0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
GD32L233CBT6

GD32L233CBT6

  • 厂商:

    GIGADEVICE(兆易创新)

  • 封装:

    LQFP-48

  • 描述:

    GD32L233CBT6

  • 数据手册
  • 价格&库存
GD32L233CBT6 数据手册
GigaDevice Semiconductor Inc. GD32L233xx Arm® Cortex®-M23 32-bit MCU Datasheet Revision 1.1 (Apr. 2022) GD32L233xx Datasheet Table of Contents Table of Contents ..................................................................................................... 1 List of Figures .......................................................................................................... 4 List of Tables ............................................................................................................ 5 1. General description ........................................................................................... 7 2. Device overview ................................................................................................. 8 2.1. Device information ................................................................................................ 8 2.2. Block diagram ........................................................................................................ 9 2.3. Pinouts and pin assignment ............................................................................... 10 2.4. Memory map ........................................................................................................ 13 2.5. Clock tree ............................................................................................................. 16 2.6. Pin definitions ...................................................................................................... 17 2.6.1. GD32L233Rx LQFP64 pin definitions ............................................................................ 17 2.6.2. GD32L233Cx LQFP48 pin definitions ............................................................................ 23 2.6.3. GD32L233Kx LQFP32 pin definitions ............................................................................ 27 2.6.4. GD32L233Kx QFN32 pin definitions .............................................................................. 30 2.6.5. GD32L233xx pin alternate functions .............................................................................. 33 3. Functional description..................................................................................... 36 3.1. Arm® Cortex®-M23 core ....................................................................................... 36 3.2. Embedded memory ............................................................................................. 36 3.3. Clock, reset and supply management ................................................................ 37 3.4. Boot modes.......................................................................................................... 37 3.5. Power saving modes ........................................................................................... 38 3.6. Clock trim controller (CTC) ................................................................................. 40 3.7. General-purpose inputs/outputs (GPIOs) .......................................................... 40 3.8. CRC calculation unit (CRC)................................................................................. 41 3.9. True Random number generator (TRNG) ........................................................... 41 3.10. Direct memory access controller (DMA)......................................................... 41 3.11. DMA request multiplexer (DMAMUX) .............................................................. 42 3.12. Analog to digital converter (ADC) ................................................................... 42 3.13. Digital to analog converter (DAC) ................................................................... 43 3.14. Real time clock (RTC) ...................................................................................... 43 1 GD32L233xx Datasheet 4 3.15. Timers and PWM generation ........................................................................... 43 3.16. Universal synchronous/asynchronous receiver transmitter (USART/UART) 44 3.17. Universal asynchronous receiver transmitter (LPUART) .............................. 45 3.18. Inter-integrated circuit (I2C) ............................................................................ 45 3.19. Serial peripheral interface (SPI) ...................................................................... 46 3.20. Inter-IC sound (I2S) .......................................................................................... 46 3.21. Cryptographic acceleration Unit (CAU) .......................................................... 46 3.22. Segment LCD controller (SLCD) ..................................................................... 47 3.23. Comparators (CMP) ......................................................................................... 47 3.24. Universal serial bus full-speed device interface (USBD) ............................... 47 3.25. Debug mode ..................................................................................................... 48 3.26. Package and operation temperature............................................................... 48 Electrical characteristics ................................................................................. 49 4.1 Absolute maximum ratings ................................................................................. 49 4.2 Operating conditions characteristics ................................................................. 49 4.3 Power consumption ............................................................................................ 51 4.4 EMC characteristics ............................................................................................ 58 4.5 Power supply supervisor characteristics .......................................................... 58 4.6 Electrical sensitivity ............................................................................................ 60 4.7 External clock characteristics ............................................................................ 60 4.8 Internal clock characteristics ............................................................................. 62 4.9 PLL characteristics ............................................................................................. 64 4.10 Memory characteristics ................................................................................... 64 4.11 NRST pin characteristics ................................................................................. 64 4.12 VREF buffer characteristics ............................................................................ 65 4.13 GPIO characteristics ........................................................................................ 66 4.14 ADC characteristics ......................................................................................... 68 4.15 DAC characteristics ......................................................................................... 70 4.16 Temperature sensor characteristics ............................................................... 71 4.17 Comparators characteristics ........................................................................... 71 4.18 TIMER characteristics ...................................................................................... 73 2 GD32L233xx Datasheet 5 4.19 SLCD controller characteristics ...................................................................... 74 4.20 I2C characteristics ........................................................................................... 75 4.21 SPI characteristics ........................................................................................... 76 4.22 I2S characteristics ........................................................................................... 78 4.23 USART/LPUART characteristics ..................................................................... 80 4.24 USBD characteristics ....................................................................................... 80 4.25 WDGT characteristics ...................................................................................... 81 4.26 Parameter conditions....................................................................................... 82 Package information ........................................................................................ 83 5.1 LQFP64 package outline dimensions ................................................................ 83 5.2 LQFP48 package outline dimensions ................................................................ 85 5.3 LQFP32 package outline dimensions ................................................................ 87 5.4 QFN32 package outline dimensions .................................................................. 89 5.5 Thermal characteristics ...................................................................................... 91 6 Ordering information ....................................................................................... 93 7 Revision history ............................................................................................... 94 3 GD32L233xx Datasheet List of Figures Figure 2-1. GD32L233xx block diagram .............................................................................................. 9 Figure 2-2. GD32L233Rx LQFP64 pinouts ........................................................................................ 10 Figure 2-3. GD32L233Cx LQFP48 pinouts ........................................................................................ 11 Figure 2-4. GD32L233Kx LQFP32 pinouts ........................................................................................ 11 Figure 2-5. GD32L233Kx QFN32 pinouts .......................................................................................... 12 Figure 2-6. GD32L233xx clock tree ................................................................................................... 16 Figure 4-1. Recommended power supply decoupling capacitors(1) .............................................. 49 Figure 4-2. Typical supply current consumption in Run mode ...................................................... 56 Figure 4-3. Typical supply current consumption in Sleep mode ................................................... 57 Figure 4-4. Recommended external NRST pin circuit ..................................................................... 65 Figure 4-5. I/O port AC characteristics definition ............................................................................ 68 Figure 4-6. CMP hysteresis ................................................................................................................ 72 Figure 4-7. I2C bus timing diagram ................................................................................................... 75 Figure 4-8. SPI timing diagram - master mode ................................................................................ 76 Figure 4-9. SPI timing diagram - slave mode ................................................................................... 77 Figure 4-10. I2S timing diagram - master mode ............................................................................... 79 Figure 4-11. I2S timing diagram - slave mode .................................................................................. 79 Figure 4-12. USBD timings: definition of data signal rise and fall time ........................................ 80 Figure 5-1. LQFP64 package outline ................................................................................................. 83 Figure 5-2. LQFP64 recommended footprint .................................................................................... 84 Figure 5-3. LQFP48 package outline ................................................................................................. 85 Figure 5-4. LQFP48 recommended footprint .................................................................................... 86 Figure 5-5. LQFP32 package outline ................................................................................................. 87 Figure 5-6. LQFP32 recommended footprint .................................................................................... 88 Figure 5-7. QFN32 package outline ................................................................................................... 89 Figure 5-8. QFN32 recommended footprint ...................................................................................... 90 4 GD32L233xx Datasheet List of Tables Table 2-1. GD32L233xx devices features and peripheral list ........................................................... 8 Table 2-2. GD32L233xx memory map ............................................................................................... 13 Table 2-3. GD32L233Rx LQFP64 pin definitions .............................................................................. 17 Table 2-4. GD32L233Cx LQFP48 pin definitions .............................................................................. 23 Table 2-5. GD32L233Kx LQFP32 pin definitions .............................................................................. 27 Table 2-6. GD32L233Kx QFN32 pin definitions ................................................................................ 30 Table 2-7. Port A alternate functions summary ............................................................................... 33 Table 2-8. Port B alternate functions summary ............................................................................... 33 Table 2-9. Port C alternate functions summary ............................................................................... 34 Table 2-10. Port D alternate functions summary ............................................................................. 34 Table 2-11. Port F alternate functions summary .............................................................................. 35 Table 4-1. Absolute maximum ratings(1)(4) ......................................................................................... 49 Table 4-2. DC operating conditions ................................................................................................... 49 Table 4-3. Clock frequency(1) .............................................................................................................. 50 Table 4-4. Operating conditions at Power up/ Power down(1) ......................................................... 50 Table 4-5. Start-up timings of Operating conditions (1) .................................................................... 50 Table 4-6. Power saving mode wakeup timings characteristics(1) (2) .............................................. 50 Table 4-7. Power consumption characteristics(2)(3) .......................................................................... 51 Table 4-8. EMS characteristics(1) ....................................................................................................... 58 Table 4-10. EMI characteristics(1) ....................................................................................................... 58 Table 4-9. Power supply supervisor characteristics(1) .................................................................... 58 Table 4-10. ESD characteristics(1) ...................................................................................................... 60 Table 4-11. Static latch-up characteristics(1) .................................................................................... 60 Table 4-12. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics ..................................................................................................................................... 60 Table 4-13. High speed external user clock characteristics (HXTAL in bypass mode) ............... 61 Table 4-14. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics .............................................................................................................................................................. 61 Table 4-15. Low speed external user clock characteristics (LXTAL in bypass mode) ................ 62 Table 4-16. High speed internal clock (IRC16M) characteristics .................................................... 62 Table 4-17. Low speed internal clock (IRC32K) characteristics ..................................................... 63 Table 4-18. High speed internal clock (IRC48M) characteristics.................................................... 63 Table 4-19. PLL characteristics.......................................................................................................... 64 Table 4-20. Flash memory characteristics ........................................................................................ 64 Table 4-21. NRST pin characteristics ................................................................................................ 64 Table 4-22. VREF buffer characteristics ........................................................................................... 65 Table 4-23. I/O port DC characteristics(1)(3) ....................................................................................... 66 Table 4-24. I/O port AC characteristics(1) .......................................................................................... 67 Table 4-25. ADC characteristics......................................................................................................... 68 Table 4-26. ADC RAIN max for fADC = 16 MHz(1) ................................................................................... 69 5 GD32L233xx Datasheet Table 4-27. ADC dynamic accuracy at fADC = 16 MHz .................................................................... 69 (1) Table 4-28. ADC static accuracy at fADC = 16 MHz(1) ......................................................................... 69 Table 4-29. ADC dynamic accuracy at fADC = 16 MHz(1) .................................................................... 69 Table 4-30. ADC static accuracy at fADC = 16 MHz(1) ......................................................................... 70 Table 4-31. ADC dynamic accuracy at fADC = 16 MHz(1) .................................................................... 70 Table 4-32. ADC static accuracy at fADC = 16 MHz(1) ......................................................................... 70 Table 4-33. DAC characteristics ........................................................................................................ 70 Table 4-34. Temperature sensor characteristics .............................................................................. 71 Table 4-35. CMP characteristics(1) ..................................................................................................... 71 Table 4-36. TIMER characteristics (1) ................................................................................................. 73 Table 4-37. SLCD controller characteristics(1) .................................................................................. 74 Table 4-38. I2C characteristics(1)(2)(3) .................................................................................................. 75 Table 4-39. Standard SPI characteristics(1) ....................................................................................... 76 Table 4-40. I2S characteristics(1) ........................................................................................................ 78 Table 4-41. USART/LPUART characteristics(1) ................................................................................. 80 Table 4-42. USBD startup time ........................................................................................................... 80 Table 4-43. USBD DC electrical characteristics ............................................................................... 80 Table 4-44. USBD full speed-electrical characteristics(1) ................................................................ 80 Table 4-45. FWDGT min/max timeout period at 32 kHz (IRC32K)(1) ................................................ 81 Table 4-46. WWDGT min-max timeout value at 32 MHz (fPCLK1)(1) ................................................... 82 Table 5-1. LQFP64 package dimensions .......................................................................................... 83 Table 5-2. LQFP48 package dimensions .......................................................................................... 85 Table 5-3. LQFP32 package dimensions ........................................................................................... 87 Table 5-4. QFN32 package dimensions ............................................................................................. 89 Table 6-1. Part ordering code for GD32L233xx devices .................................................................. 93 Table 7-1. Revision history................................................................................................................. 94 6 GD32L233xx Datasheet 1. General description The GD32L233xx device belongs to the value line of GD32 MCU family. It is a new 32bit general-purpose microcontroller based on the ARM® Cortex®-M23 core. The CortexM23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an areaoptimized processor. The processor delivers high energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier and a 17-cycle divider. The GD32L233xx device incorporates the ARM® Cortex®-M23 32-bit processor core operating at up to 64 MHz frequency with Flash accesses 0~3 wait states to obtain maximum efficiency. It provides up to 256 KB embedded Flash memory and up to 32 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer one 12-bit ADC and two comparators, up to four general 16-bit timers, two basic timers, and a 32-bit low power timer, as well as standard and advanced communication interfaces: up to two SPIs, three I2Cs, two USARTs, two UARTs, an I2S, and an LPUART. The device operates from a 1.71 to 3.63 V power supply and available in -40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make the GD32L233xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike and so on. 7 GD32L233xx Datasheet 2. Device overview 2.1. Device information Table 2-1. GD32L233xx devices features and peripheral list Part Number Timers KBT6 C8T6 CBT6 CCT6 R8T6 RBT6 RCT6 64 128 64 128 64 128 256 64 128 256 SRAM (KB) 16 24 16 24 16 24 32 16 24 32 General 3 3 3 3 3 4 4 3 4 4 timer(16-bit) (1, 2, 8) (1, 2, 8) (1, 2, 8) (1, 2, 8) (1, 2, 8) (1, 2, 8, 11) (1, 2, 8, 11) (1, 2, 8) (1, 2, 8, 11) (1, 2, 8, 11) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 timer(32-bit) SysTick Basic 2 2 2 2 2 2 2 2 2 2 timer(16-bit) (5, 6) (5, 6) (5, 6) (5, 6) (5, 6) (5, 6) (5, 6) (5, 6) (5, 6) (5, 6) Watchdog 2 2 2 2 2 2 2 2 2 2 RTC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 (3) (3) (3) (3) (3) (3, 4) (3, 4) (3) (3, 4) (3, 4) UART Connectivity K8Q6 KBQ6 K8T6 FLASH (KB) Low power USART LPUART I2C 2 2 2 2 2 2 2 2 2 2 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 (0-1) (0-1) (0-1) (0-1) (0-1) (0-1) (0-1) (0-2) (0-2) (0-2) 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 (0-1)/(1) (0-1)/(1) (0-1)/(1) (0-1)/(1) (0-1)/(1) (0-1)/(1) (0-1)/(1) (0-1)/(1) (0-1)/(1) (0-1)/(1) 1 1 1 1 1 1 1 1 1 1 29 29 27 27 43 43 43 59 59 59 1 1 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 16 16 16 4 4 4 4 4 4 4 4 4 4 DAC 1 1 1 1 1 1 1 1 1 1 CMP 2 2 2 2 2 2 2 2 2 2 SLCD 0 0 0 0 0 0 0 1 1 1 SPI/I2S USBD GPIO Units Channels ADC GD32L233xx (External) Channels (Internal) Package QFN32 LQFP32 LQFP48 LQFP64 8 GD32L233xx Datasheet 2.2. Block diagram Figure 2-1. GD32L233xx block diagram LDO 1.1/0.9V TPIU SW AHB2: Fma x = 64MHz SRAM Controller SRAM1(16K) SBus SRAM Controller SRAM2(16K) Flash Memory Controller 256K Flash Memory SBus AHB Matrix AHB BUS ARM Cortex-M23 Processor Fmax: 64MHz GPIO Ports A, B, C, D, F SBus SBus NVIC POR/PDR/ BOR LVD PLL Fmax: 64MHz HXTAL 4-32MHz MBus AHB1: Fma x = 64MHz IRC16M 16MHz GP DMA 7chs AHB to APB Bridge 2 DMAMUX C R C C A U AHB to APB Bridge 1 T R N G RST/CLK Controller IRC32K 32KHz Powered by LDO (1.1/0.9V) PMU EXTI FWDGT 12-bit SAR ADC IRC48M 48MHz LXTAL 32.768KHz Powered by V DD/VDDA ADC WWDGT RTC USART0 I2C0~2 SPI0 CMP0~1 APB1: Fmax = 32MHz VREF APB2: Fmax = 64MHz SYS Config USART1 UART3~4 LPUART SPI1/I2S1 TIMER8 TIMER5~6 TIMER1~2 TIMER11 LPTIMER DAC0 USBD SLCD CTC 9 GD32L233xx Datasheet 2.3. Pinouts and pin assignment Figure 2-2. GD32L233Rx LQFP64 pinouts PA14 PA15 PC10 PC11 PC12 PD2 PB3 PB4 PB5 PB6 PB7 PB8 BOOT0-PD3 PB9 PD4 PD5 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 1 48 PD1 VBAT 2 47 PD0 PC13 3 46 PA13 PC14-OSC32IN 4 45 PA12 PC15-OSC32OUT PF0-OSCIN 5 44 PA11 6 43 PA10 PF1-OSCOUT 7 42 PA9 NRST 8 41 PA8 PC0 9 40 PC9 PC1 10 39 PC8 PC2 11 38 PC7 PC3 12 37 PC6 VSS 13 36 PB15 VREF 14 35 PB14 VDD 15 34 PB13 PA0-WKUP0 16 33 PB12 PD6 GigaDevice GD32L233Rx LQFP64 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PB11 PB10 BOOT1-PB2 PB1 PB0 PC5 PA7 PC4 PA6 PA5 PA4 PD9 PD8 PA3 PA2 PA1 10 GD32L233xx Datasheet Figure 2-3. GD32L233Cx LQFP48 pinouts PA15 PC10 PC11 PB3 PC12 PB4 PB5 PB6 PB7 BOOT0-PD3 PB8 PB9 48 47 46 45 44 43 42 41 40 39 38 37 VBAT 1 36 PA14 PC13 2 35 PA13 PC14-OSC32IN 3 34 PA12 PC15-OSC32OUT PF0-OSCIN 4 33 PA11 5 32 PA10 PF1-OSCOUT NRST 6 31 PA9 VSS VREF GigaDevice GD32L233Cx LQFP48 30 PA8 8 29 PC7 7 9 28 VDD 10 27 PC6 PB15 PA0-WKUP0 11 26 PB14 12 25 PB13 PA1 13 14 15 16 17 18 19 20 21 22 23 24 PB12 PB11 PB10 PB1 BOOT1-PB2 PB0 PA7 PA6 PA5 PA4 PA3 PA2 Figure 2-4. GD32L233Kx LQFP32 pinouts PA15 PB3 PB4 PB5 PB6 PB7 BOOT0-PD3 VSS 32 31 30 29 28 27 26 25 VDD 1 24 PA14 PF0-OSCIN 2 23 PA13 PF1-OSCOUT 3 PA12 NRST VDDA 4 5 22 GigaDevice GD32L233Kx 21 LQFP32 20 PA0 6 19 PA9 PA1 PA2 7 18 PA8 17 VDD 8 PA11 PA10 9 10 11 12 13 14 15 16 BOOT1-PB2 PB1 PB0 PA7 PA6 PA5 PA4 PA3 11 GD32L233xx Datasheet Figure 2-5. GD32L233Kx QFN32 pinouts 5 PA0 7 PA1 8 PA15 PB3 NRST VDD PB4 PF0-OSCIN PF1-OSCOUT PB5 2 3 PB6 PC15-OSC32OUT PB7 1 BOOT0-PD3 VBAT PC14-OSC32IN 32 31 30 29 28 27 26 25 24 PA14 23 PA13 22 PA12 21 PA11 20 PA10 19 PA9 18 PA8 17 BOOT1-PB2 GigaDevice GD32L233Kx QFN32 4 6 VSS 9 10 11 12 13 14 15 16 PB1 PB0 PA7 PA6 PA5 PA4 PA3 PA2 12 GD32L233xx Datasheet 2.4. Memory map Table 2-2. GD32L233xx memory map Pre-defined ADDRESS Peripherals 0xE000 0000 - 0xE00F FFFF Cortex®-M23 internal peripherals External Device 0xA000 0000 - 0xDFFF FFFF Reserved External RAM 0x60000000 - 0x9FFFFFFF Reserved 0x5006 1000 - 0x5FFF FFFF Reserved 0x5006 0C00 - 0x5006 0FFF Reserved 0x5006 0800 - 0x5006 0BFF TRNG 0x5006 0400 - 0x5006 07FF Reserved 0x5006 0000 - 0x5006 03FF CAU 0x5005 0400 - 0x5005 FFFF Reserved 0x5005 0000 - 0x5005 03FF Reserved 0x5004 0000 - 0x5004 FFFF Reserved 0x5000 0000 - 0x5003 FFFF Reserved 0x4800 1800 - 0x4FFF FFFF Reserved 0x4800 1400 - 0x4800 17FF GPIOF 0x4800 1000 - 0x4800 13FF Reserved 0x4800 0C00 - 0x4800 0FFF GPIOD 0x4800 0800 - 0x4800 0BFF GPIOC 0x4800 0400 - 0x4800 07FF GPIOB 0x4800 0000 - 0x4800 03FF GPIOA 0x4002 4400 - 0x47FF FFFF Reserved 0x4002 4000 - 0x4002 43FF Reserved 0x4002 3400 - 0x4002 3FFF Reserved 0x4002 3000 - 0x4002 33FF CRC 0x4002 2400 - 0x4002 2FFF Reserved 0x4002 2000 - 0x4002 23FF FMC 0x4002 1400 - 0x4002 1FFF Reserved 0x4002 1000 - 0x4002 13FF RCU 0x4002 0C00 - 0x4002 0FFF Reserved 0x4002 0800 - 0x4002 0BFF DMAMUX 0x4002 0400 - 0x4002 07FF Reserved 0x4002 0000 - 0x4002 03FF DMA 0x4001 8000 - 0x4001 FFFF Reserved 0x4001 7C00 - 0x4001 7FFF CMP 0x4001 5C00 - 0x4001 7BFF Reserved 0x4001 5800 - 0x4001 5BFF DBG 0x4001 5000 - 0x4001 57FF Reserved 0x4001 4C00 - 0x4001 4FFF TIMER8 Regions Bus AHB1 AHB2 Peripherals AHB1 APB2 13 GD32L233xx Datasheet Pre-defined Regions Bus APB1 ADDRESS Peripherals 0x4001 3C00 - 0x4001 4BFF Reserved 0x4001 3800 - 0x4001 3BFF USART0 0x4001 3400 - 0x4001 37FF Reserved 0x4001 3000 - 0x4001 33FF SPI0 0x4001 2C00 - 0x4001 2FFF Reserved 0x4001 2800 - 0x4001 2BFF Reserved 0x4001 2400 - 0x4001 27FF ADC 0x4001 0800 - 0x4001 23FF Reserved 0x4001 0400 - 0x4001 07FF EXTI 0x4001 0000 - 0x4001 03FF SYSCFG + VREF 0x4000 CC00 - 0x4000 FFFF Reserved 0x4000 C800 - 0x4000 CBFF CTC 0x4000 C400 - 0x4000 C7FF Reserved 0x4000 C000 - 0x4000 C3FF I2C2 0x4000 9800 - 0x4000 BFFF Reserved 0x4000 9400 - 0x4000 97FF LPTIMER 0x4000 8400 - 0x4000 93FF Reserved 0x4000 8000 - 0x4000 83FF LPUART 0x4000 7C00 - 0x4000 7FFF Reserved 0x4000 7800 - 0x4000 7BFF Reserved 0x4000 7400 - 0x4000 77FF DAC0 0x4000 7000 - 0x4000 73FF PMU 0x4000 6400 - 0x4000 6FFF Reserved 0x4000 6000 - 0x4000 63FF USBD RAM (512 bytes) 0x4000 5C00 - 0x4000 5FFF USBD 0x4000 5800 - 0x4000 5BFF I2C1 0x4000 5400 - 0x4000 57FF I2C0 0x4000 5000 - 0x4000 53FF UART4 0x4000 4C00 - 0x4000 4FFF UART3 0x4000 4800 - 0x4000 4BFF Reserved 0x4000 4400 - 0x4000 47FF USART1 0x4000 4000 - 0x4000 43FF Reserved 0x4000 3C00 - 0x4000 3FFF Reserved 0x4000 3800 - 0x4000 3BFF SPI1/I2S1 0x4000 3400 - 0x4000 37FF Reserved 0x4000 3000 - 0x4000 33FF FWDGT 0x4000 2C00 - 0x4000 2FFF WWDGT 0x4000 2800 - 0x4000 2BFF RTC 0x4000 2400 - 0x4000 27FF SLCD 0x4000 2000 - 0x4000 23FF Reserved 14 GD32L233xx Datasheet Pre-defined Regions Bus ADDRESS Peripherals 0x4000 1C00 - 0x4000 1FFF Reserved 0x4000 1800 - 0x4000 1BFF TIMER11 0x4000 1400 - 0x4000 17FF TIMER6 0x4000 1000 - 0x4000 13FF TIMER5 0x4000 0800 - 0x4000 0FFF Reserved 0x4000 0400 - 0x4000 07FF TIMER2 0x4000 0000 - 0x4000 03FF TIMER1 0x4000 0000 - 0x4000 03FF Reserved 0x2000 8000 - 0x3FFF FFFF Reserved 0x2000 5000 - 0x2000 7FFF SRAM 0x2000 4000 - 0x2000 4FFF SRAM1(16KB) 0x2000 2000 - 0x2000 3FFF 0x2000 1000 - 0x2000 1FFF SRAM0(16KB) 0x2000 0000 - 0x2000 0FFF Code 0x1FFF F810 - 0x1FFF FFFF Reserved 0x1FFF F800 - 0x1FFF F80F Option bytes(16B) 0x1FFF D000- 0x1FFF F7FF System memory(10KB) 0x1FFF 7200 - 0x1FFF CFFF Reserved 0x1FFF 7000 - 0x1FFF 71FF OTP(512B) 0x1000 0000 - 0x1FFF 6FFF Reserved 0x0804 0000 - 0x0FFF FFFF Reserved 0x0802 0000 - 0x0803 FFFF 0x0801 0000 - 0x0801 FFFF Main Flash memory(256KB) 0x0800 0000 - 0x0800 FFFF 0x0001 0000 - 0x07FF FFFF 0x0000 0000 - 0x0000 FFFF Reserved Aliased to Flash or system memory 15 GD32L233xx Datasheet 2.5. Clock tree Figure 2-6. GD32L233xx clock tree IRC16M divide ÷1,2,4,8,16 FMC CK_I2S CK_IRC1 6MDIV CK_FMC (to I2S) FMC enable (by hardware) SCS[1:0] (to FMC) HCLK CK_IRC16M 16 MHz IRC16M 00 01 1x AHB enable 00 ÷1,2. ..16 X4,5, ,127 PLL PREDV[3:0] PLLMF [6:0] CK_PLL CK_SYS 64 MHz max 10 AHB Prescaler ÷1,2,4,...512 (to AHB bus,Cortex-M23,SRAM,DMA) CK_CST CK_AHB ÷8 64 MHz max (to Cortex-M23 SysTick) FCLK 01 PLLSEL[ 1:0] 4-32 MHz HXTAL (free running clock) TIMER1,2,5,6,11 if(APB1 prescaler = 1) ÷1 else ÷[APB1 prescaler/2] 11 Clock Monitor CK_HXTAL CK_CTC (to CTC) APB1 Prescaler ÷1,2,4,8,16 CK_TIMERx TIMERx enable to TIMER1,2,5,6,11 CK_APB1 PCLK1 32 MHz max to APB1 peripherals Peripheral enable IRC48MHz 0 CK_USBD/CK_TRNG CK_PLL 1 CK_IRC16M DIV CK_SYS (to USBD/TRNG) 1x CK_I2Cx 01 to I2C0,1,2 00 /32 USBSEL 11 I2CxSEL[1:0] 32.768 KHz LXTAL CK_RTC/CK_SLCD 01 (to RTC/SLCD) 10 RTCSRC[1:0] 32 KHz IRC32K CK_FWDGT (to FWDGT) TIMER8 if(APB2 prescaler = 1) ÷1 else ÷[APB2 prescaler/2] APB2 Prescaler ÷1,2,4,8,16 CK_TIMER8 TIMER8 enable to TIMER8 CK_APB2 PCLK2 64 MHz max to APB2 peripherals Peripheral enable CKOUTSEL[2:0] CK_IRC16MDIV CK_OUT ÷1,2,4...128 CKOUTDIV[2:0] CK_IRC16M DIV CK_LXTAL 11 10 CK_SYS 01 CK_APB1 00 CK_USART1SE L/CK_LPUART to USART1/LPUART USART1SEL/LPUS ARTSEL[1:0] CK_IRC48M CK_IRC32K CK_ LXTAL CK_SYS CK_IRC16M CK_HXTAL /1,2 CK_PLL 001 010 011 100 101 110 111 CK_IRC16M DIV CK_LXTAL 11 CK_IRC32K 01 CK_APB2 00 10 CK_LPTIMER 11 CK_LXTAL 10 CK_ SYS 01 CK_USART0 to USART0 00 USART0SEL[1:0] CK_IRC16M ADC Prescaler ÷2,4 ,6,8 10,12,14,16 0 CK_ ADC to ADC 1 16 MHz max ADCSEL to LPTIMER LPTIMERSEL[1:0] ADC Prescaler ÷3,5,7,9 11,13,15,17 Note: The TIMERs are clocked by the clock divided from CK_APB2 and CK_APB1. The frequency of TIMERs clock is equal to CK_APBx (APB prescaler is 1), twice the CK_APBx (APB prescaler is not 1). Legend: HXTAL: High speed crystal oscillator LXTAL: Low speed crystal oscillator IRC16M: Internal 16M RC oscillator IRC48M: Internal 48M RC oscillator IRC32K: Internal 32K RC oscillator 16 GD32L233xx Datasheet 2.6. Pin definitions 2.6.1. GD32L233Rx LQFP64 pin definitions Table 2-3. GD32L233Rx LQFP64 pin definitions Pin Name Pins Pin Typ I/O Lev e(1) Functions description el(2) Default: PD6 PD6 1 I/O 5VT Alternate: USART1_RX, EVENTOUT, SPI0_MOSI, L PTIMER_IN1 Additional: VSLCD VBAT 2 P Default: VBAT Default: PC13 PC13 3 I/O Alternate: EVENTOUT Additional: RTC_TAMP0, RTC_OUT, RTC_TS, WK UP1 PC14-OSC32 IN PC15-OSC32 OUT Default: PC14 4 I/O Alternate: EVENTOUT Additional: OSC32IN Default: PC15 5 I/O Alternate: EVENTOUT Additional: OSC32OUT Default: OSCIN PF0-OSCIN 6 I/O Alternate: EVENTOUT, SPI1_NSS, I2S1_WS Additional: PF0 PF1-OSCOU T NRST Default: OSCOUT 7 I/O Alternate: EVENTOUT, SPI1_SCK, I2S1_CK Additional: PF1 8 I/O Default: NRST Default: PC0 PC0 9 I/O Alternate: SEG18, I2C2_SCL, LPUART_RX, LPTIM ER_IN0, EVENTOUT Additional: ADC_IN10 Default: PC1 PC1 10 I/O Alternate: SEG19, I2C2_SDA, LPUART_TX, LPTIM ER_OUT, EVENTOUT Additional: ADC_IN11 Default: PC2 PC2 11 I/O Alternate: SPI1_MISO, I2S1_MCK, SEG20, EVENT OUT, LPTIMER_IN1 Additional: ADC_IN12 PC3 12 I/O Default: PC3 Alternate: SPI1_MOSI, I2S1_SD, SEG21, LPTIMER 17 GD32L233xx Datasheet Pin Name Pins Pin Typ I/O Lev e(1) Functions description el(2) _ETI0, EVENTOUT Additional: ADC_IN13 VSS 13 P Default: VSS VREF 14 P Default: VREF VDD 15 P Default: VDD Default: PA0 Alternate: USART1_CTS, TIMER1_CH0_ETI, CMP0 PA0 16 _OUT, EVENTOUT, UART3_TX I/O Additional: WKUP0, ADC_IN0, RTC_TAMP1, CMP0 _IM4 Default: PA1 PA1 17 Alternate: USART1_RTS, TIMER1_CH1, I2C0_SMB I/O A, SPI0_SCK, SEG0, EVENTOUT, UART3_RX Additional: ADC_IN1, CMP0_IP Default: PA2 Alternate: USART1_TX, TIMER8_CH0, TIMER1_CH PA2 18 2, SPI0_IO2, CMP1_OUT, LPUART_TX, SEG1, EV I/O ENTOUT Additional: ADC_IN2, CMP1_IM4, RTC_TAMP2, WK UP2 Default: PA3 PA3 19 Alternate: USART1_RX, TIMER8_CH1, TIMER1_CH I/O 3, SPI0_IO3, LPUART_RX, SEG2, EVENTOUT Additional: ADC_IN3, CMP1_IP0 Default: PD8 PD8 20 I/O 5VT Alternate: LPTIMER_ETI0, LPUART_TX, EVENTOU T, SEG30 Default: PD9 PD9 21 I/O 5VT Alternate: LPTIMER_IN0, LPUART_RX, EVENTOU T, SEG31 Default: PA4 PA4 22 I/O Alternate: SPI0_NSS, USART1_CK, SPI1_NSS, I2S 1_WS, LPTIMER_OUT, EVENTOUT Additional: ADC_IN4, DAC_OUT Default: PA5 PA5 23 I/O Alternate: SPI0_SCK, TIMER1_CH0_ETI, LPTIMER_ ETI0, EVENTOUT Additional: ADC_IN5 Default: PA6 PA6 24 I/O Alternate: SPI0_MISO, TIMER2_CH0, LPTIMER_IN 0, CMP0_OUT, LPUART_CTS, SEG3, EVENTOUT Additional: ADC_IN6 PA7 25 I/O Default: PA7 18 GD32L233xx Datasheet Pin Name Pins Pin Typ I/O Lev e(1) Functions description el(2) Alternate: SPI0_MOSI, TIMER2_CH1, LPTIMER_ETI 0, I2C2_SCL, CMP1_OUT, SEG4, EVENTOUT Additional: ADC_IN7 Default: PC4 PC4 26 Alternate: LPUART_TX, USART0_TX, TIMER1_CH0 I/O _ETI, SEG22, EVENTOUT Additional: ADC_IN14 Default: PC5 PC5 27 Alternate: LPUART_RX, USART0_RX, TIMER1_CH I/O 1, SEG23, EVENTOUT Additional: ADC_IN15 Default: PB0 PB0 28 Alternate: TIMER2_CH2, LPTIMER_OUT, SPI0_NS I/O S, CMP0_OUT, SEG5, EVENTOUT Additional: ADC_IN8, VREF_OUT Default: PB1 PB1 29 Alternate: TIMER2_CH3, LPUART_RTS, LPTIMER_I I/O N0, SEG6, EVENTOUT Additional: ADC_IN9, VREF_OUT Default: BOOT1 BOOT1-PB2 30 I/O 5VT Alternate: LPTIMER_OUT, EVENTOUT, RTC_OUT Additional: PB2, WKUP3 Default: PB10 PB10 31 I/O 5VT Alternate: SPI1_SCK, I2S1_CK, LPUART_TX, I2C1_ SCL, LPUART_RX, TIMER1_CH2, CMP0_OUT, SE G10, EVENTOUT Default: PB11 PB11 32 I/O 5VT Alternate: LPUART_RX, I2C1_SDA, LPUART_TX, T IMER1_CH3, CMP1_OUT, SEG11, EVENTOUT Default: PB12 PB12 33 I/O 5VT Alternate: SPI1_NSS, I2S1_WS, I2C1_SMBA, LPUA RT_RTS, SEG12, EVENTOUT Default: PB13 PB13 34 I/O 5VT Alternate: CK_OUT, SPI1_SCK, I2S1_CK, LPUART _CTS, I2C1_SCL, SEG13, EVENTOUT Default: PB14 PB14 35 I/O 5VT Alternate: SPI1_MISO, LPUART_RTS, I2C1_SDA, T IMER11_CH0(3), SEG14, EVENTOUT, RTC_OUT Default: PB15 PB15 36 I/O 5VT Alternate: SPI1_MOSI, I2S1_SD, TIMER11_CH1(3), SEG15, EVENTOUT Additional: RTC_REFIN PC6 37 I/O 5VT Default: PC6 19 GD32L233xx Datasheet Pin Name Pins Pin Typ I/O Lev e(1) Functions description el(2) Alternate: I2S1_MCK, TIMER2_CH0, SEG24, EVEN TOUT Additional: WKUP4 PC7 38 I/O 5VT Default: PC7 Alternate: TIMER2_CH1, SEG25, EVENTOUT Default: PC8 PC8 39 I/O 5VT Alternate: TIMER2_CH2, I2C2_SDA, SEG26, EVEN TOUT Default: PC9 PC9 40 I/O 5VT Alternate: TIMER2_CH3, I2C2_SCL, SEG27, EVEN TOUT Default: PA8 PA8 41 I/O 5VT Alternate: USART0_CK, CK_OUT, LPTIMER_OUT, I 2C2_SMBA, COM0, EVENTOUT, CTC_SYNC Additional: VCORE Default: PA9 PA9 42 I/O 5VT Alternate: CK_OUT, USART0_TX, I2C0_SCL, COM 1, EVENTOUT, LPTIMER_IN1 Default: PA10 PA10 43 I/O 5VT Alternate: USART0_RX, I2C0_SDA, COM2, EVENT OUT Default: PA11 PA11 44 I/O 5VT Alternate: CMP0_OUT, USART0_CTS, SPI0_MISO, EVENTOUT Additional: USBDM Default: PA12 PA12 45 I/O 5VT Alternate: CMP1_OUT, USART0_RTS, SPI0_MOSI, EVENTOUT Additional: USBDP Default: SWDIO PA13 46 I/O 5VT Alternate: LPUART_RX, I2C0_SCL, USART0_TX, S PI0_IO2, SPI0_NSS, EVENTOUT Additional: PA13 Default: PD0 PD0 47 I/O 5VT Alternate: SPI1_NSS, I2S1_WS, LPTIMER_OUT, U SART1_CK, EVENTOUT, CTC_SYNC Default: PD1 PD1 48 I/O 5VT Alternate: SPI1_SCK, I2S1_CK, SPI1_MISO, USAR T1_CTS, EVENTOUT Default: SWCLK PA14 49 I/O 5VT Alternate: LPUART_TX, USART1_TX, I2C0_SDA, U SART0_RX, SPI0_IO3, SPI1_NSS, I2S1_WS, EVEN TOUT 20 GD32L233xx Datasheet Pin Name Pins Pin Typ I/O Lev e(1) Functions description el(2) Additional: PA14 Default: PA15 PA15 50 I/O 5VT Alternate: SPI1_NSS, I2S1_WS, TIMER1_CH0_ETI, SPI0_NSS, USART1_RX, SEG17, EVENTOUT Default: PC10 PC10 51 I/O 5VT Alternate: UART3_TX, LPUART_TX, SPI1_SCK, I2S 1_CK, SEG28, COM4, EVENTOUT Default: PC11 PC11 52 I/O 5VT Alternate: UART3_RX, LPUART_RX, SPI1_MISO, S EG29, COM5, EVENTOUT Default: PC12 PC12 53 I/O 5VT Alternate: UART4_TX(3), SPI1_MOSI, I2S1_SD, SE G30, COM6, EVENTOUT Default: PD2 PD2 54 I/O 5VT Alternate: LPUART_RTS, TIMER2_ETI, UART4_RX (3), SEG31, COM7, EVENTOUT Default: PB3 Alternate:UART4_TX(3), SPI1_SCK, I2S1_CK, TIME PB3 55 I/O 5VT R1_CH1, SPI0_SCK, USART0_RTS, SEG7, EVENT OUT, LPTIMER_IN1 Additional: CMP1_IM6 Default: PB4 PB4 56 I/O 5VT Alternate: UART4_RX(3), SPI1_MISO, TIMER2_CH0, SPI0_MISO, USART0_CTS, SEG8, EVENTOUT Additional: CMP1_IP1 Default: PB5 Alternate: LPTIMER_IN0, I2C0_SMBA, SPI1_MOSI, PB5 57 I2S1_SD, TIMER2_CH1, SPI0_MOSI, USART0_CK, I/O CMP1_OUT, SEG9, EVENTOUT Additional: CMP1_IP2 Default: PB6 PB6 58 I/O 5VT Alternate: LPTIMER_ETI0, I2C1_SCL, I2C0_SCL, U SART0_TX, SPI0_IO2, EVENTOUT Additional: CMP1_IP3 Default: PB7 PB7 59 I/O 5VT Alternate: I2C1_SDA, I2C0_SDA, USART0_RX, SPI 0_IO3, EVENTOUT Additional: CMP1_IP4 Default: BOOT0 BOOT0-PD3 60 I/O PB8 61 I/O Alternate: USART1_CTS, SPI1_MISO, I2S1_MCK Additional: PD3 5VT Default: PB8 21 GD32L233xx Datasheet Pin Name Pins Pin Typ I/O Lev e(1) Functions description el(2) Alternate: I2C1_SCL, I2C0_SCL, CMP0_OUT, SEG 16, EVENTOUT Default: PB9 PB9 62 I/O 5VT Alternate: I2C1_SDA, SPI1_NSS, I2S1_WS, I2C0_S DA, CMP1_OUT, COM3, EVENTOUT Default: PD4 PD4 63 I/O 5VT Alternate: SPI1_MOSI, I2S1_SD, USART1_RTS, EV ENTOUT, SEG28 Default: PD5 PD5 64 I/O 5VT Alternate: USART1_TX, EVENTOUT, SPI0_MISO, S EG29 Note: (1) Type: I = input, O = output, A = analog, P = power. (2) I/O Level: 5VT = 5 V tolerant. (3) Functions are available on GD32L233RB/C devices only. 22 GD32L233xx Datasheet 2.6.2. GD32L233Cx LQFP48 pin definitions Table 2-4. GD32L233Cx LQFP48 pin definitions Pin Name Pins VBAT 1 Pin Typ I/O Lev e(1) P Functions description el(2) Default: VBAT Default: PC13 PC13 2 I/O Alternate: EVENTOUT Additional: RTC_TAMP0, RTC_OUT, RTC_TS, WK UP1 PC14-OSC32 IN PC15-OSC32 OUT Default: PC14 3 I/O Alternate: EVENTOUT Additional: OSC32IN Default: PC15 4 I/O Alternate: EVENTOUT Additional: OSC32OUT Default: OSCIN PF0-OSCIN 5 I/O Alternate: EVENTOUT, SPI1_NSS, I2S1_WS Additional: PF0 PF1-OSCOU T Default: OSCOUT 6 I/O Alternate: EVENTOUT, SPI1_SCK, I2S1_CK Additional: PF1 Default: NRST NRST 7 I/O VSS 8 P Default: VSS VREF 9 P Default: VREF VDD 10 P Default: VDD Default: PA0 Alternate: USART1_CTS, TIMER1_CH0_ETI, CMP0 PA0 11 I/O _OUT, EVENTOUT, UART3_TX Additional: WKUP0, ADC_IN0, RTC_TAMP1, CMP0 _IM4 Default: PA1 PA1 12 I/O Alternate: USART1_RTS, TIMER1_CH1, I2C0_SMB A, SPI0_SCK, EVENTOUT, UART3_RX Additional: ADC_IN1, CMP0_IP Default: PA2 Alternate: USART1_TX, TIMER8_CH0, TIMER1_CH PA2 13 I/O 2, SPI0_IO2, CMP1_OUT, LPUART_TX, EVENTOU T Additional: ADC_IN2, CMP1_IM4, RTC_TAMP2, WK UP2 Default: PA3 PA3 14 I/O Alternate: USART1_RX, TIMER8_CH1, TIMER1_CH 3, SPI0_IO3, LPUART_RX, EVENTOUT 23 GD32L233xx Datasheet Pin Name Pins Pin Typ I/O Lev e(1) Functions description el(2) Additional: ADC_IN3, CMP1_IP0 Default: PA4 PA4 15 Alternate: SPI0_NSS, USART1_CK, SPI1_NSS, I2S I/O 1_WS, LPTIMER_OUT, EVENTOUT Additional: ADC_IN4, DAC_OUT Default: PA5 PA5 16 Alternate: SPI0_SCK, TIMER1_CH0_ETI, LPTIMER_ I/O ETI0, EVENTOUT Additional: ADC_IN5 Default: PA6 PA6 17 Alternate: SPI0_MISO, TIMER2_CH0, LPTIMER_IN I/O 0, CMP0_OUT, LPUART_CTS, EVENTOUT Additional: ADC_IN6 Default: PA7 PA7 18 Alternate: SPI0_MOSI, TIMER2_CH1, LPTIMER_ETI I/O 0, CMP1_OUT, EVENTOUT Additional: ADC_IN7 Default: PB0 PB0 19 Alternate: TIMER2_CH2, LPTIMER_OUT, SPI0_NS I/O S, CMP0_OUT, EVENTOUT Additional: ADC_IN8, VREF_OUT Default: PB1 PB1 20 Alternate: TIMER2_CH3, LPUART_RTS, LPTIMER_I I/O N0, EVENTOUT Additional: ADC_IN9, VREF_OUT Default: BOOT1 BOOT1-PB2 21 I/O 5VT Alternate: LPTIMER_OUT, EVENTOUT, RTC_OUT Additional: PB2, WKUP3 Default: PB10 PB10 22 I/O 5VT Alternate: SPI1_SCK, I2S1_CK, LPUART_TX, I2C1_ SCL, LPUART_RX, TIMER1_CH2, CMP0_OUT, EV ENTOUT Default: PB11 PB11 23 I/O 5VT Alternate: LPUART_RX, I2C1_SDA, LPUART_TX, T IMER1_CH3, CMP1_OUT, EVENTOUT Default: PB12 PB12 24 I/O 5VT Alternate: SPI1_NSS, I2S1_WS, I2C1_SMBA, LPUA RT_RTS, EVENTOUT Default: PB13 PB13 25 I/O 5VT Alternate: CK_OUT, SPI1_SCK, I2S1_CK, LPUART _CTS, I2C1_SCL, EVENTOUT PB14 26 I/O 5VT Default: PB14 Alternate: SPI1_MISO, LPUART_RTS, I2C1_SDA, T 24 GD32L233xx Datasheet Pin Name Pins Pin Typ I/O Lev e(1) Functions description el(2) IMER11_CH0(3), EVENTOUT, RTC_OUT Default: PB15 PB15 27 I/O 5VT Alternate: SPI1_MOSI, I2S1_SD, TIMER11_CH1(3), EVENTOUT Additional: RTC_REFIN Default: PC6 PC6 28 I/O 5VT Alternate: I2S1_MCK, TIMER2_CH0, EVENTOUT Additional: WKUP4 PC7 29 I/O 5VT Default: PC7 Alternate: TIMER2_CH1, EVENTOUT Default: PA8 PA8 30 I/O 5VT Alternate: USART0_CK, CK_OUT, LPTIMER_OUT, EVENTOUT, CTC_SYNC Additional: VCORE Default: PA9 PA9 31 I/O 5VT Alternate: CK_OUT, USART0_TX, I2C0_SCL, EVEN TOUT, LPTIMER_IN1 PA10 32 I/O 5VT Default: PA10 Alternate: USART0_RX, I2C0_SDA, EVENTOUT Default: PA11 PA11 33 I/O 5VT Alternate: CMP0_OUT, USART0_CTS, SPI0_MISO, EVENTOUT Additional: USBDM Default: PA12 PA12 34 I/O 5VT Alternate: CMP1_OUT, USART0_RTS, SPI0_MOSI, EVENTOUT Additional: USBDP Default: SWDIO PA13 35 I/O 5VT Alternate: LPUART_RX, I2C0_SCL, USART0_TX, S PI0_IO2, SPI0_NSS, EVENTOUT Additional: PA13 Default: SWCLK Alternate: LPUART_TX, USART1_TX, I2C0_SDA, U PA14 36 I/O 5VT SART0_RX, SPI0_IO3, SPI1_NSS, I2S1_WS, EVEN TOUT Additional: PA14 Default: PA15 PA15 37 I/O 5VT Alternate: SPI1_NSS, I2S1_WS, TIMER1_CH0_ETI, SPI0_NSS, USART1_RX, EVENTOUT Default: PC10 PC10 38 I/O 5VT Alternate: UART3_TX, LPUART_TX, SPI1_SCK, I2S 1_CK, EVENTOUT PC11 39 I/O 5VT Default: PC11 25 GD32L233xx Datasheet Pin Name Pins Pin Typ I/O Lev e(1) Functions description el(2) Alternate: UART3_RX, LPUART_RX, SPI1_MISO, E VENTOUT Default: PC12 PC12 40 I/O 5VT Alternate: UART4_TX(3), SPI1_MOSI, I2S1_SD, EVE NTOUT Default: PB3 Alternate:UART4_TX(3), SPI1_SCK, I2S1_CK, TIME PB3 41 I/O 5VT R1_CH1, SPI0_SCK, USART0_RTS, EVENTOUT, L PTIMER_IN1 Additional: CMP1_IM6 Default: PB4 PB4 42 I/O 5VT Alternate: UART4_RX(3), SPI1_MISO, TIMER2_CH0, SPI0_MISO, USART0_CTS, EVENTOUT Additional: CMP1_IP1 Default: PB5 Alternate: LPTIMER_IN0, I2C0_SMBA, SPI1_MOSI, PB5 43 I2S1_SD, TIMER2_CH1, SPI0_MOSI, USART0_CK, I/O CMP1_OUT, EVENTOUT Additional: CMP1_IP2 Default: PB6 PB6 44 I/O 5VT Alternate: LPTIMER_ETI0, I2C1_SCL, I2C0_SCL, U SART0_TX, SPI0_IO2, EVENTOUT Additional: CMP1_IP3 Default: PB7 PB7 45 I/O 5VT Alternate: I2C1_SDA, I2C0_SDA, USART0_RX, SPI 0_IO3, EVENTOUT Additional: CMP1_IP4 Default: BOOT0 BOOT0-PD3 46 Alternate: USART1_CTS, SPI1_MISO, I2S1_MCK I/O Additional: PD3 Default: PB8 PB8 47 I/O 5VT Alternate: I2C1_SCL, I2C0_SCL, CMP0_OUT, EVE NTOUT Default: PB9 PB9 48 I/O 5VT Alternate: I2C1_SDA, SPI1_NSS, I2S1_WS, I2C0_S DA, CMP1_OUT, EVENTOUT Note: (1) Type: I = input, O = output, A = analog, P = power. (2) I/O Level: 5VT = 5 V tolerant. (3) Functions are available on GD32L233CB/C devices only. 26 GD32L233xx Datasheet 2.6.3. GD32L233Kx LQFP32 pin definitions Table 2-5. GD32L233Kx LQFP32 pin definitions Pin Typ I/O Lev Pin Name Pins VDD 1 P PF0-OSCIN 2 I/O e(1) Functions description el(2) Default: VDD Default: OSCIN Alternate: EVENTOUT, SPI1_NSS, I2S1_WS Additional: PF0 PF1-OSCOU T Default: OSCOUT 3 I/O Alternate: EVENTOUT, SPI1_SCK, I2S1_CK Additional: PF1 NRST 4 I/O Default: NRST VDDA 5 P Default: VDDA Default: PA0 Alternate: USART1_CTS, TIMER1_CH0_ETI, CMP0 PA0 6 I/O _OUT, EVENTOUT, UART3_TX Additional: WKUP0, ADC_IN0, RTC_TAMP1, CMP0 _IM4 Default: PA1 PA1 7 I/O Alternate: USART1_RTS, TIMER1_CH1, I2C0_SMB A, SPI0_SCK, EVENTOUT, UART3_RX Additional: ADC_IN1, CMP0_IP Default: PA2 Alternate: USART1_TX, TIMER8_CH0, TIMER1_CH PA2 8 I/O 2, SPI0_IO2, CMP1_OUT, LPUART_TX, EVENTOU T Additional: ADC_IN2, CMP1_IM4, RTC_TAMP2, WK UP2 Default: PA3 PA3 9 I/O Alternate: USART1_RX, TIMER8_CH1, TIMER1_CH 3, SPI0_IO3, LPUART_RX, EVENTOUT Additional: ADC_IN3, CMP1_IP0 Default: PA4 PA4 10 I/O Alternate: SPI0_NSS, USART1_CK, SPI1_NSS, I2S 1_WS, LPTIMER_OUT, EVENTOUT Additional: ADC_IN4, DAC_OUT Default: PA5 PA5 11 I/O Alternate: SPI0_SCK, TIMER1_CH0_ETI, LPTIMER_ ETI0, EVENTOUT Additional: ADC_IN5 Default: PA6 PA6 12 I/O Alternate: SPI0_MISO, TIMER2_CH0, LPTIMER_IN 0, CMP0_OUT, LPUART_CTS, EVENTOUT 27 GD32L233xx Datasheet Pin Name Pins Pin Typ I/O Lev e(1) Functions description el(2) Additional: ADC_IN6 Default: PA7 PA7 13 Alternate: SPI0_MOSI, TIMER2_CH1, LPTIMER_ETI I/O 0, CMP1_OUT, EVENTOUT Additional: ADC_IN7 Default: PB0 PB0 14 Alternate: TIMER2_CH2, LPTIMER_OUT, SPI0_NS I/O S, CMP0_OUT, EVENTOUT Additional: ADC_IN8, VREF_OUT Default: PB1 PB1 15 Alternate: TIMER2_CH3, LPUART_RTS, LPTIMER_I I/O N0, EVENTOUT Additional: ADC_IN9, VREF_OUT Default: BOOT1 BOOT1-PB2 16 I/O 5VT Alternate: LPTIMER_OUT, EVENTOUT, RTC_OUT Additional: PB2, WKUP3 VDD 17 Default: VDD P Default: PA8 PA8 18 I/O 5VT Alternate: USART0_CK, CK_OUT, LPTIMER_OUT, EVENTOUT, CTC_SYNC Additional: VCORE Default: PA9 PA9 19 I/O 5VT Alternate: CK_OUT, USART0_TX, I2C0_SCL, EVEN TOUT, LPTIMER_IN1 PA10 20 I/O 5VT Default: PA10 Alternate: USART0_RX, I2C0_SDA, EVENTOUT Default: PA11 PA11 21 I/O 5VT Alternate: CMP0_OUT, USART0_CTS, SPI0_MISO, EVENTOUT Additional: USBDM Default: PA12 PA12 22 I/O 5VT Alternate: CMP1_OUT, USART0_RTS, SPI0_MOSI, EVENTOUT Additional: USBDP Default: SWDIO PA13 23 I/O 5VT Alternate: LPUART_RX, I2C0_SCL, USART0_TX, S PI0_IO2, SPI0_NSS, EVENTOUT Additional: PA13 Default: SWCLK Alternate: LPUART_TX, USART1_TX, I2C0_SDA, U PA14 24 I/O 5VT SART0_RX, SPI0_IO3, SPI1_NSS, I2S1_WS, EVEN TOUT Additional: PA14 28 GD32L233xx Datasheet Pin Name Pins Pin Typ I/O Lev e(1) Functions description el(2) Default: PA15 PA15 25 I/O 5VT Alternate: SPI1_NSS, I2S1_WS, TIMER1_CH0_ETI, SPI0_NSS, USART1_RX, EVENTOUT Default: PB3 PB3 26 I/O 5VT Alternate: SPI1_SCK, I2S1_CK, TIMER1_CH1, SPI0 _SCK, USART0_RTS, EVENTOUT, LPTIMER_IN1 Additional: CMP1_IM6 Default: PB4 PB4 27 I/O 5VT Alternate: SPI1_MISO, TIMER2_CH0, SPI0_MISO, USART0_CTS, EVENTOUT Additional: CMP1_IP1 Default: PB5 Alternate: LPTIMER_IN0, I2C0_SMBA, SPI1_MOSI, PB5 28 I2S1_SD, TIMER2_CH1, SPI0_MOSI, USART0_CK, I/O CMP1_OUT, EVENTOUT Additional: CMP1_IP2 Default: PB6 PB6 29 I/O 5VT Alternate: LPTIMER_ETI0, I2C1_SCL, I2C0_SCL, U SART0_TX, SPI0_IO2, EVENTOUT Additional: CMP1_IP3 Default: PB7 PB7 30 I/O 5VT Alternate: I2C1_SDA, I2C0_SDA, USART0_RX, SPI 0_IO3, EVENTOUT Additional: CMP1_IP4 Default: BOOT0 BOOT0-PD3 31 I/O Alternate: USART1_CTS, SPI1_MISO, I2S1_MCK Additional: PD3 VSS 32 P Default: VSS Note: (1) Type: I = input, O = output, A = analog, P = power. (2) I/O Level: 5VT = 5 V tolerant. 29 GD32L233xx Datasheet 2.6.4. GD32L233Kx QFN32 pin definitions Table 2-6. GD32L233Kx QFN32 pin definitions Pin Name PC14-OSC32 IN PC15-OSC32 OUT Pins Pin Typ I/O Lev e(1) Functions description el(2) Default: PC14 1 I/O Alternate: EVENTOUT Additional: OSC32IN Default: PC15 2 I/O Alternate: EVENTOUT Additional: OSC32OUT Default: OSCIN PF0-OSCIN 3 I/O Alternate: EVENTOUT, SPI1_NSS, I2S1_WS Additional: PF0 PF1-OSCOU T Default: OSCOUT 4 I/O Alternate: EVENTOUT, SPI1_SCK, I2S1_CK Additional: PF1 NRST 5 I/O VDD 6 P Default: NRST Default: VDD Default: PA0 Alternate: USART1_CTS, TIMER1_CH0_ETI, CMP0 PA0 7 I/O _OUT, EVENTOUT, UART3_TX Additional: WKUP0, ADC_IN0, RTC_TAMP1, CMP0 _IM4 Default: PA1 PA1 8 I/O Alternate: USART1_RTS, TIMER1_CH1, I2C0_SMB A, SPI0_SCK, EVENTOUT, UART3_RX Additional: ADC_IN1, CMP0_IP Default: PA2 Alternate: USART1_TX, TIMER8_CH0, TIMER1_CH PA2 9 I/O 2, SPI0_IO2, CMP1_OUT, LPUART_TX, EVENTOU T Additional: ADC_IN2, CMP1_IM4, RTC_TAMP2, WK UP2 Default: PA3 PA3 10 I/O Alternate: USART1_RX, TIMER8_CH1, TIMER1_CH 3, SPI0_IO3, LPUART_RX, EVENTOUT Additional: ADC_IN3, CMP1_IP0 Default: PA4 PA4 11 I/O Alternate: SPI0_NSS, USART1_CK, SPI1_NSS, I2S 1_WS, LPTIMER_OUT, EVENTOUT Additional: ADC_IN4, DAC_OUT PA5 12 I/O Default: PA5 Alternate: SPI0_SCK, TIMER1_CH0_ETI, LPTIMER_ 30 GD32L233xx Datasheet Pin Name Pins Pin Typ I/O Lev e(1) Functions description el(2) ETI0, EVENTOUT Additional: ADC_IN5 Default: PA6 PA6 13 Alternate: SPI0_MISO, TIMER2_CH0, LPTIMER_IN I/O 0, CMP0_OUT, LPUART_CTS, EVENTOUT Additional: ADC_IN6 Default: PA7 PA7 14 Alternate: SPI0_MOSI, TIMER2_CH1, LPTIMER_ETI I/O 0, CMP1_OUT, EVENTOUT Additional: ADC_IN7 Default: PB0 PB0 15 Alternate: TIMER2_CH2, LPTIMER_OUT, SPI0_NS I/O S, CMP0_OUT, EVENTOUT Additional: ADC_IN8, VREF_OUT Default: PB1 PB1 16 Alternate: TIMER2_CH3, LPUART_RTS, LPTIMER_I I/O N0, EVENTOUT Additional: ADC_IN9, VREF_OUT Default: BOOT1 BOOT1-PB2 17 I/O 5VT Alternate: LPTIMER_OUT, EVENTOUT, RTC_OUT Additional: PB2, WKUP3 Default: PA8 PA8 18 I/O 5VT Alternate: USART0_CK, CK_OUT, LPTIMER_OUT, EVENTOUT, CTC_SYNC Additional: VCORE Default: PA9 PA9 19 I/O 5VT Alternate: CK_OUT, USART0_TX, I2C0_SCL, EVEN TOUT, LPTIMER_IN1 PA10 20 I/O 5VT Default: PA10 Alternate: USART0_RX, I2C0_SDA, EVENTOUT Default: PA11 PA11 21 I/O 5VT Alternate: CMP0_OUT, USART0_CTS, SPI0_MISO, EVENTOUT Additional: USBDM Default: PA12 PA12 22 I/O 5VT Alternate: CMP1_OUT, USART0_RTS, SPI0_MOSI, EVENTOUT Additional: USBDP Default: SWDIO PA13 23 I/O 5VT Alternate: LPUART_RX, I2C0_SCL, USART0_TX, S PI0_IO2, SPI0_NSS, EVENTOUT Additional: PA13 PA14 24 I/O 5VT Default: SWCLK 31 GD32L233xx Datasheet Pin Name Pins Pin Typ I/O Lev e(1) Functions description el(2) Alternate: LPUART_TX, USART1_TX, I2C0_SDA, U SART0_RX, SPI0_IO3, SPI1_NSS, I2S1_WS, EVEN TOUT Additional: PA14 Default: PA15 PA15 25 I/O 5VT Alternate: SPI1_NSS, I2S1_WS, TIMER1_CH0_ETI, SPI0_NSS, USART1_RX, EVENTOUT Default: PB3 PB3 26 I/O 5VT Alternate: SPI1_SCK, I2S1_CK, TIMER1_CH1, SPI0 _SCK, USART0_RTS, EVENTOUT, LPTIMER_IN1 Additional: CMP1_IM6 Default: PB4 PB4 27 I/O 5VT Alternate: SPI1_MISO, TIMER2_CH0, SPI0_MISO, USART0_CTS, EVENTOUT Additional: CMP1_IP1 Default: PB5 Alternate: LPTIMER_IN0, I2C0_SMBA, SPI1_MOSI, PB5 28 I2S1_SD, TIMER2_CH1, SPI0_MOSI, USART0_CK, I/O CMP1_OUT, EVENTOUT Additional: CMP1_IP2 Default: PB6 PB6 29 I/O 5VT Alternate: LPTIMER_ETI0, I2C1_SCL, I2C0_SCL, U SART0_TX, SPI0_IO2, EVENTOUT Additional: CMP1_IP3 Default: PB7 PB7 30 I/O 5VT Alternate: I2C1_SDA, I2C0_SDA, USART0_RX, SPI 0_IO3, EVENTOUT Additional: CMP1_IP4 Default: BOOT0 BOOT0-PD3 31 I/O Alternate: USART1_CTS, SPI1_MISO, I2S1_MCK Additional: PD3 VBAT 32 P Default: VBAT Note: (1) Type: I = input, O = output, A = analog, P = power. (2) I/O Level: 5VT = 5 V tolerant. 32 GD32L233xx Datasheet GD32L233xx pin alternate functions 2.6.5. Table 2-7. Port A alternate functions summary Pin Name AF0 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 CK_OUT PA9 CK_OUT PA10 PA11 PA12 PA13 SWDIO PA14 SWCLK PA15 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 TIMER1_ CMP0_O USART1 UART3_ EVENTO CH0_ETI UT _CTS TX UT TIMER1_ I2C0_SM SPI0_SC USART1 UART3_ EVENTO (2) SEG0 CH1 BA K _RTS RX UT TIMER1_ TIMER8_ CMP1_O USART1 LPUART EVENTO (2) SEG1 SPI0_IO2 CH2 CH0 UT 1_TX _TX UT TIMER1_ TIMER8_ USART1 LPUART EVENTO SEG2(2) SPI0_IO3 CH3 CH1 _RX _RX UT SPI1_NS LPTIMER SPI0_NS USART1 EVENTO S/I2S1_ _OUT S _CK UT WS TIMER1_ LPTIMER SPI0_SC EVENTO CH0_ETI _ETI0 K UT TIMER2_ LPTIMER SPI0_MI CMP0_O LPUART EVENTO (2) SEG3 CH0 _IN0 SO UT _CTS UT TIMER2_ LPTIMER I2C2_SC SPI0_MO CMP1_O EVENTO SEG4(2) CH1 _ETI0 L(2) SI UT UT LPTIMER I2C2_SM USART0 CTC_SY EVENTO COM0(2) _OUT BA(2) _CK NC UT LPTIMER I2C0_SC USART0 EVENTO (2) COM1 _IN1 L _TX UT I2C0_SD USART0 EVENTO (2) COM2 A _RX UT SPI0_MI CMP0_O USART0 EVENTO SO UT _CTS UT SPI0_MO CMP1_O USART0 EVENTO SI UT _RTS UT LPUART I2C0_SC SPI0_NS USART0 EVENTO SPI0_IO2 _RX L S _TX UT SPI1_NS LPUART I2C0_SD USART0 USART1 EVENTO SPI0_IO3 S/I2S1_ _TX A _RX _TX UT WS SPI1_NS TIMER1_ SPI0_NS USART1 EVENTO SEG17(2) S/I2S1_ CH0_ETI S _RX UT WS Table 2-8. Port B alternate functions summary Pin Name PB0 PB1 PB2 AF0 AF1 AF2 AF3 TIMER2_ LPTIMER SEG5(2) CH2 _OUT TIMER2_ LPTIMER SEG6(2) CH3 _IN0 RTC_OU LPTIMER T _OUT PB3 TIMER1_ LPTIMER SEG7(2) CH1 _IN1 PB4 TIMER2_ CH0 PB5 TIMER2_ LPTIMER SEG9(2) CH1 _IN0 PB6 LPTIMER _ETI0 SEG8(2) PB7 PB8 SEG16(2) PB9 COM3(2) AF4 AF5 AF6 SPI0_NS CMP0_O S UT AF7 AF8 AF9 EVENTO UT LPUART EVENTO _RTS UT EVENTO UT SPI1_SC SPI0_SC USART0 UART4_ EVENTO K/I2S1_C K _RTS TX(1) UT K SPI0_MI SPI1_MI USART0 UART4_ EVENTO SO SO _CTS RX(1) UT SPI1_MO I2C0_SM SPI0_MO USART0 CMP1_O EVENTO SI/I2S1_ BA SI _CK UT UT SD I2C0_SC USART0 I2C1_SC EVENTO SPI0_IO2 L _TX L UT I2C0_SD USART0 I2C1_SD EVENTO SPI0_IO3 A _RX A UT I2C0_SC CMP0_O I2C1_SC EVENTO L UT L UT I2C0_SD SPI1_NS CMP1_O I2C1_SD EVENTO A S/I2S1_ UT A UT 33 GD32L233xx Datasheet Pin Name AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 WS PB10 TIMER1_ CH2 SEG10(2) PB11 TIMER1_ CH3 SEG11(2) SEG12(2) PB12 PB13 CK_OUT SEG13(2) PB14 RTC_OU T TIMER11 SEG14(2) _CH0(1) TIMER11 SEG15(2) _CH1(1) PB15 SPI1_SC I2C1_SC CMP0_O LPUART K/I2S1_C L UT _TX K I2C1_SD CMP1_O LPUART A UT _RX SPI1_NS I2C1_SM S/I2S1_ BA WS SPI1_SC I2C1_SC K/I2S1_C L K I2C1_SD SPI1_MI A SO SPI1_MO SI/I2S1_ SD LPUART EVENTO _RX UT LPUART EVENTO _TX UT LPUART EVENTO _RTS UT LPUART EVENTO _CTS UT LPUART EVENTO _RTS UT EVENTO UT Table 2-9. Port C alternate functions summary Pin Name AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 LPTIMER I2C2_SC SEG18(2) _IN0 L(2) LPTIMER I2C2_SD (2) SEG19 _OUT A(2) LPTIMER SPI1_MI I2S1_MC (2) SEG20 _IN1 SO K SPI1_MO LPTIMER SEG21(2) SI/I2S1_ _ETI0 SD PC0 PC1 PC2 PC3 TIMER1_ CH0_ETI TIMER1_ CH1 TIMER2_ CH0 TIMER2_ CH1 TIMER2_ CH2 TIMER2_ CH3 PC4 PC5 PC6 PC7 PC8 PC9 SEG23(2) I2S1_MC K SEG25(2) SEG26(2) SEG27(2) PC10 SEG28(2) /COM4(2) PC11 SEG29(2) /COM5(2) PC12 SEG30(2) /COM6(2) AF9 EVENTO UT USART0 LPUART EVENTO _TX _TX UT USART0 LPUART EVENTO _RX _RX UT EVENTO UT EVENTO UT EVENTO UT EVENTO UT SEG22(2) SEG24(2) AF8 LPUART EVENTO _RX UT LPUART EVENTO _TX UT EVENTO UT I2C2_SD A(2) I2C2_SC L(2) SPI1_SC K/I2S1_C K SPI1_MI SO SPI1_MO SI/I2S1_ SD UART3_T LPUART EVENTO X _TX UT UART3_ LPUART EVENTO RX _RX UT UART4_T X(1) EVENTO UT EVENTO UT EVENTO UT EVENTO UT PC13 PC14 PC15 Table 2-10. Port D alternate functions summary Pin Name PD0 PD1 AF0 AF1 AF2 LPTIMER _OUT AF3 AF4 AF5 AF6 AF7 AF8 AF9 SPI1_NS USART1 CTC_SY EVENTO S/I2S1_ _CK NC UT WS SPI1_MI SPI1_SC USART1 EVENTO SO K/I2S1_C _CTS UT 34 GD32L233xx Datasheet Pin Name AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 K SEG31(2) /COM7(2) TIMER2_ ETI PD2 UART4_ LPUART EVENTO RX(1) _RTS UT SPI1_MI I2S1_MC USART1 SO K _CTS SPI1_MO USART1 EVENTO SI/I2S1_ _RTS UT SD SPI0_MI USART1 EVENTO SO _TX UT SPI0_MO USART1 EVENTO SI _RX UT LPUART EVENTO _TX UT LPUART EVENTO _RX UT PD3 PD4 SEG28(2) PD5 SEG29(2) LPTIMER _IN1 LPTIMER SEG30(2) _ETI0 LPTIMER SEG31(2) _IN0 PD6 PD8 PD9 Table 2-11. Port F alternate functions summary Pin Name AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 SPI1_NS S/I2S1_ WS SPI1_SC K/I2S1_C K PF0 PF1 AF9 EVENTO UT EVENTO UT Note: (1) Functions are available on GD32L233RC/RB/CC/CB devices only. (2) Functions are available on GD32L233Rx devices only. 35 GD32L233xx Datasheet 3. Functional description 3.1. Arm® Cortex®-M23 core The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor is highly configurable enabling a wide range of implementations from those requiring memory protection and powerful trace technology to cost sensitive devices requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts. 32-bit ARM® Cortex®-M23 processor core  Up to 64 MHz operation frequency.  Single-cycle multiplication and hardware divider.  Ultra-low power, energy-efficient operation.  Excellent code density.  Integrated Nested Vectored Interrupt Controller (NVIC).  24-bit SysTick timer. The Cortex®-M23 processor is based on the ARMv8-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M23:  Internal Bus Matrix connected with AHB master, Serial Wire Debug Port and Singlecycle IO port. 3.2.  Nested Vectored Interrupt Controller (NVIC).  Breakpoint Unit(BPU).  Data Watchpoint and Trace (DWT).  Serial Wire Debug Port. Embedded memory  Up to 256 Kbytes of Flash memory.  Up to 32 Kbytes of SRAM with hardware parity checking. 256 Kbytes of inner Flash memory, and 32 Kbytes of inner SRAM at most is available for storing programs and data, and Flash is accessed (read) at CPU clock speed with 0~3 wait states. Table 2-2. GD32L233xx memory map shows the memory map of the GD32L233xx series of devices, including code, SRAM, peripheral, and other pre-defined regions. 36 GD32L233xx Datasheet 3.3. Clock, reset and supply management  Internal 16 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator.  Internal 48 MHz factory-trimmed RC.  Internal 32 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator.  Integrated system clock PLL.  1.71 to 3.63 V application supply and I/Os.  Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD). The Clock Control Unit (CCTL) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB, APB2 and APB1 domains is 64 MHz/64 MHz/32 MHz. See Figure 2-6. GD32L233xx clock tree for details on the clock tree. The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 1.60 V and down to 1.56V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security. Power supply schemes:  VDD range: 1.71 to 3.63 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.  VSS is 0 V.  VDDA range: 1.71 to 3.63 V, external analog power supplies for ADC, reset blocks, RCs and PLL.  VBAK range: 1.71 to 3.63 V, power supply for RTC unit, LXTAL oscillator, BPOR, and two pads, including PC13 to PC15 when VDD is not present. 3.4. Boot modes At startup, boot pins are used to select one of three boot options:  Boot from main Flash memory (default).  Boot from system memory.  Boot from on-chip SRAM. In default condition, boot from main Flash memory is selected. The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash 37 GD32L233xx Datasheet memory by using USART0 (PA9 and PA10) or USART1 (PA2 and PA3) or USBD (PA11 and PA12). 3.5. Power saving modes The MCU supports ten kinds of power saving modes to achieve even lower power consumption. They are Run, Run1, Run2, Sleep, Sleep1, Sleep2, Deep-sleep, Deepsleep 1, Deep-sleep 2 and Standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.  Run mode After system reset/ power reset or wakeup from standby mode, the MCU enters Run mode. And the NPLDO (normal power LDO) works in 1.1V mode.  Run1 mode When in Run mode, the NPLDO should be selected as 0.9V by configuring the LDOVS bits in PMU_CTL0. In this mode, the system clock frequency should not exceed 16MHz.  Run2 mode When in Run mode or Run1 mode, the NPLDO can be selected as 0.9V by configuring the LDOVS bits in PMU_CTL0. The LDNP in PMU_CTL0 register should be configured to select the low-dirver mode. In this mode, the system clock frequency should not exceed 2MHz.  Sleep mode The Sleep mode is corresponding to the SLEEPING mode of the Cortex®-M23. In Sleep mode, only clock of Cortex®-M23 is off. To enter the Sleep mode, it is only necessary to clear the SLEEPDEEP bit in the Cortex®-M23 System Control Register, and execute a WFI or WFE instruction. If the Sleep mode is entered by executing a WFI instruction, any interrupt can wake up the system. If it is entered by executing a WFE instruction, any wakeup event can wake up the system (If SEVONPEND is 1, any interrupt can wake up the system, refer to Cortex®-M33 Technical Reference Manual). The mode offers the lowest wakeup time as no time is wasted in interrupt entry or exit.  Sleep1 mode The Sleep1 mode is corresponding to the SLEEPING mode of the Cortex ®-M23 When in Run1 mode. The NPLDO should be selected as 0.9V by configuring the LDOVS bits in PMU_CTL0.  Sleep2 mode The Sleep2 mode is corresponding to the SLEEPING mode of the Cortex ®-M23 When in Run2 mode. The NPLDO should be selected as 0.9V by configuring the LDOVS bits in PMU_CTL0. The LDNP in PMU_CTL0 should be configured to select the low-dirver mode.  Deep-sleep mode The Deep-sleep mode is based on the SLEEPDEEP mode of the Cortex ®-M23. In 38 GD32L233xx Datasheet Deep-sleep mode, all clocks in the 1.1V domain are off, and all of IRC16M, IRC48M, HXTAL and PLLs are disabled. The contents of SRAM and registers are preserved. The NPLDO can operate normally or in low driver mode depending on the LDNPDSP bit in the PMU_CTL0 register. Before entering the Deep-sleep mode, it is necessary to set the SLEEPDEEP bit in the Cortex®-M23 System Control Register, and set LPMOD bits to “00” in the PMU_CTL0 register. Then, the device enters the Deepsleep mode after a WFI or WFE instruction is executed. If the Deep-sleep mode is entered by executing a WFI instruction, any interrupt from EXTI lines can wake up the system. If it is entered by executing a WFE instruction, any wakeup event from EXTI lines can wake up the system (If SEVONPEND is 1, any interrupt from EXTI lines can wake up the system, refer to Cortex®-M23 Technical Reference Manual). When exiting the Deep-sleep mode, the IRC16M is selected as the system clock. Notice that an additional wakeup delay will be incurred if the LDO operates in low driver mode.  Deep-sleep 1 mode The Deep-sleep 1 mode is based on the SLEEPDEEP mode of the Cortex®-M23. In Deep-sleep 1 mode, all clocks in the 1.1V domain are off, and all of IRC16M, IRC48M, HXTAL and PLLs are disabled. The LPLDO (low power LDO) can operate normally instead of NPLDO. Before entering the Deep-sleep 1 mode, it is necessary to set the SLEEPDEEP bit in the Cortex®-M23 System Control Register, set LPMOD bits to “01” in the PMU_CTL0 register. Then, the device enters the Deep-sleep 1 mode after a WFI or WFE instruction is executed. If the Deep-sleep 1 mode is entered by executing a WFI instruction, any interrupt from EXTI lines can wake up the system. If it is entered by executing a WFE instruction, any wakeup event from EXTI lines can wake up the system (If SEVONPEND is 1, any interrupt from EXTI lines can wake up the system, refer to Cortex®-M23 Technical Reference Manual). When exiting the Deep-sleep 1 mode, the IRC16M is selected as the system clock. Waking up from Deep-sleep 1 mode needs an additional delay to wakeup NPLDO.  Deep-sleep 2 mode The Deep-sleep 2 mode is based on the SLEEPDEEP mode of the Cortex®-M23. In Deep-sleep 2 mode, all clocks in the 1.1V domain are off, and all of IRC16M, IRC48M, HXTAL and PLLs COREOFF0/SRAM1/COREOFF1 are domain disabled. is cut off. The power of The contents of COREOFF0/SRAM1/COREOFF1 domain are lost. The LPLDO can operate normally instead of NPLDO. Before entering the Deep-sleep 2 mode, it is necessary to set the SLEEPDEEP bit in the Cortex®-M23 System Control Register, set LPMOD bits to “10” in the PMU_CTL0 register. Then, the device enters the Deep-sleep 2 mode after a WFI or WFE instruction is executed. If the Deep-sleep 2 mode is entered by executing a WFI instruction, any interrupt from EXTI lines can wake up the system. If it is entered by executing a WFE instruction, any wakeup event from EXTI lines can wake up the system (If SEVONPEND is 1, any interrupt from EXTI lines can wake up the system, refer to Cortex®-M23 Technical Reference Manual). When exiting the Deep-sleep 2 mode, the IRC16M is selected as the system clock. Waking up from Deep-sleep 2 mode needs an additional delay to wakeup NPLDO. 39 GD32L233xx Datasheet  Standby mode The Standby mode is based on the SLEEPDEEP mode of the Cortex ®-M23, too. In Standby mode, the whole 1.1V domain is power off, the NPLDO/LPLDO is shut down, and all of IRC16M, IRC48M, HXTAL and PLLs are disabled. Before entering the Standby mode, it is necessary to set the SLEEPDEEP bit in the Cortex ®-M23 System Control Register, and set the LPMOD bits to “11” in the PMU_CTL0 register, and clear WUF bit in the PMU_CS register. Then, the device enters the Standby mode after a WFI or WFE instruction is executed, and the STBF status flag in the PMU_CS register indicates that the MCU has been in Standby mode. There are four wakeup sources for the Standby mode, including the external reset from NRST pin, the RTC alarm/time stamp/tamper/auto wakeup events, the FWDGT reset, and the rising edge on WKUP pins. The Standby mode achieves the lowest power consumption, but spends longest time to wake up. Besides, the contents of SRAM and registers in 1.1V power domain are lost in Standby mode. When exiting from the Standby mode, a power-on reset occurs and the Cortex®-M23 will execute instruction code from the 0x00000000 address. 3.6. Clock trim controller (CTC)  Three external reference signal source: GPIO, LXTAL clock, USBD_SOF.  Provide software reference sync pulse.  Automatically trimmed by hardware without any software action.  16 bits trim counter with reference signal source capture and reload.  8 bits clock trim base value to frequency evaluation and automatically trim. The Clock Trim Controller (CTC) is used to trim internal 48MHz RC oscillator (IRC48M) automatically by hardware. If using IRC48M clock to USBD, the IRC48M must be 48 MHz with 500ppm. The internal oscillator without such a high degree of accuracy needs to be trimmed. The CTC unit trim the frequency of the IRC48M based on an external accurate reference signal source. It can automatically adjust the trim value to provide a precise IRC48M clock. 3.7. General-purpose inputs/outputs (GPIOs)  Up to 59 fast GPIOs, all mappable on 16 external interrupt lines.  Analog input/output configurable.  Alternate function input/output configurable. There are up to 59 general purpose I/O pins (GPIO) in GD32L233xx, named PA0 ~ PA15, PB0 ~ PB15, PC0 ~ PC15, PD0~PD6, PD8~PD9, PF0~ PF1 to implement logic input/output functions. Each GPIO port has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/Event 40 GD32L233xx Datasheet Controller Unit (EXTI).The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), input, peripheral alternate function or analog mode. Most of the GPIO pins are shared with digital or analog alternate functions. 3.8. CRC calculation unit (CRC)  Supports 7/8/16/32 bit data input.  For 7(8)/16/32 bit input data length, the calculation cycles are 1/2/4 AHB clock cycles.  Free 8-bit register is unrelated to calculation and can be used for any other goals by any other peripheral devices.  User configurable polynomial value and size. A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to raw data. This CRC calculation unit can be used to calculate 7/8/16/32 bit CRC code within user configurable polynomial. 3.9. True Random number generator (TRNG)  About 40 periods of TRNG_CLK are needed between two consecutive random numbers.  Disable TRNG module will reduce the chip power consumption.  32-bit random value seed is generated from analog noise, so the random number is a true random number. The true random number generator (TRNG) module can generate a 32-bit random value by using continuous analog noise. 3.10. Direct memory access controller (DMA)  7 channels for DMA controller.  DMA request from DMAMAX: peripherals (Timers, ADC, DAC, SPIs, I2S, I2Cs, USARTs, CAU and LPUART) and request generator. The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby increasing system performance by off-loading the MCU from copying large amounts of data and avoiding frequent interrupts to serve peripherals needing more data or having available data. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory. 41 GD32L233xx Datasheet Each channel is connected to flexible hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable. 3.11. DMA request multiplexer (DMAMUX)  7 channels for DMAMUX request multiplexer.  4 channels for DMAMUX request generator.  Support 21 trigger inputs and 21 synchronization inputs. DMAMUX is a transmission scheduler for DMA requests. The DMAMUX request multiplexer is used for routing a DMA request line between the peripherals / generated DMA request (from the DMAMUX request generator) and the DMA controller. Each DMAMUX request multiplexer channel selects a unique DMA request line, unconditionally or synchronously with events from its DMAMUX synchronization inputs. The DMA request is pending until it is served by the DMA controller which generates a DMA acknowledge signal (the DMA request signal is de-asserted). 3.12. Analog to digital converter (ADC)  12-bit SAR ADC's conversion rate is up to 1.07 MSPS.  Hardware oversampling ratio adjustable from 2x to 256x improves resolution to 16bit.  Input voltage range: VSS/VSSA to VDD/VDDA.  Temperature sensor. A 12-bit multi-channel ADC is integrated in the device. It has a total of 20 multiplexed channels: up to 16 external channels, 1 channel for internal temperature sensor (VSENSE), 1 channel for internal reference voltage (VREFINT), 1 channel for external battery power supply (VBAT), and 1 channel for LCD voltage (VSLCD). The input voltage range is between VSS/VSSA and VDD/VDDA. An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. The analog watchdog allows the application to detect whether the input voltage goes outside the user-defined higher or lower thresholds. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use. The ADC can be triggered from the events generated by the general level 0 timers (TIMERx, x=1, 2) and the general level 1 timers (TIMERx, x=8, 11) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value. To ensure a high accuracy on ADC, the independent power supply V DDA is implemented 42 GD32L233xx Datasheet to achieve better performance of analog circuits. VDDA can be externally connected to VDD through the external filtering circuit that avoids noise on VDDA. 3.13. Digital to analog converter (DAC)  One12-bit DAC with one output channel.  8-bit or 12-bit mode in conjunction with the DMA controller.  Support references from internal 2.5 V precision reference or external VREF pin. The 12-bit buffered DAC is used to generate variable analog outputs. The DAC channels can be triggered by the timer or EXTI with DMA support. The maximum output value of the DAC is VREF. 3.14. Real time clock (RTC)  Independent binary-coded decimal (BCD) format timer/counter with five 32-bit backup registers.  Calendar with sub-second, second, minute, hour, week day, day, month and year automatically correction.  Alarm function with wake up from deep-sleep and standby mode capability.  On-the-fly correction for synchronization with master clock. Digital calibration with 0.95 ppm resolution for compensation of quartz crystal inaccuracy. The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. In the RTC unit, there are two prescalers used for implementing the calendar and other functions. One prescaler is a 7-bit asynchronous prescaler and the other is a 15-bit synchronous prescaler. 3.15. Timers and PWM generation  Up to four 16-bit general timers (TIMER1, TIMER2, TIMER8, TIMER11), two 16-bit basic timer (TIMER5, TIMER6), and one 32-bit low power timer (LPTIMER).  Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input.  Encoder interface controller with two inputs using quadrature decoder.  Two 24-bit SysTick timers down counter.  2 watchdog timers (free watchdog timer and window watchdog timer). The LPTIMER is a 32-bit timer and it is able to keep running in all power modes except for Standby mode with its diversity of clock sources. The LPTIMER provides one PWM out and also supports an encoder interface with two inputs using quadrature decoder. 43 GD32L233xx Datasheet The general timer can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER1 and TIMER2 are based on a 16-bit auto-reload up/down/centeraligned counter and a 16-bit prescaler. TIMER8 and TIMER11 is based on a 16-bit autoreload up counter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder. The basic timer TIMER5 and TIMER6, are mainly used as a simple 16-bit time base. The GD32L233xx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy. The free watchdog timer includes a 12-bit down-counting counter and an 8-stage prescaler. It is clocked from an independent 32 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a freerunning timer for application timeout management. The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode. The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below: 3.16.  A 24-bit down counter.  Auto reload capability.  Maskable system interrupt generation when the counter reaches 0.  Programmable clock source. Universal synchronous/asynchronous receiver transmitter (USART/UART)  Up to two USARTs and two UARTs with operating frequency up to 8 MBits/s.  Supports both asynchronous and clocked synchronous serial communication modes.  IrDA SIR encoder and decoder support.  LIN break generation and detection.  ISO 7816-3 compliant smart card interface.  Dual clock domain.  Wake up from Deep-sleep mode. The USART (USART0, USART1) and UART (UART3, UART4) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using 44 GD32L233xx Datasheet synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART/UART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART/UART transmitter and receiver. The USART/UART also supports DMA function for high speed data communication. 3.17. Universal asynchronous receiver transmitter (LPUART)  Maximum speed up to 21 MBits/s.  Supports asynchronous serial communication modes.  Supports hardware modem operations (CTS/RTS) and RS485 drive.  Dual clock domain.  Wake up from Deep-sleep mode. The Low-power universal Asynchronous Receiver/Transmitter (LPUART) provides a flexible serial data exchange interface with a limited power consumption. LPUART can perform asynchronous serial communication even with low power consumption. Data frames can be transferred in full duplex or half duplex mode, asynchronously through this interface. A programmable baud rate generator divides the clock to produces a dedicated wide range baudrate clock for the LPUART transmitter and receiver. 3.18. Inter-integrated circuit (I2C)  Support both master and slave mode with a frequency up to 1 MHz (Fast mode plus).  Provide arbitration function, optional PEC (packet error checking) generation and checking.  Supports 7-bit and 10-bit addressing mode and general call addressing mode.  Multiple 7-bit slave addresses (2 address, 1 with configurable mask).  SMBus 3.0 and PMBus 1.3 compatible.  Wakeup from Deep-sleep / Deep-sleep1 / Deep-sleep2 mode on I2C address match (only in I2C2).  Wakeup from Deep-sleep1 / Deep-sleep2 mode on I2C address match (in I2C0 and I2C1). The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides different data transfer rates: up to 100 KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC8 calculator is also provided in I2C interface to perform packet error checking for I2C data. 45 GD32L233xx Datasheet 3.19. Serial peripheral interface (SPI)  Up to two SPI interfaces with a frequency of up to 16 MHz.  Support both master and slave mode.  Hardware CRC calculation and transmit automatic CRC error checking.  Separate transmit and receive 32-bit FIFO with DMA capability (only in SPI0).  Data frame size can be 4 to 16 bits (only in SPI0).  Quad-SPI configuration available in master mode (only in SPI0). The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). All SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Quad-SPI master mode is also supported in SPI0. 3.20. Inter-IC sound (I2S)  Sampling frequency from 8 KHz to 192 KHz.  Support either master or slave mode. The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 4-wire serial lines. GD32L233xx contain an I2S-bus interface that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1. The audio sampling frequency from 8 KHz to 192 KHz is supported. 3.21. Cryptographic acceleration Unit (CAU)  Supports DES, TDES or AES (128, 192, or 256) algorithms.  DES/TDES supports Electronic codebook (ECB) or Cipher block chaining (CBC) mode.  AES supports 128bits-key, 192bits-key or 256 bits-key.  AES supports Electronic codebook (ECB), Cipher block chaining (CBC) mode, Counter mode (CTR) mode, Galois/counter mode (GCM), Galois message authentication code mode (GMAC), Counter with CBC-MAC (CCM), Cipher Feedback mode (CFB) and Output Feedback mode (OFB).  DMA transfer for incoming and outgoing data is supported. The Cryptographic Acceleration Unit supports acceleration of DES, TDES or AES (128, 192, or 256) algorithms. The DES/TDES supports Electronic codebook (ECB) or Cipher block chaining (CBC) mode. The AES supports Electronic codebook (ECB), Cipher block chaining (CBC) mode, Counter mode (CTR) mode, Galois/counter mode (GCM), Galois message authentication code mode (GMAC), Counter with CBC-MAC (CCM), Cipher 46 GD32L233xx Datasheet Feedback mode (CFB) and Output Feedback mode (OFB). 3.22. Segment LCD controller (SLCD)  Configurable frame frequency.  Blinking of individual segments or all segments.  Supports Static, 1/2, 1/3, 1/4, 1/6 and 1/8 duty.  Supports 1/2, 1/3 and 1/4 bias.  Double buffer up to 8x32 bits registers to store SLCD_DATAx.  The contrast can also be adjusted by configuring dead time.  Optional voltage output driver for enhance SLCD driving capability. The SLCD controller directly drives LCD displays by creating the AC segment and common voltage signals automatically. It can drive the monochrome passive liquid crystal display (LCD) which composed of a plurality of segments (pixels or complete symbols) that can be converted to visible or invisible. The SLCD controller can support up to 32 segments and 8 commons. 3.23. Comparators (CMP)  Two fast rail-to-rail low-power comparators with software configurable.  Programmable reference voltage (internal or external I/O). Two Comparators (CMP) is implemented within the device. It can wake up from deepsleep mode to generate interrupts and breaks for the timers and also can be combined as a window comparator. The internal voltage reference is also connected to ADC_IN17 input channel of the ADC. 3.24. Universal serial bus full-speed device interface (USBD)  USB 2.0 full-speed device controller.  Support USB 2.0 Link Power Management.  Dedicated 512-byte SRAM used for data packet buffer.  Support embedded pull-up on the DP line.  Integrated USB PHY. The Universal Serial Bus full-speed device interface (USBD) module contains a fullspeed internal USB PHY and no more external PHY chip is needed. USBD supports all the four types of transfer (control, bulk, interrupt and isochronous) defined in USB 2.0 protocol. USBD supports 8 USB bidirectional endpoints that can be individually configured. 47 GD32L233xx Datasheet 3.25. Debug mode  Serial wire debug port (SW-DP). Debug capabilities can be accessed by a debug tool via Serial Wire (SW - Debug Port). 3.26. Package and operation temperature  LQFP64 (GD32L233RxT6), LQFP48 (GD32L233CxT6), LQFP32 (GD32L233KxT6) and QFN32 (GD32L233KxQ6).  Operation temperature range: -40°C to +85°C (industrial level) 48 GD32L233xx Datasheet 4 Electrical characteristics 4.1 Absolute maximum ratings The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. Table 4-1. Absolute maximum ratings(1)(4) Symbol Parameter Min Max Unit VDD External voltage range(2) VSS - 0.3 VSS + 3.63 V VDDA External analog supply voltage VSSA - 0.3 VSSA + 3.63 V Input voltage on 5V tolerant pin(3) VSS - 0.3 VDD + 3.63 V Input voltage on other I/O VSS - 0.3 3.63 V |ΔVDDx| Variations between different VDD power pins — 50 mV |VSSX −VSS| Variations between different ground pins — 50 mV IIO Maximum current for GPIO pins — ±25 mA TA Operating temperature range -40 +85 °C Power dissipation at TA = 85°C of LQFP64 — 733 Power dissipation at TA = 85°C of LQFP48 — 574 Power dissipation at TA = 85°C of LQFP32 — 724 Power dissipation at TA = 85°C of QFN32 — 940 TSTG Storage temperature range -65 +150 °C TJ Maximum junction temperature — +125 °C VIN PD (1) (2) (3) (4) 4.2 mW Guaranteed by design, not tested in production. All main power and ground pins should be connected to an external power source within the allowable range. VIN maximum value cannot exceed 5.5 V. It is recommended that VDD and VDDA are powered by the same source. The maximum difference between VDD and VDDA does not exceed 300 mV during power-up and operation. Operating conditions characteristics Table 4-2. DC operating conditions Min(1) Typ Max(1) Unit Symbol Parameter Conditions VDD Supply voltage — 1.71 3.3 3.63 V VDDA Analog supply voltage — 1.71 3.3 3.63 V VBAT Battery supply voltage — 1.71 3.3 3.63 V (1) Based on characterization, not tested in production. Figure 4-1. Recommended power supply decoupling capacitors(1) 49 GD32L233xx Datasheet VBAT 100 nF VDD 4.7 μF + 100 nF VDDA 1 μF 10 nF VREF 1 μF (1) 10 nF VSS All decoupling capacitors need to be as close as possible to the pins on the PCB board. Table 4-3. Clock frequency(1) Symbol Parameter Conditions Min Max Unit fHCLK1 AHB1 clock frequency — 0 64 MHz fHCLK2 AHB2 clock frequency — 0 64 MHz fAPB1 APB1 clock frequency — 0 32 MHz fAPB2 APB2 clock frequency — 0 64 MHz Min Max Unit 0 ∞ 50 ∞ (1) Guaranteed by design, not tested in production. Table 4-4. Operating conditions at Power up/ Power down(1) Symbol tVDD (1) Parameter Conditions VDD rise time rate — VDD fall time rate us/v Guaranteed by design, not tested in production. Table 4-5. Start-up timings of Operating conditions (1) Symbol Parameter tstart-up Start-up time (1) (2) (3) Conditions Typ Unit Clock source from HXTAL 1.24 ms Clock source from IRC16M 16.6 us Based on characterization, not tested in production. After power-up, the start-up time is the time between the rising edge of NRST high and the first I/O instruction conversion in SystemInit function. PLL is off. Table 4-6. Power saving mode wakeup timings characteristics(1) (2) Symbol tSleep Parameter Typ Wakeup from Sleep mode 1.29 Wakeup from Sleep 1 mode (NPLDO=0.9V) 1.30 Wakeup from Sleep 2 mode (NPLDO=0.9V and 1.32 Unit us 50 GD32L233xx Datasheet Symbol Parameter Typ Unit NPLDO in Low-driver mode) tDeep-sleep Wakeup from Deep-sleep mode (NPLDO in normal driver mode) 9.95 Wakeup from Deep-sleep mode (NPLDO in low driver mode) 9.93 Wakeup from Deep-sleep 1 mode 13.74 Wakeup from Deep-sleep 2 mode 15.50 Wakeup from Standby mode 20.92 tStandby (1) (2) 4.3 Based on characterization, not tested in production. The wakeup time is measured from the wakeup event to the point at which the application code reads the first instruction under the below conditions: VDD = VDDA = 3.3 V, IRC16M = System clock = 16MHz. Power consumption The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications. Table 4-7. Power consumption characteristics(2)(3) Symbol Parameter Typ(1) Max Unit Conditions Min VDD = 3.3 V, HXTAL = 8 MHz, System clock — 9.38 — — 4.39 — -— 7.23 -— — 3.46 — — 5.06 — -— 2.2 -— — 4.47 — — 2.54 — -— 3.24 -— — 1.92 — — 1.98 — -— 1.29 -— — 1.36 — = 64 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 8 MHz, System clock = 64 MHz, All peripherals disabled VDD = 3.3 V, HXTAL = 8 MHz, System clock = 48 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 8 MHz, System clock = 48 MHz, All peripherals disabled VDD = 3.3 V, HXTAL = 8 MHz, System clock = 36 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 8 MHz, System clock = 36 MHz, All peripherals disabled IDD+IDDA Supply current VDD = 3.3 V, HXTAL = 8 MHz, System clock (Run mode) mA = 24 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 8 MHz, System clock = 24 MHz, All peripherals disabled VDD = 3.3 V, HXTAL = 8 MHz, System clock = 16 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 8 MHz, System clock = 16 MHz, All peripherals disabled VDD = 3.3 V, HXTAL = 8 MHz, System clock = 8 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 8 MHz, System clock = 8 MHz, All peripherals disabled VDD = 3.3 V, HXTAL = 8 MHz, System clock = 4 MHz, All peripherals enabled 51 GD32L233xx Datasheet Symbol Parameter Typ(1) Max Unit Conditions Min VDD = 3.3 V, HXTAL = 8 MHz, System clock — 0.96 — -— 1.04 -— — 0.81 — — 0.9 — — 0.75 — — 1.91 — — 0.77 — -— 1.29 -— — 0.69 — — 0.8 — -— 0.47 -— — 0.56 — = 4 MHz, All peripherals disabled VDD = 3.3 V, HXTAL = 8 MHz, System clock = 2 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 8 MHz, System clock = 2 MHz, All peripherals disabled VDD = 3.3 V, HXTAL = 4 MHz, System clock = 1 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 4 MHz, System clock = 1 MHz, All peripherals disabled VDD = 3.3 V, IRC16M = 16 MHz, HCLK = 16 MHz, All peripherals enabled VDD = 3.3 V, IRC16M = 16 MHz, HCLK = 16 MHz, All peripherals disabled VDD = 3.3 V, IRC16M = 16 MHz, HCLK = 8 MHz, All peripherals enabled VDD = 3.3 V, IRC16M = 16 MHz, HCLK = 8 MHz, All peripherals disabled VDD = 3.3 V, IRC16M = 16 MHz, HCLK = 4 Supply current MHz, All peripherals enabled (Run 1 mode) VDD = 3.3 V, IRC16M = 16 MHz, HCLK = 4 MHz, All peripherals disabled VDD = 3.3 V, IRC16M = 16 MHz, HCLK = 2 MHz, All peripherals enabled VDD = 3.3 V, IRC16M = 16 MHz, HCLK = 2 mA — 0.36 — — 0.43 — -— 0.3 -— — 0.45 — — 0.25 — -— 0.35 -— — 0.22 — — 7.73 — MHz, All peripherals disabled VDD = 3.3 V, IRC16M = 16 MHz, HCLK = 1 MHz, All peripherals enabled VDD = 3.3 V, IRC16M = 16 MHz, HCLK = 1 MHz, All peripherals disabled VDD = 3.3 V, HXTAL = 16 MHz, HCLK = 2 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 16 MHz, HCLK = 2 Supply current MHz, All peripherals disabled (Run 2 mode) VDD = 3.3 V, HXTAL = 16 MHz, HCLK = 1 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 16 MHz, HCLK = 1 MHz, All peripherals disabled Supply current (Sleep mode) VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 64 MHz, All peripherals mA enabled 52 GD32L233xx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 64 MHz, All peripherals — 2.33 — -— 5.99 -— — 1.92 — — 4.68 — -— 1.6 -— — 3.38 — — 1.29 — -— 2.51 -— — 1.09 — — 1.62 — -— 0.86 -— — 1.18 — — 0.75 — — 0.94 — disabled VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 48 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 48 MHz, All peripherals disabled VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 36 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 36 MHz, All peripherals disabled VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 24 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 24 MHz, All peripherals disabled VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 16 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 16 MHz, All peripherals disabled VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 8 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 8 MHz, All peripherals disabled VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 4 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 4 MHz, All peripherals disabled VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 2 MHz, All peripherals enabled 53 GD32L233xx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit VDD = 3.3 V, HXTAL = 8 MHz, CPU clock off, System clock = 2 MHz, All peripherals — 0.7 — -— 0.86 -— — 0.7 — — 1.74 — -— 0.52 -— — 1.03 — — 0.38 — — 0.67 — -— 0.31 -— — 0.49 — — 0.28 — -— 0.4 -— — 0.26 — — 0.43 — — 0.22 — disabled VDD = 3.3 V, HXTAL = 4 MHz, CPU clock off, System clock = 1 MHz, All peripherals enabled VDD = 3.3 V, HXTAL = 4 MHz, CPU clock off, System clock = 1 MHz, All peripherals disabled VDD = 3.3 V, IRC16M = 16 MHz, CPU clock off, HCLK = 16 MHz, All peripherals enabled VDD = 3.3 V, IRC16M = 16 MHz, CPU clock off, HCLK = 16 MHz, All peripherals disabled VDD = 3.3 V, IRC16M = 16 MHz, CPU clock off, HCLK = 8 MHz, All peripherals enabled VDD = 3.3 V, IRC16M = 16 MHz, CPU clock off, HCLK = 8 MHz, All peripherals disabled Supply current VDD = 3.3 V, IRC16M = 16 MHz, CPU clock (Sleep 1 mode) off, HCLK = 4 MHz, All peripherals enabled VDD = 3.3 V, IRC16M = 16 MHz, CPU clock off, HCLK = 4 MHz, All peripherals disabled VDD = 3.3 V, IRC16M = 16 MHz, CPU clock off, HCLK = 2 MHz, All peripherals enabled VDD = 3.3 V, IRC16M = 16 MHz, CPU clock off, HCLK = 2 MHz, All peripherals disabled VDD = 3.3 V, IRC16M = 16 MHz, CPU clock off, HCLK = 1 MHz, All peripherals enabled VDD = 3.3 V, IRC16M = 16 MHz, CPU clock off, HCLK = 1 MHz, All peripherals disabled VDD = 3.3 V, IRC16M = 16 MHz, CPU clock off, HCLK = 2 MHz, All peripherals enabled VDD = 3.3 V, IRC16M = 16 MHz, CPU clock Supply current off, HCLK = 2 MHz, All peripherals disabled (Sleep 2 mode) VDD = 3.3 V, IRC16M = 16 MHz, CPU clock mA — 0.34 — — 0.21 — — 40.09 — off, HCLK = 1 MHz, All peripherals enabled VDD = 3.3 V, IRC16M = 16 MHz, CPU clock off, HCLK = 1 MHz, All peripherals disabled Supply current VDD = 3.3 V, NPLDO in Low driver mode, (Deep-sleep IRC40K off, RTC off, All GPIOs analog mode) mode μA 54 GD32L233xx Datasheet Symbol Parameter Conditions Supply current VDD = 3.3 V, NPLDO off, LPLDO on, (Deep-sleep 1 IRC40K off, RTC off, All GPIOs analog mode) mode Supply current (Deep-sleep 2 mode) Supply current (Standby mode) Min Typ(1) Max Unit — 3.144 — — 1.702 — VDD = 3.3 V, LXTAL off, IRC32K off, RTC off — 0.442 — μA VDD off, VBAT = 3.6V, LXTAL on with — 1.22 — μA — 1.09 — μA — 0.93 — μA — 0.79 — μA — 1.09 — μA — 0.97 — μA — 0.8 — μA — 0.66 — μA — 0.92 — μA — 0.79 — μA — 0.63 — μA — 0.49 — μA — 0.87 — μA — 0.74 — μA VDD = 3.3 V, NPLDO off, LPLDO on, COREOFF0/SRAM1/COREOFF1 off, IRC40K off, RTC off, All GPIOs analog mode external crystal, RTC on, Higher driving VDD off, VBAT = 3.3V, LXTAL on with external crystal, RTC on, Higher driving VDD off, VBAT = 2.6V, LXTAL on with external crystal, RTC on, Higher driving VDD off, VBAT = 1.71V, LXTAL on with external crystal, RTC on, Higher driving VDD off, VBAT = 3.6V, LXTAL on with external crystal, RTC on, Medium High driving VDD off, VBAT = 3.3V, LXTAL on with external crystal, RTC on, Medium High driving VDD off, VBAT = 2.6V, LXTAL on with external crystal, RTC on, Medium High ILXTAL+RTC LXTAL+RTC current driving VDD off, VBAT = 1.71V, LXTAL on with external crystal, RTC on, Medium High driving VDD off, VBAT = 3.6V, LXTAL on with external crystal, RTC on, Medium Low driving VDD off, VBAT = 3.3V, LXTAL on with external crystal, RTC on, Medium Low driving VDD off, VBAT = 2.6V, LXTAL on with external crystal, RTC on, Medium Low driving VDD off, VBAT = 1.71V, LXTAL on with external crystal, RTC on, Medium Low driving VDD off, VBAT = 3.6V, LXTAL on with external crystal, RTC on, Low driving VDD off, VBAT = 3.3V, LXTAL on with 55 GD32L233xx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit external crystal, RTC on, Low driving VDD off, VBAT = 2.6V, LXTAL on with — 0.57 — μA — 0.43 — μA external crystal, RTC on, Low driving VDD off, VBAT = 1.71V, LXTAL on with external crystal, RTC on, Low driving (1) (2) (3) Based on characterization, not tested in production. When analog peripheral blocks such as ADCs, HXTAL, LXTAL, IRC8M, or IRC40K are ON, an additional power consumption should be considered. The system clock 36MHZ (inclusive) to 64MHZ (inclusive) adopts FMC_WAIT_STATE_1, the system clock 24MHZ (inclusive) to 1MHZ (inclusive) adopts FMC_WAIT_STATE_0. Figure 4-2. Typical supply current consumption in Run mode 10 9.38 9 8 7.23 IDD+IDDA(mA) 7 6 5 All peripherals enabled 4 All peripherals disabled 5.06 4.47 4.39 3.24 3 3.46 1.98 2 1 0 1 2.54 1.36 0.9 1.04 0.75 0.81 0.96 2 4 1.92 2.2 1.29 8 16 24 36 48 64 System clock(MHz) 56 GD32L233xx Datasheet Figure 4-3. Typical supply current consumption in Sleep mode 9 7.73 8 7 IDD+IDDA(mA) 5.99 6 4.68 5 All peripherals enabled 4 3.38 All peripherals disabled 3 2.51 1.62 2 0.86 0.94 1 0.7 0 1 2.33 1.18 0.7 0.75 0.86 2 4 8 1.09 16 1.29 24 1.6 36 1.92 48 64 System clock(MHz) 57 GD32L233xx Datasheet 4.4 EMC characteristics EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in Table 4-8. EMS characteristics, based on the EMS levels and classes compliant with IEC 61000 series standard. Table 4-8. EMS characteristics(1) Symbol VESD VFTB (1) Parameter Voltage applied to all device pins to induce a functional disturbance Conditions Level/Class VDD = 3.3 V, LQFP64, fHCLK = 64 MHz 3A conforms to IEC 61000-4-2 Fast transient voltage burst applied to VDD = 3.3 V, LQFP64, induce a functional disturbance through fHCLK = 64 MHz 100 pF on VDD and VSS pins conforms to IEC 61000-4-4 4A Based on characterization, not tested in production. EMI (Electromagnetic Interference) emission test result is given in the Table 4-9. EMI characteristics(1), The electromagnetic field emitted by the device are monitored while an application, executing EEMBC code, is running. The test is compliant with SAE J17523:2017 standard which specifies the test board and the pin loading. Table 4-9. EMI characteristics(1) Max vs. Symbol Parameter Conditions VDD = 3.6 V, TA = +25 °C, SEMI Peak level LQFP64, 4.5 frequency band [fHXTAL/fHCLK] Unit 8/64 MHz 0.15 MHz to 30 MHz -11.89 fHCLK = 64 MHz, 30 MHz to 130 MHz -1.54 conforms to SAE J17523:2017 (1) Tested 130 MHz to 1 GHz dBμV 3.05 Based on characterization, not tested in production. Power supply supervisor characteristics Table 4-10. Power supply supervisor characteristics(1) 58 GD32L233xx Datasheet Symbol VLVD(1) VLVDhyst(2) VBOR0 VBOR1 VBOR2 VBOR3 VBOR4 VPOR(1) VPDR(1) Parameter Conditions Min Typ Max Unit LVDT[2:0] = 000, rising edge — 2.15 — V LVDT[2:0] = 000, falling edge — 2.05 — V LVDT[2:0] = 001, rising edge — 2.30 — V LVDT[2:0] = 001, falling edge — 2.20 — V LVDT[2:0] = 010, rising edge — 2.45 — V LVDT[2:0] = 010, falling edge — 2.35 — V Low Voltage Detector LVDT[2:0] = 011, rising edge — 2.60 — V Threshold LVDT[2:0] = 011, falling edge — 2.50 — V LVDT[2:0] = 100, rising edge — 2.75 — V LVDT[2:0] = 100, falling edge — 2.65 — V LVDT[2:0] = 101, rising edge — 2.90 — V LVDT[2:0] = 101, falling edge — 2.80 — V LVDT[2:0] = 110, rising edge — 3.00 — V LVDT[2:0] = 110, falling edge — 2.90 — V LVD hysteresis — — 100 — mV Brown-out reset rising edge — 1.60 — threshold 0 falling edge — 1.56 — Brown-out reset rising edge — 2.10 — threshold 1 falling edge — 2.00 — Brown-out reset rising edge — 2.30 — threshold 2 falling edge — 2.20 — Brown-out reset rising edge — 2.60 — threshold 3 falling edge — 2.50 — Brown-out reset rising edge — 2.90 — threshold 4 falling edge — 2.80 — 1.56 1.60 1.63 V 1.52 1.56 1.59 V Power on reset threshold Power down reset threshold — V V V V V VPDRhyst(2) PDR hysteresis — 40 — mV tRSTTEMPO(2) Reset temporization — 550 — us (1) (2) Based on characterization, not tested in production. Guaranteed by design, not tested in production. 59 GD32L233xx Datasheet 4.6 Electrical sensitivity The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up (LU) test is based on the two measurement methods. Table 4-11. ESD characteristics(1) Symbol VESD(HBM) VESD(CDM) (1) Parameter Electrostatic discharge voltage (human body model) Electrostatic discharge voltage (charge device model) Conditions Min Typ Max Unit JS-001-2017 — — 2000 V JS-002-2018 — — 500 V Conditions Min Typ Max Unit — — ±200 mA — — 5.4 V Based on characterization, not tested in production. Table 4-12. Static latch-up characteristics(1) Symbol Parameter I-test LU JESD78 Vsupply over voltage (1) 4.7 Based on characterization, not tested in production. External clock characteristics Table 4-13. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics Symbol fHXTAL RF (1) (2) Parameter Conditions Min Typ Max Unit Crystal or ceramic frequency VDD = 3.3 V 4 8 48 MHz Feedback resistor VDD = 3.3 V — 400 — kΩ — — 20 30 pF Recommended matching CHXTAL (2) (3) capacitance on OSCIN and OSCOUT Ducy(HXTAL)(2) Crystal or ceramic duty cycle — 30 50 70 % gm(2) Oscillator transconductance Startup — 20 — mA/V VDD = 3.3 V — 0.32 — mA VDD = 3.3 V — 1.27 — ms IDD(HXTAL) (1) tSUHXTAL(1) (1) (2) (3) Crystal or ceramic operating current Crystal or ceramic startup time Based on characterization, not tested in production. Guaranteed by design, not tested in production. CHXTAL1 = CHXTAL2 = 2*(CLOAD - CS), For CHXTAL1 and CHXTAL2, it is recommended matching capacitance on OSCIN and OSCOUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For CS, it is PCB and MCU pin stray capacitance. 60 GD32L233xx Datasheet Table 4-14. High speed external user clock characteristics (HXTAL in bypass mode) Symbol Parameter External clock source or oscillator fHXTAL_ext(1) frequency VHXTALH(2) OSCIN input pin high level voltage (2) OSCIN input pin low level voltage VHXTALL tH/L(HXTAL) (2) tR/F(HXTAL) (2) CIN(2) Ducy(HXTAL) (1) (2) Conditions Min Typ Max Unit VDD = 3.3 V 1 8 50 MHz 0.7 VDD — VDD VDD = 3.3 V VSS — 0.3 VDD V OSCIN high or low time — 5 — — OSCIN rise or fall time — — — 10 OSCIN input capacitance — — 5 — pF Duty cycle — 30 50 70 % (2) ns Based on characterization, not tested in production. Guaranteed by design, not tested in production. Table 4-15. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics Symbol fLXTAL (1) Parameter Conditions Min Typ Max Unit Crystal or ceramic frequency VDD = 3.3 V — 32.768 — kHz — — 10 — pF — 30 — 70 % — 3.6 — — 4.8 — Recommended matching CLXTAL (2)(3) capacitance on OSC32IN and OSC32OUT Ducy(LXTAL)(2) Crystal or ceramic duty cycle Lower driving capability Medium low driving gm(2) Oscillator transconductance capability Medium high driving capability Higher driving capability Lower driving capability Medium low driving IDDLXTAL (1) Crystal or ceramic operating capability current Medium high driving capability Higher driving capability tSULXTAL(1)(4) (1) (2) (3) (4) Crystal or ceramic startup time VDD = 3.3 V μA/V — 8.4 — — 10.8 — — 332 — — 392 — nA — 562 — — 692 — — 0.32 — s Based on characterization, not tested in production. Guaranteed by design, not tested in production. CLXTAL1 = CLXTAL2 = 2*(CLOAD - CS), For CLXTAL1 and CLXTAL2, it is recommended matching capacitance on OSC32IN and OSC32OUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For CS, it is PCB and MCU pin stray capacitance. tSULXTAL is the startup time measured from the moment it is enabled (by software) to the 32.768 kHz oscillator stabilization flags is SET. This value varies significantly with the crystal manufacturer. 61 GD32L233xx Datasheet Table 4-16. Low speed external user clock characteristics (LXTAL in bypass mode) Symbol Parameter fLXTAL_ext(1) voltage (2) CIN(2) Ducy(LXTAL) 4.8 Max Unit VDD = 3.3 V — 32.768 1000 kHz 0.7 VDD — VDD voltage tH/L(LXTAL) (2) (1) (2) Typ VDD = 3.3 V OSC32IN input pin low level (2) tR/F(LXTAL) oscillator frequency Min OSC32IN input pin high level VLXTALH(2) VLXTALL External clock source or Conditions V VSS — 0.3 VDD OSC32IN high or low time — 250 — — OSC32IN rise or fall time — — — 50 OSC32IN input capacitance — — 5 — pF Duty cycle — 30 50 70 % (2) ns Based on characterization, not tested in production. Guaranteed by design, not tested in production. Internal clock characteristics Table 4-17. High speed internal clock (IRC16M) characteristics Symbol Parameter Conditions Min Typ VDD = VDDA = 3.3 V — 16 Max Unit High Speed Internal fIRC16M Oscillator (IRC16M) — MHz — % frequency ACCIRC16M IRC16M oscillator VDD = VDDA = 3.3 V, Frequency accuracy, TA = -40 °C ~ +85 °C Factory-trimmed VDD = VDDA = 3.3 V -1.0 — +1.0 % — — 0.3(1) — % IRC16M oscillator duty cycle VDD = VDDA = 3.3 V 45 50 55 % IRC16M oscillator operating VDD = VDDA = 3.3 V, current fIRC8M = 16 MHz — 110 — μA IRC16M oscillator startup VDD = VDDA = 3.3 V, time fIRC8M = 16 MHz — 0.75 — μs trimming IDDIRC16M(1) tSUIRC16M(1) (1) (2) -1.5 to 1.5(1) IRC16M oscillator Frequency accuracy, User DIRC16M(2) — step(1) Based on characterization, not tested in production. Guaranteed by design, not tested in production. 62 GD32L233xx Datasheet Table 4-18. Low speed internal clock (IRC32K) characteristics Symbol fIRC32K IDDAIRC32K(2) tSUIRC32K(2) (1) (2) Parameter Low Speed Internal oscillator (IRC32K) frequency IRC32K oscillator operating current IRC32K oscillator startup time Conditions Min VDD = VDDA = 3.3 V, TA = -40~85 Typ Max Unit 31.7 to °C(2) 32.3 kHz VDD = VDDA = 3.3 V 30 35 VDD = VDDA = 3.3 V — 160 — nA VDD = VDDA = 3.3 V — 40 — μs Guaranteed by design, not tested in production. Based on characterization, not tested in production. Table 4-19. High speed internal clock (IRC48M) characteristics Symbol Parameter Conditions Min Typ VDD = VDDA = 3.3 V — 48 Max Unit High Speed Internal fIRC48M Oscillator (IRC48M) — MHz frequency ACCIRC48M IRC48M oscillator VDD = VDDA = 3.3 V, Frequency accuracy, TA = -40 °C ~ +85 °C Factory-trimmed VDD = VDDA = 3.3 V — -3.3 to -0.25(1) — % -2.0 — +2.0 % — — 0.12 — % IRC48M oscillator duty cycle VDD = VDDA = 3.3 V 45 50 55 % IRC48M oscillator operating VDD = VDDA = 3.3 V, current fIRC28M = 48 MHz — 327 — μA IRC48M oscillator startup VDD = VDDA = 3.3 V, time fIRC28M = 48 MHz — 1.8 — μs IRC48M oscillator Frequency accuracy, User trimming step DIRC48M(2) IDDAIRC48M(1) tSUIRC48M(1) (1) (2) Based on characterization, not tested in production. Guaranteed by design, not tested in production. 63 GD32L233xx Datasheet 4.9 PLL characteristics Table 4-20. PLL characteristics Symbol Parameter Conditions Min Typ Max Unit — 2 — 16 MHz — 16 — 64 MHz — — — 64 MHz — — — 200 μs VCO freq = 64 MHz — 400 — μA — 120 — PLL input clock fPLLIN(1) frequency PLL output clock fPLLOUT(2) frequency PLL VCO output clock fVCO(2) frequency tLOCK(2) PLL lock time Current consumption IDD(1) on VDD Cycle to cycle Jitter JitterPLL(3) (rms) System clock Cycle to cycle Jitter ps — (peak to peak) (1) (2) (3) 4.10 — 900 Based on characterization, not tested in production. Guaranteed by design, not tested in production. Value given with main PLL running. Memory characteristics Table 4-21. Flash memory characteristics Symbol Parameter Conditions Min Typ Max Unit TA = -40 °C ~ +85 °C 10 — — kcycles Number of guaranteed PECYC(1) program /erase cycles before failure (Endurance) tRET(1) Data retention time 10k cycles at TA = 85 °C 10 — — years tPROG(2) Word programming time TA = -40 °C ~ + 85 °C — 37.5 — μs tERASE(2) Page erase time TA = -40 °C ~ + 85 °C — 11 — ms tMERASE(2) Mass erase time TA = -40 °C ~ + 85°C — 12 — ms (1) (2) 4.11 Based on characterization, not tested in production. Guaranteed by design, not tested in production. NRST pin characteristics Table 4-22. NRST pin characteristics 64 GD32L233xx Datasheet Symbol VIL(NRST) (1) VIH(NRST) (1) Vhyst(1) Rpu (1) (2) (2) Parameter Conditions NRST Input low level voltage 1.71 V ≤ VDD = VDDA NRST Input high level voltage ≤ 3.63 V Schmidt trigger Voltage hysteresis Min Typ Max -0.5 — 0.35 VDD 0.65 VDD — VDD + 0.5 — 400 — mV — 40 — kΩ — Pull-up equivalent resistor Unit V Based on characterization, not tested in production. Guaranteed by design, not tested in production. Figure 4-4. Recommended external NRST pin circuit VDD VDD External reset circuit RPU 10 kΩ NRST K 100 nF GND 4.12 VREF buffer characteristics Table 4-23. VREF buffer characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA(1) Analog Supply Voltage — 2.7 3.3 3.63 V Output Reference VDDA = 3.3 V 2.49 2.50 2.51 All VDDA, All Temp(2) 2.47 2.50 2.53 Power Supply DC (IO = 0) — 57 — Rejection DC (IO = 200 μA ) — 57 — TSU(1) Setup Time CL = 1 μF + 10 nF — — 200 μs ILOAD_R(1) Load Regulation ILOAD from 0 to 200 μA — 5 — μV/μA CLOAD(1) Load Capacitor — — 1 — μF TRIM(1) Trim Step — — 3 — mV VREF PSRR(1) Voltage V dB (1). Guaranteed by design, not tested in production. (2). Based on characterization, not tested in production. 65 GD32L233xx Datasheet 4.13 GPIO characteristics Table 4-24. I/O port DC characteristics(1)(3) Symbol Parameter Conditions Standard IO Low level 1.71 V ≤ VDD = VDDA ≤ 3.63 VIL VIH VOL (IO_speed=50MHz) Max — — 0.3 VDD — — 0.3 VDD V 5V-tolerant IO Low 1.71 V ≤ VDD = VDDA ≤ 3.63 level input voltage V Standard IO High 1.71 V ≤ VDD = VDDA ≤ 3.63 level input voltage V 5 V-tolerant IO High 1.71 V ≤ VDD = VDDA ≤ 3.63 level input voltage V Low level output VDD = 1.71 V — 0.26 — voltage for an IO Pin VDD = 3.3 V — 0.13 — (IIO = +8 mA) VDD = 3.6 V — 0.13 — (IIO = +10 mA) VDD = 1.71 V — 0.20 — Low level output VDD = 3.3 V — 0.33 — VDD = 3.6 V — 0.32 — High level output VDD = 1.71V — 1.46 — voltage for an IO Pin VDD = 3.3 V — 3.15 — (IIO = +8 mA) VDD = 3.6 V — 3.45 — (IIO = +10 mA) VDD = 1.71 V — 1.38 — High level output VDD = 3.3 V — 2.91 — (IIO = +20 mA) VDD = 3.6 V — 3.22 — (IIO = +4 mA) VDD = 1.71 V — 0.31 — Low level output VDD = 3.3 V — 0.36 — (IIO = +8 mA) VDD = 3.6 V — 0.35 — Low level output VDD = 1.71 V — — — voltage for an IO Pin VDD = 3.3 V — 0.73 — (IIO = +15 mA) VDD = 3.6 V — 0.70 — (IIO = +4 mA) VDD = 1.71 V — 1.33 — High level output VDD = 3.3 V — 2.87 — VDD = 3.6 V — 3.19 — High level output VDD = 1.71 V — — — voltage for an IO Pin VDD = 3.3 V — 2.42 — (IIO = +15 mA) VDD = 3.6 V — 2.78 — (IIO = +1 mA) VDD = 1.71 V — 0.32 — (IIO = +20 mA) (IO_speed=50MHz) Typ input voltage voltage for an IO Pin VOH Min Unit V 0.7 VDD — — 0.7 VDD — — V V voltage for an IO Pin VOL (IO_speed=10MHz) VOH (IO_speed=10MHz) VOL voltage for an IO Pin V voltage for an IO Pin (IIO = +8 mA) V V 66 GD32L233xx Datasheet Symbol Parameter Conditions Min Typ Max Unit (IO_speed=2MHz) Low level output VDD = 3.3 V — 0.55 — (IIO = +4 mA) VDD = 3.6 V — 0.53 — (IIO = +1 mA) VDD = 1.71 V — 1.32 — VOH High level output VDD = 3.3 V — 2.65 — (IO_speed=2MHz) voltage for an IO Pin VDD = 3.6 V — 2.99 — — — 40 — kΩ — — 40 — kΩ voltage for an IO Pin (IIO = +4 mA) RPU(2) RPD(2) (1) (2) (3) Internal pull-up resistor Internal pull-down resistor Based on characterization, not tested in production. Guaranteed by design, not tested in production. All pins except PC13 / PC14 / PC15. Since PC13 to PC15 are supplied through the Power Switch, which can only be obtained by a small current, the speed of GPIOs PC13 to PC15 should not exceed 2 MHz when they are in output mode(maximum load: 30 pF). Table 4-25. I/O port AC characteristics(1) GPIOx_OSPD[1:0] bit value(2) Parameter Conditions 1.71 ≤ VDD ≤ 3.63 V, CL = 10 pF GPIOx_OSPD->OSPDy[1:0] = X0 Maximum (IO_Speed = 2 MHz) frequency 1.71 ≤ VDD ≤ 3.63 V, CL = 30 pF 1.71≤ VDD ≤ 3.63 V, CL = 50 pF 1.71 ≤ VDD ≤ 3.63 V, CL = 10 pF GPIOx_OSPD->OSPDy[1:0] = 01 Maximum 1.71 ≤ VDD ≤ 3.63 V, (IO_Speed = 10 MHz) frequency CL = 30 pF 1.71 ≤ VDD ≤ 3.63 V, CL = 50 pF 1.71 ≤ VDD ≤ 3.63 V, CL = 10 pF GPIOx_OSPD->OSPDy[1:0] = 11 Maximum 1.71 ≤ VDD ≤ 3.63 V, (IO_Speed = 50 MHz) frequency CL = 30 pF 1.71 ≤ VDD ≤ 3.63 V, CL = 50 pF (1) (2) Max Unit 6 5 MHz 4 17 14 MHz 12 81 72 MHz 60 Based on characterization, not tested in production. The I/O speed is configured using the GPIOx_OSPD->OSPDy [1:0] bits. Refer to the GD32L233 user manual which is selected to set the GPIO port output speed. 67 GD32L233xx Datasheet Figure 4-5. I/O port AC characteristics definition 90 % EXTERNAL OUTPUT ON 50pF 90 % 50 10 % % tr(IO)ou t 50 % 10 % tf(IO)out T If (tr + tf) ≤ 2/3 T, then maximum frequency is achieved . The duty cycle is (45%-55%)when loaded by 50 pF 4.14 ADC characteristics Table 4-26. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA(1) Operating voltage — 1.8 3.3 3.6 V VIN(1) ADC input voltage range — 0 — VDDA V fADC(1) ADC clock — 0.125 — 16 MHz 12-bit 0.008 — 1.067 10-bit 0.009 — 1.23 MSP 8-bit 0.011 — 1.45 S 6-bit 0.013 — 1.78 Analog input voltage 16 external; 4 internal 0 — VDDA V External input impedance See Equation 1 — — 513.6 kΩ — — — 0.5 kΩ — — 3 pF fS(1) VAIN1) RAIN (2) RADC(2) Sampling rate Input sampling switch resistance No pin/pad capacitance CADC(2) Input sampling capacitance tCAL(2) Calibration time fADC = 16 MHz — 13.4 — μs Sampling time fADC = 16 MHz 0.156 — 14.97 μs 12-bit — 15 — 10-bit — 13 — 1/ 8-bit — 11 — fADC 6-bit — 9 — fS = 1M — 133 — fS = 0.5M — 77 — fS = 10k — 17.5 — fS = 1M — 14.7 — fS = 0.5M — 7.6 — fS = 10k — 0.4 — — — 5 — ts (2) Total conversion tCONV(2) time(including sampling time) IDDA(ADC) IDDV(ADC) tSU(2) ADC consumption from VDDA ADC consumption from VREFP Startup time included uA uA us 68 GD32L233xx Datasheet (1) (2) Based on characterization, not tested in production. Guaranteed by design, not tested in production. Equation 1: RAIN max formula R AIN < Ts fADC ∗CADC ∗ln(2N+2 ) − R ADC The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 4-27. ADC RAIN max for fADC = 16 MHz(1) (1) Ts(cycles) ts(μs) RAINmax (kΩ) 2.5 0.16 4.8 7.5 0.47 15.6 13.5 0.85 28.4 28.5 1.79 60.6 41.5 2.60 88.5 55.5 3.47 118.6 71.5 4.47 153.0 239.5 14.97 513.6 Based on characterization, not tested in production. Table 4-28. ADC dynamic accuracy at fADC = 16 MHz(1) Symbol Parameter Test conditions Min Typ Max Unit ENOB Effective number of bits fADC = 16 MHz 10.8 11.2 — bits SNDR Signal-to-noise and distortion ratio VDDA = VREF+ = 3.3 V 66.7 69.1 — Signal-to-noise ratio Input Frequency = 20 66.9 69.3 — Total harmonic distortion kHz — -82 -78 Typ Max — — ±0.6 ±1 ±0.8 ±1.5 SNR THD (1) dB Based on characterization, not tested in production. Table 4-29. ADC static accuracy at fADC = 16 MHz(1) Symbol Parameter Offset Offset error DNL Differential linearity error INL Integral linearity error (1) Test conditions fADC = 16 MHz VDDA = VREF+ = 3.3 V Unit LSB Based on characterization, not tested in production. Table 4-30. ADC dynamic accuracy at fADC = 16 MHz(1) Symbol Parameter Test conditions Min Typ Max Unit ENOB Effective number of bits fADC = 16 MHz 10.7 11.2 — bits 66.2 69.1 — 66.4 69.3 — — -82 -78 SNDR SNR Signal-to-noise and distortion ratio VDDA = 3.3V VREF+ = 2.5 V Signal-to-noise ratio Input Frequency = 20 THD (1) Total harmonic distortion kHz dB Based on characterization, not tested in production. 69 GD32L233xx Datasheet Table 4-31. ADC static accuracy at fADC = 16 MHz(1) Symbol Parameter Offset Offset error DNL Differential linearity error INL Integral linearity error (1) Test conditions fADC = 16 MHz, VDDA = 3.3V VREF+ = 2.5 V Typ Max — — ±0.6 ±1 ±0.8 ±1.5 Unit LSB Based on characterization, not tested in production. Table 4-32. ADC dynamic accuracy at fADC = 16 MHz(1) Symbol Parameter Test conditions Min Typ Max Unit ENOB Effective number of bits fADC = 16 MHz, 10.5 10.8 — bits SNDR Signal-to-noise and distortion ratio VDDA = VREF+ = 1.8 V 64.9 66.7 — SNR Signal-to-noise ratio Input Frequency = 20 65.1 66.9 — THD Total harmonic distortion kHz — -71 -68 Typ Max — — ±0.8 ±1 ±1 ±1.5 (1) dB Based on characterization, not tested in production. Table 4-33. ADC static accuracy at fADC = 16 MHz(1) Symbol Parameter Offset Offset error DNL Differential linearity error INL Integral linearity error (1) 4.15 Test conditions fADC = 16 MHz, VDDA = VREF+ = 1.8 V Unit LSB Based on characterization, not tested in production. DAC characteristics Table 4-34. DAC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA(1) Operating voltage — 1.71 3.3 3.63 V VREF+(2) Positive Reference Voltage — 1.71 — VDDA V — — VSSA — V Resistive load with buffer ON 5 — — kΩ — — 15 kΩ — — 50 pF 0.2 — — V 0.5 — — mV — — — — — 400 VREF-(2) Negative Reference Voltage RLOAD(2) Resistive load Ro(2) Impedance output CLOAD(2) Capacitive load Impedance output with buffer OFF Capacitive load with buffer ON Lower DAC_OUT voltage with DAC_OUT min(2) Lower DAC_OUT voltage buffer ON Lower DAC_OUT voltage with buffer OFF DAC_OUT max (2) Higher DAC_OUT voltage with buffer ON Higher DAC_OUT voltage Higher DAC_OUT voltage with buffer OFF IDDA(1) DAC current consumption With no load, middle in quiescent mode code(0x800) on the input, VDDA- V 0.2 VDDA- V 1LSB — μA 70 GD32L233xx Datasheet Symbol Parameter Conditions Min Typ Max Unit — 114 — μA 10-bit configuration — — ±0.5 12-bit configuration — — ±2 10-bit configuration — — ±1 12-bit configuration — — ±4 VREFP = 3.3 V With no load, middle IDDVREF+(1) DAC current consumption in quiescent mode code(0x800) on the input, VREFP = 3.3 V DNL(1) Differential non linearity INL(1) Integral non linearity Offset(1) Offset error DAC in 12-bit mode — — ±12 LSB GE(1) Gain error DAC in 12-bit mode — ±0.5 — % Settling time CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ — 0.5 — μs Wakeup from off state — — 5 — μs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ — — 4 MS/s No RLoad, CLOAD=50 pF — -80 — dB Tsetting (1) Twakeup (2) Update rate(2) PSRR(2) (1) (2) 4.16 LSB LSB Max frequency for a correct DAC_OUT change from code i to i±1LSB Power supply rejection ratio(to VDDA) Based on characterization, not tested in production. Guaranteed by design, not tested in production. Temperature sensor characteristics Table 4-35. Temperature sensor characteristics Symbol Parameter Conditions Min Typ Max Unit VOFF Uncalibrated Offset TA = 30°C — 1022.8 — mV Uncalibrated Offset Error TA = 30°C — 2 — mV M Slope — — 3.3 — mV/°C EM(1) Slope Error — — 30 — μV/°C LIN(3) Linearity — -0.4 to1.2 — °C tON Turn-on Time — — — μs -3.5 — 4.7 °C EOFF (1) Temp Sensor Error Using ETOT(2)(3) Typical Slope and Factory-Calibrated Offset (1) (2) (3) 4.17 TA = -40 °C to 85 °C — TA = -40 °C to 85 °C Represents one standard deviation from the mean. The factory-calibrated offset value is stored in the read-only area of flash in locations 0x1FFFF7F8. Based on characterization, not tested in production. Comparators characteristics Table 4-36. CMP characteristics(1) 71 GD32L233xx Datasheet Symbol Parameter Conditions Min Typ Max Unit VDDA Operating voltage — 1.71 3.3 3.63 V VIN Input voltage range — 0 — VDDA V VBG Scaler input voltage — — 0.8 — V VSC Scaler offset voltage — — ±5 — mV Scaler static consumption BEN=0 (bridge disable) — 200 — nA from VDDA BEN=1 (bridge enable) — 0.8 — μA Scaler startup time — — 100 — μs Propagation delay for 200 Ultra low power mode — 3.63 — μs mV step with 100 mV Medium power mode — 0.18 — μs overdrive High speed power mode — 55 — ns Ultra low power mode — 0.5 — Medium power mode — 4.7 — High speed power mode — 47 — — — ±5 — No Hysteresis — 0 — Low Hysteresis — 8 — Medium Hysteresis — 16 — High Hysteresis — 32 — IDDA(SCALER) tSTART_SCALER tD IDD Voffset Vhyst (1) Current consumption Offset error Hysteresis Voltage μA mV mV Based on characterization, not tested in production. Figure 4-6. CMP hysteresis 72 GD32L233xx Datasheet 4.18 TIMER characteristics Table 4-37. TIMER characteristics (1) Symbol Parameter tres Timer resolution time fEXT RES Conditions Min Max Unit — 1 — tTIMERxCLK fTIMERxCLK = 64 MHz 15.6 — ns Timer external clock — 0 fTIMERxCLK/2 MHz frequency fTIMERxCLK = 64 MHz 0 32 MHz Timer resolution — — 16 bit — 1 65536 tTIMERxCLK fTIMERxCLK = 64 MHz 0.0156 1024 μs — — fTIMERxCLK = 64 MHz — 16-bit counter clock period tCOUNTER when internal clock is selected tMAX_COUNT (1) Maximum possible count 65536 × 65536 tTIMERxCLK 67.11 s Guaranteed by design, not tested in production. 73 GD32L233xx Datasheet 4.19 SLCD controller characteristics Table 4-38. SLCD controller characteristics(1) Symbol Parameter Conditions Typ Max VSLCD SLCD external voltage — — 3.63 VSLCD0 SLCD internal reference voltage 0 — 2.65 — VSLCD1 SLCD internal reference voltage 1 — 2.80 — VSLCD2 SLCD internal reference voltage 2 — 2.92 — VSLCD3 SLCD internal reference voltage 3 — 3.08 — VSLCD4 SLCD internal reference voltage 4 — 3.23 — VSLCD5 SLCD internal reference voltage 5 — 3.37 — VSLCD6 SLCD internal reference voltage 6 — 3.52 — VSLCD7 SLCD internal reference voltage 7 — 3.67 — 0.2 — 2 Buffer OFF (VODEN=0 is Cext VSLCD external SLCD_CTL register) capacitance Buffer ON (VODEN=1 is SLCD_CTL register) Supply current from VDD Buffer OFF (VODEN=0 is ISLCD(2) at VDD = 2.2 V SLCD_CTL register) Supply current from VDD Buffer OFF (VODEN=0 is at VDD = 3.0 V SLCD_CTL register) Buffer OFF (VODEN = 0, PULSE = 0) Buffer ON (VODEN = 1, 1/2 IVSLCD Supply current from VSLCD (VSLCD = 3.0 V) Bias) Buffer ON (VODEN = 1, 1/3 Bias) Buffer ON (VODEN = 1, 1/4 Bias) RHN RLN (1) (2) Min Total High Resistor value for Low drive resistive network Total Low Resistor value for High drive resistive network Unit V uF 1 — 2 — 3.2 — uA — 2.4 — — 0.5 — — 0.65 — uA — 0.8 — — 0.95 — — — — MΩ — — — kΩ V44 Segment/Common highest level voltage — VSLCD — V34 Segment/Common 3/4 level voltage — 3/4VSLCD — V23 Segment/Common 2/3 level voltage — 2/3VSLCD — V12 Segment/Common 1/2 level voltage — 1/2VSLCD — V13 Segment/Common 1/3 level voltage — 1/3VSLCD — V14 Segment/Common 1/4 level voltage — 1/4VSLCD — V0 Segment/Common lowest level voltage — 0 — V Guaranteed by design, not tested in production. SLCD enabled with 3V internal step-up active,1/8 duty,1/4 bias, division ratio= 64, all pixels active, no SLCD connected. 74 GD32L233xx Datasheet 4.20 I2C characteristics Table 4-39. I2C characteristics(1)(2)(3) Symbol Parameter Conditi ons Standard mode Fast mode Fast mode plus Unit Min Max Min Max Min Max tSCL(H) SCL clock high time — 4.0 — 0.6 — 0.2 — μs tSCL(L) SCL clock low time — 4.7 — 1.3 — 0.5 — μs tsu(SDA) SDA setup time 250 — — 50 — ns th(SDA) SDA data hold time 0(3) 3450 0 900 0 450 ns — — 1000 — 300 — 120 ns — — 300 — 300 — 120 ns — 4.0 — 0.6 — 0.26 — μs — 4.7 — 0.6 — 0.26 — μs — 4.0 — 0.6 — 0.26 — μs — 4.7 — 1.3 — 0.5 — μs — — SDA and SCL rise tr(SDA/SCL) time SDA and SCL fall tf(SDA/SCL) time Start condition hold th(STA) time 100 Repeated Start condition ts(STA) setup time Stop condition setup ts(STO) time Stop to Start condition time (bus tbuff free) (1) (2) (3) Guaranteed by design, not tested in production. To ensure the standard mode I2C frequency, fPCLK1 must be at least 2 MHz. To ensure the fast mode I2C frequency, fPCLK1 must be at least 4 MHz. To ensure the fast mode plus I2C frequency, f PCLK1 must be at least a multiple of 10 MHz. The device should provide a data hold time of 300 ns at least in order to bridge the undefined region of the falling edge of SCL. Figure 4-7. I2C bus timing diagram tsu(STA) SDA 70% 30% tf(SDA) tr(SDA) tSCL(H) th(STA) SCL tbuff th(SDA) tsu(SDA) 70% 30% tSCL(L) tr(SCL) tf(SCL) tsu(STO) 75 GD32L233xx Datasheet 4.21 SPI characteristics Table 4-40. Standard SPI characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency — — — 16 MHz tsck(H) SCK clock high time — 20 — ns tsck (L) SCK clock low time — 20 — ns Master mode, fPCLKx = 64 MHz, presc = 4 Master mode, fPCLKx = 64 MHz, presc = 4 SPI master mode tV(MO) Data output valid time — — — 10 ns tSU(MI) Data input setup time — 1 — — ns tH(MI) Data input hold time — 0 — — ns SPI slave mode (1) tSU(NSS) NSS enable setup time — 0 — — ns tH(NSS) NSS enable hold time — 1 — — ns tA(SO) Data output access time — — 8 — ns tDIS(SO) Data output disable time — — 9 — ns tV(SO) Data output valid time — — 9 — ns tSU(SI) Data input setup time — 0 — — ns tH(SI) Data input hold time — 1 — — ns Based on characterization, not tested in production. Figure 4-8. SPI timing diagram - master mode tSCK SCK (CKPH=0 CKPL=0) SCK (CKPH=0 CKPL=1) SCK (CKPH=1 CKPL=0) tSCK(H) tSCK(L) SCK (CKPH=1 CKPL=1) tSU(MI) MISO D[0] LF=1,FF16=0 D[7] tH(MI) MOSI D[0] D[7] tV(MO) tH(MO) 76 GD32L233xx Datasheet Figure 4-9. SPI timing diagram - slave mode NSS tSCK tSU(NSS) SCK (CKPH=0 CKPL=0) tSCK(H) SCK (CKPH=0 CKPL=1) tSCK(L) tH(NSS) tH(SO) tDIS(SO) tV(SO) tA(SO) MISO D[0] D[7] tSU(SI) MOSI D[0] D[7] tH(SI) 77 GD32L233xx Datasheet 4.22 I2S characteristics Table 4-41. I2S characteristics(1) Symbol Parameter Conditions Master mode (data: 16 bits, fCK Clock frequency Audio frequency = 96 kHz) Slave mode Min Typ Max Unit — 6.25 — — — 12.5 — 80 — ns — 80 — ns MHz tH Clock high time tL Clock low time tV(WS) WS valid time Master mode — 3 — ns tH(WS) WS hold time Master mode — 3 — ns tSU(WS) WS setup time Slave mode 0 — — ns tH(WS) WS hold time Slave mode 3 — — ns Slave mode — 50 — % Ducy(sck) — I2S slave input clock duty cycle tSU(SD_MR) Data input setup time Master mode 1 — — ns tSU(SD_SR) Data input setup time Slave mode 0 — — ns Master receiver 0 — — ns Slave receiver 1 — — ns — — 10 ns 3 — — ns — — 10 ns 0 — — ns tH(SD_MR) tH(SD_SR) Data input hold time tV(SD_ST) Data output valid time tH(SD_ST) Data output hold time tV(SD_MT) Data output valid time tH(SD_MT) Data output hold time (1) Slave transmitter (after enable edge) Slave transmitter (after enable edge) Master transmitter (after enable edge) Master transmitter (after enable edge) Based on characterization, not tested in production. 78 GD32L233xx Datasheet Figure 4-10. I2S timing diagram - master mode tCK CPOL=0 tL CPOL=1 tV(WS) tH tH(WS) WS output tH(SD_MT) tV(SD_MT) SD transmit D[0] SD receive D[0] tSU(SD_MR) tH(SD_MR) Figure 4-11. I2S timing diagram - slave mode tCK CPOL=0 tL CPOL=1 tH tH(WS) WS input tSU(WS) SD transmit SD receive tV(SD_ST) tH(SD_ST) D[0] D[0] tSU(SD_SR) tH(SD_SR) 79 GD32L233xx Datasheet 4.23 USART/LPUART characteristics Table 4-42. USART/LPUART characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency fPCLKx = 64 MHz — — 32 MHz tSCK(H) SCK clock high time fPCLKx = 64 MHz 15.625 — — ns tSCK(L) SCK clock low time fPCLKx = 64 MHz 15.625 — — ns (1) 4.24 Guaranteed by design, not tested in production. USBD characteristics Table 4-43. USBD startup time Symbol Parameter Max Unit tSTARTUP(1) USBD startup time 1 μs (1) Guaranteed by design, not tested in production. Table 4-44. USBD DC electrical characteristics Symbol Parameter Conditions Min Typ VDD USBD operating voltage — 3.0 — 3.63 Input VDI Differential input sensitivity — 0.2 — — levels(1) VCM Differential common mode range Includes VDI range 0.8 — 2.5 VSE Single ended receiver threshold — 0.8 — 2.0 VOL Static output level low RL of 1.0 kΩ to 3.63 V — — 0.3 levels (2) VOH Static output level high RL of 15 kΩ to VSS 2.8 3.3 3.63 RPU(2) USBDP VIN = VSS 1.2 1.5 1.8 Output Max Unit V V KΩ (1) Guaranteed by design, not tested in production. (2) Based on characterization, not tested in production. Table 4-45. USBD full speed-electrical characteristics(1) Symbol Parameter Conditions Min Typ Max Unit tR Rise time CL = 50 pF 4 5 20 ns tF Fall time CL = 50 pF 4 5 20 ns tRFM Rise/ fall time matching tR / tF 90 — 111 % vCRS Output signal crossover voltage — 1.09 — 2.0 V (1) Guaranteed by design, not tested in production. Figure 4-12. USBD timings: definition of data signal rise and fall time Crossover points Differential data lines VCRS VSS tf tr 80 GD32L233xx Datasheet 4.25 WDGT characteristics Table 4-46. FWDGT min/max timeout period at 32 kHz (IRC32K)(1) Prescaler divider PSC[2:0] bits 1/4 (1) Min timeout RLD[11:0]= Max timeout RLD[11:0]= 0x000 0xFFF 000 0.03125 511.90625 1/8 001 0.03125 1023.78125 1/16 010 0.03125 2047.53125 1/32 011 0.03125 4095.03125 1/64 100 0.03125 8190.03125 1/128 101 0.03125 16380.03125 1/256 110 or 111 0.03125 32760.03125 Unit ms Guaranteed by design, not tested in production. 81 GD32L233xx Datasheet Table 4-47. WWDGT min-max timeout value at 32 MHz (fPCLK1)(1) Prescaler divider (1) 4.26 PSC[3:0] Min timeout value CNT[6:0] = 0x40 Unit Max timeout value CNT[6:0] = 0x7F 1/1 0000 128 1/2 0001 256 1/4 0010 512 32.768 1/8 0011 1.024 65.536 1/16 0100 2.048 131.072 1/32 0101 4.096 262.144 1/64 0110 8.192 524.288 1/128 0111 16.384 1048.576 1/256 1000 32.768 1/512 1001 65.536 4194.304 1/1024 1010 131.072 8388.608 1/2048 1011 262.144 16777.216 1/4096 1100 524.288 33554.432 1/8192 1101 1048.576 67108.864 1/1 1110 128 1/1 1111 128 Unit 8.192 μs ms μs 16.384 2097.152 ms 4.096 4.096 Guaranteed by design, not tested in production. Parameter conditions Unless otherwise specified, all values given for VDD = VDDA = 3.3 V, TA = 25 ℃. 82 GD32L233xx Datasheet 5 Package information 5.1 LQFP64 package outline dimensions Figure 5-1. LQFP64 package outline A3 A2 A θ c A1 F eB D D1 33 48 0.25 32 37 L L1 DETAIL: F E1 E b b1 c1 c BASE METAL 64 17 WITH PLATING 1 e b SECTION B-B 16 B B Table 5-1. LQFP64 package dimensions Symbol Min Typ Max A — — 1.60 A1 0.05 — 0.15 A2 1.35 1.40 1.45 A3 0.59 0.64 0.69 b 0.18 — 0.26 b1 0.17 0.20 0.23 c 0.13 — 0.17 c1 0.12 0.13 0.14 D 11.80 12.00 12.20 D1 9.90 10.00 10.10 E 11.80 12.00 12.20 E1 9.90 10.00 10.10 e — 0.50 — eB 11.25 — 11.45 L 0.45 — 0.75 L1 — 1.00 — θ 0° — 7° 83 GD32L233xx Datasheet (Original dimensions are in millimeters) Figure 5-2. LQFP64 recommended footprint 12.70 64 49 10.30 48 16 33 17 32 7.80 12.70 0.30 1 1.20 0.50 (Original dimensions are in millimeters) 84 GD32L233xx Datasheet LQFP48 package outline dimensions Figure 5-3. LQFP48 package outline A3 A2 A θ A1 c 5.2 F eB D D1 36 0.25 25 L 24 37 L1 DETAIL: F E1 E b b1 13 48 c1c BASE METAL WITH PLATING 1 12 b e SECTION B-B BB Table 5-2. LQFP48 package dimensions Symbol Min Typ Max A — — 1.60 A1 0.05 — 0.15 A2 1.35 1.40 1.45 A3 0.59 0.64 0.69 b 0.18 — 0.26 b1 0.17 0.20 0.23 c 0.13 — 0.17 c1 0.12 0.13 0.14 D 8.80 9.00 9.20 D1 6.90 7.00 7.10 E 8.80 9.00 9.20 E1 6.90 7.00 7.10 e — 0.50 — eB 8.10 — 8.25 L 0.45 — 0.75 L1 — 1.00 — θ 0° — 7° (Original dimensions are in millimeters) 85 GD32L233xx Datasheet Figure 5-4. LQFP48 recommended footprint 9.70 37 48 7.30 36 12 25 24 13 5.80 9.70 0.30 1 1.20 0.50 (Original dimensions are in millimeters) 86 GD32L233xx Datasheet 5.3 LQFP32 package outline dimensions Figure 5-5. LQFP32 package outline A3 A2 A c θ A1 F eB D D1 L 24 0.25 17 L1 DETAIL: F 16 25 E1 b E b1 c1 c 9 32 BASE METAL 8 1 WITH PLATING B B b e SECTION B-B Table 5-3. LQFP32 package dimensions Symbol Min Typ Max A — — 1.60 A1 0.05 — 0.15 A2 1.35 1.40 1.45 A3 0.59 0.64 0.69 b 0.33 — 0.41 b1 0.32 0.35 0.38 c 0.13 — 0.17 c1 0.12 0.13 0.14 D 8.80 9.00 9.20 D1 6.90 7.00 7.10 E 8.80 9.00 9.20 E1 6.90 7.00 7.10 e — 0.80 — eB 8.10 — 8.25 L 0.45 — 0.75 L1 — 1.00 — θ 0° — 7° (Original dimensions are in millimeters) 87 GD32L233xx Datasheet Figure 5-6. LQFP32 recommended footprint 9.70 25 32 7.30 24 8 17 9 16 6.05 9.70 0.45 1 1.20 0.80 (Original dimensions are in millimeters) 88 GD32L233xx Datasheet QFN32 package outline dimensions Figure 5-7. QFN32 package outline D b1 32 L 32 1 h 1 2 h 2 K E2 E Ne D2 b e Nd TOP VIEW EXPOSED THERMAL PAD ZONE A BOTTOM VIEW A1 c 5.4 SIDE VIEW Table 5-4. QFN32 package dimensions Symbol Min Typ Max A 0.70 0.75 0.80 A1 0 0.02 0.05 b 0.15 0.20 0.25 b1 — 0.14 — c — 0.20 — D 3.90 4.00 4.10 D2 2.60 2.70 2.80 E 3.90 4.00 4.10 E2 2.60 2.70 2.80 e — 0.40 — h 0.25 0.30 0.35 K — 0.30 — L 0.30 0.35 0.40 Nd — 2.80 — Ne — 2.80 — (Original dimensions are in millimeters) 89 GD32L233xx Datasheet Figure 5-8. QFN32 recommended footprint 4.70 25 32 3.20 R 0.125 1 3.05 4.70 2.65 0.25 24 2.65 8 16 9 17 0.75 0.40 (Original dimensions are in millimeters) 90 GD32L233xx Datasheet 5.5 Thermal characteristics Thermal resistance is used to characterize the thermal performance of the package device, which is represented by the Greek letter “θ”. For semiconductor devices, thermal resistance represents the steady-state temperature rise of the chip junction due to the heat dissipated on the chip surface. θJA: Thermal resistance, junction-to-ambient. θJB: Thermal resistance, junction-to-board. θJC: Thermal resistance, junction-to-case. ᴪJB: Thermal characterization parameter, junction-to-board. ᴪJT: Thermal characterization parameter, junction-to-top center. θJA =(TJ -TA )/PD (5-1) θJB =(TJ -TB )/PD (5-2) θJC =(TJ -TC )/PD (5-3) Where, TJ = Junction temperature. TA = Ambient temperature TB = Board temperature TC = Case temperature which is monitoring on package surface PD = Total power dissipation θJA represents the resistance of the heat flows from the heating junction to ambient air. It is an indicator of package heat dissipation capability. Lower θJA can be considerate as better overall thermal performance. θJA is generally used to estimate junction temperature. θJB is used to measure the heat flow resistance between the chip surface and the PCB board. θJC represents the thermal resistance between the chip surface and the package top case. θJC is mainly used to estimate the heat dissipation of the system (using heat sink or other heat dissipation methods outside the device package). Table 5-6. Package thermal characteristics(1) Symbol θJA θJB Condition Natural convection, 2S2P PCB Cold plate, 2S2P PCB Package Value LQFP64 54.57 LQFP48 69.64 LQFP32 55.26 QFN32 42.57 LQFP64 35.08 LQFP48 43.16 Unit °C/W °C/W 91 GD32L233xx Datasheet Symbol θJC ᴪJB ᴪJT (1) Condition Cold plate, 2S2P PCB Natural convection, 2S2P PCB Natural convection, 2S2P PCB Package Value LQFP32 26.24 QFN32 19.21 LQFP64 18.11 LQFP48 25.36 LQFP32 25.23 QFN32 19.10 LQFP64 35.41 LQFP48 47.75 LQFP32 32.03 QFN32 19.18 LQFP64 1.10 LQFP48 2.45 LQFP32 2.06 QFN32 0.62 Unit °C/W °C/W °C/W Thermal characteristics are based on simulation, and meet JEDEC specification. 92 GD32L233xx Datasheet 6 Ordering information Table 6-1. Part ordering code for GD32L233xx devices Ordering code Flash (KB) Package Package type GD32L233RCT6 256 LQFP64 Green GD32L233RBT6 128 LQFP64 Green GD32L233R8T6 64 LQFP64 Green GD32L233CCT6 256 LQFP48 Green GD32L233CBT6 128 LQFP48 Green GD32L233C8T6 64 LQFP48 Green GD32L233KBT6 128 LQFP32 Green GD32L233K8T6 64 LQFP32 Green GD32L233KBQ6 128 QFN32 Green GD32L233K8Q6 64 QFN32 Green Temperature operating range Industrial -40°C to +85°C Industrial -40°C to +85°C Industrial -40°C to +85°C Industrial -40°C to +85°C Industrial -40°C to +85°C Industrial -40°C to +85°C Industrial -40°C to +85°C Industrial -40°C to +85°C Industrial -40°C to +85°C Industrial -40°C to +85°C 93 GD32L233xx Datasheet 7 Revision history Table 7-1. Revision history Revision No. Description Date 1.0 Initial Release Oct.19, 2021 1. Modify description in Debug mode. 2. Modify description in Embedded memory. 3. Add EMI parameter in Table 4-9. EMI characteristics(1). 1.1 4. Modify table 4-17 and table 4-19 Apr.13 2022 5. Modify power consumption value in Table 4-7. Power consumption characteristics(2)(3) 6. Update QFN32 recommended footprint figure. 94 GD32L233xx Datasheet Important Notice This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only. The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products. Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice. © 2022 GigaDevice – All rights reserved 95
GD32L233CBT6 价格&库存

很抱歉,暂时无法提供与“GD32L233CBT6”相匹配的价格&库存,您可以联系我们找货

免费人工找货
GD32L233CBT6
    •  国内价格
    • 1+14.48280
    • 10+11.13480

    库存:803

    GD32L233CBT6
      •  国内价格
      • 1+15.48860
      • 10+11.90810

      库存:837