0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
GD32E231C8T6

GD32E231C8T6

  • 厂商:

    GIGADEVICE(兆易创新)

  • 封装:

    LQFP48

  • 描述:

    CPU内核:ARM-M系列;CPU最大主频:72MHz;程序存储容量:64KB;程序存储器类型:FLASH;RAM总容量:8KB;GPIO端口数量:37;

  • 数据手册
  • 价格&库存
GD32E231C8T6 数据手册
GD32E231CxT6 Datasheet GigaDevice Semiconductor Inc. GD32E231CxT6 ARM® Cortex®-M23 32-bit MCU Datasheet GD32E231CxT6 Datasheet Table of Contents Table of Contents ........................................................................................................... 1 List of Figures ................................................................................................................ 3 List of Tables .................................................................................................................. 4 1 General description ................................................................................................. 6 2 Device overview ....................................................................................................... 7 3 2.1 Device information ...................................................................................................... 7 2.2 Block diagram .............................................................................................................. 8 2.3 Pinouts and pin assignment ....................................................................................... 9 2.4 Memory map .............................................................................................................. 10 2.5 Clock tree ................................................................................................................... 12 2.6 Pin definitions ............................................................................................................ 13 2.6.1 GD32E231CxT6 LQFP48 pin definitions .............................................................................. 13 2.6.2 GD32E231CxT6 pin alternate functions ............................................................................... 16 Functional description .......................................................................................... 19 3.1 ARM® Cortex®-M23 core ............................................................................................ 19 3.2 Embedded memory ................................................................................................... 19 3.3 Clock, reset and supply management ...................................................................... 19 3.4 Boot modes ................................................................................................................ 20 3.5 Power saving modes ................................................................................................. 20 3.6 Analog to digital converter (ADC) ............................................................................ 21 3.7 DMA ............................................................................................................................ 22 3.8 General-purpose inputs/outputs (GPIOs) ................................................................ 22 3.9 Timers and PWM generation..................................................................................... 22 3.10 Real time clock (RTC) ............................................................................................ 23 3.11 Inter-integrated circuit (I2C) .................................................................................. 24 3.12 Serial peripheral interface (SPI) ............................................................................ 24 3.13 Universal synchronous asynchronous receiver transmitter (USART) ............... 25 3.14 Inter-IC sound (I2S) ................................................................................................ 25 3.15 Comparators (CMP)................................................................................................ 25 3.16 Operational amplifier (OP-AMP) ............................................................................ 25 1 GD32E231CxT6 Datasheet 4 5 3.17 Debug mode ........................................................................................................... 26 3.18 Package and operation temperature ..................................................................... 26 Electrical characteristics ....................................................................................... 27 4.1 Absolute maximum ratings ....................................................................................... 27 4.2 Operating conditions characteristics ....................................................................... 27 4.3 Power consumption .................................................................................................. 28 4.4 EMC characteristics .................................................................................................. 33 4.5 Power supply supervisor characteristics ................................................................ 33 4.6 Electrical sensitivity .................................................................................................. 34 4.7 External clock characteristics .................................................................................. 35 4.8 Internal clock characteristics ................................................................................... 36 4.9 PLL characteristics.................................................................................................... 38 4.10 Memory characteristics ......................................................................................... 38 4.11 NRST pin characteristics ....................................................................................... 39 4.12 GPIO characteristics .............................................................................................. 39 4.13 ADC characteristics ............................................................................................... 41 4.14 Temperature sensor characteristics ..................................................................... 42 4.15 Comparators characteristics ................................................................................. 42 4.16 Operational amplifier characteristics.................................................................... 43 4.17 I2C characteristics ................................................................................................. 43 4.18 SPI characteristics ................................................................................................. 44 4.19 I2S characteristics.................................................................................................. 45 4.20 USART characteristics ........................................................................................... 45 4.21 TIMER characteristics ............................................................................................ 46 4.22 WDGT characteristics ............................................................................................ 46 4.23 Parameter conditions............................................................................................. 46 Package information.............................................................................................. 47 5.1 LQFP package outline dimensions .......................................................................... 47 6 Ordering information ............................................................................................. 49 7 Revision history ..................................................................................................... 50 2 GD32E231CxT6 Datasheet List of Figures Figure 2-1. GD32E231CxT6 block diagram ............................................................................................... 8 Figure 2-2. GD32E231CxT6 LQFP48 pinouts ............................................................................................ 9 Figure 2-3. GD32E231CxT6 clock tree ..................................................................................................... 12 Figure 4-1. I/O port AC characteristics definition................................................................................... 41 Figure 5-1. LQFP package outline............................................................................................................ 47 3 GD32E231CxT6 Datasheet List of Tables Table 2-1. GD32E231CxT6 devices features and peripheral list ............................................................. 7 Table 2-2. GD32E231CxT6 memory map ................................................................................................. 10 Table 2-3. GD32E231CxT6 LQFP48 pin definitions ................................................................................ 13 Table 2-4. Port A alternate functions summary ...................................................................................... 16 Table 2-5. Port B alternate functions summary ...................................................................................... 17 Table 2-6. Port F alternate functions summary ...................................................................................... 18 Table 4-1. Absolute maximum ratings(1) (4)............................................................................................... 27 Table 4-2. DC operating conditions ......................................................................................................... 27 Table 4-3. Clock frequency ....................................................................................................................... 28 Table 4-4. Operating conditions at Power up/ Power down .................................................................. 28 Table 4-5. Start-up timings of Operating conditions .............................................................................. 28 Table 4-6. Power saving mode wakeup timings characteristics(1) (2) .................................................... 28 Table 4-7. Power consumption characteristics(1) (2) (3) (4) (5) (6) .................................................................. 28 Table 4-8. Peripheral current consumption characteristics(1) ............................................................... 32 Table 4-9. EMS characteristics ................................................................................................................. 33 Table 4-10. Power supply supervisor characteristics(1) ......................................................................... 33 Table 4-11. ESD characteristics ............................................................................................................... 34 Table 4-12. Static latch-up characteristics .............................................................................................. 35 Table 4-13. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics . 35 Table 4-14. High speed external user clock characteristics (HXTAL in bypass mode) ...................... 35 Table 4-15. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics .. 36 Table 4-16. Low speed external user clock characteristics (LXTAL in bypass mode) ....................... 36 Table 4-17. High speed internal clock (IRC8M) characteristics(1) ......................................................... 36 Table 4-18. PLL characteristics ................................................................................................................ 38 Table 4-19. Flash memory characteristics .............................................................................................. 38 Table 4-20. NRST pin characteristics ....................................................................................................... 39 Table 4-21. I/O port DC characteristics(1) ................................................................................................. 39 Table 4-22. I/O port AC characteristics(1)(2) .............................................................................................. 40 Table 4-23. ADC characteristics ............................................................................................................... 41 Table 4-24. ADC RAIN max for fADC = 28 MHz(1) ......................................................................................... 42 Table 4-25. Temperature sensor characteristics(1) ................................................................................. 42 Table 4-26. CMP characteristics(1) ............................................................................................................ 42 Table 4-27. OP-AMP characteristics ........................................................................................................ 43 Table 4-28. Standard SPI characteristics(1) ............................................................................................. 44 Table 4-29. I2S characteristics(1)............................................................................................................... 45 Table 4-30. USART characteristics(1) ....................................................................................................... 45 Table 4-31. TIMER characteristics(1) ........................................................................................................ 46 Table 4-32. FWDGT min/max timeout period at 40 kHz (IRC40K) ......................................................... 46 Table 4-33. WWDGT min-max timeout value at 72 MHz (fPCLK1) ............................................................ 46 Table 5-1. LQFP package dimensions ..................................................................................................... 48 4 GD32E231CxT6 Datasheet Table 6-1. Part ordering code for GD32E231CxT6 devices ................................................................... 49 Table 7-1. Revision history ....................................................................................................................... 50 5 GD32E231CxT6 Datasheet 1 General description The GD32E231CxT6 device belongs to the value line of GD32 MCU family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M23 core. The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor delivers high energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier and a 17-cycle divider. The GD32E231CxT6 device incorporates the ARM® Cortex®-M23 32-bit processor core operating at up to 72 MHz frequency with Flash accesses 0~2 wait states to obtain maximum efficiency. It provides up to 64 KB embedded Flash memory and up to 8 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer one 12-bit ADC and one comparator, two OP-AMPs, up to five general 16-bit timers, a basic timer, a PWM advanced timer, as well as standard and advanced communication interfaces: up to two SPIs, two I2Cs, two USARTs, and an I2S. The device operates from a 1.8 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make the GD32E231CxT6 devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike and so on. 6 GD32E231CxT6 Datasheet 2 Device overview 2.1 Device information Table 2-1. GD32E231CxT6 devices features and peripheral list Part Number GD32E231CxT6 C6T6 C8T6 FLASH (KB) 16 32 64 SRAM (KB) 4 6 8 Connectivity Timers C4T6 General 4 4 5 timer(16-bit) (2,13,15,16) (2,13,15,16) (2,13-16) Advanced 1 1 1 timer(16-bit) (0) (0) (0) SysTick 1 1 1 Basic 1 1 1 timer(16-bit) (5) (5) (5) Watchdog 2 2 2 RTC 1 1 1 1 2 2 (0) (0-1) (0-1) 1 1 2 (0) (0) (0-1) 1/1 1/1 2/1 (0)/(0) (0)/(0) (0-1)/(0) GPIO 37 37 37 CMP 1 1 1 OP-AMP 2 2 2 EXTI 16 16 16 1 1 1 10 10 10 2 2 2 USART I2C SPI/I2S ADC Units Channels (External) Channels (Internal) Package LQFP48 7 GD32E231CxT6 Datasheet 2.2 Block diagram Figure 2-1. GD32E231CxT6 block diagram LDO 1.2V TPIU SW AHB2: Fma x = 72MHz AHB Matrix AHB BUS ARM Cortex-M23 Processor Fmax: 72MHz IBus NVIC GPIO Ports A, B, C, F SRAM Controller SRAM Flash Memory Controller Flash Memory POR/PDR LVD PLL Fmax: 72MHz HXTAL 4-32MHz DBus GP DMA 5chs AHB1: Fma x = 72MHz AHB to APB Bridge 2 CRC AHB to APB Bridge 1 IRC8M 8MHz RST/CLK Controller IRC40K 40KHz Powered by LDO (1.2V) PMU EXTI FWDGT 12-bit SAR ADC IRC28M 28MHz Powered by V DD/VDDA ADC WWDGT RTC USART0 I2C0 SPI0/I2S0 TIMER0 APB1: Fmax = 72MHz CMP APB2: Fmax = 72MHz SYS Config CMP I2C1 USART1 SPI1 TIMER5 TIMER14 TIMER2 TIMER15 TIMER13 TIMER16 8 GD32E231CxT6 Datasheet 2.3 Pinouts and pin assignment Figure 2-2. GD32E231CxT6 LQFP48 pinouts PA14/NPA PA15 PB3 PB4 PB5 PB6 PB7 PB8 PF0-OSCIN PF1-OSCOUT NRST INPB INNB VSSA 3 4 PA0 PA1 PA2 BOOT0 1 VDDA ENAB VSS VDD 48 47 46 45 44 43 42 41 40 39 38 37 36 35 2 PC14-OSC32IN PC15-OSC32OUT 34 33 5 6 32 31 30 GigaDevice GD32E231CxT6 LQFP48 7 8 9 10 29 28 27 11 26 12 25 13 14 15 16 17 18 19 20 21 22 23 24 PF7 PF6 PA13/INNA PA12 PA11 PA10 PA9 PA8 PB15 PB14 PB13 PB12 VDD VSS PB11 PB10 PB2 PB1/VOUTA PB0 PA7 PA6/VOUTB PA5 PA4 PA3 9 GD32E231CxT6 Datasheet 2.4 Memory map Table 2-2. GD32E231CxT6 memory map Pre-defined ADDRESS Peripherals 0xE000 0000 - 0xE00F FFFF Cortex M23 internal peripherals External Device 0xA000 0000 - 0xDFFF FFFF Reserved External RAM 0x6000 0000 - 0x9FFF FFFF Reserved 0x5004 0000 - 0x5FFF FFFF Reserved 0x5000 0000 - 0x5003 FFFF Reserved 0x4800 1800 - 0x4FFF FFFF Reserved 0x4800 1400 - 0x4800 17FF GPIOF 0x4800 1000 - 0x4800 13FF Reserved 0x4800 0C00 - 0x4800 0FFF Reserved 0x4800 0800 - 0x4800 0BFF GPIOC 0x4800 0400 - 0x4800 07FF GPIOB 0x4800 0000 - 0x4800 03FF GPIOA 0x4002 4400 - 0x47FF FFFF Reserved 0x4002 4000 - 0x4002 43FF Reserved 0x4002 3400 - 0x4002 3FFF Reserved 0x4002 3000 - 0x4002 33FF CRC 0x4002 2400 - 0x4002 2FFF Reserved 0x4002 2000 - 0x4002 23FF FMC 0x4002 1400 - 0x4002 1FFF Reserved 0x4002 1000 - 0x4002 13FF RCU 0x4002 0400 - 0x4002 0FFF Reserved 0x4002 0000 - 0x4002 03FF DMA 0x4001 8000 - 0x4001 FFFF Reserved 0x4001 5C00 - 0x4001 7FFF Reserved 0x4001 5800 - 0x4001 5BFF DBG 0x4001 4C00 - 0x4001 57FF Reserved 0x4001 4800 - 0x4001 4BFF TIMER16 0x4001 4400 - 0x4001 47FF TIMER15 0x4001 4000 - 0x4001 43FF TIMER14 0x4001 3C00 - 0x4001 3FFF Reserved 0x4001 3800 - 0x4001 3BFF USART0 0x4001 3400 - 0x4001 37FF Reserved 0x4001 3000 - 0x4001 33FF SPI0/I2S0 0x4001 2C00 - 0x4001 2FFF TIMER0 0x4001 2800 - 0x4001 2BFF Reserved 0x4001 2400 - 0x4001 27FF ADC 0x4001 0800 - 0x4001 23FF Reserved Regions Bus AHB1 AHB2 AHB1 Peripherals APB2 10 GD32E231CxT6 Datasheet Pre-defined Regions Bus APB1 SRAM Code ADDRESS Peripherals 0x4001 0400 - 0x4001 07FF EXTI 0x4001 0000 - 0x4001 03FF SYSCFG + CMP 0x4000 CC00 - 0x4000 FFFF Reserved 0x4000 C800 - 0x4000 CBFF Reserved 0x4000 C400 - 0x4000 C7FF Reserved 0x4000 C000 - 0x4000 C3FF Reserved 0x4000 8000 - 0x4000 BFFF Reserved 0x4000 7C00 - 0x4000 7FFF Reserved 0x4000 7800 - 0x4000 7BFF Reserved 0x4000 7400 - 0x4000 77FF Reserved 0x4000 7000 - 0x4000 73FF PMU 0x4000 6400 - 0x4000 6FFF Reserved 0x4000 6000 - 0x4000 63FF Reserved 0x4000 5C00 - 0x4000 5FFF Reserved 0x4000 5800 - 0x4000 5BFF I2C1 0x4000 5400 - 0x4000 57FF I2C0 0x4000 4800 - 0x4000 53FF Reserved 0x4000 4400 - 0x4000 47FF USART1 0x4000 4000 - 0x4000 43FF Reserved 0x4000 3C00 - 0x4000 3FFF Reserved 0x4000 3800 - 0x4000 3BFF SPI1 0x4000 3400 - 0x4000 37FF Reserved 0x4000 3000 - 0x4000 33FF FWDGT 0x4000 2C00 - 0x4000 2FFF WWDGT 0x4000 2800 - 0x4000 2BFF RTC 0x4000 2400 - 0x4000 27FF Reserved 0x4000 2000 - 0x4000 23FF TIMER13 0x4000 1400 - 0x4000 1FFF Reserved 0x4000 1000 - 0x4000 13FF TIMER5 0x4000 0800 - 0x4000 0FFF Reserved 0x4000 0400 - 0x4000 07FF TIMER2 0x4000 0000 - 0x4000 03FF Reserved 0x2000 2000 - 0x3FFF FFFF Reserved 0x2000 0000 - 0x2000 1FFF SRAM 0x1FFF F810 - 0x1FFF FFFF Reserved 0x1FFF F800 - 0x1FFF F80F Option bytes 0x1FFF EC00 - 0x1FFF F7FF System memory 0x0801 0000 - 0x1FFF EBFF Reserved 0x0800 0000 - 0x0800 FFFF Main Flash memory 0x0001 0000 - 0x07FF FFFF Reserved 11 GD32E231CxT6 Datasheet Pre-defined Bus Regions ADDRESS Peripherals Aliased to Flash or 0x00000000 - 0x0000FFFF 2.5 system memory Clock tree Figure 2-3. GD32E231CxT6 clock tree FMC CK_I2S (to I2S) CK_FMC SCS[1:0] FMC enable (by hardware) (to FMC) HCLK CK_IRC8M 00 8 MHz IRC8M /2 0 PLL CK_PLL 1 10 AHB enable CK_SYS 72 MHz max AHB Prescaler ÷1,2...512 (to AHB bus,Cortex-M23,SRAM,DMA) CK_CST CK_AHB ÷8 72 MHz max (to Cortex-M23 SysTick) FCLK PLLSEL 01 PLLEN (free running clock) PREDV 4-32 MHz HXTAL Clock Monitor ÷1,2. ..16 TIMER2,5,13 ÷[apb1 prescaler/2] CK_TIMERx TIMERx enable to TIMER2,5,13 CK_HXTAL /32 APB1 Prescaler ÷1,2,4,8,16 11 CK_APB1 PCLK1 72 MHz max to APB1 peripherals Peripheral enable 32.768 KHz LXTAL CK_RTC 01 (to RTC) 10 40 KHz IRC40K RTCSRC[1:0] CK_FWDGT (to FWDGT) TIMER0,14,1 5,16 ÷[apb2 prescaler/2] APB2 Prescaler ÷1,2,4,8,16 CK_TIMERx TIMERx enable CK_APB2 PCLK2 72 MHz max ÷1,2,4...128 CKOUTDIV to APB2 peripherals Peripheral enable CKOUTSEL CK_OUT to TIMER0,14,15,16 0 CK_IRC28M CK_IRC40K CK_ LXTAL CK_SYS CK_IRC8M CK_HXTAL /1,2 CK_PLL CK_ IRC8M 11 CK_L XTAL 10 CK_ SYS 01 CK_ USART0 to USART0 00 USART0SEL[1:0] 28 MHz IRC28M ÷1,2 0 CK_ ADC to ADC 1 28 MHz max ADCSEL ADC Prescaler ÷2,4,6,8 ADC Prescaler ÷3,5,7, 9 Note: If the APB prescaler is 1, the timer clock frequencies are set to AHB frequency divide by 1. Otherwise, they are set to the AHB frequency divide by half of APB prescaler. Legend: HXTAL: High speed crystal oscillator LXTAL: Low speed crystal oscillator IRC8M: Internal 8M RC oscillator IRC40K: Internal 40K RC oscillator IRC28M: Internal 28M RC oscillator 12 GD32E231CxT6 Datasheet 2.6 Pin definitions 2.6.1 GD32E231CxT6 LQFP48 pin definitions Table 2-3. GD32E231CxT6 LQFP48 pin definitions Pin Name PC14OSC32IN PC15OSC32OUT Pins Pin I/O Type(1) Level(2) 1 I/O 2 I/O Functions description Default: PC14 Additional: OSC32IN Default: PC15 Additional: OSC32OUT Default: PF0 PF0-OSCIN 3 I/O 5VT Alternate: I2C0_SDA Additional: OSCIN PF1OSCOUT Default: PF1 4 I/O 5VT Alternate: I2C0_SCL Additional: OSCOUT NRST 5 I/O Default: NRST INPB 6 I Default: VIN+B INNB 7 I Default: VIN-B VSSA 8 P Default: VSSA VDDA 9 P Default: VDDA Default: PA0 PA0-WKUP 10 I/O Alternate: USART0_CTS(3), USART1_CTS(4), CMP_OUT, I2C1_SCL(5) Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0 Default: PA1 PA1 11 I/O Alternate: USART0_RTS(3), USART1_RTS(4), I2C1_SDA(5), EVENTOUT, TIMER14_CH0_ON(5) Additional: ADC_IN1, CMP_IP Default: PA2 PA2 12 I/O Alternate: USART0_TX(3), USART1_TX(4), TIMER14_CH0(5) Additional: ADC_IN2, CMP_IM7 Default: PA3 PA3 13 I/O Alternate: USART0_RX(3), USART1_RX(4), TIMER14_CH1(5) Additional: ADC_IN3 Default: PA4 PA4 14 I/O Alternate: SPI0_NSS, I2S0_WS, USART0_CK(3), USART1_CK(4), TIMER13_CH0, SPI1_NSS(5) Additional: ADC_IN4, CMP_IM4 Default: PA5 PA5 15 I/O Alternate: SPI0_SCK, I2S0_CK Additional: ADC_IN5, CMP_IM5 13 GD32E231CxT6 Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Default: PA6 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, PA6/VOUTB 16 TIMER0_BRKIN, TIMER15_CH0, EVENTOUT, I/O CMP_OUT Additional: ADC_IN6, VOUTB Default: PA7 Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1, PA7 17 TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0, I/O EVENTOUT Additional: ADC_IN7 Default: PB0 PB0 18 Alternate: TIMER2_CH2, TIMER0_CH1_ON, I/O USART1_RX(4), EVENTOUT Additional: ADC_IN8 Default: PB1 PB1/VOUTA 19 Alternate: TIMER2_CH3, TIMER13_CH0, I/O TIMER0_CH2_ON, SPI1_SCK(5) Additional: ADC_IN9, VOUTA PB2 20 I/O 5VT PB10 21 I/O 5VT Default: PB2 Alternate: TIMER2_ETI Default: PB10 Alternate: I2C0_SCL(3), I2C1_SCL(5), SPI1_IO2(5), SPI1_SCK(5) Default: PB11 PB11 22 I/O 5VT Alternate: I2C0_SDA(3), I2C1_SDA(5), EVENTOUT, SPI1_IO3(5) VSS 23 P Default: VSS VDD 24 P Default: VDD Default: PB12 PB12 25 I/O 5VT Alternate: SPI0_NSS(3), SPI1_NSS(5), TIMER0_BRKIN, I2C1_SMBA(5), EVENTOUT Default: PB13 PB13 26 I/O 5VT Alternate: SPI0_SCK(3), SPI1_SCK(5), TIMER0_CH0_ON, I2C1_TXFRAME(5), I2C1_SCL(5) Default: PB14 PB14 27 I/O 5VT Alternate: SPI0_MISO(3), SPI1_MISO(5), TIMER0_CH1_ON, TIMER14_CH0(5), I2C1_SDA(5) Default: PB15 Alternate: SPI0_MOSI(3), SPI1_MOSI(5), PB15 28 I/O 5VT TIMER0_CH2_ON, TIMER14_CH0_ON(5), TIMER14_CH1(5) Additional: RTC_REFIN, WKUP6 Default: PA8 PA8 29 I/O 5VT Alternate: USART0_CK, TIMER0_CH0, CK_OUT, USART1_TX(4), EVENTOUT 14 GD32E231CxT6 Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Default: PA9 PA9 30 I/O 5VT Alternate: USART0_TX, TIMER0_CH1, TIMER14_BRKIN(5), I2C0_SCL, CK_OUT Default: PA10 PA10 31 I/O 5VT Alternate: USART0_RX, TIMER0_CH2, TIMER16_BRKIN, I2C0_SDA Default: PA11 PA11 32 I/O 5VT Alternate: USART0_CTS, TIMER0_CH3, CMP_OUT, EVENTOUT, SPI1_IO2(5), I2C0_SMBA, I2C1_SCL(5) Default: PA12 PA12 33 I/O 5VT Alternate: USART0_RTS, TIMER0_ETI, EVENTOUT, SPI1_IO3(5), I2C0_TXFRAME, I2C1_SDA(5) Default: PA13 PA13/INNA 34 I/O 5VT Alternate: SWDIO, IFRP_OUT, SPI1_MISO(5) Additional: VIN-A PF6 35 I/O 5VT PF7 36 I/O 5VT Default: PF6 Alternate: I2C0_SCL(3), I2C1_SCL(5) Default: PF7 Alternate: I2C0_SDA(3), I2C1_SDA(5) Default: PA14 PA14/INPA 37 I/O 5VT Alternate: USART0_TX(3), USART1_TX(4), SWCLK, SPI1_MOSI(5) Additional: VIN+A Default: PA15 PA15 38 I/O 5VT Alternate: SPI0_NSS, I2S0_WS, USART0_RX(3), USART1_RX(4), SPI1_NSS(5), EVENTOUT PB3 39 I/O 5VT Default: PB3 Alternate: SPI0_SCK, I2S0_CK, EVENTOUT Default: PB4 PB4 40 I/O 5VT Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, EVENTOUT, I2C0_TXFRAME, TIMER16_BRKIN Default: PB5 PB5 41 I/O 5VT Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BRKIN, TIMER2_CH1 Additional: WKUP5 Default: PB6 PB6 42 I/O 5VT PB7 43 I/O 5VT BOOT0 44 I PB8 45 I/O ENAB 46 I Default: ENAB VSS 47 P Default: VSS VDD 48 P Default: VDD Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON Default: PB7 Alternate:I2C0_SDA, USART0_RX,TIMER16_CH0_ON Default: BOOT0 5VT Default: PB8 Alternate: I2C0_SCL, TIMER15_CH0 15 GD32E231CxT6 Datasheet Notes: (1) Type: I = input, O = output, P = power. (2) I/O Level: 5VT = 5 V tolerant. (3) Functions are available on GD32E231C4T6 devices only. (4) Functions are available on GD32E231C8/6T6 devices. (5) Functions are available on GD32E231C8T6 devices only. 2.6.2 GD32E231CxT6 pin alternate functions Table 2-4. Port A alternate functions summary Pin Name AF0 AF1 AF2 AF3 USART0_CTS(1) /USART1_CTS(2 PA0 AF4 AF5 AF6 I2C1_SCL( CMP_ 3) OUT ) USART0_RTS(1) PA1 I2C1_SDA( EVENTOUT /USART1_RTS(2 3) PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 TIMER14 _CH0_O N(3) ) PA2 AF7 TIMER14_C USART0_TX(1)/ H0(3) USART1_TX(2) TIMER14_C USART0_RX(1)/ H1(3) USART1_RX(2) SPI0_NSS/I USART0_CK(1)/ 2S0_WS USART1_CK(2) TIMER13_ SPI1_N CH0 SS(3) SPI0_SCK/I 2S0_CK SPI0_MISO/ I2S0_MCK SPI0_MOSI/ I2S0_SD CK_OUT TIMER14_B RKIN(3) TIMER16_B RKIN TIMER2_CH0 TIMER2_CH1 USART0_CK USART0_TX USART0_RX TIMER0_BR KIN 0 TIMER0_CH 1 TIMER0_CH 2 TIMER0_CH USART0_RTS TIMER0_ETI PA14 SWCLK USART0_TX(1)/ OUT CH0 _CH0 OUT TIMER0_CH EVENT USART1_T PA12 EVENTOUT IFRP_OUT OUT TIMER13_ TIMER16 EVENT 0_ON USART0_CTS SWDIO _CH0 TIMER0_CH PA11 EVENTOUT PA13 TIMER15 EVENT CMP_ 3 OUT X(2) I2C0_SCL I2C0_SDA I2C0_SMB I2C1_SC SPI1_I CMP_ A L(3) O2(3) OUT I2C0_TXF I2C1_SD SPI1_I RAME A(3) O3(3) SPI1_M ISO(3) SPI1_M 16 GD32E231CxT6 Datasheet Pin Name AF0 AF1 AF2 AF3 AF4 AF5 USART1_TX(2) PA15 AF7 OSI(3) SPI0_NSS/I USART0_RX(1)/ 2S0_WS AF6 EVENT SPI1_N OUT SS(3) USART1_RX(2) Table 2-5. Port B alternate functions summary Pin Name PB0 PB1 AF0 AF1 EVENTOUT TIMER2_CH2 TIMER13_CH 0 TIMER2_CH3 PB2 PB3 PB4 PB5 SPI0_SCK/I2 S0_CK SPI0_MISO /I2S0_MCK SPI0_MOSI /I2S0_SD TIMER2_CH0 TIMER2_CH1 PB7 USART0_RX I2C0_SDA PB8 I2C0_SCL TIMER0_CH USART1_ 1_ON RX(2) AF5 AF6 TIMER0_CH SPI1_S 2_ON CK(3) AF7 TIMER I2C0_TXF EVENTOUT 16_BR RAME KIN TIMER15_BR I2C0_S KIN MBA TIMER15_C H0_ON TIMER16_C H0_ON TIMER15_C H0 I2C0_SCL(1)/I2C PB10 PB11 EVENTOUT SPI0_NSS(1) /SPI1_NSS(3) SPI1_I SPI1_ 1_SCL(3) O2(3) I2C0_SDA(1)/I2C SPI1_I 1_SDA(3) O3(3) EVENTOUT TIMER0_BR I2C1_SMB KIN A(3) SPI0_SCK(1) I2C1_TXFRAME( TIMER0_CH /SPI1_SCK(3) 3) SPI0_MISO(1) PB14 /SPI1_MISO(3 TIMER14_CH0(3) ) SPI0_MOSI(1) PB15 AF4 EVENTOUT I2C0_SCL PB13 AF3 TIMER2_ETI PB6 USART0_TX PB12 AF2 /SPI1_MOSI(3 ) TIMER14_CH1(3) I2C1_SC 0_ON L(3) TIMER0_CH I2C1_SD 1_ON A(3) TIMER0_CH 2_ON SCK(3) TIMER1 4_CH0_ ON(3) 17 GD32E231CxT6 Datasheet Table 2-6. Port F alternate functions summary Pin Name AF0 AF1 PF0 I2C0_SDA PF1 I2C0_SCL AF2 AF3 AF4 AF5 AF6 AF7 I2C0_SCL(1) PF6 /I2C1_SCL(3 ) I2C0_SDA(1) PF7 /I2C1_SDA(3 ) Notes: (1) Functions are available on GD32E231C4T6 devices only. (2) Functions are available on GD32E231C8/6T6 devices. (3) Functions are available on GD32E231C8T6 devices only. 18 GD32E231CxT6 Datasheet 3 Functional description 3.1 ARM® Cortex®-M23 core The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor is highly configurable enabling a wide range of implementations from those requiring memory protection and powerful trace technology to cost sensitive devices requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts. 32-bit ARM® Cortex®-M23 processor core  Up to 72 MHz operation frequency  Single-cycle multiplication and hardware divider  Ultra-low power, energy-efficient operation  Excellent code density  Integrated Nested Vectored Interrupt Controller (NVIC)  24-bit SysTick timer The Cortex®-M23 processor is based on the ARMv8-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M23:  Internal Bus Matrix connected with AHB master, Serial Wire Debug Port and Single-cycle IO port 3.2  Nested Vectored Interrupt Controller (NVIC)  Breakpoint Unit(BPU)  Data Watchpoint and Trace (DWT)  Serial Wire JTAG Debug Port (SWJ-DP) Embedded memory  Up to 64 Kbytes of Flash memory  Up to 8 Kbytes of SRAM with hardware parity checking 64 Kbytes of inner Flash and 8 Kbytes of inner SRAM at most is available for storing programs and data, both accessed (R/W) at CPU clock speed with 0~2 wait states. Table 2-2. GD32E231CxT6 memory map shows the memory map of the GD32E231CxT6 series of devices, including code, SRAM, peripheral, and other pre-defined regions. 3.3 Clock, reset and supply management  Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator 19 GD32E231CxT6 Datasheet  Internal 28 MHz RC oscillator  Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator  Integrated system clock PLL  1.8 to 3.6 V application supply and I/Os  Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD) The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB, APB2 and APB1 domains is 72 MHz/72 MHz/72 MHz. See Figure 2-3. GD32E231CxT6 clock tree for details on the clock tree. The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 2.6 V and down to 1.8V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security. Power supply schemes:  VDD range: 1.8 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.  VSSA, VDDA range: 1.8 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.  VBAK range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when VDD is not present. 3.4 Boot modes At startup, boot pins are used to select one of three boot options:  Boot from main Flash memory (default)  Boot from system memory  Boot from on-chip SRAM In default condition, boot from main Flash memory is selected. The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10) or USART1 (PA14 and PA15). 3.5 Power saving modes The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance 20 GD32E231CxT6 Datasheet between the CPU operating time, speed and power consumption.  Sleep mode In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.  Deep-sleep mode In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, RTC tamper and timestamp, CMP output, LVD output and USART wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.  Standby mode In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except backup registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pin. 3.6 Analog to digital converter (ADC)  12-bit SAR ADC's conversion rate is up to 2 MSPS  12-bit, 10-bit, 8-bit or 6-bit configurable resolution  Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit  Input voltage range: VSSA to VDDA  Temperature sensor One 12-bit 2 MSPS multi-channel ADC is integrated in the device. It has a total of 12 multiplexed channels: up to 10 external channels, 1 channel for internal temperature sensor (VSENSE) and 1 channel for internal reference voltage (VREFINT). The input voltage range is between VSSA and VDDA. An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use. The ADC can be triggered from the events generated by the general level 0 timers (TIMERx) and the advanced timer (TIMER0) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value. 21 GD32E231CxT6 Datasheet 3.7 DMA  5 channels DMA controller  Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs and I2S The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory. Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable. 3.8 General-purpose inputs/outputs (GPIOs)  Up to 37 fast GPIOs, all mappable on 16 external interrupt lines  Analog input/output configurable  Alternate function input/output configurable There are up to 37 general purpose I/O pins (GPIO) in GD32E231CxT6, named PA0 ~ PA15 and PB0 ~ PB8, PB10 ~ PB15, PC14 ~ PC15, PF0 ~ PF1, PF6 ~ PF7 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull open-drain or analog), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs. 3.9 Timers and PWM generation  One 16-bit advanced timer (TIMER0), up to five 16-bit general timers (TIMER2, TIMER13 ~ TIMER16), and one 16-bit basic timer (TIMER5)  Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input  16-bit, motor control PWM advanced timer with programmable dead-time generation for output match  Encoder interface controller with two inputs using quadrature decoder  24-bit SysTick timer down counter  2 watchdog timers (free watchdog timer and window watchdog timer) The advanced timer (TIMER0) can be used as a three-phase PWM multiplexed on 6 channels. 22 GD32E231CxT6 Datasheet It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge- or center- aligned counting modes) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features. The general timer can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER2 is based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. TIMER13 ~ TIMER16 is based on a 16-bit auto-reload up counter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder. The basic timer, known as TIMER5 can also be used as a simple 16-bit time base. The GD32E231CxT6 have two watchdog peripherals, free watchdog and window watchdog. They offer a combination of high safety level, flexibility of use and timing accuracy. The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler. It is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode. The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below: 3.10  A 24-bit down counter  Auto reload capability  Maskable system interrupt generation when the counter reaches 0  Programmable clock source Real time clock (RTC)  Independent binary-coded decimal (BCD) format timer/counter with five 32-bit backup registers.  Calendar with subsecond, second, minute, hour, week day, date, year and month automatically correction  Alarm function with wake up from deep-sleep and standby mode capability  On-the-fly correction for synchronization with master clock. Digital calibration with 0.954 ppm resolution for compensation of quartz crystal inaccuracy. 23 GD32E231CxT6 Datasheet The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. In the RTC unit, there are two prescalers used for implementing the calendar and other functions. One prescaler is a 7-bit asynchronous prescaler and the other is a 15-bit synchronous prescaler. 3.11 Inter-integrated circuit (I2C)  Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)  Provide arbitration function, optional PEC (packet error checking) generation and checking  Supports 7-bit and 10-bit addressing mode and general call addressing mode  Supports SAM_V mode The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides different data transfer rates: up to 100 KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data. 3.12 Serial peripheral interface (SPI)  Up to two SPI interfaces with a frequency of up to 18 MHz  Support both master and slave mode  Hardware CRC calculation and transmit automatic CRC error checking  Separate transmit and receive 32-bit FIFO with DMA capability (only in SPI1)  Data frame size can be 4 to 16 bits (only in SPI1)  Quad-SPI configuration available in master mode (only in SPI1) The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Specially, SPI1 has separate transmit and receive 32bit FIFO with DMA capability and its data frame size can be 4 to 16 bits. Quad-SPI master mode is also supported in SPI1. 24 GD32E231CxT6 Datasheet 3.13 Universal synchronous asynchronous receiver transmitter (USART)  Up to two USARTs with operating frequency up to 4.5 MBits/s  Supports both asynchronous and clocked synchronous serial communication modes  IrDA SIR encoder and decoder support  LIN break generation and detection  ISO 7816-3 compliant smart card interface The USART (USART0, USART1) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication. 3.14 Inter-IC sound (I2S)  One I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz, multiplexed with SPI0  Support either master or slave mode The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32E231CxT6 contain an I2S-bus interface that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI0. The audio sampling frequency from 8 KHz to 192 KHz is supported with less than 0.5% accuracy error. 3.15 Comparators (CMP)  One fast rail-to-rail low-power comparators with software configurable  Programmable reference voltage (internal or external I/O) One Comparator (CMP) is implemented within the devices. It can wake up from deep-sleep mode to generate interrupts and breaks for the timers and also can be combined as a window comparator. The internal voltage reference is also connected to ADC_IN17 input channel of the ADC. 3.16 Operational amplifier (OP-AMP)  Two 6MHz, rail-to-rail I/O CMOS operational amplifiers 25 GD32E231CxT6 Datasheet  Low offset voltage: 1mV (typ)  High gain: 95dB (typ)  Low IB: 5pA (typ)  Low supply voltage: + 2.7 V to + 3.6V Two operational amplifiers (OP-AMP) are low noise, low voltage and low power operational amplifiers with high gain-bandwidth product of 6MHz and slew rate of 5V/μs. The maximum input offset voltage is only 3.5mV and the input common mode range extends beyond the supply rails. 3.17 Debug mode  Serial wire JTAG debug port (SWJ-DP) The ARM® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. 3.18 Package and operation temperature  LQFP48 (GD32E231CxT6).  Operation temperature range: -40°C to +85°C (industrial level) 26 GD32E231CxT6 Datasheet 4 Electrical characteristics 4.1 Absolute maximum ratings The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. Table 4-1. Absolute maximum ratings(1) (4) Symbol Min Max Unit VSS - 0.3 VSS + 3.6 V VSSA - 0.3 VSSA + 3.6 V VSS - 0.3 VDD + 3.6 V Input voltage on other I/O VSS - 0.3 3.6 V |ΔVDDx| Variations between different VDD power pins — 50 mV |VSSX −VSS| Variations between different ground pins — 50 mV IIO Maximum current for GPIO pin — ±25 mA TA Operating temperature range -40 +85 °C TSTG Storage temperature range -55 +150 °C TJ Maximum junction temperature — 125 °C VDD VDDA VIN Parameter External voltage range(2) External analog supply voltage Input voltage on 5V tolerant pin(3) (1). Guaranteed by design, not tested in production. (2). All main power and ground pins should be connected to an external power source within the allowable range. (3). VIN maximum value cannot exceed 6.5 V. (4). It is recommended that VDD and VDDA are powered by the same source. The maximum difference between VDD and VDDA does not exceed 300 mV during power-up and operation. 4.2 Operating conditions characteristics Table 4-2. DC operating conditions Symbol Parameter Conditions VDD Supply voltage — Analog supply voltage VDDA ADC not used Analog supply voltage ADC used Min(1) Typ Max(1) Unit 1.8 3.3 3.6 1.8 3.3 3.6 — V V 2.4 3.3 3.6 (1). Based on characterization, not tested in production. 27 GD32E231CxT6 Datasheet Table 4-3. Clock frequency Symbol Parameter Conditions Min Max Unit fHCLK1 AHB1 clock frequency — 0 72 MHz fHCLK2 AHB2 clock frequency — 0 72 MHz fAPB1 APB1 clock frequency — 0 72 MHz fAPB2 APB2 clock frequency — 0 72 MHz Min Max Unit 0 ∞ 20 ∞ Table 4-4. Operating conditions at Power up/ Power down Symbol tVDD(1) Parameter Conditions VDD rise time rate — VDD fall time rate μs/V (1). Based on characterization, not tested in production. Table 4-5. Start-up timings of Operating conditions Symbol Parameter tstart-up(1)(2)(3) Start-up time Conditions Typ Clock source from HXTAL 432 Clock source from IRC8M 76 Unit μs (1). Based on characterization, not tested in production. (2). After power-up, the start-up time is the time between the rising edge of NRST high and the main function. (3). PLL is off. Table 4-6. Power saving mode wakeup timings characteristics(1) (2) Symbol Parameter Typ tSleep(1) Wakeup from Sleep mode 3.5 Wakeup from Deep-sleep mode(LDO On) 17.1 Wakeup from Deep-sleep mode(LDO in low power mode) 17.1 Wakeup from Standby mode 77.5 tDeep-sleep(1) tStandby(1) Unit μs (1). Based on characterization, not tested in production. (2). The wakeup time is measured from the wakeup event to the point at which the application code reads the first instruction under the below conditions: VDD = VDDA = 3.3 V, IRC8M = System clock = 8 MHz. 4.3 Power consumption The power measurements specified in the tables represent that code with data executing from embedded Flash with the following specifications. Table 4-7. Power consumption characteristics(1) (2) (3) (4) (5) (6) Symbol Parameter Conditions Min Typ Max Unit — 8.5 — mA — 5.4 — mA VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 72 MHz, All peripherals IDD Supply current (Run mode) enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 72 MHz, All peripherals disabled 28 GD32E231CxT6 Datasheet Symbol Parameter Conditions Min Typ Max Unit -— 6.2 -— mA — 4.2 — mA — 5.1 — mA -— 3.6 -— mA — 4.0 — mA — 2.9 — mA -— 3.2 -— mA — 2.5 — mA — 2.4 — mA -— 2.1 -— mA — 0.8 — mA — 0.6 — mA -— 0.6 -— mA — 0.5 — mA VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 48 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 48 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 36 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 36 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 24 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 24 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 16 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 16 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 8 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 8 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 4 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 4 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 2 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 2 MHz, All peripherals disabled 29 GD32E231CxT6 Datasheet Symbol Parameter Conditions Min Typ Max Unit — 7.4 — mA — 3.7 — mA -— 5.5 -— mA — 3.1 — mA — 4.5 — mA -— 2.7 -— mA — 3.6 — mA — 2.4 — mA -— 3.0 -— mA — 2.1 — mA — 2.3 — mA -— 1.9 -— mA — 0.7 — mA — 0.5 — mA VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 72 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 72 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 48 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 48 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 36 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 36 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock= 24 MHz, All Supply current peripherals enabled (Sleep mode) VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 24 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 16 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 16 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 8 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 8 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 4 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 4 MHz, All peripherals disabled 30 GD32E231CxT6 Datasheet Symbol Parameter Conditions Min Typ Max Unit -— 0.5 -— mA — 0.4 — mA — 25.5 100 μA — 12.3 60 μA — 4.3 10 μA — 4.1 10 μA — 3.6 10 μA — 2.1 5 μA — 1.43 — μA — 1.36 — μA — 1.23 — μA — 1.15 — μA — 1.13 — μA — 1.06 — μA — 0.95 — μA — 0.86 — μA — 0.84 — μA — 0.76 — μA — 0.64 — μA — 0.56 — μA VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 2 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 2 MHz, All peripherals disabled VDD = VDDA = 3.3 V, LDO in run mode, Supply current (Deep-sleep mode) IRC40K off, RTC off, All GPIOs analog mode VDD = VDDA = 3.3 V, LDO in low power mode, IRC40K off, RTC off, All GPIOs analog mode VDD = VDDA = 3.3 V, LXTAL off, IRC40K on, RTC on VDD = VDDA = 3.3 V, LXTAL off, IRC40K on, Supply current RTC off (Standby mode) VDD = VDDA = 3.3 V, LXTAL off, IRC40K off, RTC off, VDDA Monitor on VDD = VDDA = 3.3 V, LXTAL off, IRC40K off, RTC off, VDDA Monitor off VDD = VDDA = 3.6 V, LXTAL on with external crystal, RTC on, Higher driving VDD = VDDA = 3.3 V, LXTAL on with external crystal, RTC on, Higher driving VDD = VDDA = 2.5 V, LXTAL on with external crystal, RTC on, Higher driving VDD = VDDA = 1.8 V, LXTAL on with external crystal, RTC on, Higher driving VDD = VDDA = 3.6 V, LXTAL on with external crystal, RTC on, Medium High driving VDD = VDDA = 3.3 V, LXTAL on with external ILXTAL+RTC LXTAL+RTC crystal, RTC on, Medium High driving current VDD = VDDA = 2.5 V, LXTAL on with external crystal, RTC on, Medium High driving VDD = VDDA = 1.8 V, LXTAL on with external crystal, RTC on, Medium High driving VDD = VDDA = 3.6 V, LXTAL on with external crystal, RTC on, Medium Low driving VDD = VDDA = 3.3 V, LXTAL on with external crystal, RTC on, Medium Low driving VDD = VDDA = 2.5 V, LXTAL on with external crystal, RTC on, Medium Low driving VDD = VDDA = 1.8 V, LXTAL on with external crystal, RTC on, Medium Low driving 31 GD32E231CxT6 Datasheet Symbol Parameter Conditions Min Typ Max Unit VDD = VDDA = 3.6 V, LXTAL on with external — 0.74 — μA — 0.67 — μA — 0.56 — μA — 0.47 — μA crystal, RTC on, Low driving VDD = VDDA = 3.3 V, LXTAL on with external crystal, RTC on, Low driving VDD = VDDA = 2.5 V, LXTAL on with external crystal, RTC on, Low driving VDD = VDDA = 1.8 V, LXTAL on with external crystal, RTC on, Low driving (1). Based on characterization, not tested in production. (2). Unless otherwise specified, all values given for TA = 25 ℃ and test result is mean value. (3). When System Clock is less than 4 MHz, an external source is used, and the HXTAL bypass function is needed, no PLL. (4). When System Clock is greater than 8 MHz, a crystal 8MHz is used, and the HXTAL bypass function is closed, using PLL. (5). When analog peripheral blocks such as ADCs, HXTAL, LXTAL, IRC8M, or IRC40K are ON, an additional power consumption should be considered. (6). The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications. Table 4-8. Peripheral current consumption characteristics(1) Peripherials(3) APB1 APB2 AHB Typical consumption at 25℃ (TYP) PMU 1.44 I2C1 1.38 I2C0 1.38 USART1 1.34 SPI1 1.37 WWDGT 1.32 TIMER13 1.36 TIMER5 0.17 TIMER2 0.23 DBGMCU 1.3 TIMER16 1.42 TIMER15 1.42 TIMER14 1.49 USART0 1.63 SPI0 1.38 TIMER0 1.68 ADC(2) 0.95 CFG & CMP 1.27 GPIOF 1.31 GPIOC 1.31 GPIOB 1.34 GPIOA 1.34 CRC 0.16 Unit mA 32 GD32E231CxT6 Datasheet Peripherials(3) Typical consumption at 25℃ Unit (TYP) 0.15 DMA (1). Based on characterization, not tested in production. (2). system clock = fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/2, ADON bit is set to 1. (3). If there is no other description, HXTAL = 8 MHz, system clock = fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK. 4.4 EMC characteristics EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in Table 4-9. EMS characteristics, based on the EMS levels and classes compliant with IEC 61000 series standard. Table 4-9. EMS characteristics Symbol VESD VFTB 4.5 Parameter Voltage applied to all device pins to induce a functional disturbance Conditions Level/Class VDD = 3.3 V, TA = +25 °C, LQFP48, fHCLK = 72 MHz 3A conforms to IEC 61000-4-2 Fast transient voltage burst applied to VDD = 3.3 V, TA = +25 °C, induce a functional disturbance through LQFP48, fHCLK = 72 MHz 100 pF on VDD and VSS pins conforms to IEC 61000-4-4 4A Power supply supervisor characteristics Table 4-10. Power supply supervisor characteristics(1) 33 GD32E231CxT6 Datasheet Symbol VLVD VLVDhyst VPOR VPDR Parameter Conditions Min Typ Max Unit LVDT[2:0] = 000, rising edge — 2.11 — V LVDT[2:0] = 000, falling edge — 2.01 — V LVDT[2:0] = 001, rising edge — 2.25 — V LVDT[2:0] = 001, falling edge — 2.16 — V LVDT[2:0] = 010, rising edge — 2.39 — V LVDT[2:0] = 010, falling edge — 2.29 — V LVDT[2:0] = 011, rising edge — 2.52 — V Low Voltage Detector LVDT[2:0] = 011, falling edge — 2.43 — V Threshold LVDT[2:0] = 100, rising edge — 2.66 — V LVDT[2:0] = 100, falling edge — 2.57 — V LVDT[2:0] = 101, rising edge — 2.80 — V LVDT[2:0] = 101, falling edge — 2.71 — V LVDT[2:0] = 110, rising edge — 2.95 — V LVDT[2:0] = 110, falling edge — 2.84 — V LVDT[2:0] = 111, rising edge — 3.08 — V LVDT[2:0] = 111, falling edge — 2.98 — V — — 100 — mV Rising edge — 1.71 — V Falling edge — 1.67 — V LVD hysteresis Power on reset threshold Power down reset threshold VPDRhyst PDR hysteresis — — 40 — mV tRSTTEMP Reset temporization — — 2.5 — ms (1) Based on characterization, not tested in production. 4.6 Electrical sensitivity The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up (LU) test is based on the two measurement methods. Table 4-11. ESD characteristics 34 GD32E231CxT6 Datasheet Symbol VESD(HBM) VESD(CDM) Parameter Conditions Electrostatic discharge TA = 25 °C; voltage (human body model) JESD22-A114 Electrostatic discharge TA = 25 °C; voltage (charge device model) JESD22-C101 Min Typ Max Unit — — 6000 V — — 2000 V Min Typ Max Unit — — ±200 mA — — 5.4 V (1). Based on characterization, not tested in production. Table 4-12. Static latch-up characteristics Symbol Parameter Conditions I-test TA = 25 °C; LU JESD78 Vsupply over voltage (1). Based on characterization, not tested in production. 4.7 External clock characteristics Table 4-13. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics Symbol fHXTAL RF Parameter Crystal or ceramic Conditions Min Typ Max Unit 1.8 V ≤ VDD ≤ 3.6 V 4 8 32 MHz VDD = 3.3 V — 400 — kΩ — — 20 30 pF — 30 50 70 % VDD = 3.3 V, TA = 25 °C — 1.2 — mA VDD = 3.3 V, TA = 25 °C — 1.8 — ms frequency(1) Feedback resistor Recommended matching CHXTAL capacitance on OSCIN and OSCOUT Ducy(HXTAL)(2) IDDHXTAL(1) tSUHXTAL(1) Crystal or ceramic duty cycle Crystal or ceramic operating current Crystal or ceramic startup time (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. (3). CHXTAL1 = CHXTAL2 = 2*(CLOAD - CS), For CHXTAL1 and CHXTAL2, it is recommended matching capacitance on OSCIN and OSCOUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For CS, it is PCB and MCU pin stray capacitance. Table 4-14. High speed external user clock characteristics (HXTAL in bypass mode) Symbol fHXTAL_ext(1) Parameter External clock source or oscillator frequency Conditions Min Typ Max Unit 1.8 V ≤ VDD ≤ 3.6 V 1 8 50 MHz 0.7VDD — VDD VSS — 0.3VDD VHXTALH(2) OSCIN input pin high level voltage VHXTALL(2) OSCIN input pin low level voltage tH/L(HXTAL) (2) OSCIN high or low time — 5 — — tR/F(HXTAL) (2) OSCIN rise or fall time — — — 10 CIN(1) OSCIN input capacitance — — 5 — pF Ducy(HXTAL) (2) Duty cycle — 30 50 70 % VDD = 3.3 V V ns 35 GD32E231CxT6 Datasheet (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. Table 4-15. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics Symbol Parameter Conditions Min Typ Max Unit fLXTAL(1) Crystal or ceramic frequency VDD = 3.3 V — 32.768 — kHz CLXTAL(2) (3) capacitance on OSC32IN — — — 15 pF — 30 — 70 % LXTALDRI[1:0] = 00 — 0.5 — Crystal or ceramic operating LXTALDRI[1:0] = 01 — 0.6 — current LXTALDRI[1:0] = 10 — 1.0 — LXTALDRI[1:0] = 11 — 1.2 — VDD = 3.3 V — 1.8 — Recommended matching and OSC32OUT Ducy(LXTAL) (2) IDDLXTAL (1) tSULXTAL(1) (4) Crystal or ceramic duty cycle Crystal or ceramic startup time μA s (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. (3). CLXTAL1 = CLXTAL2 = 2*(CLOAD - CS), For CLXTAL1 and CLXTAL2, it is recommended matching capacitance on OSC32IN and OSC32OUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For CS, it is PCB and MCU pin stray capacitance. Table 4-16. Low speed external user clock characteristics (LXTAL in bypass mode) Symbol Parameter External clock source or fLXTAL_ext oscillator frequency voltage OSC32IN input pin low level (1) Typ Max Unit VDD = 3.3 V — 32.768 1000 kHz 0.7VDD — VDD VDD = 3.3 V (1) CIN(1) Ducy(LXTAL) (1) V VSS voltage tH/L(LXTAL) (1) tR/F(LXTAL) Min OSC32IN input pin high level VLXTALH(1) VLXTALL Conditions — 0.3VDD OSC32IN high or low time — 450 — — OSC32IN rise or fall time — — — 50 OSC32IN input capacitance — — 5 — pF Duty cycle — 30 50 70 % ns (1). Guaranteed by design, not tested in production. 4.8 Internal clock characteristics Table 4-17. High speed internal clock (IRC8M) characteristics(1) Symbol fIRC8M ACCIRC8M Parameter High Speed Internal Oscillator (IRC8M) frequency Conditions Min Typ Max Unit VDD = VDDA = 3.3 V — 8 — MHz -4.0 — +5.0 % IRC8M oscillator Frequency VDD = VDDA = 3.3 V, accuracy, Factory-trimmed TA = -40 °C ~ +105 °C(1) 36 GD32E231CxT6 Datasheet Symbol Parameter Conditions Min Typ Max Unit -2.0 — +2.0 % -1.0 — +1.0 % — 0.5 — % 45 50 55 % — 52 — μA — 1.8 — μs Min Typ Max Unit 30 39.8 60 kHz — 0.41 — μA — 35 — μs Conditions Min Typ Max Unit VDD = VDDA = 3.3 V — 28 — MHz -4.0 — +5.0 % -3.0 — +3.0 % -2.0 — +2.0 % — 0.5 — % 45 50 55 % — 121 — μA VDD = VDDA = 3.3 V, TA = 0 °C ~ +85 °C(1) VDD = VDDA = 3.3 V, TA = 25°C IRC8M oscillator Frequency — accuracy, User trimming step(1) DucyIRC8M(2) (3) IDDAIRC8M(1) (3) tSUIRC8M(1) (3) VDD = VDDA = 3.3 V, IRC8M oscillator duty cycle fIRC8M = 8 MHz IRC8M oscillator operating VDD = VDDA = 3.3 V, current fIRC8M = 8 MHz VDD = VDDA = 3.3 V, IRC8M oscillator startup time fIRC8M = 8 MHz (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. (3). HXTAL = 8 MHz, system clock = fHCLK = 72 MHz. Table 4-18. Low speed internal clock (IRC40K) characteristics(1) Symbol fIRC40K(1) IDDAIRC40K(2) (3) tSUIRC40K(2) (3) Parameter Conditions Low Speed Internal oscillator VDD = VDDA = 3.3 V, (IRC40K) frequency TA = -40 °C ~ +85 °C IRC40K oscillator operating VDD = VDDA = 3.3 V, current TA = 25 °C IRC40K oscillator startup VDD = VDDA = 3.3 V, time TA = 25 °C (1). Guaranteed by design, not tested in production. (2). Based on characterization, not tested in production. (3). HXTAL = 8 MHz, system clock = fHCLK = 72 MHz. Table 4-19. High speed internal clock (IRC28M) characteristics(1) Symbol fIRC28M Parameter High Speed Internal Oscillator (IRC28M) frequency VDD = VDDA = 3.3 V, TA = -40 °C ~ +105 °C(2) IRC28M oscillator Frequency VDD = VDDA = 3.3 V, accuracy, Factory-trimmed TA = 0 °C ~ +85 °C(2) ACCIRC28M VDD = VDDA = 3.3 V, TA = 25 °C IRC28M oscillator Frequency accuracy, User trimming step(1) DIRC28M(2) (3) IRC28M oscillator duty cycle IDDAIRC28M(1) (3) IRC28M oscillator operating — VDD = VDDA = 3.3 V, fIRC28M = 28 MHz VDD = VDDA = 3.3 V, 37 GD32E231CxT6 Datasheet Symbol tSUIRC28M(1)(3) Parameter Conditions Min Typ Max Unit current fIRC28M = 28 MHz — 1.5 — μs Conditions Min Typ Max Unit — 1 — 25 MHz — 16 — 72 MHz — — — 300 μs VDD = VDDA = 3.3 V, IRC28M oscillator startup time fIRC28M = 28 MHz (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. (3). HXTAL = 8 MHz, system clock = fHCLK = 72 MHz. 4.9 PLL characteristics Table 4-18. PLL characteristics Symbol Parameter PLL input clock fPLLIN frequency PLL output clock fPLLOUT frequency tLOCK PLL lock time Current consumption on IDDA(1) VDDA VCO freq = 72 MHz Cycle to cycle Jitter JitterPLL(1)(3) μA 130 (rms) — 69 — ps — 704 — ps System clock Cycle to cycle Jitter (peak to peak) (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. (3). Value given with main PLL running. 4.10 Memory characteristics Table 4-19. Flash memory characteristics Symbol Parameter Conditions Min Typ Max Unit TA = -40 °C ~ +85 °C 100 — — kcycles 10k cycles at TA = 85 °C 10 — — years Number of guaranteed PECYC(1) program /erase cycles before failure(Endurance) tRET (1) Data retention time TA = -40 °C ~ +85 °C 37 — 44 μs tERASE(2) Page erase time TA = -40 °C ~ +85 °C 3.2 — 4 ms tMERASE(2) Mass erase time TA = -40 °C ~ +85 °C 8 — 10 ms tPROG (2) Word(3) programming time (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. (3). Word is 32bits or 64bits depend on PGW bit in FMC_WS register. 38 GD32E231CxT6 Datasheet 4.11 NRST pin characteristics Table 4-20. NRST pin characteristics Symbol Parameter VIL(NRST) (1) NRST Input low level voltage VIH(NRST) (1) NRST Input high level voltage Conditions VDD = VDDA = 1.8 V Min Typ Max -0.5 — 0.71 1.08 — VDD + 0.5 Vhyst Schmidt trigger Voltage hysteresis — 370 — VIL(NRST) (1) NRST Input low level voltage -0.5 — 1.05 VIH(NRST) (1) NRST Input high level voltage 1.42 — VDD + 0.5 Vhyst VDD = VDDA = 2.5 V Schmidt trigger Voltage hysteresis — 370 — VIL(NRST) (1) NRST Input low level voltage -0.5 — 1.4 VIH(NRST) (1) NRST Input high level voltage 1.8 — VDD + 0.5 VDD = VDDA = 3.3 V Unit V mV V mV V Schmidt trigger Voltage hysteresis — 400 — VIL(NRST) (1) NRST Input low level voltage -0.5 — 1.53 VIH(NRST) (1) NRST Input high level voltage 1.95 — VDD + 0.5 — 420 — mV — 40.3 — kΩ Vhyst Vhyst Schmidt trigger Voltage hysteresis Rpu(2) Pull-up equivalent resistor VDD = VDDA = 3.6 V — mV V (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. 4.12 GPIO characteristics Table 4-21. I/O port DC characteristics(1) Symbol Parameter Conditions Min Typ Max — 0.80 — 1.10 — 1.40 VDD = 3.6 V — 1.60 VDD = 1.8 V — 0.80 — 1.10 — 1.40 — 1.60 VDD = 1.8 V Standard IO Low level input VDD = 2.5 V voltage VDD = 3.3 V VIL 5V-tolerant IO Low level VDD = 2.5 V input voltage VDD = 3.3 V VSS VSS VDD = 3.6 V VDD = 1.8 V 1.10 — Standard IO High level VDD = 2.5 V 1.50 — input voltage VDD = 3.3 V 1.90 — VDD = 3.6 V 2.00 — VDD = 1.8 V 1.10 — 5V-tolerant IO High level VDD = 2.5 V 1.50 — input voltage VDD = 3.3 V 1.90 — VDD = 3.6 V 2.00 — Low level output voltage VDD = 1.8 V — — 0.20 for an IO Pin VDD = 2.5 V — — 0.20 VIH VOL Unit V V VDD V VDD V V 39 GD32E231CxT6 Datasheet Symbol Parameter Conditions Min Typ Max (IIO = +8 mA) VDD = 3.3 V — — 0.10 VDD = 3.6 V — — 0.10 VDD = 1.8 V — — — VDD = 2.5 V — — 0.50 VDD = 3.3 V — — 0.40 VDD = 3.6 V — — 0.40 VDD = 1.8 V 1.50 — — VDD = 2.5 V 2.30 — — VDD = 3.3 V 3.10 — — VDD = 3.6 V 3.40 — — VDD = 1.8 V — — — VDD = 2.5 V 1.90 — — VDD = 3.3 V 2.80 — — VDD = 3.6 V 3.10 — — Low level output voltage VOL for an IO Pin (IIO = +20 mA) High level output voltage VOH for an IO Pin (IIO = +8 mA) High level output voltage VOH for an IO Pin (IIO = +20 mA) Unit V V V (2) Internal pull-up resistor — — 40 — kΩ (2) Internal pull-down resistor — — 40 — kΩ Conditions Max Unit 1.8 ≤ VDD ≤ 3.6V, CL = 10pF 10 1.8 ≤ VDD ≤ 3.6V, CL = 30pF 8 1.8 ≤ VDD ≤ 3.6V, CL = 50pF 6 1.8 ≤ VDD ≤ 3.6V, CL = 10pF 30 1.8 ≤ VDD ≤ 3.6V, CL = 30pF 25 1.8 ≤ VDD ≤ 3.6V, CL = 50pF 15 1.8 ≤ VDD ≤ 3.6V, CL = 10pF 60 1.8 ≤ VDD ≤ 3.6V, CL = 30pF 50 1.8 ≤ VDD ≤ 3.6V, CL = 50pF 40 RPU RPD (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. Table 4-22. I/O port AC characteristics(1)(2) GPIOx_OSPD[1:0] bit value(3) Parameter GPIOx_OSPD0->OSPDy[1:0] = X0 Maximum (IO_Speed = 2MHz) frequency(4) GPIOx_OSPD0->OSPDy[1:0] = 01 Maximum (IO_Speed = 10MHz) frequency(4) GPIOx_OSPD0->OSPDy[1:0] = 11 Maximum (IO_Speed = 50MHz) frequency(4) MHz MHz MHz (1). Based on characterization, not tested in production. (2). Unless otherwise specified, all test results given for TA = 25℃. (3). The I/O speed is configured using the GPIOx_OSPD0->OSPDy [1:0] bits. Refer to the GD32E231 user manual which is selected to set the GPIO port output speed. (4) The maximum frequency is defined in Figure 4-1. I/O port AC characteristics definition. 40 GD32E231CxT6 Datasheet Figure 4-1. I/O port AC characteristics definition 10% 90% EXTERNAL OUTPU T ON 50pF 50% 50% 10% 90% tr(IO)out tr(IO)out If (tr+tf)≤2/3 T,then maximum frequency is achieved . The duty cycle is (45%-55%)when loaded by 50 pF 4.13 ADC characteristics Table 4-23. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA(1) Operating voltage — 2.4 3.3 3.6 V VIN(1) ADC input voltage range — 0 — VDDA V fADC(1) ADC clock — 0.1 — 28 MHz 12-bit 0.007 — 2 10-bit 0.008 — 2.3 8-bit 0.01 — 2.8 6-bit 0.011 — 3.5 Analog input voltage 10 external; 2 internal 0 — VDDA V Positive Reference Voltage — — VDDA — V — — 0 — V See Equation 1 — — 50.6 kΩ — — — 0.5 kΩ — — 4 pF fS(1) (1) VAIN VREF+(2) VREF-(2) RAIN(2) RADC(2) Sampling rate Negative Reference Voltage External input impedance Input sampling switch resistance No pin/pad capacitance MSPS CADC(2) Input sampling capacitance tCAL(2) Calibration time fADC = 28 MHz — 4.68 — μs Sampling time fADC = 28 MHz 0.05 — 8.55 μs 12-bit — 14 — 10-bit — 12 — 8-bit — 10 — 6-bit — 8 — — — — 1 (2) ts included Total conversion tCONV(2) time(including sampling time) tSU(2) Startup time 1/ fADC μs (1). Based on characterization, not tested in production. (2). Guaranteed by design, not tested in production. Equation 1: RAIN max formula R AIN < Ts fADC ∗CADC ∗ln(2N+2 ) − R ADC 41 GD32E231CxT6 Datasheet The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 4-24. ADC RAIN max for fADC = 28 MHz(1) Ts(cycles) ts(μs) RAINmax (kΩ) 1.5 0.05 0.88 7.5 0.27 6.4 13.5 0.48 11.9 28.5 1.02 25.7 41.5 1.48 37.7 55.5 1.98 50.6 71.5 2.55 NA 239.5 8.55 NA (1). Based on characterization, not tested in production. 4.14 Temperature sensor characteristics Table 4-25. Temperature sensor characteristics(1) Symbol Parameter Min Typ Max Unit TL VSENSE linearity with temperature — ±1.5 — ℃ Avg_Slope Average slope — 4.3 — mV/℃ V25 Voltage at 25 °C — 1.45 — V Startup time — — — μs ADC sampling time when reading the temperature — 17.1 — μs tSTART tS_temp (2) (1). Based on characterization, not tested in production. (2). Shortest sampling time can be determined in the application by multiple iterations. 4.15 Comparators characteristics Table 4-26. CMP characteristics(1) Max(1) Unit Symbol Parameter Conditions Min Typ VDDA Operating voltage — 1.8 3.3 3.6 V VIN Input voltage range — 0 — VDDA V VBG Scaler input voltage — — 1.2 — V VSC Scaler offset voltage — — — — mV Ultra low power mode — 0.98 — μs Propagation delay for 200mv Low power mode — 0.25 — μs step with 100mV overdrive Medium power mode — 0.12 — μs High speed power mode — 33 — μs Ultra low power mode — — — μs Low power mode — — — μs Medium power mode — — — μs High speed power mode — — — ns tD Propagation delay for full range step with 100mV overdrive 42 GD32E231CxT6 Datasheet Symbol IDD Voffset Vhyst Parameter Max(1) Unit Conditions Min Typ Ultra low power mode — 2.2 — Low power mode — 3.2 — Medium power mode — 8.1 — High speed power mode — 46.9 — — — ±4 — No Hysteresis — 0 — Low Hysteresis — 11 — Medium Hysteresis — 22 — High Hysteresis — 43 — Current consumption Offset error Hysteresis Voltage μA mV mV (1). Guaranteed by design, not tested in production. 4.16 Operational amplifier characteristics Table 4-27. OP-AMP characteristics Symbol Parameter Conditions Min Typ Max Unit VDD Operating voltage — 2.7 — 3.6 V — 0.2 — VDD - 0.2 V VCM range IDD Operating current Io = 0 — 600 — μA ILoad Drive current — — — — mA Vos Offset voltage — — 1 3.5 mV Ts Settling time — 1.2 — μs SR Slew rate Gain = 1 — 5 — V/μs — 58 72 — dB — 65 80 — dB CMRR PSRR 4.17 Common mode voltage Common mode rejection ratio Power supply rejection ratio Gain = 1, input 2V step Settling to 0.1% GBW Gain bandwidth RL = 10kΩ — 6 — MHz A0 Open-loop gain RL = 10kΩ 85 95 — dB Vout Output swing from rail RL = 10kΩ — 200 — mV Vnoise Input voltage noise F = 0.1Hz to 10Hz — 8 — μVpp en Input voltage noise density F = 10kHz — 24 — nV/√Hz I2C characteristics Table 4-30. I2C characteristics(1)(2)(3) 43 GD32E231CxT6 Datasheet Symbol tSCL(H) Parameter Conditi ons SCL clock high time Standard Fast Fast mode mode(1) mode(1)(2) plus(1) Unit Min Max Min Max Min Max — 4.0 — 0.6 — 0.2 — μs tSCL (L) SCL clock low time — 4.7 — 1.3 — 0.5 — μs tsu(SDA) SDA setup time — 2 — 0.8 — 0.1 — μs — 250 — 250 — 130 — ns — — 1000 20 300 — 120 ns — 4 300 4 300 4 120 ns — 4.0 — 0.6 — 0.26 — μs th(SDA) tr(SDA/SCL) tf(SDA/SCL) th(STA) SDA data hold time SDA and SCL rise time SDA and SCL fall time Start condition hold time (1). Guaranteed by design, not tested in production. (2). Test condition: GPIO_SPEED set 2MHz and external pull-up resistor value is 1kΩ when operate EEPROM with I2C. (3). The device should provide a data hold time of 300 ns at least in order to bridge the undefined region of the falling edge of SCL. 4.18 SPI characteristics Table 4-28. Standard SPI characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency — — — 18 MHz tSCK(H) SCK clock high time 25 27 29 ns tSCK(L) SCK clock low time 25 27 29 ns Master mode, fPCLKx = 72 MHz, presc = 4 Master mode, fPCLKx = 72 MHz, presc = 4 SPI master mode tV(MO) Data output valid time — — 7.5 — ns tH(MO) Data output hold time — — 6 — ns tSU(MI) Data input setup time — 1 — — ns tH(MI) Data input hold time — 0 — — ns SPI slave mode tSU(NSS) NSS enable setup time — 0 — — ns tH(NSS) NSS enable hold time — 1 — — ns tA(SO) Data output access time — — 7 — ns tDIS(SO) Data output disable time — — 8 — ns tV(SO) Data output valid time — — 10 — ns tH(SO) Data output hold time — — 10 — ns tSU(SI) Data input setup time — 0 — — ns 44 GD32E231CxT6 Datasheet Symbol Parameter Conditions Min Typ Max Unit tH(SI) Data input hold time — 1 — — ns Conditions Min Typ Max Unit — 3.12 — — 10 — — 160 — ns — 160 — ns (1) .Based on characterization, not tested in production. 4.19 I2S characteristics Table 4-29. I2S characteristics(1) Symbol Parameter Master mode (data: 16 bits, fCK Clock frequency Audio frequency = 96 kHz) Slave mode MHz tH Clock high time tL Clock low time tV(WS) WS valid time Master mode — 3 — ns tH(WS) WS hold time Master mode — 3 — ns tSU(WS) WS setup time Slave mode 0 — — ns tH(WS) WS hold time Slave mode 3 — — ns Slave mode — 50 — % DuCy(sck) — I2S slave input clock duty cycle tSU(SD_MR) Data input setup time Master mode 0 — — ns tsu(SD_SR) Data input setup time Slave mode 0 — — ns Master receiver 2 — — ns Slave receiver 2 — — ns — 12 — ns — 10 — ns — 10 — ns — 7 — ns tH(SD_MR) tH(SD_SR) Data input hold time tv(SD_ST) Data output valid time th(SD_ST) Data output hold time tv(SD_MT) Data output valid time th(SD_MT) Data output hold time Slave transmitter (after enable edge) Slave transmitter (after enable edge) Master transmitter (after enable edge) Master transmitter (after enable edge) (1) .Based on characterization, not tested in production. 4.20 USART characteristics Table 4-30. USART characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency fPCLKx = 72 MHz — — 36 MHz tSCK(H) SCK clock high time fPCLKx = 72 MHz 13.5 — — ns tSCK(L) SCK clock low time fPCLKx = 72 MHz 13.5 — — ns (1) .Based on characterization, not tested in production. 45 GD32E231CxT6 Datasheet 4.21 TIMER characteristics Table 4-31. TIMER characteristics(1) Symbol Parameter tres Timer resolution time fEXT RES tCOUNTER Conditions Min Max Unit — 1 — tTIMERxCLK fTIMERxCLK = 72 MHz 13.9 — ns Timer external clock — 0 fTIMERxCLK/2 MHz frequency fTIMERxCLK = 72 MHz 0 36 MHz Timer resolution — — 16 bit 16-bit counter clock — 1 65536 tTIMERxCLK fTIMERxCLK = 72 MHz 0.0139 910 μs — — fTIMERxCLK = 72 MHz — period when internal clock is selected tMAX_COUNT Maximum possible count 65536 × 65536 tTIMERxCLK 59.6 s (1). Guaranteed by design, not tested in production. 4.22 WDGT characteristics Table 4-32. FWDGT min/max timeout period at 40 kHz (IRC40K) Min timeout RLD[11:0] Max timeout RLD[11:0] = Prescaler divider PR[2:0] bits 1/4 000 0.1 409.6 1/8 001 0.2 819.2 1/16 010 0.4 1638.4 1/32 011 0.8 3276.8 1/64 100 1.6 6553.6 1/128 101 3.2 13107.2 1/256 110 or 111 6.4 26214.4 = 0x000 0xFFF Unit ms (1). Guaranteed by design, not tested in production. Table 4-33. WWDGT min-max timeout value at 72 MHz (fPCLK1) Min timeout value Prescaler divider PSC[2:0] 1/1 00 56.9 1/2 01 113.8 1/4 10 227.6 1/8 11 455.1 CNT[6:0] = 0x40 Unit Max timeout value CNT[6:0] = 0x7F Unit 3.64 μs 7.28 14.56 ms 29.13 (1). Guaranteed by design, not tested in production. 4.23 Parameter conditions Unless otherwise specified, all values given for VDD = VDDA = 3.3 V, TA = 25 ℃. 46 GD32E231CxT6 Datasheet 5 Package information 5.1 LQFP package outline dimensions Figure 5-1. LQFP package outline 47 GD32E231CxT6 Datasheet Table 5-1. LQFP package dimensions Symbol LQFP48 Min Typ Max A - - 1.60 A1 0.05 - 0.15 A2 1.35 1.40 1.40 D - 9.00 - D1 - 7.00 - E - 9.00 - E1 - 7.00 - R1 0.08 - - R2 0.08 - 0.20 θ 0° 3.5° 7° θ1 0° - - θ2 11° 12° 13° θ3 11° 12° 13° c 0.09 - 0.20 L 0.45 0.60 0.75 L1 - 1.00 - S 0.20 - - b 0.17 0.22 0.27 e - 0.50 - D2 - 5.50 - E2 - 5.50 - aaa 0.20 bbb 0.20 ccc 0.08 (Original dimensions are in millimeters) 48 GD32E231CxT6 Datasheet 6 Ordering information Table 6-1. Part ordering code for GD32E231CxT6 devices Ordering code Flash (KB) Package Package type GD32E231C4T6 16 LQFP48 Green GD32E231C6T6 32 LQFP48 Green GD32E231C8T6 64 LQFP48 Green Temperature operating range Industrial -40°C to +85°C Industrial -40°C to +85°C Industrial -40°C to +85°C 49 GD32E231CxT6 Datasheet 7 Revision history Table 7-1. Revision history Revision No. Description Date 1.0 Initial Release Feb15, 2019 50 GD32E231CxT6 Datasheet Important Notice This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only. The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products. Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice. © 2019 GigaDevice – All rights reserved 51
GD32E231C8T6 价格&库存

很抱歉,暂时无法提供与“GD32E231C8T6”相匹配的价格&库存,您可以联系我们找货

免费人工找货