GD32E231CxT6 Datasheet
GigaDevice Semiconductor Inc.
GD32E231CxT6
ARM® Cortex®-M23 32-bit MCU
Datasheet
GD32E231CxT6 Datasheet
Table of Contents
Table of Contents ........................................................................................................... 1
List of Figures ................................................................................................................ 3
List of Tables .................................................................................................................. 4
1
General description ................................................................................................. 6
2
Device overview ....................................................................................................... 7
3
2.1
Device information ...................................................................................................... 7
2.2
Block diagram .............................................................................................................. 8
2.3
Pinouts and pin assignment ....................................................................................... 9
2.4
Memory map .............................................................................................................. 10
2.5
Clock tree ................................................................................................................... 12
2.6
Pin definitions ............................................................................................................ 13
2.6.1
GD32E231CxT6 LQFP48 pin definitions .............................................................................. 13
2.6.2
GD32E231CxT6 pin alternate functions ............................................................................... 16
Functional description .......................................................................................... 19
3.1
ARM® Cortex®-M23 core ............................................................................................ 19
3.2
Embedded memory ................................................................................................... 19
3.3
Clock, reset and supply management ...................................................................... 19
3.4
Boot modes ................................................................................................................ 20
3.5
Power saving modes ................................................................................................. 20
3.6
Analog to digital converter (ADC) ............................................................................ 21
3.7
DMA ............................................................................................................................ 22
3.8
General-purpose inputs/outputs (GPIOs) ................................................................ 22
3.9
Timers and PWM generation..................................................................................... 22
3.10
Real time clock (RTC) ............................................................................................ 23
3.11
Inter-integrated circuit (I2C) .................................................................................. 24
3.12
Serial peripheral interface (SPI) ............................................................................ 24
3.13
Universal synchronous asynchronous receiver transmitter (USART) ............... 25
3.14
Inter-IC sound (I2S) ................................................................................................ 25
3.15
Comparators (CMP)................................................................................................ 25
3.16
Operational amplifier (OP-AMP) ............................................................................ 25
1
GD32E231CxT6 Datasheet
4
5
3.17
Debug mode ........................................................................................................... 26
3.18
Package and operation temperature ..................................................................... 26
Electrical characteristics ....................................................................................... 27
4.1
Absolute maximum ratings ....................................................................................... 27
4.2
Operating conditions characteristics ....................................................................... 27
4.3
Power consumption .................................................................................................. 28
4.4
EMC characteristics .................................................................................................. 33
4.5
Power supply supervisor characteristics ................................................................ 33
4.6
Electrical sensitivity .................................................................................................. 34
4.7
External clock characteristics .................................................................................. 35
4.8
Internal clock characteristics ................................................................................... 36
4.9
PLL characteristics.................................................................................................... 38
4.10
Memory characteristics ......................................................................................... 38
4.11
NRST pin characteristics ....................................................................................... 39
4.12
GPIO characteristics .............................................................................................. 39
4.13
ADC characteristics ............................................................................................... 41
4.14
Temperature sensor characteristics ..................................................................... 42
4.15
Comparators characteristics ................................................................................. 42
4.16
Operational amplifier characteristics.................................................................... 43
4.17
I2C characteristics ................................................................................................. 43
4.18
SPI characteristics ................................................................................................. 44
4.19
I2S characteristics.................................................................................................. 45
4.20
USART characteristics ........................................................................................... 45
4.21
TIMER characteristics ............................................................................................ 46
4.22
WDGT characteristics ............................................................................................ 46
4.23
Parameter conditions............................................................................................. 46
Package information.............................................................................................. 47
5.1
LQFP package outline dimensions .......................................................................... 47
6
Ordering information ............................................................................................. 49
7
Revision history ..................................................................................................... 50
2
GD32E231CxT6 Datasheet
List of Figures
Figure 2-1. GD32E231CxT6 block diagram ............................................................................................... 8
Figure 2-2. GD32E231CxT6 LQFP48 pinouts ............................................................................................ 9
Figure 2-3. GD32E231CxT6 clock tree ..................................................................................................... 12
Figure 4-1. I/O port AC characteristics definition................................................................................... 41
Figure 5-1. LQFP package outline............................................................................................................ 47
3
GD32E231CxT6 Datasheet
List of Tables
Table 2-1. GD32E231CxT6 devices features and peripheral list ............................................................. 7
Table 2-2. GD32E231CxT6 memory map ................................................................................................. 10
Table 2-3. GD32E231CxT6 LQFP48 pin definitions ................................................................................ 13
Table 2-4. Port A alternate functions summary ...................................................................................... 16
Table 2-5. Port B alternate functions summary ...................................................................................... 17
Table 2-6. Port F alternate functions summary ...................................................................................... 18
Table 4-1. Absolute maximum ratings(1) (4)............................................................................................... 27
Table 4-2. DC operating conditions ......................................................................................................... 27
Table 4-3. Clock frequency ....................................................................................................................... 28
Table 4-4. Operating conditions at Power up/ Power down .................................................................. 28
Table 4-5. Start-up timings of Operating conditions .............................................................................. 28
Table 4-6. Power saving mode wakeup timings characteristics(1) (2) .................................................... 28
Table 4-7. Power consumption characteristics(1) (2) (3) (4) (5) (6) .................................................................. 28
Table 4-8. Peripheral current consumption characteristics(1) ............................................................... 32
Table 4-9. EMS characteristics ................................................................................................................. 33
Table 4-10. Power supply supervisor characteristics(1) ......................................................................... 33
Table 4-11. ESD characteristics ............................................................................................................... 34
Table 4-12. Static latch-up characteristics .............................................................................................. 35
Table 4-13. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics . 35
Table 4-14. High speed external user clock characteristics (HXTAL in bypass mode) ...................... 35
Table 4-15. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics .. 36
Table 4-16. Low speed external user clock characteristics (LXTAL in bypass mode) ....................... 36
Table 4-17. High speed internal clock (IRC8M) characteristics(1) ......................................................... 36
Table 4-18. PLL characteristics ................................................................................................................ 38
Table 4-19. Flash memory characteristics .............................................................................................. 38
Table 4-20. NRST pin characteristics ....................................................................................................... 39
Table 4-21. I/O port DC characteristics(1) ................................................................................................. 39
Table 4-22. I/O port AC characteristics(1)(2) .............................................................................................. 40
Table 4-23. ADC characteristics ............................................................................................................... 41
Table 4-24. ADC RAIN max for fADC = 28 MHz(1) ......................................................................................... 42
Table 4-25. Temperature sensor characteristics(1) ................................................................................. 42
Table 4-26. CMP characteristics(1) ............................................................................................................ 42
Table 4-27. OP-AMP characteristics ........................................................................................................ 43
Table 4-28. Standard SPI characteristics(1) ............................................................................................. 44
Table 4-29. I2S characteristics(1)............................................................................................................... 45
Table 4-30. USART characteristics(1) ....................................................................................................... 45
Table 4-31. TIMER characteristics(1) ........................................................................................................ 46
Table 4-32. FWDGT min/max timeout period at 40 kHz (IRC40K) ......................................................... 46
Table 4-33. WWDGT min-max timeout value at 72 MHz (fPCLK1) ............................................................ 46
Table 5-1. LQFP package dimensions ..................................................................................................... 48
4
GD32E231CxT6 Datasheet
Table 6-1. Part ordering code for GD32E231CxT6 devices ................................................................... 49
Table 7-1. Revision history ....................................................................................................................... 50
5
GD32E231CxT6 Datasheet
1
General description
The GD32E231CxT6 device belongs to the value line of GD32 MCU family. It is a new 32-bit
general-purpose microcontroller based on the ARM® Cortex®-M23 core. The Cortex-M23
processor is an energy-efficient processor with a very low gate count. It is intended to be used
for microcontroller and deeply embedded applications that require an area-optimized
processor. The processor delivers high energy efficiency through a small but powerful
instruction set and extensively optimized design, providing high-end processing hardware
including a single-cycle multiplier and a 17-cycle divider.
The GD32E231CxT6 device incorporates the ARM® Cortex®-M23 32-bit processor core
operating at up to 72 MHz frequency with Flash accesses 0~2 wait states to obtain maximum
efficiency. It provides up to 64 KB embedded Flash memory and up to 8 KB SRAM memory.
An extensive range of enhanced I/Os and peripherals connected to two APB buses. The
devices offer one 12-bit ADC and one comparator, two OP-AMPs, up to five general 16-bit
timers, a basic timer, a PWM advanced timer, as well as standard and advanced
communication interfaces: up to two SPIs, two I2Cs, two USARTs, and an I2S.
The device operates from a 1.8 to 3.6 V power supply and available in –40 to +85 °C
temperature range. Several power saving modes provide the flexibility for maximum
optimization between wakeup latency and power consumption, an especially important
consideration in low power applications.
The above features make the GD32E231CxT6 devices suitable for a wide range of
applications, especially in areas such as industrial control, motor drives, user interface, power
monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike
and so on.
6
GD32E231CxT6 Datasheet
2
Device overview
2.1
Device information
Table 2-1. GD32E231CxT6 devices features and peripheral list
Part Number
GD32E231CxT6
C6T6
C8T6
FLASH (KB)
16
32
64
SRAM (KB)
4
6
8
Connectivity
Timers
C4T6
General
4
4
5
timer(16-bit)
(2,13,15,16)
(2,13,15,16)
(2,13-16)
Advanced
1
1
1
timer(16-bit)
(0)
(0)
(0)
SysTick
1
1
1
Basic
1
1
1
timer(16-bit)
(5)
(5)
(5)
Watchdog
2
2
2
RTC
1
1
1
1
2
2
(0)
(0-1)
(0-1)
1
1
2
(0)
(0)
(0-1)
1/1
1/1
2/1
(0)/(0)
(0)/(0)
(0-1)/(0)
GPIO
37
37
37
CMP
1
1
1
OP-AMP
2
2
2
EXTI
16
16
16
1
1
1
10
10
10
2
2
2
USART
I2C
SPI/I2S
ADC
Units
Channels
(External)
Channels
(Internal)
Package
LQFP48
7
GD32E231CxT6 Datasheet
2.2
Block diagram
Figure 2-1. GD32E231CxT6 block diagram
LDO
1.2V
TPIU
SW
AHB2: Fma x = 72MHz
AHB Matrix
AHB BUS
ARM Cortex-M23
Processor
Fmax: 72MHz
IBus
NVIC
GPIO Ports
A, B, C, F
SRAM
Controller
SRAM
Flash
Memory
Controller
Flash
Memory
POR/PDR
LVD
PLL
Fmax: 72MHz
HXTAL
4-32MHz
DBus
GP DMA
5chs
AHB1: Fma x = 72MHz
AHB to APB
Bridge 2
CRC
AHB to APB
Bridge 1
IRC8M
8MHz
RST/CLK
Controller
IRC40K
40KHz
Powered by LDO (1.2V)
PMU
EXTI
FWDGT
12-bit
SAR ADC
IRC28M
28MHz
Powered by V DD/VDDA
ADC
WWDGT
RTC
USART0
I2C0
SPI0/I2S0
TIMER0
APB1: Fmax = 72MHz
CMP
APB2: Fmax = 72MHz
SYS Config
CMP
I2C1
USART1
SPI1
TIMER5
TIMER14
TIMER2
TIMER15
TIMER13
TIMER16
8
GD32E231CxT6 Datasheet
2.3
Pinouts and pin assignment
Figure 2-2. GD32E231CxT6 LQFP48 pinouts
PA14/NPA
PA15
PB3
PB4
PB5
PB6
PB7
PB8
PF0-OSCIN
PF1-OSCOUT
NRST
INPB
INNB
VSSA
3
4
PA0
PA1
PA2
BOOT0
1
VDDA
ENAB
VSS
VDD
48 47 46 45 44 43 42 41 40 39 38 37
36
35
2
PC14-OSC32IN
PC15-OSC32OUT
34
33
5
6
32
31
30
GigaDevice
GD32E231CxT6
LQFP48
7
8
9
10
29
28
27
11
26
12
25
13 14 15 16 17 18 19 20 21 22 23 24
PF7
PF6
PA13/INNA
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
VSS
PB11
PB10
PB2
PB1/VOUTA
PB0
PA7
PA6/VOUTB
PA5
PA4
PA3
9
GD32E231CxT6 Datasheet
2.4
Memory map
Table 2-2. GD32E231CxT6 memory map
Pre-defined
ADDRESS
Peripherals
0xE000 0000 - 0xE00F FFFF
Cortex M23 internal peripherals
External Device
0xA000 0000 - 0xDFFF FFFF
Reserved
External RAM
0x6000 0000 - 0x9FFF FFFF
Reserved
0x5004 0000 - 0x5FFF FFFF
Reserved
0x5000 0000 - 0x5003 FFFF
Reserved
0x4800 1800 - 0x4FFF FFFF
Reserved
0x4800 1400 - 0x4800 17FF
GPIOF
0x4800 1000 - 0x4800 13FF
Reserved
0x4800 0C00 - 0x4800 0FFF
Reserved
0x4800 0800 - 0x4800 0BFF
GPIOC
0x4800 0400 - 0x4800 07FF
GPIOB
0x4800 0000 - 0x4800 03FF
GPIOA
0x4002 4400 - 0x47FF FFFF
Reserved
0x4002 4000 - 0x4002 43FF
Reserved
0x4002 3400 - 0x4002 3FFF
Reserved
0x4002 3000 - 0x4002 33FF
CRC
0x4002 2400 - 0x4002 2FFF
Reserved
0x4002 2000 - 0x4002 23FF
FMC
0x4002 1400 - 0x4002 1FFF
Reserved
0x4002 1000 - 0x4002 13FF
RCU
0x4002 0400 - 0x4002 0FFF
Reserved
0x4002 0000 - 0x4002 03FF
DMA
0x4001 8000 - 0x4001 FFFF
Reserved
0x4001 5C00 - 0x4001 7FFF
Reserved
0x4001 5800 - 0x4001 5BFF
DBG
0x4001 4C00 - 0x4001 57FF
Reserved
0x4001 4800 - 0x4001 4BFF
TIMER16
0x4001 4400 - 0x4001 47FF
TIMER15
0x4001 4000 - 0x4001 43FF
TIMER14
0x4001 3C00 - 0x4001 3FFF
Reserved
0x4001 3800 - 0x4001 3BFF
USART0
0x4001 3400 - 0x4001 37FF
Reserved
0x4001 3000 - 0x4001 33FF
SPI0/I2S0
0x4001 2C00 - 0x4001 2FFF
TIMER0
0x4001 2800 - 0x4001 2BFF
Reserved
0x4001 2400 - 0x4001 27FF
ADC
0x4001 0800 - 0x4001 23FF
Reserved
Regions
Bus
AHB1
AHB2
AHB1
Peripherals
APB2
10
GD32E231CxT6 Datasheet
Pre-defined
Regions
Bus
APB1
SRAM
Code
ADDRESS
Peripherals
0x4001 0400 - 0x4001 07FF
EXTI
0x4001 0000 - 0x4001 03FF
SYSCFG + CMP
0x4000 CC00 - 0x4000 FFFF
Reserved
0x4000 C800 - 0x4000 CBFF
Reserved
0x4000 C400 - 0x4000 C7FF
Reserved
0x4000 C000 - 0x4000 C3FF
Reserved
0x4000 8000 - 0x4000 BFFF
Reserved
0x4000 7C00 - 0x4000 7FFF
Reserved
0x4000 7800 - 0x4000 7BFF
Reserved
0x4000 7400 - 0x4000 77FF
Reserved
0x4000 7000 - 0x4000 73FF
PMU
0x4000 6400 - 0x4000 6FFF
Reserved
0x4000 6000 - 0x4000 63FF
Reserved
0x4000 5C00 - 0x4000 5FFF
Reserved
0x4000 5800 - 0x4000 5BFF
I2C1
0x4000 5400 - 0x4000 57FF
I2C0
0x4000 4800 - 0x4000 53FF
Reserved
0x4000 4400 - 0x4000 47FF
USART1
0x4000 4000 - 0x4000 43FF
Reserved
0x4000 3C00 - 0x4000 3FFF
Reserved
0x4000 3800 - 0x4000 3BFF
SPI1
0x4000 3400 - 0x4000 37FF
Reserved
0x4000 3000 - 0x4000 33FF
FWDGT
0x4000 2C00 - 0x4000 2FFF
WWDGT
0x4000 2800 - 0x4000 2BFF
RTC
0x4000 2400 - 0x4000 27FF
Reserved
0x4000 2000 - 0x4000 23FF
TIMER13
0x4000 1400 - 0x4000 1FFF
Reserved
0x4000 1000 - 0x4000 13FF
TIMER5
0x4000 0800 - 0x4000 0FFF
Reserved
0x4000 0400 - 0x4000 07FF
TIMER2
0x4000 0000 - 0x4000 03FF
Reserved
0x2000 2000 - 0x3FFF FFFF
Reserved
0x2000 0000 - 0x2000 1FFF
SRAM
0x1FFF F810 - 0x1FFF FFFF
Reserved
0x1FFF F800 - 0x1FFF F80F
Option bytes
0x1FFF EC00 - 0x1FFF F7FF
System memory
0x0801 0000 - 0x1FFF EBFF
Reserved
0x0800 0000 - 0x0800 FFFF
Main Flash memory
0x0001 0000 - 0x07FF FFFF
Reserved
11
GD32E231CxT6 Datasheet
Pre-defined
Bus
Regions
ADDRESS
Peripherals
Aliased to Flash or
0x00000000 - 0x0000FFFF
2.5
system memory
Clock tree
Figure 2-3. GD32E231CxT6 clock tree
FMC
CK_I2S
(to I2S)
CK_FMC
SCS[1:0]
FMC enable
(by hardware)
(to FMC)
HCLK
CK_IRC8M
00
8 MHz
IRC8M
/2
0
PLL
CK_PLL
1
10
AHB enable
CK_SYS
72 MHz max
AHB
Prescaler
÷1,2...512
(to AHB bus,Cortex-M23,SRAM,DMA)
CK_CST
CK_AHB
÷8
72 MHz max
(to Cortex-M23 SysTick)
FCLK
PLLSEL
01
PLLEN
(free running clock)
PREDV
4-32 MHz
HXTAL
Clock
Monitor
÷1,2.
..16
TIMER2,5,13
÷[apb1
prescaler/2]
CK_TIMERx
TIMERx
enable
to TIMER2,5,13
CK_HXTAL
/32
APB1
Prescaler
÷1,2,4,8,16
11
CK_APB1
PCLK1
72 MHz max
to APB1 peripherals
Peripheral enable
32.768 KHz
LXTAL
CK_RTC
01
(to RTC)
10
40 KHz
IRC40K
RTCSRC[1:0]
CK_FWDGT
(to FWDGT)
TIMER0,14,1
5,16
÷[apb2
prescaler/2]
APB2
Prescaler
÷1,2,4,8,16
CK_TIMERx
TIMERx
enable
CK_APB2
PCLK2
72 MHz max
÷1,2,4...128
CKOUTDIV
to APB2 peripherals
Peripheral enable
CKOUTSEL
CK_OUT
to TIMER0,14,15,16
0
CK_IRC28M
CK_IRC40K
CK_ LXTAL
CK_SYS
CK_IRC8M
CK_HXTAL
/1,2
CK_PLL
CK_ IRC8M
11
CK_L XTAL
10
CK_ SYS
01
CK_ USART0
to USART0
00
USART0SEL[1:0]
28 MHz
IRC28M
÷1,2
0
CK_ ADC to ADC
1
28 MHz max
ADCSEL
ADC
Prescaler
÷2,4,6,8
ADC
Prescaler
÷3,5,7, 9
Note:
If the APB prescaler is 1, the timer clock frequencies are set to AHB frequency divide by 1.
Otherwise, they are set to the AHB frequency divide by half of APB prescaler.
Legend:
HXTAL: High speed crystal oscillator
LXTAL: Low speed crystal oscillator
IRC8M: Internal 8M RC oscillator
IRC40K: Internal 40K RC oscillator
IRC28M: Internal 28M RC oscillator
12
GD32E231CxT6 Datasheet
2.6
Pin definitions
2.6.1
GD32E231CxT6 LQFP48 pin definitions
Table 2-3. GD32E231CxT6 LQFP48 pin definitions
Pin Name
PC14OSC32IN
PC15OSC32OUT
Pins
Pin
I/O
Type(1)
Level(2)
1
I/O
2
I/O
Functions description
Default: PC14
Additional: OSC32IN
Default: PC15
Additional: OSC32OUT
Default: PF0
PF0-OSCIN
3
I/O
5VT
Alternate: I2C0_SDA
Additional: OSCIN
PF1OSCOUT
Default: PF1
4
I/O
5VT
Alternate: I2C0_SCL
Additional: OSCOUT
NRST
5
I/O
Default: NRST
INPB
6
I
Default: VIN+B
INNB
7
I
Default: VIN-B
VSSA
8
P
Default: VSSA
VDDA
9
P
Default: VDDA
Default: PA0
PA0-WKUP
10
I/O
Alternate: USART0_CTS(3), USART1_CTS(4),
CMP_OUT, I2C1_SCL(5)
Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0
Default: PA1
PA1
11
I/O
Alternate: USART0_RTS(3), USART1_RTS(4),
I2C1_SDA(5), EVENTOUT, TIMER14_CH0_ON(5)
Additional: ADC_IN1, CMP_IP
Default: PA2
PA2
12
I/O
Alternate: USART0_TX(3), USART1_TX(4),
TIMER14_CH0(5)
Additional: ADC_IN2, CMP_IM7
Default: PA3
PA3
13
I/O
Alternate: USART0_RX(3), USART1_RX(4),
TIMER14_CH1(5)
Additional: ADC_IN3
Default: PA4
PA4
14
I/O
Alternate: SPI0_NSS, I2S0_WS, USART0_CK(3),
USART1_CK(4), TIMER13_CH0, SPI1_NSS(5)
Additional: ADC_IN4, CMP_IM4
Default: PA5
PA5
15
I/O
Alternate: SPI0_SCK, I2S0_CK
Additional: ADC_IN5, CMP_IM5
13
GD32E231CxT6 Datasheet
Pin Name
Pins
Pin
I/O
Type(1)
Level(2)
Functions description
Default: PA6
Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,
PA6/VOUTB
16
TIMER0_BRKIN, TIMER15_CH0, EVENTOUT,
I/O
CMP_OUT
Additional: ADC_IN6, VOUTB
Default: PA7
Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1,
PA7
17
TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0,
I/O
EVENTOUT
Additional: ADC_IN7
Default: PB0
PB0
18
Alternate: TIMER2_CH2, TIMER0_CH1_ON,
I/O
USART1_RX(4), EVENTOUT
Additional: ADC_IN8
Default: PB1
PB1/VOUTA
19
Alternate: TIMER2_CH3, TIMER13_CH0,
I/O
TIMER0_CH2_ON, SPI1_SCK(5)
Additional: ADC_IN9, VOUTA
PB2
20
I/O
5VT
PB10
21
I/O
5VT
Default: PB2
Alternate: TIMER2_ETI
Default: PB10
Alternate: I2C0_SCL(3), I2C1_SCL(5), SPI1_IO2(5),
SPI1_SCK(5)
Default: PB11
PB11
22
I/O
5VT
Alternate: I2C0_SDA(3), I2C1_SDA(5), EVENTOUT,
SPI1_IO3(5)
VSS
23
P
Default: VSS
VDD
24
P
Default: VDD
Default: PB12
PB12
25
I/O
5VT
Alternate: SPI0_NSS(3), SPI1_NSS(5), TIMER0_BRKIN,
I2C1_SMBA(5), EVENTOUT
Default: PB13
PB13
26
I/O
5VT
Alternate: SPI0_SCK(3), SPI1_SCK(5),
TIMER0_CH0_ON, I2C1_TXFRAME(5), I2C1_SCL(5)
Default: PB14
PB14
27
I/O
5VT
Alternate: SPI0_MISO(3), SPI1_MISO(5),
TIMER0_CH1_ON, TIMER14_CH0(5), I2C1_SDA(5)
Default: PB15
Alternate: SPI0_MOSI(3), SPI1_MOSI(5),
PB15
28
I/O
5VT
TIMER0_CH2_ON, TIMER14_CH0_ON(5),
TIMER14_CH1(5)
Additional: RTC_REFIN, WKUP6
Default: PA8
PA8
29
I/O
5VT
Alternate: USART0_CK, TIMER0_CH0, CK_OUT,
USART1_TX(4), EVENTOUT
14
GD32E231CxT6 Datasheet
Pin Name
Pins
Pin
I/O
Type(1)
Level(2)
Functions description
Default: PA9
PA9
30
I/O
5VT
Alternate: USART0_TX, TIMER0_CH1,
TIMER14_BRKIN(5), I2C0_SCL, CK_OUT
Default: PA10
PA10
31
I/O
5VT
Alternate: USART0_RX, TIMER0_CH2,
TIMER16_BRKIN, I2C0_SDA
Default: PA11
PA11
32
I/O
5VT
Alternate: USART0_CTS, TIMER0_CH3, CMP_OUT,
EVENTOUT, SPI1_IO2(5), I2C0_SMBA, I2C1_SCL(5)
Default: PA12
PA12
33
I/O
5VT
Alternate: USART0_RTS, TIMER0_ETI, EVENTOUT,
SPI1_IO3(5), I2C0_TXFRAME, I2C1_SDA(5)
Default: PA13
PA13/INNA
34
I/O
5VT
Alternate: SWDIO, IFRP_OUT, SPI1_MISO(5)
Additional: VIN-A
PF6
35
I/O
5VT
PF7
36
I/O
5VT
Default: PF6
Alternate: I2C0_SCL(3), I2C1_SCL(5)
Default: PF7
Alternate: I2C0_SDA(3), I2C1_SDA(5)
Default: PA14
PA14/INPA
37
I/O
5VT
Alternate: USART0_TX(3), USART1_TX(4), SWCLK,
SPI1_MOSI(5)
Additional: VIN+A
Default: PA15
PA15
38
I/O
5VT
Alternate: SPI0_NSS, I2S0_WS, USART0_RX(3),
USART1_RX(4), SPI1_NSS(5), EVENTOUT
PB3
39
I/O
5VT
Default: PB3
Alternate: SPI0_SCK, I2S0_CK, EVENTOUT
Default: PB4
PB4
40
I/O
5VT
Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,
EVENTOUT, I2C0_TXFRAME, TIMER16_BRKIN
Default: PB5
PB5
41
I/O
5VT
Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA,
TIMER15_BRKIN, TIMER2_CH1
Additional: WKUP5
Default: PB6
PB6
42
I/O
5VT
PB7
43
I/O
5VT
BOOT0
44
I
PB8
45
I/O
ENAB
46
I
Default: ENAB
VSS
47
P
Default: VSS
VDD
48
P
Default: VDD
Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON
Default: PB7
Alternate:I2C0_SDA, USART0_RX,TIMER16_CH0_ON
Default: BOOT0
5VT
Default: PB8
Alternate: I2C0_SCL, TIMER15_CH0
15
GD32E231CxT6 Datasheet
Notes:
(1) Type: I = input, O = output, P = power.
(2) I/O Level: 5VT = 5 V tolerant.
(3) Functions are available on GD32E231C4T6 devices only.
(4) Functions are available on GD32E231C8/6T6 devices.
(5) Functions are available on GD32E231C8T6 devices only.
2.6.2
GD32E231CxT6 pin alternate functions
Table 2-4. Port A alternate functions summary
Pin
Name
AF0
AF1
AF2
AF3
USART0_CTS(1)
/USART1_CTS(2
PA0
AF4
AF5
AF6
I2C1_SCL(
CMP_
3)
OUT
)
USART0_RTS(1)
PA1
I2C1_SDA(
EVENTOUT /USART1_RTS(2
3)
PA3
PA4
PA5
PA6
PA7
PA8
PA9
PA10
TIMER14
_CH0_O
N(3)
)
PA2
AF7
TIMER14_C USART0_TX(1)/
H0(3)
USART1_TX(2)
TIMER14_C USART0_RX(1)/
H1(3)
USART1_RX(2)
SPI0_NSS/I USART0_CK(1)/
2S0_WS
USART1_CK(2)
TIMER13_
SPI1_N
CH0
SS(3)
SPI0_SCK/I
2S0_CK
SPI0_MISO/
I2S0_MCK
SPI0_MOSI/
I2S0_SD
CK_OUT
TIMER14_B
RKIN(3)
TIMER16_B
RKIN
TIMER2_CH0
TIMER2_CH1
USART0_CK
USART0_TX
USART0_RX
TIMER0_BR
KIN
0
TIMER0_CH
1
TIMER0_CH
2
TIMER0_CH
USART0_RTS TIMER0_ETI
PA14
SWCLK
USART0_TX(1)/
OUT
CH0
_CH0
OUT
TIMER0_CH EVENT USART1_T
PA12 EVENTOUT
IFRP_OUT
OUT
TIMER13_ TIMER16 EVENT
0_ON
USART0_CTS
SWDIO
_CH0
TIMER0_CH
PA11 EVENTOUT
PA13
TIMER15 EVENT CMP_
3
OUT
X(2)
I2C0_SCL
I2C0_SDA
I2C0_SMB I2C1_SC SPI1_I CMP_
A
L(3)
O2(3)
OUT
I2C0_TXF I2C1_SD SPI1_I
RAME
A(3)
O3(3)
SPI1_M
ISO(3)
SPI1_M
16
GD32E231CxT6 Datasheet
Pin
Name
AF0
AF1
AF2
AF3
AF4
AF5
USART1_TX(2)
PA15
AF7
OSI(3)
SPI0_NSS/I USART0_RX(1)/
2S0_WS
AF6
EVENT
SPI1_N
OUT
SS(3)
USART1_RX(2)
Table 2-5. Port B alternate functions summary
Pin
Name
PB0
PB1
AF0
AF1
EVENTOUT
TIMER2_CH2
TIMER13_CH
0
TIMER2_CH3
PB2
PB3
PB4
PB5
SPI0_SCK/I2
S0_CK
SPI0_MISO
/I2S0_MCK
SPI0_MOSI
/I2S0_SD
TIMER2_CH0
TIMER2_CH1
PB7 USART0_RX
I2C0_SDA
PB8
I2C0_SCL
TIMER0_CH
USART1_
1_ON
RX(2)
AF5
AF6
TIMER0_CH
SPI1_S
2_ON
CK(3)
AF7
TIMER
I2C0_TXF
EVENTOUT
16_BR
RAME
KIN
TIMER15_BR I2C0_S
KIN
MBA
TIMER15_C
H0_ON
TIMER16_C
H0_ON
TIMER15_C
H0
I2C0_SCL(1)/I2C
PB10
PB11 EVENTOUT
SPI0_NSS(1)
/SPI1_NSS(3)
SPI1_I SPI1_
1_SCL(3)
O2(3)
I2C0_SDA(1)/I2C
SPI1_I
1_SDA(3)
O3(3)
EVENTOUT
TIMER0_BR
I2C1_SMB
KIN
A(3)
SPI0_SCK(1) I2C1_TXFRAME( TIMER0_CH
/SPI1_SCK(3)
3)
SPI0_MISO(1)
PB14 /SPI1_MISO(3 TIMER14_CH0(3)
)
SPI0_MOSI(1)
PB15
AF4
EVENTOUT
I2C0_SCL
PB13
AF3
TIMER2_ETI
PB6 USART0_TX
PB12
AF2
/SPI1_MOSI(3
)
TIMER14_CH1(3)
I2C1_SC
0_ON
L(3)
TIMER0_CH
I2C1_SD
1_ON
A(3)
TIMER0_CH
2_ON
SCK(3)
TIMER1
4_CH0_
ON(3)
17
GD32E231CxT6 Datasheet
Table 2-6. Port F alternate functions summary
Pin
Name
AF0
AF1
PF0
I2C0_SDA
PF1
I2C0_SCL
AF2
AF3
AF4
AF5
AF6
AF7
I2C0_SCL(1)
PF6
/I2C1_SCL(3
)
I2C0_SDA(1)
PF7 /I2C1_SDA(3
)
Notes:
(1) Functions are available on GD32E231C4T6 devices only.
(2) Functions are available on GD32E231C8/6T6 devices.
(3) Functions are available on GD32E231C8T6 devices only.
18
GD32E231CxT6 Datasheet
3
Functional description
3.1
ARM® Cortex®-M23 core
The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is
intended to be used for microcontroller and deeply embedded applications that require an
area-optimized processor. The processor is highly configurable enabling a wide range of
implementations from those requiring memory protection and powerful trace technology to
cost sensitive devices requiring minimal area, while delivering outstanding computational
performance and an advanced system response to interrupts.
32-bit ARM® Cortex®-M23 processor core
Up to 72 MHz operation frequency
Single-cycle multiplication and hardware divider
Ultra-low power, energy-efficient operation
Excellent code density
Integrated Nested Vectored Interrupt Controller (NVIC)
24-bit SysTick timer
The Cortex®-M23 processor is based on the ARMv8-M architecture and supports both Thumb
and Thumb-2 instruction sets. Some system peripherals listed below are also provided by
Cortex®-M23:
Internal Bus Matrix connected with AHB master, Serial Wire Debug Port and Single-cycle
IO port
3.2
Nested Vectored Interrupt Controller (NVIC)
Breakpoint Unit(BPU)
Data Watchpoint and Trace (DWT)
Serial Wire JTAG Debug Port (SWJ-DP)
Embedded memory
Up to 64 Kbytes of Flash memory
Up to 8 Kbytes of SRAM with hardware parity checking
64 Kbytes of inner Flash and 8 Kbytes of inner SRAM at most is available for storing programs
and data, both accessed (R/W) at CPU clock speed with 0~2 wait states. Table 2-2.
GD32E231CxT6 memory map shows the memory map of the GD32E231CxT6 series of
devices, including code, SRAM, peripheral, and other pre-defined regions.
3.3
Clock, reset and supply management
Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator
19
GD32E231CxT6 Datasheet
Internal 28 MHz RC oscillator
Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
Integrated system clock PLL
1.8 to 3.6 V application supply and I/Os
Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage
detector (LVD)
The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These
include speed internal RC oscillator and external crystal oscillator, high speed and low speed
two types. Several prescalers allow the frequency configuration of the AHB and two APB
domains. The maximum frequency of the AHB, APB2 and APB1 domains is 72 MHz/72
MHz/72 MHz. See Figure 2-3. GD32E231CxT6 clock tree for details on the clock tree.
The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor
core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are
always active, and ensures proper operation starting from 2.6 V and down to 1.8V. The device
remains in reset mode when VDD is below a specified threshold. The embedded low voltage
detector (LVD) monitors the power supply, compares it to the voltage threshold and generates
an interrupt as a warning message for leading the MCU into security.
Power supply schemes:
VDD range: 1.8 to 3.6 V, external power supply for I/Os and the internal regulator.
Provided externally through VDD pins.
VSSA, VDDA range: 1.8 to 3.6 V, external analog power supplies for ADC, reset blocks,
RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAK range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and
backup registers (through power switch) when VDD is not present.
3.4
Boot modes
At startup, boot pins are used to select one of three boot options:
Boot from main Flash memory (default)
Boot from system memory
Boot from on-chip SRAM
In default condition, boot from main Flash memory is selected. The boot loader is located in
the internal boot ROM memory (system memory). It is used to reprogram the Flash memory
by using USART0 (PA9 and PA10) or USART1 (PA14 and PA15).
3.5
Power saving modes
The MCU supports three kinds of power saving modes to achieve even lower power
consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating
modes reduce the power consumption and allow the application to achieve the best balance
20
GD32E231CxT6 Datasheet
between the CPU operating time, speed and power consumption.
Sleep mode
In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and
any interrupt/event can wake up the system.
Deep-sleep mode
In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed
crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and
registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the
system from the deep-sleep mode including the 16 external lines, the RTC alarm, RTC
tamper and timestamp, CMP output, LVD output and USART wakeup. When exiting the
deep-sleep mode, the IRC8M is selected as the system clock.
Standby mode
In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of
IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except
backup registers) are lost. There are four wakeup sources for the standby mode,
including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the
rising edge on WKUP pin.
3.6
Analog to digital converter (ADC)
12-bit SAR ADC's conversion rate is up to 2 MSPS
12-bit, 10-bit, 8-bit or 6-bit configurable resolution
Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
Input voltage range: VSSA to VDDA
Temperature sensor
One 12-bit 2 MSPS multi-channel ADC is integrated in the device. It has a total of 12
multiplexed channels: up to 10 external channels, 1 channel for internal temperature sensor
(VSENSE) and 1 channel for internal reference voltage (VREFINT). The input voltage range is
between VSSA and VDDA. An on-chip hardware oversampling scheme improves performance
while off-loading the related computational burden from the CPU. An analog watchdog block
can be used to detect the channels, which are required to remain within a specific threshold
window. A configurable channel management block can be used to perform conversions in
single, continuous, scan or discontinuous mode to support more advanced use.
The ADC can be triggered from the events generated by the general level 0 timers (TIMERx)
and the advanced timer (TIMER0) with internal connection. The temperature sensor can be
used to generate a voltage that varies linearly with temperature. It is internally connected to
the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital
value.
21
GD32E231CxT6 Datasheet
3.7
DMA
5 channels DMA controller
Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs and I2S
The flexible general-purpose DMA controllers provide a hardware method of transferring data
between peripherals and/or memory without intervention from the CPU, thereby freeing up
bandwidth for other system functions. Three types of access method are supported:
peripheral to memory, memory to peripheral, memory to memory.
Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel
requests are determined by software configuration and hardware channel number. Transfer
size of source and destination are independent and configurable.
3.8
General-purpose inputs/outputs (GPIOs)
Up to 37 fast GPIOs, all mappable on 16 external interrupt lines
Analog input/output configurable
Alternate function input/output configurable
There are up to 37 general purpose I/O pins (GPIO) in GD32E231CxT6, named PA0 ~ PA15
and PB0 ~ PB8, PB10 ~ PB15, PC14 ~ PC15, PF0 ~ PF1, PF6 ~ PF7 to implement logic
input/output functions. Each of the GPIO ports has related control and configuration registers
to satisfy the requirements of specific applications. The external interrupts on the GPIO pins
of the device have related control and configuration registers in the Interrupt/event controller
(EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain
maximum flexibility on the package pins. Each of the GPIO pins can be configured by software
as output (push-pull open-drain or analog), as input (with or without pull-up or pull-down) or
as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current capable except for analog inputs.
3.9
Timers and PWM generation
One 16-bit advanced timer (TIMER0), up to five 16-bit general timers (TIMER2, TIMER13
~ TIMER16), and one 16-bit basic timer (TIMER5)
Up to 4 independent channels of PWM, output compare or input capture for each general
timer and external trigger input
16-bit, motor control PWM advanced timer with programmable dead-time generation for
output match
Encoder interface controller with two inputs using quadrature decoder
24-bit SysTick timer down counter
2 watchdog timers (free watchdog timer and window watchdog timer)
The advanced timer (TIMER0) can be used as a three-phase PWM multiplexed on 6 channels.
22
GD32E231CxT6 Datasheet
It has complementary PWM outputs with programmable dead-time generation. It can also be
used as a complete general timer. The 4 independent channels can be used for input capture,
output compare, PWM generation (edge- or center- aligned counting modes) and single pulse
mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx
timer. It can be synchronized with external signals or to interconnect with other general timers
together which have the same architecture and features.
The general timer can be used for a variety of purposes including general time, input signal
pulse width measurement or output waveform generation such as a single pulse generation
or PWM output, up to 4 independent channels for input capture/output compare. TIMER2 is
based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. TIMER13 ~ TIMER16
is based on a 16-bit auto-reload up counter and a 16-bit prescaler. The general timer also
supports an encoder interface with two inputs using quadrature decoder.
The basic timer, known as TIMER5 can also be used as a simple 16-bit time base.
The GD32E231CxT6 have two watchdog peripherals, free watchdog and window watchdog.
They offer a combination of high safety level, flexibility of use and timing accuracy.
The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler. It is
clocked from an independent 40 KHz internal RC and as it operates independently of the
main clock, it can operate in deep-sleep and standby modes. It can be used either as a
watchdog to reset the device when a problem occurs, or as a free-running timer for application
timeout management.
The window watchdog is based on a 7-bit down counter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the
main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug
mode.
The SysTick timer is dedicated for OS, but could also be used as a standard down counter.
The features are shown below:
3.10
A 24-bit down counter
Auto reload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source
Real time clock (RTC)
Independent binary-coded decimal (BCD) format timer/counter with five 32-bit backup
registers.
Calendar with subsecond, second, minute, hour, week day, date, year and month
automatically correction
Alarm function with wake up from deep-sleep and standby mode capability
On-the-fly correction for synchronization with master clock. Digital calibration with 0.954
ppm resolution for compensation of quartz crystal inaccuracy.
23
GD32E231CxT6 Datasheet
The real time clock is an independent timer which provides a set of continuously running
counters in backup registers to provide a real calendar function, and provides an alarm
interrupt or an expected interrupt. It is not reset by a system or power reset, or when the
device wakes up from standby mode. In the RTC unit, there are two prescalers used for
implementing the calendar and other functions. One prescaler is a 7-bit asynchronous
prescaler and the other is a 15-bit synchronous prescaler.
3.11
Inter-integrated circuit (I2C)
Up to two I2C bus interfaces can support both master and slave mode with a frequency
up to 1 MHz (Fast mode plus)
Provide arbitration function, optional PEC (packet error checking) generation and
checking
Supports 7-bit and 10-bit addressing mode and general call addressing mode
Supports SAM_V mode
The I2C interface is an internal circuit allowing communication with an external I2C interface
which is an industry standard two line serial interface used for connection to external
hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line
(SCL). The I2C module provides different data transfer rates: up to 100 KHz in standard mode,
up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also
has an arbitration detect function to prevent the situation where more than one master
attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided
in I2C interface to perform packet error checking for I2C data.
3.12
Serial peripheral interface (SPI)
Up to two SPI interfaces with a frequency of up to 18 MHz
Support both master and slave mode
Hardware CRC calculation and transmit automatic CRC error checking
Separate transmit and receive 32-bit FIFO with DMA capability (only in SPI1)
Data frame size can be 4 to 16 bits (only in SPI1)
Quad-SPI configuration available in master mode (only in SPI1)
The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO
& MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by
the DMA controller. The SPI interface may be used for a variety of purposes, including simplex
synchronous transfers on two lines with a possible bidirectional data line or reliable
communication using CRC checking. Specially, SPI1 has separate transmit and receive 32bit FIFO with DMA capability and its data frame size can be 4 to 16 bits. Quad-SPI master
mode is also supported in SPI1.
24
GD32E231CxT6 Datasheet
3.13
Universal synchronous asynchronous receiver transmitter
(USART)
Up to two USARTs with operating frequency up to 4.5 MBits/s
Supports both asynchronous and clocked synchronous serial communication modes
IrDA SIR encoder and decoder support
LIN break generation and detection
ISO 7816-3 compliant smart card interface
The USART (USART0, USART1) are used to translate data between parallel and serial
interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous
transfer. It is also commonly used for RS-232 standard communication. The USART includes
a programmable baud rate generator which is capable of dividing the system clock to produce
a dedicated clock for the USART transmitter and receiver. The USART also supports DMA
function for high speed data communication.
3.14
Inter-IC sound (I2S)
One I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz, multiplexed with
SPI0
Support either master or slave mode
The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio
applications by 3-wire serial lines. GD32E231CxT6 contain an I2S-bus interface that can be
operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI0. The
audio sampling frequency from 8 KHz to 192 KHz is supported with less than 0.5% accuracy
error.
3.15
Comparators (CMP)
One fast rail-to-rail low-power comparators with software configurable
Programmable reference voltage (internal or external I/O)
One Comparator (CMP) is implemented within the devices. It can wake up from deep-sleep
mode to generate interrupts and breaks for the timers and also can be combined as a window
comparator. The internal voltage reference is also connected to ADC_IN17 input channel of
the ADC.
3.16
Operational amplifier (OP-AMP)
Two 6MHz, rail-to-rail I/O CMOS operational amplifiers
25
GD32E231CxT6 Datasheet
Low offset voltage: 1mV (typ)
High gain: 95dB (typ)
Low IB: 5pA (typ)
Low supply voltage: + 2.7 V to + 3.6V
Two operational amplifiers (OP-AMP) are low noise, low voltage and low power operational
amplifiers with high gain-bandwidth product of 6MHz and slew rate of 5V/μs. The maximum
input offset voltage is only 3.5mV and the input common mode range extends beyond the
supply rails.
3.17
Debug mode
Serial wire JTAG debug port (SWJ-DP)
The ARM® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
3.18
Package and operation temperature
LQFP48 (GD32E231CxT6).
Operation temperature range: -40°C to +85°C (industrial level)
26
GD32E231CxT6 Datasheet
4
Electrical characteristics
4.1
Absolute maximum ratings
The maximum ratings are the limits to which the device can be subjected without permanently
damaging the device. Note that the device is not guaranteed to operate properly at the
maximum ratings. Exposure to the absolute maximum rating conditions for extended periods
may affect device reliability.
Table 4-1. Absolute maximum ratings(1) (4)
Symbol
Min
Max
Unit
VSS - 0.3
VSS + 3.6
V
VSSA - 0.3
VSSA + 3.6
V
VSS - 0.3
VDD + 3.6
V
Input voltage on other I/O
VSS - 0.3
3.6
V
|ΔVDDx|
Variations between different VDD power pins
—
50
mV
|VSSX −VSS|
Variations between different ground pins
—
50
mV
IIO
Maximum current for GPIO pin
—
±25
mA
TA
Operating temperature range
-40
+85
°C
TSTG
Storage temperature range
-55
+150
°C
TJ
Maximum junction temperature
—
125
°C
VDD
VDDA
VIN
Parameter
External voltage
range(2)
External analog supply voltage
Input voltage on 5V tolerant
pin(3)
(1). Guaranteed by design, not tested in production.
(2). All main power and ground pins should be connected to an external power source within the allowable range.
(3). VIN maximum value cannot exceed 6.5 V.
(4). It is recommended that VDD and VDDA are powered by the same source. The maximum difference between
VDD and VDDA does not exceed 300 mV during power-up and operation.
4.2
Operating conditions characteristics
Table 4-2. DC operating conditions
Symbol
Parameter
Conditions
VDD
Supply voltage
—
Analog supply voltage
VDDA
ADC not used
Analog supply voltage
ADC used
Min(1) Typ Max(1) Unit
1.8
3.3
3.6
1.8
3.3
3.6
—
V
V
2.4
3.3
3.6
(1). Based on characterization, not tested in production.
27
GD32E231CxT6 Datasheet
Table 4-3. Clock frequency
Symbol
Parameter
Conditions
Min
Max
Unit
fHCLK1
AHB1 clock frequency
—
0
72
MHz
fHCLK2
AHB2 clock frequency
—
0
72
MHz
fAPB1
APB1 clock frequency
—
0
72
MHz
fAPB2
APB2 clock frequency
—
0
72
MHz
Min
Max
Unit
0
∞
20
∞
Table 4-4. Operating conditions at Power up/ Power down
Symbol
tVDD(1)
Parameter
Conditions
VDD rise time rate
—
VDD fall time rate
μs/V
(1). Based on characterization, not tested in production.
Table 4-5. Start-up timings of Operating conditions
Symbol
Parameter
tstart-up(1)(2)(3)
Start-up time
Conditions
Typ
Clock source from HXTAL
432
Clock source from IRC8M
76
Unit
μs
(1). Based on characterization, not tested in production.
(2). After power-up, the start-up time is the time between the rising edge of NRST high and the main function.
(3). PLL is off.
Table 4-6. Power saving mode wakeup timings characteristics(1) (2)
Symbol
Parameter
Typ
tSleep(1)
Wakeup from Sleep mode
3.5
Wakeup from Deep-sleep mode(LDO On)
17.1
Wakeup from Deep-sleep mode(LDO in low power mode)
17.1
Wakeup from Standby mode
77.5
tDeep-sleep(1)
tStandby(1)
Unit
μs
(1). Based on characterization, not tested in production.
(2). The wakeup time is measured from the wakeup event to the point at which the application code reads the first
instruction under the below conditions: VDD = VDDA = 3.3 V, IRC8M = System clock = 8 MHz.
4.3
Power consumption
The power measurements specified in the tables represent that code with data executing from
embedded Flash with the following specifications.
Table 4-7. Power consumption characteristics(1) (2) (3) (4) (5) (6)
Symbol
Parameter
Conditions
Min
Typ
Max Unit
—
8.5
—
mA
—
5.4
—
mA
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 72 MHz, All peripherals
IDD
Supply current
(Run mode)
enabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 72 MHz, All peripherals
disabled
28
GD32E231CxT6 Datasheet
Symbol
Parameter
Conditions
Min
Typ
Max Unit
-—
6.2
-—
mA
—
4.2
—
mA
—
5.1
—
mA
-—
3.6
-—
mA
—
4.0
—
mA
—
2.9
—
mA
-—
3.2
-—
mA
—
2.5
—
mA
—
2.4
—
mA
-—
2.1
-—
mA
—
0.8
—
mA
—
0.6
—
mA
-—
0.6
-—
mA
—
0.5
—
mA
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 48 MHz, All peripherals
enabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 48 MHz, All peripherals
disabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 36 MHz, All peripherals
enabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 36 MHz, All peripherals
disabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 24 MHz, All peripherals
enabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 24 MHz, All peripherals
disabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 16 MHz, All peripherals
enabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 16 MHz, All peripherals
disabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 8 MHz, All peripherals
enabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 8 MHz, All peripherals
disabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 4 MHz, All peripherals
enabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 4 MHz, All peripherals
disabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 2 MHz, All peripherals
enabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz,
System clock = 2 MHz, All peripherals
disabled
29
GD32E231CxT6 Datasheet
Symbol
Parameter
Conditions
Min
Typ
Max Unit
—
7.4
—
mA
—
3.7
—
mA
-—
5.5
-—
mA
—
3.1
—
mA
—
4.5
—
mA
-—
2.7
-—
mA
—
3.6
—
mA
—
2.4
—
mA
-—
3.0
-—
mA
—
2.1
—
mA
—
2.3
—
mA
-—
1.9
-—
mA
—
0.7
—
mA
—
0.5
—
mA
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock = 72 MHz, All
peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock = 72 MHz, All
peripherals disabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock = 48 MHz, All
peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock = 48 MHz, All
peripherals disabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock = 36 MHz, All
peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock = 36 MHz, All
peripherals disabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock= 24 MHz, All
Supply current
peripherals enabled
(Sleep mode)
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock = 24 MHz, All
peripherals disabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock = 16 MHz, All
peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock = 16 MHz, All
peripherals disabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock = 8 MHz, All
peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock = 8 MHz, All
peripherals disabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock = 4 MHz, All
peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock = 4 MHz, All
peripherals disabled
30
GD32E231CxT6 Datasheet
Symbol
Parameter
Conditions
Min
Typ
Max Unit
-—
0.5
-—
mA
—
0.4
—
mA
—
25.5
100
μA
—
12.3
60
μA
—
4.3
10
μA
—
4.1
10
μA
—
3.6
10
μA
—
2.1
5
μA
—
1.43
—
μA
—
1.36
—
μA
—
1.23
—
μA
—
1.15
—
μA
—
1.13
—
μA
—
1.06
—
μA
—
0.95
—
μA
—
0.86
—
μA
—
0.84
—
μA
—
0.76
—
μA
—
0.64
—
μA
—
0.56
—
μA
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock = 2 MHz, All
peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU
clock off, System clock = 2 MHz, All
peripherals disabled
VDD = VDDA = 3.3 V, LDO in run mode,
Supply current
(Deep-sleep
mode)
IRC40K off, RTC off, All GPIOs analog
mode
VDD = VDDA = 3.3 V, LDO in low power
mode, IRC40K off, RTC off, All GPIOs
analog mode
VDD = VDDA = 3.3 V, LXTAL off, IRC40K on,
RTC on
VDD = VDDA = 3.3 V, LXTAL off, IRC40K on,
Supply current
RTC off
(Standby mode) VDD = VDDA = 3.3 V, LXTAL off, IRC40K off,
RTC off, VDDA Monitor on
VDD = VDDA = 3.3 V, LXTAL off, IRC40K off,
RTC off, VDDA Monitor off
VDD = VDDA = 3.6 V, LXTAL on with external
crystal, RTC on, Higher driving
VDD = VDDA = 3.3 V, LXTAL on with external
crystal, RTC on, Higher driving
VDD = VDDA = 2.5 V, LXTAL on with external
crystal, RTC on, Higher driving
VDD = VDDA = 1.8 V, LXTAL on with external
crystal, RTC on, Higher driving
VDD = VDDA = 3.6 V, LXTAL on with external
crystal, RTC on, Medium High driving
VDD = VDDA = 3.3 V, LXTAL on with external
ILXTAL+RTC
LXTAL+RTC
crystal, RTC on, Medium High driving
current
VDD = VDDA = 2.5 V, LXTAL on with external
crystal, RTC on, Medium High driving
VDD = VDDA = 1.8 V, LXTAL on with external
crystal, RTC on, Medium High driving
VDD = VDDA = 3.6 V, LXTAL on with external
crystal, RTC on, Medium Low driving
VDD = VDDA = 3.3 V, LXTAL on with external
crystal, RTC on, Medium Low driving
VDD = VDDA = 2.5 V, LXTAL on with external
crystal, RTC on, Medium Low driving
VDD = VDDA = 1.8 V, LXTAL on with external
crystal, RTC on, Medium Low driving
31
GD32E231CxT6 Datasheet
Symbol
Parameter
Conditions
Min
Typ
Max Unit
VDD = VDDA = 3.6 V, LXTAL on with external
—
0.74
—
μA
—
0.67
—
μA
—
0.56
—
μA
—
0.47
—
μA
crystal, RTC on, Low driving
VDD = VDDA = 3.3 V, LXTAL on with external
crystal, RTC on, Low driving
VDD = VDDA = 2.5 V, LXTAL on with external
crystal, RTC on, Low driving
VDD = VDDA = 1.8 V, LXTAL on with external
crystal, RTC on, Low driving
(1). Based on characterization, not tested in production.
(2). Unless otherwise specified, all values given for TA = 25 ℃ and test result is mean value.
(3). When System Clock is less than 4 MHz, an external source is used, and the HXTAL bypass function is needed,
no PLL.
(4). When System Clock is greater than 8 MHz, a crystal 8MHz is used, and the HXTAL bypass function is closed,
using PLL.
(5). When analog peripheral blocks such as ADCs, HXTAL, LXTAL, IRC8M, or IRC40K are ON, an additional
power consumption should be considered.
(6). The power measurements specified in the tables represent that code with data executing from on-chip Flash with
the following specifications.
Table 4-8. Peripheral current consumption characteristics(1)
Peripherials(3)
APB1
APB2
AHB
Typical consumption at 25℃
(TYP)
PMU
1.44
I2C1
1.38
I2C0
1.38
USART1
1.34
SPI1
1.37
WWDGT
1.32
TIMER13
1.36
TIMER5
0.17
TIMER2
0.23
DBGMCU
1.3
TIMER16
1.42
TIMER15
1.42
TIMER14
1.49
USART0
1.63
SPI0
1.38
TIMER0
1.68
ADC(2)
0.95
CFG & CMP
1.27
GPIOF
1.31
GPIOC
1.31
GPIOB
1.34
GPIOA
1.34
CRC
0.16
Unit
mA
32
GD32E231CxT6 Datasheet
Peripherials(3)
Typical consumption at 25℃
Unit
(TYP)
0.15
DMA
(1). Based on characterization, not tested in production.
(2). system clock = fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/2, ADON bit is set to 1.
(3). If there is no other description, HXTAL = 8 MHz, system clock = fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK.
4.4
EMC characteristics
EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and
negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is
given in Table 4-9. EMS characteristics, based on the EMS levels and classes compliant
with IEC 61000 series standard.
Table 4-9. EMS characteristics
Symbol
VESD
VFTB
4.5
Parameter
Voltage applied to all device pins to
induce a functional disturbance
Conditions
Level/Class
VDD = 3.3 V, TA = +25 °C,
LQFP48, fHCLK = 72 MHz
3A
conforms to IEC 61000-4-2
Fast transient voltage burst applied to
VDD = 3.3 V, TA = +25 °C,
induce a functional disturbance through
LQFP48, fHCLK = 72 MHz
100 pF on VDD and VSS pins
conforms to IEC 61000-4-4
4A
Power supply supervisor characteristics
Table 4-10. Power supply supervisor characteristics(1)
33
GD32E231CxT6 Datasheet
Symbol
VLVD
VLVDhyst
VPOR
VPDR
Parameter
Conditions
Min
Typ
Max
Unit
LVDT[2:0] = 000, rising edge
—
2.11
—
V
LVDT[2:0] = 000, falling edge
—
2.01
—
V
LVDT[2:0] = 001, rising edge
—
2.25
—
V
LVDT[2:0] = 001, falling edge
—
2.16
—
V
LVDT[2:0] = 010, rising edge
—
2.39
—
V
LVDT[2:0] = 010, falling edge
—
2.29
—
V
LVDT[2:0] = 011, rising edge
—
2.52
—
V
Low Voltage Detector
LVDT[2:0] = 011, falling edge
—
2.43
—
V
Threshold
LVDT[2:0] = 100, rising edge
—
2.66
—
V
LVDT[2:0] = 100, falling edge
—
2.57
—
V
LVDT[2:0] = 101, rising edge
—
2.80
—
V
LVDT[2:0] = 101, falling edge
—
2.71
—
V
LVDT[2:0] = 110, rising edge
—
2.95
—
V
LVDT[2:0] = 110, falling edge
—
2.84
—
V
LVDT[2:0] = 111, rising edge
—
3.08
—
V
LVDT[2:0] = 111, falling edge
—
2.98
—
V
—
—
100
—
mV
Rising edge
—
1.71
—
V
Falling edge
—
1.67
—
V
LVD hysteresis
Power on reset
threshold
Power down reset
threshold
VPDRhyst
PDR hysteresis
—
—
40
—
mV
tRSTTEMP
Reset temporization
—
—
2.5
—
ms
(1) Based on characterization, not tested in production.
4.6
Electrical sensitivity
The device is strained in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up
(LU) test is based on the two measurement methods.
Table 4-11. ESD characteristics
34
GD32E231CxT6 Datasheet
Symbol
VESD(HBM)
VESD(CDM)
Parameter
Conditions
Electrostatic discharge
TA = 25 °C;
voltage (human body model)
JESD22-A114
Electrostatic discharge
TA = 25 °C;
voltage (charge device model)
JESD22-C101
Min
Typ
Max
Unit
—
—
6000
V
—
—
2000
V
Min
Typ
Max
Unit
—
—
±200
mA
—
—
5.4
V
(1). Based on characterization, not tested in production.
Table 4-12. Static latch-up characteristics
Symbol
Parameter
Conditions
I-test
TA = 25 °C;
LU
JESD78
Vsupply over voltage
(1). Based on characterization, not tested in production.
4.7
External clock characteristics
Table 4-13. High speed external clock (HXTAL) generated from a crystal/ceramic
characteristics
Symbol
fHXTAL
RF
Parameter
Crystal or ceramic
Conditions
Min
Typ
Max
Unit
1.8 V ≤ VDD ≤ 3.6 V
4
8
32
MHz
VDD = 3.3 V
—
400
—
kΩ
—
—
20
30
pF
—
30
50
70
%
VDD = 3.3 V, TA = 25 °C
—
1.2
—
mA
VDD = 3.3 V, TA = 25 °C
—
1.8
—
ms
frequency(1)
Feedback resistor
Recommended matching
CHXTAL
capacitance on OSCIN and
OSCOUT
Ducy(HXTAL)(2)
IDDHXTAL(1)
tSUHXTAL(1)
Crystal or ceramic duty cycle
Crystal or ceramic operating
current
Crystal or ceramic startup time
(1). Based on characterization, not tested in production.
(2). Guaranteed by design, not tested in production.
(3). CHXTAL1 = CHXTAL2 = 2*(CLOAD - CS), For CHXTAL1 and CHXTAL2, it is recommended matching capacitance on OSCIN
and OSCOUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer.
For CS, it is PCB and MCU pin stray capacitance.
Table 4-14. High speed external user clock characteristics (HXTAL in bypass mode)
Symbol
fHXTAL_ext(1)
Parameter
External clock source or oscillator
frequency
Conditions
Min
Typ
Max
Unit
1.8 V ≤ VDD ≤ 3.6 V
1
8
50
MHz
0.7VDD
—
VDD
VSS
—
0.3VDD
VHXTALH(2)
OSCIN input pin high level voltage
VHXTALL(2)
OSCIN input pin low level voltage
tH/L(HXTAL) (2)
OSCIN high or low time
—
5
—
—
tR/F(HXTAL) (2)
OSCIN rise or fall time
—
—
—
10
CIN(1)
OSCIN input capacitance
—
—
5
—
pF
Ducy(HXTAL) (2)
Duty cycle
—
30
50
70
%
VDD = 3.3 V
V
ns
35
GD32E231CxT6 Datasheet
(1). Based on characterization, not tested in production.
(2). Guaranteed by design, not tested in production.
Table 4-15. Low speed external clock (LXTAL) generated from a crystal/ceramic
characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fLXTAL(1)
Crystal or ceramic frequency
VDD = 3.3 V
—
32.768
—
kHz
CLXTAL(2) (3)
capacitance on OSC32IN
—
—
—
15
pF
—
30
—
70
%
LXTALDRI[1:0] = 00
—
0.5
—
Crystal or ceramic operating
LXTALDRI[1:0] = 01
—
0.6
—
current
LXTALDRI[1:0] = 10
—
1.0
—
LXTALDRI[1:0] = 11
—
1.2
—
VDD = 3.3 V
—
1.8
—
Recommended matching
and OSC32OUT
Ducy(LXTAL)
(2)
IDDLXTAL (1)
tSULXTAL(1) (4)
Crystal or ceramic duty cycle
Crystal or ceramic startup
time
μA
s
(1). Based on characterization, not tested in production.
(2). Guaranteed by design, not tested in production.
(3). CLXTAL1 = CLXTAL2 = 2*(CLOAD - CS), For CLXTAL1 and CLXTAL2, it is recommended matching capacitance on OSC32IN
and OSC32OUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or ceramic
manufacturer. For CS, it is PCB and MCU pin stray capacitance.
Table 4-16. Low speed external user clock characteristics (LXTAL in bypass mode)
Symbol
Parameter
External clock source or
fLXTAL_ext
oscillator frequency
voltage
OSC32IN input pin low level
(1)
Typ
Max
Unit
VDD = 3.3 V
—
32.768
1000
kHz
0.7VDD
—
VDD
VDD = 3.3 V
(1)
CIN(1)
Ducy(LXTAL)
(1)
V
VSS
voltage
tH/L(LXTAL) (1)
tR/F(LXTAL)
Min
OSC32IN input pin high level
VLXTALH(1)
VLXTALL
Conditions
—
0.3VDD
OSC32IN high or low time
—
450
—
—
OSC32IN rise or fall time
—
—
—
50
OSC32IN input capacitance
—
—
5
—
pF
Duty cycle
—
30
50
70
%
ns
(1). Guaranteed by design, not tested in production.
4.8
Internal clock characteristics
Table 4-17. High speed internal clock (IRC8M) characteristics(1)
Symbol
fIRC8M
ACCIRC8M
Parameter
High Speed Internal
Oscillator (IRC8M) frequency
Conditions
Min
Typ
Max
Unit
VDD = VDDA = 3.3 V
—
8
—
MHz
-4.0
—
+5.0
%
IRC8M oscillator Frequency
VDD = VDDA = 3.3 V,
accuracy, Factory-trimmed
TA = -40 °C ~ +105 °C(1)
36
GD32E231CxT6 Datasheet
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-2.0
—
+2.0
%
-1.0
—
+1.0
%
—
0.5
—
%
45
50
55
%
—
52
—
μA
—
1.8
—
μs
Min
Typ
Max
Unit
30
39.8
60
kHz
—
0.41
—
μA
—
35
—
μs
Conditions
Min
Typ
Max
Unit
VDD = VDDA = 3.3 V
—
28
—
MHz
-4.0
—
+5.0
%
-3.0
—
+3.0
%
-2.0
—
+2.0
%
—
0.5
—
%
45
50
55
%
—
121
—
μA
VDD = VDDA = 3.3 V,
TA = 0 °C ~ +85 °C(1)
VDD = VDDA = 3.3 V,
TA = 25°C
IRC8M oscillator Frequency
—
accuracy, User trimming
step(1)
DucyIRC8M(2) (3)
IDDAIRC8M(1) (3)
tSUIRC8M(1) (3)
VDD = VDDA = 3.3 V,
IRC8M oscillator duty cycle
fIRC8M = 8 MHz
IRC8M oscillator operating
VDD = VDDA = 3.3 V,
current
fIRC8M = 8 MHz
VDD = VDDA = 3.3 V,
IRC8M oscillator startup time
fIRC8M = 8 MHz
(1). Based on characterization, not tested in production.
(2). Guaranteed by design, not tested in production.
(3). HXTAL = 8 MHz, system clock = fHCLK = 72 MHz.
Table 4-18. Low speed internal clock (IRC40K) characteristics(1)
Symbol
fIRC40K(1)
IDDAIRC40K(2) (3)
tSUIRC40K(2) (3)
Parameter
Conditions
Low Speed Internal oscillator
VDD = VDDA = 3.3 V,
(IRC40K) frequency
TA = -40 °C ~ +85 °C
IRC40K oscillator operating
VDD = VDDA = 3.3 V,
current
TA = 25 °C
IRC40K oscillator startup
VDD = VDDA = 3.3 V,
time
TA = 25 °C
(1). Guaranteed by design, not tested in production.
(2). Based on characterization, not tested in production.
(3). HXTAL = 8 MHz, system clock = fHCLK = 72 MHz.
Table 4-19. High speed internal clock (IRC28M) characteristics(1)
Symbol
fIRC28M
Parameter
High Speed Internal Oscillator
(IRC28M) frequency
VDD = VDDA = 3.3 V,
TA = -40 °C ~ +105 °C(2)
IRC28M oscillator Frequency
VDD = VDDA = 3.3 V,
accuracy, Factory-trimmed
TA = 0 °C ~ +85 °C(2)
ACCIRC28M
VDD = VDDA = 3.3 V, TA =
25 °C
IRC28M oscillator Frequency
accuracy, User trimming step(1)
DIRC28M(2) (3)
IRC28M oscillator duty cycle
IDDAIRC28M(1) (3)
IRC28M oscillator operating
—
VDD = VDDA = 3.3 V,
fIRC28M = 28 MHz
VDD = VDDA = 3.3 V,
37
GD32E231CxT6 Datasheet
Symbol
tSUIRC28M(1)(3)
Parameter
Conditions
Min
Typ
Max
Unit
current
fIRC28M = 28 MHz
—
1.5
—
μs
Conditions
Min
Typ
Max
Unit
—
1
—
25
MHz
—
16
—
72
MHz
—
—
—
300
μs
VDD = VDDA = 3.3 V,
IRC28M oscillator startup time
fIRC28M = 28 MHz
(1). Based on characterization, not tested in production.
(2). Guaranteed by design, not tested in production.
(3). HXTAL = 8 MHz, system clock = fHCLK = 72 MHz.
4.9
PLL characteristics
Table 4-18. PLL characteristics
Symbol
Parameter
PLL input clock
fPLLIN
frequency
PLL output clock
fPLLOUT
frequency
tLOCK
PLL lock time
Current consumption on
IDDA(1)
VDDA
VCO freq = 72 MHz
Cycle to cycle Jitter
JitterPLL(1)(3)
μA
130
(rms)
—
69
—
ps
—
704
—
ps
System clock
Cycle to cycle Jitter
(peak to peak)
(1). Based on characterization, not tested in production.
(2). Guaranteed by design, not tested in production.
(3). Value given with main PLL running.
4.10
Memory characteristics
Table 4-19. Flash memory characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
TA = -40 °C ~ +85 °C
100
—
—
kcycles
10k cycles at TA = 85 °C
10
—
—
years
Number of guaranteed
PECYC(1)
program /erase cycles
before failure(Endurance)
tRET
(1)
Data retention time
TA = -40 °C ~ +85 °C
37
—
44
μs
tERASE(2)
Page erase time
TA = -40 °C ~ +85 °C
3.2
—
4
ms
tMERASE(2)
Mass erase time
TA = -40 °C ~ +85 °C
8
—
10
ms
tPROG
(2)
Word(3)
programming time
(1). Based on characterization, not tested in production.
(2). Guaranteed by design, not tested in production.
(3). Word is 32bits or 64bits depend on PGW bit in FMC_WS register.
38
GD32E231CxT6 Datasheet
4.11
NRST pin characteristics
Table 4-20. NRST pin characteristics
Symbol
Parameter
VIL(NRST)
(1)
NRST Input low level voltage
VIH(NRST)
(1)
NRST Input high level voltage
Conditions
VDD = VDDA = 1.8 V
Min
Typ
Max
-0.5
—
0.71
1.08
—
VDD + 0.5
Vhyst
Schmidt trigger Voltage hysteresis
—
370
—
VIL(NRST) (1)
NRST Input low level voltage
-0.5
—
1.05
VIH(NRST) (1)
NRST Input high level voltage
1.42
—
VDD + 0.5
Vhyst
VDD = VDDA = 2.5 V
Schmidt trigger Voltage hysteresis
—
370
—
VIL(NRST)
(1)
NRST Input low level voltage
-0.5
—
1.4
VIH(NRST)
(1)
NRST Input high level voltage
1.8
—
VDD + 0.5
VDD = VDDA = 3.3 V
Unit
V
mV
V
mV
V
Schmidt trigger Voltage hysteresis
—
400
—
VIL(NRST)
(1)
NRST Input low level voltage
-0.5
—
1.53
VIH(NRST)
(1)
NRST Input high level voltage
1.95
—
VDD + 0.5
—
420
—
mV
—
40.3
—
kΩ
Vhyst
Vhyst
Schmidt trigger Voltage hysteresis
Rpu(2)
Pull-up equivalent resistor
VDD = VDDA = 3.6 V
—
mV
V
(1). Based on characterization, not tested in production.
(2). Guaranteed by design, not tested in production.
4.12
GPIO characteristics
Table 4-21. I/O port DC characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
—
0.80
—
1.10
—
1.40
VDD = 3.6 V
—
1.60
VDD = 1.8 V
—
0.80
—
1.10
—
1.40
—
1.60
VDD = 1.8 V
Standard IO Low level input
VDD = 2.5 V
voltage
VDD = 3.3 V
VIL
5V-tolerant IO Low level
VDD = 2.5 V
input voltage
VDD = 3.3 V
VSS
VSS
VDD = 3.6 V
VDD = 1.8 V
1.10
—
Standard IO High level
VDD = 2.5 V
1.50
—
input voltage
VDD = 3.3 V
1.90
—
VDD = 3.6 V
2.00
—
VDD = 1.8 V
1.10
—
5V-tolerant IO High level
VDD = 2.5 V
1.50
—
input voltage
VDD = 3.3 V
1.90
—
VDD = 3.6 V
2.00
—
Low level output voltage
VDD = 1.8 V
—
—
0.20
for an IO Pin
VDD = 2.5 V
—
—
0.20
VIH
VOL
Unit
V
V
VDD
V
VDD
V
V
39
GD32E231CxT6 Datasheet
Symbol
Parameter
Conditions
Min
Typ
Max
(IIO = +8 mA)
VDD = 3.3 V
—
—
0.10
VDD = 3.6 V
—
—
0.10
VDD = 1.8 V
—
—
—
VDD = 2.5 V
—
—
0.50
VDD = 3.3 V
—
—
0.40
VDD = 3.6 V
—
—
0.40
VDD = 1.8 V
1.50
—
—
VDD = 2.5 V
2.30
—
—
VDD = 3.3 V
3.10
—
—
VDD = 3.6 V
3.40
—
—
VDD = 1.8 V
—
—
—
VDD = 2.5 V
1.90
—
—
VDD = 3.3 V
2.80
—
—
VDD = 3.6 V
3.10
—
—
Low level output voltage
VOL
for an IO Pin
(IIO = +20 mA)
High level output voltage
VOH
for an IO Pin
(IIO = +8 mA)
High level output voltage
VOH
for an IO Pin
(IIO = +20 mA)
Unit
V
V
V
(2)
Internal pull-up resistor
—
—
40
—
kΩ
(2)
Internal pull-down resistor
—
—
40
—
kΩ
Conditions
Max
Unit
1.8 ≤ VDD ≤ 3.6V, CL = 10pF
10
1.8 ≤ VDD ≤ 3.6V, CL = 30pF
8
1.8 ≤ VDD ≤ 3.6V, CL = 50pF
6
1.8 ≤ VDD ≤ 3.6V, CL = 10pF
30
1.8 ≤ VDD ≤ 3.6V, CL = 30pF
25
1.8 ≤ VDD ≤ 3.6V, CL = 50pF
15
1.8 ≤ VDD ≤ 3.6V, CL = 10pF
60
1.8 ≤ VDD ≤ 3.6V, CL = 30pF
50
1.8 ≤ VDD ≤ 3.6V, CL = 50pF
40
RPU
RPD
(1). Based on characterization, not tested in production.
(2). Guaranteed by design, not tested in production.
Table 4-22. I/O port AC characteristics(1)(2)
GPIOx_OSPD[1:0] bit value(3)
Parameter
GPIOx_OSPD0->OSPDy[1:0] = X0
Maximum
(IO_Speed = 2MHz)
frequency(4)
GPIOx_OSPD0->OSPDy[1:0] = 01
Maximum
(IO_Speed = 10MHz)
frequency(4)
GPIOx_OSPD0->OSPDy[1:0] = 11
Maximum
(IO_Speed = 50MHz)
frequency(4)
MHz
MHz
MHz
(1). Based on characterization, not tested in production.
(2). Unless otherwise specified, all test results given for TA = 25℃.
(3). The I/O speed is configured using the GPIOx_OSPD0->OSPDy [1:0] bits. Refer to the GD32E231 user manual
which is selected to set the GPIO port output speed.
(4) The maximum frequency is defined in Figure 4-1. I/O port AC characteristics definition.
40
GD32E231CxT6 Datasheet
Figure 4-1. I/O port AC characteristics definition
10%
90%
EXTERNAL
OUTPU T
ON 50pF
50%
50%
10%
90%
tr(IO)out
tr(IO)out
If (tr+tf)≤2/3 T,then maximum frequency is achieved .
The duty cycle is (45%-55%)when loaded by 50 pF
4.13
ADC characteristics
Table 4-23. ADC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VDDA(1)
Operating voltage
—
2.4
3.3
3.6
V
VIN(1)
ADC input voltage range
—
0
—
VDDA
V
fADC(1)
ADC clock
—
0.1
—
28
MHz
12-bit
0.007
—
2
10-bit
0.008
—
2.3
8-bit
0.01
—
2.8
6-bit
0.011
—
3.5
Analog input voltage
10 external; 2 internal
0
—
VDDA
V
Positive Reference Voltage
—
—
VDDA
—
V
—
—
0
—
V
See Equation 1
—
—
50.6
kΩ
—
—
—
0.5
kΩ
—
—
4
pF
fS(1)
(1)
VAIN
VREF+(2)
VREF-(2)
RAIN(2)
RADC(2)
Sampling rate
Negative Reference
Voltage
External input impedance
Input sampling switch
resistance
No pin/pad capacitance
MSPS
CADC(2)
Input sampling capacitance
tCAL(2)
Calibration time
fADC = 28 MHz
—
4.68
—
μs
Sampling time
fADC = 28 MHz
0.05
—
8.55
μs
12-bit
—
14
—
10-bit
—
12
—
8-bit
—
10
—
6-bit
—
8
—
—
—
—
1
(2)
ts
included
Total conversion
tCONV(2)
time(including sampling
time)
tSU(2)
Startup time
1/ fADC
μs
(1). Based on characterization, not tested in production.
(2). Guaranteed by design, not tested in production.
Equation 1: RAIN max formula R AIN <
Ts
fADC ∗CADC ∗ln(2N+2 )
− R ADC
41
GD32E231CxT6 Datasheet
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an
error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 4-24. ADC RAIN max for fADC = 28 MHz(1)
Ts(cycles)
ts(μs)
RAINmax (kΩ)
1.5
0.05
0.88
7.5
0.27
6.4
13.5
0.48
11.9
28.5
1.02
25.7
41.5
1.48
37.7
55.5
1.98
50.6
71.5
2.55
NA
239.5
8.55
NA
(1). Based on characterization, not tested in production.
4.14
Temperature sensor characteristics
Table 4-25. Temperature sensor characteristics(1)
Symbol
Parameter
Min
Typ
Max
Unit
TL
VSENSE linearity with temperature
—
±1.5
—
℃
Avg_Slope
Average slope
—
4.3
—
mV/℃
V25
Voltage at 25 °C
—
1.45
—
V
Startup time
—
—
—
μs
ADC sampling time when reading the temperature
—
17.1
—
μs
tSTART
tS_temp
(2)
(1). Based on characterization, not tested in production.
(2). Shortest sampling time can be determined in the application by multiple iterations.
4.15
Comparators characteristics
Table 4-26. CMP characteristics(1)
Max(1) Unit
Symbol
Parameter
Conditions
Min
Typ
VDDA
Operating voltage
—
1.8
3.3
3.6
V
VIN
Input voltage range
—
0
—
VDDA
V
VBG
Scaler input voltage
—
—
1.2
—
V
VSC
Scaler offset voltage
—
—
—
—
mV
Ultra low power mode
—
0.98
—
μs
Propagation delay for 200mv
Low power mode
—
0.25
—
μs
step with 100mV overdrive
Medium power mode
—
0.12
—
μs
High speed power mode
—
33
—
μs
Ultra low power mode
—
—
—
μs
Low power mode
—
—
—
μs
Medium power mode
—
—
—
μs
High speed power mode
—
—
—
ns
tD
Propagation delay for full
range step with 100mV
overdrive
42
GD32E231CxT6 Datasheet
Symbol
IDD
Voffset
Vhyst
Parameter
Max(1) Unit
Conditions
Min
Typ
Ultra low power mode
—
2.2
—
Low power mode
—
3.2
—
Medium power mode
—
8.1
—
High speed power mode
—
46.9
—
—
—
±4
—
No Hysteresis
—
0
—
Low Hysteresis
—
11
—
Medium Hysteresis
—
22
—
High Hysteresis
—
43
—
Current consumption
Offset error
Hysteresis Voltage
μA
mV
mV
(1). Guaranteed by design, not tested in production.
4.16
Operational amplifier characteristics
Table 4-27. OP-AMP characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VDD
Operating voltage
—
2.7
—
3.6
V
—
0.2
—
VDD - 0.2
V
VCM
range
IDD
Operating current
Io = 0
—
600
—
μA
ILoad
Drive current
—
—
—
—
mA
Vos
Offset voltage
—
—
1
3.5
mV
Ts
Settling time
—
1.2
—
μs
SR
Slew rate
Gain = 1
—
5
—
V/μs
—
58
72
—
dB
—
65
80
—
dB
CMRR
PSRR
4.17
Common mode voltage
Common mode rejection
ratio
Power supply rejection
ratio
Gain = 1, input 2V
step Settling to 0.1%
GBW
Gain bandwidth
RL = 10kΩ
—
6
—
MHz
A0
Open-loop gain
RL = 10kΩ
85
95
—
dB
Vout
Output swing from rail
RL = 10kΩ
—
200
—
mV
Vnoise
Input voltage noise
F = 0.1Hz to 10Hz
—
8
—
μVpp
en
Input voltage noise density
F = 10kHz
—
24
—
nV/√Hz
I2C characteristics
Table 4-30. I2C characteristics(1)(2)(3)
43
GD32E231CxT6 Datasheet
Symbol
tSCL(H)
Parameter
Conditi
ons
SCL clock high
time
Standard
Fast
Fast mode
mode(1)
mode(1)(2)
plus(1)
Unit
Min
Max
Min
Max
Min
Max
—
4.0
—
0.6
—
0.2
—
μs
tSCL (L)
SCL clock low time
—
4.7
—
1.3
—
0.5
—
μs
tsu(SDA)
SDA setup time
—
2
—
0.8
—
0.1
—
μs
—
250
—
250
—
130
—
ns
—
—
1000
20
300
—
120
ns
—
4
300
4
300
4
120
ns
—
4.0
—
0.6
—
0.26
—
μs
th(SDA)
tr(SDA/SCL)
tf(SDA/SCL)
th(STA)
SDA data hold
time
SDA and SCL rise
time
SDA and SCL fall
time
Start condition
hold time
(1). Guaranteed by design, not tested in production.
(2). Test condition: GPIO_SPEED set 2MHz and external pull-up resistor value is 1kΩ when operate EEPROM with
I2C.
(3). The device should provide a data hold time of 300 ns at least in order to bridge the undefined region of the falling
edge of SCL.
4.18
SPI characteristics
Table 4-28. Standard SPI characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fSCK
SCK clock frequency
—
—
—
18
MHz
tSCK(H)
SCK clock high time
25
27
29
ns
tSCK(L)
SCK clock low time
25
27
29
ns
Master mode, fPCLKx = 72 MHz,
presc = 4
Master mode, fPCLKx = 72 MHz,
presc = 4
SPI master mode
tV(MO)
Data output valid time
—
—
7.5
—
ns
tH(MO)
Data output hold time
—
—
6
—
ns
tSU(MI)
Data input setup time
—
1
—
—
ns
tH(MI)
Data input hold time
—
0
—
—
ns
SPI slave mode
tSU(NSS)
NSS enable setup time
—
0
—
—
ns
tH(NSS)
NSS enable hold time
—
1
—
—
ns
tA(SO)
Data output access time
—
—
7
—
ns
tDIS(SO)
Data output disable time
—
—
8
—
ns
tV(SO)
Data output valid time
—
—
10
—
ns
tH(SO)
Data output hold time
—
—
10
—
ns
tSU(SI)
Data input setup time
—
0
—
—
ns
44
GD32E231CxT6 Datasheet
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
tH(SI)
Data input hold time
—
1
—
—
ns
Conditions
Min
Typ
Max
Unit
—
3.12
—
—
10
—
—
160
—
ns
—
160
—
ns
(1) .Based on characterization, not tested in production.
4.19
I2S characteristics
Table 4-29. I2S characteristics(1)
Symbol
Parameter
Master mode (data: 16 bits,
fCK
Clock frequency
Audio frequency = 96 kHz)
Slave mode
MHz
tH
Clock high time
tL
Clock low time
tV(WS)
WS valid time
Master mode
—
3
—
ns
tH(WS)
WS hold time
Master mode
—
3
—
ns
tSU(WS)
WS setup time
Slave mode
0
—
—
ns
tH(WS)
WS hold time
Slave mode
3
—
—
ns
Slave mode
—
50
—
%
DuCy(sck)
—
I2S slave input clock duty
cycle
tSU(SD_MR)
Data input setup time
Master mode
0
—
—
ns
tsu(SD_SR)
Data input setup time
Slave mode
0
—
—
ns
Master receiver
2
—
—
ns
Slave receiver
2
—
—
ns
—
12
—
ns
—
10
—
ns
—
10
—
ns
—
7
—
ns
tH(SD_MR)
tH(SD_SR)
Data input hold time
tv(SD_ST)
Data output valid time
th(SD_ST)
Data output hold time
tv(SD_MT)
Data output valid time
th(SD_MT)
Data output hold time
Slave transmitter
(after enable edge)
Slave transmitter
(after enable edge)
Master transmitter
(after enable edge)
Master transmitter
(after enable edge)
(1) .Based on characterization, not tested in production.
4.20
USART characteristics
Table 4-30. USART characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fSCK
SCK clock frequency
fPCLKx = 72 MHz
—
—
36
MHz
tSCK(H)
SCK clock high time
fPCLKx = 72 MHz
13.5
—
—
ns
tSCK(L)
SCK clock low time
fPCLKx = 72 MHz
13.5
—
—
ns
(1) .Based on characterization, not tested in production.
45
GD32E231CxT6 Datasheet
4.21
TIMER characteristics
Table 4-31. TIMER characteristics(1)
Symbol
Parameter
tres
Timer resolution time
fEXT
RES
tCOUNTER
Conditions
Min
Max
Unit
—
1
—
tTIMERxCLK
fTIMERxCLK = 72 MHz
13.9
—
ns
Timer external clock
—
0
fTIMERxCLK/2
MHz
frequency
fTIMERxCLK = 72 MHz
0
36
MHz
Timer resolution
—
—
16
bit
16-bit counter clock
—
1
65536
tTIMERxCLK
fTIMERxCLK = 72 MHz
0.0139
910
μs
—
—
fTIMERxCLK = 72 MHz
—
period when internal
clock is selected
tMAX_COUNT Maximum possible count
65536 × 65536 tTIMERxCLK
59.6
s
(1). Guaranteed by design, not tested in production.
4.22
WDGT characteristics
Table 4-32. FWDGT min/max timeout period at 40 kHz (IRC40K)
Min timeout RLD[11:0]
Max timeout RLD[11:0] =
Prescaler divider
PR[2:0] bits
1/4
000
0.1
409.6
1/8
001
0.2
819.2
1/16
010
0.4
1638.4
1/32
011
0.8
3276.8
1/64
100
1.6
6553.6
1/128
101
3.2
13107.2
1/256
110 or 111
6.4
26214.4
= 0x000
0xFFF
Unit
ms
(1). Guaranteed by design, not tested in production.
Table 4-33. WWDGT min-max timeout value at 72 MHz (fPCLK1)
Min timeout value
Prescaler divider
PSC[2:0]
1/1
00
56.9
1/2
01
113.8
1/4
10
227.6
1/8
11
455.1
CNT[6:0] = 0x40
Unit
Max timeout value
CNT[6:0] = 0x7F
Unit
3.64
μs
7.28
14.56
ms
29.13
(1). Guaranteed by design, not tested in production.
4.23
Parameter conditions
Unless otherwise specified, all values given for VDD = VDDA = 3.3 V, TA = 25 ℃.
46
GD32E231CxT6 Datasheet
5
Package information
5.1
LQFP package outline dimensions
Figure 5-1. LQFP package outline
47
GD32E231CxT6 Datasheet
Table 5-1. LQFP package dimensions
Symbol
LQFP48
Min
Typ
Max
A
-
-
1.60
A1
0.05
-
0.15
A2
1.35
1.40
1.40
D
-
9.00
-
D1
-
7.00
-
E
-
9.00
-
E1
-
7.00
-
R1
0.08
-
-
R2
0.08
-
0.20
θ
0°
3.5°
7°
θ1
0°
-
-
θ2
11°
12°
13°
θ3
11°
12°
13°
c
0.09
-
0.20
L
0.45
0.60
0.75
L1
-
1.00
-
S
0.20
-
-
b
0.17
0.22
0.27
e
-
0.50
-
D2
-
5.50
-
E2
-
5.50
-
aaa
0.20
bbb
0.20
ccc
0.08
(Original dimensions are in millimeters)
48
GD32E231CxT6 Datasheet
6
Ordering information
Table 6-1. Part ordering code for GD32E231CxT6 devices
Ordering code
Flash (KB)
Package
Package type
GD32E231C4T6
16
LQFP48
Green
GD32E231C6T6
32
LQFP48
Green
GD32E231C8T6
64
LQFP48
Green
Temperature
operating range
Industrial
-40°C to +85°C
Industrial
-40°C to +85°C
Industrial
-40°C to +85°C
49
GD32E231CxT6 Datasheet
7
Revision history
Table 7-1. Revision history
Revision No.
Description
Date
1.0
Initial Release
Feb15, 2019
50
GD32E231CxT6 Datasheet
Important Notice
This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any
product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and
treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and
treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and
brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.
The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability
arising out of the application or use of any Product described in this document. Any information provided in this document is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality
and safety of any application made of this information and any resulting product. Except for customized products which has been
expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,
industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control
instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,
life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution
control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,
death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling
the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers
shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising
from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers
and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or
death, arising from or related to any Unintended Uses of the Products.
Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,
corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.
© 2019 GigaDevice – All rights reserved
51