM6, SEG30
Default: PD2
Alternate: TM3_ETR, COM7, SEG31
Default: PB3
TSI_G5_IO1, SPI3_SCK, I2S3_CK, SEG7, I2C1_TXFRAME
Default: PB4
PB4
56 40 31
I/O
HVT Alternate: SPI1_MISO, TM3_CH1, EVENTOUT, I2S1_MCK,
TSI_G5_IO2, SPI3_MISO, I2S3_MCK, SEG8, I2C3_SMBA
Default: PB5
PB5
57 41 32
I/O
HVT
Alternate: SPI1_MOSI, I2C1_SMBA, TM16_BKIN, TM3_CH2,
I2S1_SD, SPI3_MOSI, I2S3_SD, SEG9, I2C3_TXFRAME,
CAN2_RX
Default: PB6
PB6
58 42 33
I/O
HVT Alternate: I2C1_SCL, USART1_TX, TM16_CH1N, TSI_G5_IO3,
I2C3_SCL, CAN2_TX
Default: PB7
PB7
59 43 34
I/O
HVT Alternate: I2C1_SDA, USART1_RX, TM17_CH1N, TSI_G5_IO4,
I2C3_SDA
BOOT0
60 44 35
I
Default: BOOT0
Default: PB8
PB8
61 45
-
I/O
HVT Alternate: I2C1_SCL, TM16_CH1, CEC, TSI_SYNC, SEG16,
CAN1_RX
15 / 46
GD32F190xx
I/O(2) Level
Pin Type(1)
QFN36
LQFP48
Pin Name
LQFP64
Pins
Functions description
Default: PB9
-
62 46
VSS
63 47 36
P
Default: VSS
VDD
64 48
P
Default: VDD
1
I/O
HVT Alternate: I2C1_SDA, IR_OUT, TM17_CH1, EVENTOUT, COM3,
CAN1_TX
PB9
Notes:
1.
Type: I = input, O = output, P = power.
2.
I/O Level: HVT = High Voltage Tolerant.
3.
This feature is available on GD32F190x4 devices only.
4.
This feature is available on GD32F190x8 and GD32F190x6 devices only.
16 / 46
GD32F190xx
Table 3. Port A alternate functions summary
Pin Name
AF0
AF1
AF2
AF3
AF4
TSI_G1_IO1
I2C2_SCL
AF5
AF6
USART1_CTS(1) TM2_CH1_
PA0
USART2_CTS(2)
AF7
AF9
AF11
CMP1_O
UT
ETR
USART1_RTS(1)
PA1
EVENTOUT
TM2_CH2
TSI_G1_IO2
I2C2_SDA
TM2_CH3
TSI_G1_IO3
I2C2_SMBA
SEG0
USART2_RTS(2)
USART1_TX(1)
PA2
TM15_CH1
CMP2_O
SEG1
USART2_TX(2)
UT
USART1_RX(1)
PA3
TM15_CH2
I2C2_TXFRA
TM2_CH4
TSI_G1_IO4
SEG2
USART2_RX(2)
SPI1_NSS
ME
USART1_CK(1)
SPI3_NSS/
PA4
TSI_G2_IO1
I2S1_WS
USART2_CK(2)
SPI1_SCK
I2S3_WS
TM2_CH1_
CEC
PA5
SPI2_NSS
TM14_CH1
I2S1_CK
TSI_G2_IO2
ETR
SPI1_MISO
PA6
CMP1_O
TM3_CH1
TM1_BKIN TSI_G2_IO3
TM16_CH1 EVENTOUT
SPI1_MOSI
PA7
SEG3
UT
I2S1_MCK
CMP2_O
TM3_CH2
TM1_CH1N TSI_G2_IO4
TM14_CH1 TM17_CH1 EVENTOUT
SEG4
UT
I2S1_SD
I2C1_TXFR
PA8
MCO
USART1_CK
TM1_CH1
EVENTOUT USART2_TX
COM0
AME
PA9
TM15_BKIN
USART1_TX
TM1_CH2
TSI_G4_IO1
I2C1_SCL
SPI2_IO2
COM1
PA10
TM17_BKIN
USART1_RX
TM1_CH3
TSI_G4_IO2
I2C1_SDA
SPI2_IO3
COM2
PA11
EVENTOUT
USART1_CTS
TM1_CH4
TSI_G4_IO3
CMP1_O
CAN1_RX
UT
CMP2_O
PA12
EVENTOUT
USART1_RTS
TM1_ETR
TSI_G4_IO4
CAN1_TX
UT
PA13
SWDAT
IR_OUT
I2C1_SMBA SPI2_MISO
USART1_TX(1)
PA14
SWCLK
SPI2_MOSI
USART2_TX(2)
SPI1_NSS
USART1_RX(1) TM2_CH1_
I2S1_WS
USART2_RX(2)
SPI3_NSS
EVENTOUT
PA15
SPI2_NSS
I2C1_SMBA
ETR
SEG17
I2S3_WS
1. This feature is available on GD32F190x4 devices only.
2. This feature is available on GD32F190x8 and GD32F190x6 devices only.
17 / 46
GD32F190xx
Table 4. Port B alternate functions summary
Pin Name
AF0
AF1
AF2
PB0
EVENTOUT
TM3_CH3
TM1_CH2N
AF3
AF4
AF5
AF6
AF7
AF9
AF11
SPI3_NSS
SEG5
TSI_G3_IO2 USART2_RX
I2S3_WS
PB1
TM14_CH1
TM3_CH4
TM1_CH3N
PB2
TSI_G3_IO3
SPI2_SCK
SEG6
TSI_G3_IO4
I2C1_TXFRA SPI3_SCK
SPI1_SCK
EVETOUT
PB3
TM2_CH2
SEG7
TSI_G5_IO1
ME
I2S1_CK
SPI1_MISO
SPI3_MISO
TM3_CH1
PB4
EVENTOUT
TSI_G5_IO2
I2C3_SMBA
I2S1_MCK
SEG8
I2S3_MCK
I2C3_TXFRA SPI3_MOSI
SPI1_MOSI
TM3_CH2
PB5
I2S3_CK
TM16_BKIN
I2C1_SMBA
CAN2_RX
I2S1_SD
ME
PB6
USART1_TX I2C1_SCL TM16_CH1N TSI_G5_IO3
I2C3_SCL
PB7
USART1_RX I2C1_SDA TM17_CH1N TSI_G5_IO4
I2C3_SDA
SEG9
I2S3_SD
CAN2_TX
PB8
CEC
I2C1_SCL
TM16_CH1
TSI_SYNC
CAN1_RX SEG16
PB9
IR_OUT
I2C1_SDA
TM17_CH1
EVENTOUT
CAN1_TX
PB10
CEC
TM2_CH3
TSI_SYNC
SPI2_IO2
SEG10
TM2_CH4
TSI_G6_IO1
SPI2_IO3
SEG11
EVENTOUT TM1_BKIN
TSI_G6_IO2
TM1_CH1N
TSI_G6_IO3
COM3
I2C1_SCL(1)
I2C2_SCL(2)
I2C1_SDA(1)
PB11
EVENTOUT
I2C2_SDA(2)
SPI1_NSS(1)
PB12
I2C2_SMBA
CAN2_RX SEG12
SPI2_NSS(2)
SPI1_SCK(1)
PB13
I2C2_TXFRA
SPI2_SCK(2)
CAN2_TX
SEG13
ME
SPI1_MISO(1)
PB14
TM15_CH1 TM1_CH2N
TSI_G6_IO4
SEG14
TM15_CH2 TM1_CH3N
TM15_CH1N
SEG15
SPI2_MISO(2)
SPI1_MOSI(1)
PB15
SPI2_MOSI(2)
1. This feature is available on GD32F190x4 devices only.
2. This feature is available on GD32F190x8 and GD32F190x6 devices only.
18 / 46
GD32F190xx
Table 5. Port C & D & F alternate functions summary
Pin Name
AF0
AF1
AF2
AF3
AF4
AF5
AF6
PC0
EVENTOUT
I2C3_SCL
SEG18
PC1
EVENTOUT
I2C3_SDA
SEG19
PC2
EVENTOUT
I2C3_SMBA
SEG20
PC3
EVENTOUT
I2C3_TXFRAME
SEG21
PC4
EVENTOUT
SEG22
PC5
TSI_G3_IO1
SEG23
PC6
TIM3_CH1
I2C3_TXFRAME
SEG24
PC7
TIM3_CH2
I2C3_SCL
SEG25
PC8
TIM3_CH3
I2C3_SDA
SEG26
PC9
TIM3_CH4
I2C3_SMBA
MCO2
AF7
AF9
AF11
SEG27
SPI3_SCK
COM4
I2S3_CK
SEG28
SPI3_MISO
COM5
I2S3_MCK
SEG29
SPI3_MOSI
COM6
I2S3_SD
SEG30
PC10
PC11
PC12
COM7
PD2
TIM3_ETR
SEG31
PF4
EVENTOUT
SEG28
PF5
EVENTOUT
SEG29
I2C1_SCL(1)
SEG30
PF6
I2C2_SCL(2)
I2C1_SDA(1)
SEG31
PF7
I2C2_SDA(2)
1. This feature is available on GD32F190x4 devices only.
2. This feature is available on GD32F190x8 and GD32F190x6 devices only.
19 / 46
GD32F190xx
3
Functional description
3.1
ARM® Cortex®-M3 core
The Cortex®-M3 processor is the latest generation of ARM® processors for embedded
systems. It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
32-bit ARM® Cortex®-M3 processor core
Up to 72 MHz operation frequency
Single-cycle multiplication and hardware divider
Integrated Nested Vectored Interrupt Controller (NVIC)
24-bit SysTick timer
The Cortex®-M3 processor is based on the ARMv7 architecture and supports both Thumb
and Thumb-2 instruction sets. Some system peripherals listed below are also provided by
Cortex®-M3:
Internal Bus Matrix connected with ICode bus, DCode bus, system bus, Private
Peripheral Bus (PPB) and debug accesses (AHB-AP)
3.2
Nested Vectored Interrupt Controller (NVIC)
Flash Patch and Breakpoint (FPB)
Data Watchpoint and Trace (DWT)
Instrument Trace Macrocell (ITM)
Serial Wire JTAG Debug Port (SWJ-DP)
Trace Port Interface Unit (TPIU)
On-chip memory
Up to 64 Kbytes of Flash memory
Up to 8 Kbytes of SRAM with hardware parity checking
The ARM® Cortex®-M3 processor is structured in Harvard architecture which can use
separate buses to fetch instructions and load/store data. 64 Kbytes of inner Flash and 8
Kbytes of inner SRAM at most is available for storing programs and data, both accessed (R/W)
at CPU clock speed with zero wait states. The Figure 5. GD32F190xx memory map shows
the memory map of the GD32F190xx series of devices, including code, SRAM, peripheral,
and other pre-defined regions.
20 / 46
GD32F190xx
3.3
Clock, reset and supply management
Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator
Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
Integrated system clock PLL
2.5 to 5.5 V application supply and I/Os
Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage
detector (LVD)
The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These
include speed internal RC oscillator and external crystal oscillator, high speed and low speed
two types. Several prescalers allow the frequency configuration of the AHB and two APB
domains. The maximum frequency of the AHB and two APB domains is 72 MHz. See Figure
9 for details on the clock tree.
The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor
core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are
always active, and ensures proper operation starting from 1.95V and down to 1.9V. The
device remains in reset mode when VDD is below a specified threshold. The embedded low
voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and
generates an interrupt as a warning message for leading the MCU into security.
Power supply schemes:
VDD range: 2.5 to 5.5 V, external power supply for I/Os and the internal regulator.
Provided externally through VDD pins.
VDDA range: 2.5 to 5.5 V, external analog power supplies for ADC, reset blocks, RCs and
PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT range: 1.8 to 5.5 V, power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
3.4
Boot modes
At startup, boot pins are used to select one of three boot options:
Boot from main Flash memory (default)
Boot from system memory
Boot from on-chip SRAM
In default condition, boot from main Flash memory is selected. The boot loader is located in
the internal boot ROM memory (system memory). It is used to reprogram the Flash memory
by using USART1 in device mode.
21 / 46
GD32F190xx
3.5
Power saving modes
The MCU supports three kinds of power saving modes to achieve even lower power
consumption. They are Sleep mode, Deep-sleep mode, and Standby mode. These operating
modes reduce the power consumption and allow the application to achieve the best balance
between the CPU operating time, speed and power consumption.
Sleep mode
In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and
any interrupt/event can wake up the system.
Deep-sleep mode
In Deep-sleep mode, all clocks in the 1.8V domain are off, and all of the high speed
crystal oscillator (HSI, HSE) and PLL are disabled. Only the contents of SRAM and
registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the
system from the Deep-sleep mode including the 16 external lines, the RTC alarm and
the LVD output,. When exiting the Deep-sleep mode, the HSI is selected as the system
clock.
Standby mode
In Standby mode, the whole 1.8V domain is power off, the LDO is shut down, and all of
HSI, HSE and PLL are disabled. The contents of SRAM and registers (except Backup
Registers) are lost. There are four wakeup sources for the Standby mode, including the
external reset from NRST pin, the RTC alarm, the IWDG reset, and the rising edge on
WKUP pin.
3.6
Analog to digital converter (ADC)
12-bit SAR ADC engine with up to 2M SPS conversion rate
12-bit, 10-bit, 8-bit or 6-bit configurable resolution
Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
Conversion range: VSSA to VDDA (3.0 to 5.5 V)
Temperature sensor
A 12-bit 2M SPS multi-channel ADC are integrated in the device. It is a total of up to 16
multiplexed external channels with 2 internal channels for temperature sensor and voltage
reference measurement. The conversion range is between 3.0 V < VDDA < 5.5 V. An on-chip
16-bit hardware oversample scheme improves performances while off-loading the related
computational burden from the MCU. An analog watchdog block can be used to detect the
channels, which are required to remain within a specific threshold window. A configurable
channel management block of analog inputs also can be used to perform conversions in
single, continuous, scan or discontinuous mode to support more advanced usages.
The ADC can be triggered from the events generated by the general-purpose timers (TMx)
and the advanced-control timer (TM1) with internal connection. The temperature sensor can
be used to generate a voltage that varies linearly with temperature. It is internally connected
22 / 46
GD32F190xx
to the ADC_IN16 input channel which is used to convert the sensor output voltage into a
digital value.
3.7
Digital to analog converter (DAC)
Two 12-bit DAC converter of independent output channel
8-bit or 12-bit mode in conjunction with the DMA controller
The 12-bit buffered DAC channel is used to generate variable analog outputs. The DAC is
designed with integrated resistor strings structure. The DAC channels can be triggered by the
timer update outputs or EXTI with DMA support. The maximum output value of the DAC is
VREF+.
3.8
DMA
7 channel DMA controller
Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs, DAC, I2Ss
The flexible general-purpose DMA controllers provide a hardware method of transferring data
between peripherals and/or memory without intervention from the CPU, thereby freeing up
bandwidth for other system functions. Three types of access method are supported:
peripheral to memory, memory to peripheral, memory to memory
Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel
requests are determined by software configuration and hardware channel number. Transfer
size of source and destination are independent and configurable.
3.9
General-purpose inputs/outputs (GPIOs)
Up to 55 fast GPIOs, all mappable on 16 external interrupt vectors (EXTI)
Analog input/output configurable
Alternate function input/output configurable
There are up to 55 general purpose I/O pins (GPIO) in GD32F190xx, named PA0 ~ PA15 and
PB0 ~ PB15, PC0 ~ PC15, PD2, PF0, PF1, PF4-PF7 to implement logic input/output functions.
Each of the GPIO ports has related control and configuration registers to satisfy the
requirements of specific applications. The external interrupts on the GPIO pins of the device
have related control and configuration registers in the External Interrupt Control Unit (EXTI).
The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum
flexibility on the package pins. Each of the GPIO pins can be configured by software as output
(push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral
alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.
All GPIOs are high-current capable except for analog inputs.
23 / 46
GD32F190xx
3.10
Timers and PWM generation
One 16-bit advanced-control timer (TM1), one 32-bit general-purpose timer (TM2), five
16-bit general-purpose timers (TM3, TM14 ~ TM17), and one 16-bit basic timer (TM6)
Up to 4 independent channels of PWM, output compare or input capture for each generalpurpose timer (GPTM) and external trigger input
16-bit, motor control PWM advanced-control timer with programmable dead-time
generation for output match
Encoder interface controller with two inputs using quadrature decoder
24-bit SysTick timer down counter
2 watchdog timers (Independent watchdog and window watchdog)
The advanced-control timer (TM1) can be used as a three-phase PWM multiplexed on 6
channels. It has complementary PWM outputs with programmable dead-time generation. It
can also be used as a complete general-purpose timer. The 4 independent channels can be
used for input capture, output compare, PWM generation (edge- or center-aligned counting
modes) and single pulse mode output. If configured as a general-purpose 16-bit timer, it has
the same functions as the TMx timer. It can be synchronized with external signals or to
interconnect with other GPTMs together which have the same architecture and features.
The general-purpose timer (GPTM) can be used for a variety of purposes including general
time, input signal pulse width measurement or output waveform generation such as a single
pulse generation or PWM output, up to 4 independent channels for input capture/output
compare. TM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TM3
is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. TM14 ~ TM17 is
based on a 16-bit auto-reload upcounter and a 16-bit prescaler. The GPTM also supports an
encoder interface with two inputs using quadrature decoder.
The basic timer, known as TM6, is mainly used for DAC trigger generation. They can also be
used as a simple 16-bit time base.
The GD32F190xx provides two watchdog peripherals, Independent watchdog and window
watchdog. They offer a combination of high safety level, flexibility of use and timing accuracy.
The independent watchdog timer includes a 12-bit down-counting counter and a 8-bit
prescaler, It is clocked from an independent 40 kHz internal RC and as it operates
independently of the main clock, it can operate in stop and standby modes. It can be used
either as a watchdog to reset the device when a problem occurs, or as a free-running timer
for application timeout management.
The window watchdog is based on a 7-bit down counter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the
main clock. It has an early warning interrupt capability and the counter can be frozen in debug
mode.
The SysTick timer is dedicated for OS, but could also be used as a standard down counter. It
24 / 46
GD32F190xx
features:
3.11
A 24-bit down counter
Auto reload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source
Real time clock (RTC)
Independent binary-coded decimal (BCD) format timer/counter with five 32-bit backup
registers.
Calendar with sub-seconds, seconds, minutes, hours, week day, date, year and month
automatically correction
Alarm function with wake up from deep-sleep and standby mode capability
On-the-fly correction for synchronization with master clock. Digital calibration with 1 ppm
resolution for compensation of quartz crystal inaccuracy.
The real time clock is an independent timer which provides a set of continuously running
counters in backup registers to provide a real calendar function, and provides an alarm
interrupt or an expected interrupt. It is not reset by a system or power reset, or when the
device wakes up from standby mode. A 20-bit prescaler is used for the time base clock and
is by default configured to generate a time base of 1 second from a clock at 32.768 kHz from
external crystal oscillator.
3.12
Inter-integrated circuit (I2C)
Up to three I2C bus interfaces can support both master and slave mode with a frequency
up to 400 kHz
Provide arbitration function, optional PEC (packet error checking) generation and
checking
Supports 7-bit and 10-bit addressing mode and general call addressing mode
Hardware support specifications of secure access and control module interface applied
in validation for resident ID cards
The I2C interface is an internal circuit allowing communication with an external I2C interface
which is an industry standard two line serial interface used for connection to external
hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line
(SCL). The I2C module provides two data transfer rates: 100 kHz of standard mode or 400
kHz of the fast mode. The I2C module also has an arbitration detect function to prevent the
situation where more than one master attempts to transmit data to the I2C bus at the same
time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking
for I2C data.
25 / 46
GD32F190xx
3.13
Serial peripheral interface (SPI)
Up to three SPI interfaces with a frequency of up to 30 MHz
Support both master and slave mode
Hardware CRC calculation and transmit automatic CRC error checking
Quad wire configuration available in master mode (SPI2)
The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO
& MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by
the DMA controller. The SPI interface may be used for a variety of purposes, including simplex
synchronous transfers on two lines with a possible bidirectional data line or reliable
communication using CRC checking.
3.14
Universal synchronous asynchronous receiver transmitter
(USART)
Up to two USARTs with operating frequency up to 9 MHz
Supports both asynchronous and clocked synchronous serial communication modes
IrDA SIR encoder and decoder support
LIN break generation and detection
ISO 7816-3 compliant smart card interface
The USART (USART1, USART2) are used to translate data between parallel and serial
interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous
transfer. It is also commonly used for RS-232 standard communication. The USART includes
a programmable baud rate generator which is capable of dividing the system clock to produce
a dedicated clock for the USART transmitter and receiver. The USART also supports DMA
function for high speed data communication.
3.15
Inter-IC sound (I2S)
Up to two I2S bus Interfaces with sampling frequency from 8 kHz to 192 kHz, multiplexed
with SPI1 and SPI3
Support either master or slave mode
The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio
applications by 3-wire serial lines. GD32F190xx contain a I2S-bus interface that can be
operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1 and
SPI3. The audio sampling frequency from 8 kHz to 192 kHz is supported with less than 0.5%
accuracy error.
26 / 46
GD32F190xx
3.16
HDMI CEC
Hardware support Consumer Electronics Control (CEC) protocol (HDMI standard rev1.4)
The CEC protocol provides high-level control functions between the audiovisual products
linked with HDMI cables. GD32F190xx contain a HDMI-CEC controller which has an
independent clock domain and can wake up the MCU from deep-sleep mode on data
reception.
3.17
Touch sensing interface (TSI)
Supports up to 18 external electrodes by the sensing channels distributed over 6
analog I/O groups
Programmable charging frequency and I/O pins
Capability to wake up the MCU from power saving modes
Capacitive sensing technology can be used for the detection of a finger (or any conductive
object) presence near an electrode. The capacitive variation of the electrode introduced by
the finger can be measured by charging and detecting the voltage across the sampling
capacitor. GD32F190xx contain a hardware touch sensing interface (TSI) and only requires
few external components to operate. The sensing channels are distributed over 6 analog I/O
groups including: Group1 (PA0 ~ PA3), Group2 (PA4 ~ PA7), Group3 (PC5, PB0 ~ PB2),
Group4 (PA9 ~ PA12), Group5 (PB3, PB4, PB6, PA7) and Group6 (PB11 ~ PB14),
3.18
Comparators (CMP)
Two fast rail-to-rail low-power comparators with software configurable
Programmable reference voltage (internal, external I/O or DAC output pin)
Two Comparators (CMP) are implemented within the devices. Both comparators can wake
up from deep-sleep mode to generate interrupts and breaks for the timers and also can be
combined as a window comparator. The internal voltage reference is also connected to
ADC_IN17 input channel of the ADC.
3.19
Operational amplifiers (OP-AMP)
Rail-to-rail input and output voltage range
Low input bias current, offset voltage and low power mode
GD32F190xx provides two operational amplifiers with external or internal follower routing
capability (or even amplifier and filter capability with external components). When one
operational amplifier is selected, one external ADC channel is used to enable output
measurement.
27 / 46
GD32F190xx
3.20
LCD controller (LCD)
Configurable frame frequency
Blinking of individual segments or all segments
Double buffer up to 8x32 bits registers for LCD_DATAx storage
The contrast can also be adjusted by configuring dead time
VLCD rails decoupling capability
The LCD controller directly drives LCD displays by creating the AC segment and common
voltage signals automatically. It can drive the monochrome passive liquid crystal display (LCD)
which composed of a plurality of segments (pixels or complete symbols) that can be converted
to visible or invisible. The LCD controller can support up to 32 segments and 8 commons.
3.21
Controller area network (CAN)
Two CAN2.0B interface with communication frequency up to 1 Mbit/s
Internal main PLL for USB CLK compliantly
A hardware CAN2.0B PHY integrated (CAN1)
Controller area network (CAN) is a method for enabling serial communication in field bus. The
CAN protocol has been used extensively in industrial automation and automotive applications.
It can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. Each CAN has three mailboxes for transmission and two FIFOs of three
message deep for reception. It also provides 14 scalable/configurable identifier filter banks
for selecting the incoming messages needed and discarding the others. The integrated
hardware CAN PHY can be enabled by register setting and this mode only used for CAN1.
3.22
Debug mode
Serial wire JTAG debug port (SWJ-DP)
The ARM® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
3.23
Package and operation temperature
LQFP64 (GD32F190Rx), LQFP48 (GD32F190Cx) and QFN36 (GD32F190Tx)
Operation temperature range: -40°C to +85°C (industrial level)
28 / 46
GD32F190xx
4
Electrical characteristics
4.1
Absolute maximum ratings
The maximum ratings are the limits to which the device can be subjected without permanently
damaging the device. Note that the device is not guaranteed to operate properly at the
maximum ratings. Exposure to the absolute maximum rating conditions for extended periods
may affect device reliability.
Table 6. Absolute maximum ratings
Symbol
Min
Max
Unit
VDD
External voltage range
VSS - 0.3
VSS + 5.5
V
VDDA
External analog supply voltage
VSSA - 0.3
VSSA + 5.5
V
VBAT
External battery supply voltage
VSS - 0.3
VSS + 5.5
V
Input voltage on 5V tolerant pin
VSS - 0.3
VSS + 7.5
V
Input voltage on other I/O
VSS - 0.3
5.5
V
VIN
IIO
Maximum current for GPIO pins
—
25
mA
TA
Operating temperature range
-40
+85
°C
Storage temperature range
-55
+150
°C
Maximum junction temperature
—
125
°C
TSTG
TJ
4.2
Parameter
Recommended DC characteristics
Table 7. DC operating conditions
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VDD
Supply voltage
—
2.5
5.0
5.5
V
VDDA
Analog supply voltage
Same as VDD
2.5
5.0
5.5
V
VBAT
Battery supply voltage
—
2.0
—
5.5
V
29 / 46
GD32F190xx
4.3
Power consumption
The power measurements specified in the tables represent that code with data executing from
on-chip Flash with the following specifications.
Table 8. Power consumption characteristics
Symbol
Parameter
Conditions
Min
Typ
—
59.23
—
mA
—
38.71
—
mA
-—
40.46
—
mA
—
26.72
—
mA
—
35.17
—
mA
—
13.00
—
mA
—
119.81
—
μA
—
105.35
—
μA
VDD=VDDA=5.0V, LSE off, LSI on, RTC on
—
11.08
—
μA
VDD=VDDA=5.0V, LSE off, LSI on, RTC off
—
10.56
—
μA
VDD=VDDA=5.0V, LSE off, LSI off, RTC off
—
8.54
—
μA
—
2.30
—
μA
—
2.06
—
μA
—
1.56
—
μA
—
1.41
—
μA
—
1.32
—
μA
—
0.88
—
μA
—
0.75
—
μA
VDD=VDDA=5.0V, HSE=8MHz, System
Max Unit
clock=72 MHz, All peripherals enabled
VDD=VDDA=5.0V, HSE=8MHz, System clock
Supply current
=72 MHz, All peripherals disabled
(Run mode)
VDD=VDDA=5.0V, HSE=8MHz, System clock
=48 MHz, All peripherals enabled
VDD=VDDA=5.0V, HSE=8MHz, System
Clock =48 MHz, All peripherals disabled
VDD=VDDA=5.0V, HSE=8MHz, CPU clock
off, System clock=72MHz, All peripherals
IDD
Supply current
enabled
(Sleep mode)
VDD=VDDA=5.0V, HSE=8MHz, CPU clock
off, System clock=72MHz, All peripherals
disabled
VDD=VDDA=5.0V, Regulator in run mode,
Supply current
LSI on, RTC on, All GPIOs analog mode
(Deep-Sleep
VDD=VDDA=5.0V, Regulator in low power
mode)
mode, LSI on, RTC on, All GPIOs analog
mode
Supply current
(Standby mode)
VDD not available, VBAT=5.5 V, LSE on with
external crystal, RTC on, Higher driving
VDD not available, VBAT=5.0 V, LSE on with
external crystal, RTC on, Higher driving
VDD not available, VBAT=3.3 V, LSE on with
external crystal, RTC on, Higher driving
IBAT
Battery supply
VDD not available, VBAT=2.5 V, LSE on with
current
external crystal, RTC on, Higher driving
VDD not available, VBAT=5.0 V, LSE on with
external crystal, RTC on, Lower driving
VDD not available, VBAT=3.3 V, LSE on with
external crystal, RTC on, Lower driving
VDD not available, VBAT=2.5 V, LSE on with
external crystal, RTC on, Lower driving
30 / 46
GD32F190xx
4.4
EMC characteristics
EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and
negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is
given in the following table, based on the EMS levels and classes compliant with IEC 61000
series standard.
Table 9. EMS characteristics
Symbol
VESD
Parameter
Conditions
Voltage applied to all device pins to
VDD = 5.0 V, TA = +25 °C
induce a functional disturbance
conforms to IEC 61000-4-2
Fast transient voltage burst applied to
VFTB
Level/Class
induce a functional disturbance through
100 pF on VDD and VSS pins
3B
VDD = 5.0 V, TA = +25 °C
4A
conforms to IEC 61000-4-4
EMI (Electromagnetic Interference) emission testing result is given in the following table,
compliant with IEC 61967-2 standard which specifies the test board and the pin loading.
Table 10. EMI characteristics
Symbol
Parameter
Tested
Conditions
frequency band
Peak level
48M
0.1 to 2 MHz