0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
GD32F207VGT6

GD32F207VGT6

  • 厂商:

    GIGADEVICE(兆易创新)

  • 封装:

    LQFP-100(14x14)

  • 描述:

    应用领域:-;CPU内核:ARM Cortex-M3;CPU最大主频:120MHz;程序存储容量:384KB;程序存储器类型:FLASH;RAM总容量:256KB;GPIO端口数量:82;

  • 数据手册
  • 价格&库存
GD32F207VGT6 数据手册
GigaDevice Semiconductor Inc. GD32F207xx ARM® Cortex®-M3 32-bit MCU Datasheet GD32F207xx Table of Contents List of Figures ................................................................................................................................3 List of Tables ..................................................................................................................................4 1 Introduction .........................................................................................................................5 2 Device overview ..................................................................................................................6 2.1 Device information .............................................................................................................................. 6 2.2 Block diagram ...................................................................................................................................... 8 2.3 Pinouts and pin assignment .............................................................................................................. 9 2.4 Memory map ...................................................................................................................................... 13 2.5 Clock tree ........................................................................................................................................... 14 2.6 Pin definitions .................................................................................................................................... 15 Functional description ..................................................................................................... 26 3 4 3.1 ARM® Cortex®-M3 core .................................................................................................................... 26 3.2 On-chip memory................................................................................................................................ 26 3.3 Clock, reset and supply management ........................................................................................... 27 3.4 Boot modes ........................................................................................................................................ 27 3.5 Power saving modes ........................................................................................................................ 28 3.6 Analog to digital converter (ADC) ................................................................................................... 28 3.7 Digital to analog converter (DAC) ................................................................................................... 29 3.8 DMA .................................................................................................................................................... 29 3.9 General-purpose inputs/outputs (GPIOs) ...................................................................................... 29 3.10 Timers and PWM generation........................................................................................................... 30 3.11 Real time clock (RTC) and backup registers ................................................................................ 31 3.12 Inter-integrated circuit (I2C) ............................................................................................................. 31 3.13 Serial peripheral interface (SPI)...................................................................................................... 32 3.14 Universal synchronous/asynchronous receiver transmitter (USART/UART) ........................... 32 3.15 Inter-IC sound (I2S) .......................................................................................................................... 32 3.16 Universal serial bus on-the-go full-speed (USB OTG FS) .......................................................... 33 3.17 Controller area network (CAN)........................................................................................................ 33 3.18 Ethernet MAC interface .................................................................................................................... 33 3.19 External memory controller (EXMC) .............................................................................................. 34 3.20 Secure digital input and output card interface (SDIO) ................................................................. 34 3.21 TFT LCD display interface (TLDI)................................................................................................... 34 3.22 Digital camera interface (DCI) ......................................................................................................... 35 3.23 Cryptographic acceleration Unit (CAU) ......................................................................................... 35 3.24 Hash acceleration unit (HAU).......................................................................................................... 35 3.25 Random number generator (RNG) ................................................................................................. 36 3.26 Debug mode ...................................................................................................................................... 36 3.27 Package and operation temperature .............................................................................................. 36 Electrical characteristics ................................................................................................. 37 1 / 49 GD32F207xx 4.1 Absolute maximum ratings .............................................................................................................. 37 4.2 Recommended DC characteristics ................................................................................................. 37 4.3 Power consumption .......................................................................................................................... 38 4.4 EMC characteristics .......................................................................................................................... 39 4.5 Power supply supervisor characteristics ....................................................................................... 39 4.6 Electrical sensitivity........................................................................................................................... 40 4.7 External clock characteristics .......................................................................................................... 40 4.8 Internal clock characteristics ........................................................................................................... 41 4.9 PLL characteristics ........................................................................................................................... 42 4.10 Memory characteristics .................................................................................................................... 42 4.11 GPIO characteristics......................................................................................................................... 42 4.12 ADC characteristics .......................................................................................................................... 43 4.13 DAC characteristics .......................................................................................................................... 43 4.14 I2C characteristics ............................................................................................................................ 43 4.15 SPI characteristics ............................................................................................................................ 44 Package information ........................................................................................................ 45 5 5.1 LQFP package outline dimensions................................................................................................. 45 6 Ordering information ....................................................................................................... 47 7 Revision history ................................................................................................................ 48 2 / 49 GD32F207xx List of Figures Figure 1. GD32F207xx block diagram ...................................................................................................................... 8 Figure 2. GD32F207Ix LQFP176 pinouts................................................................................................................. 9 Figure 3. GD32F207Zx LQFP144 pinouts ............................................................................................................. 10 Figure 4. GD32F207Vx LQFP100 pinouts ............................................................................................................. 11 Figure 5. GD32F207Rx LQFP64 pinouts ............................................................................................................... 12 Figure 6. GD32F207xx memory map ..................................................................................................................... 13 Figure 7. GD32F207xx clock tree............................................................................................................................ 14 Figure 8. LQFP package outline .............................................................................................................................. 45 3 / 49 GD32F207xx List of Tables Table 1. GD32F207xx devices features and peripheral list................................................................................... 6 Table 2. GD32F207xx pin definitions ...................................................................................................................... 15 Table 3. Absolute maximum ratings ........................................................................................................................ 37 Table 4. DC operating conditions ............................................................................................................................ 37 Table 5. Power consumption characteristics ......................................................................................................... 38 Table 6. EMS characteristics ................................................................................................................................... 39 Table 7. EMI characteristics ..................................................................................................................................... 39 Table 8. Power supply supervisor characteristics ................................................................................................. 39 Table 9. ESD characteristics .................................................................................................................................... 40 Table 10. Static latch-up characteristics................................................................................................................. 40 Table 11. High speed external clock (HSE) generated from a crystal/ceramic characteristics ...................... 40 Table 12. Low speed external clock (LSE) generated from a crystal/ceramic characteristics ....................... 41 Table 13. High speed internal clock (HSI) characteristics ................................................................................... 41 Table 14. Low speed internal clock (LSI) characteristics ..................................................................................... 41 Table 15. PLL characteristics ................................................................................................................................... 42 Table 16. Flash memory characteristics ................................................................................................................. 42 Table 17. I/O port characteristics ............................................................................................................................. 42 Table 18. ADC characteristics .................................................................................................................................. 43 Table 19. DAC characteristics ................................................................................................................................. 43 Table 20. I2C characteristics .................................................................................................................................... 43 Table 21. SPI characteristics .................................................................................................................................... 44 Table 22. LQFP package dimensions ..................................................................................................................... 46 Table 23. Part ordering code for GD32F207xx devices ....................................................................................... 47 Table 24. Revision history......................................................................................................................................... 48 4 / 49 GD32F207xx 1 Introduction The GD32F207xx device belongs to the performance line of GD32 MCU Family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M3 RISC core with best cost-performance ratio in terms of processing capacity, reduced power consumption and peripheral set. The Cortex®-M3 is a next generation processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support. The GD32F207xx device incorporates the ARM® Cortex®-M3 32-bit processor core operating at 120 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 3072 KB on-chip Flash memory and 256 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to three 12-bit 2M SPS ADCs, two 12-bit DACs, up to ten general-purpose 16-bit timers, two 16-bit basic timers plus two 16-bit PWM advanced-control timers, as well as standard and advanced communication interfaces: up to three SPIs, three I2Cs, four USARTs and four UARTs, two I2Ss, two CANs, a SDIO, an USB device/host/OTG FS and an Ethernet MAC. Additional peripherals as TFT-LCD Interface (TLDI), EXMC interface with SDRAM extension support, Digital camera interface (DCI), Cryptographic acceleration unit (CAU), Hash acceleration unit (HAU), Random number generator (RNG) are included. The device operates from a 2.6 to 3.6V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization of power consumption, an especially important consideration in low power applications. The above features make GD32F207xx devices suitable for a wide range of interconnection and advanced applications, especially in areas such as industrial control, consumer and handheld equipment, embedded modules, human machine interface, security and alarm systems, POS and electronic payment, automotive navigation and so on. 5 / 49 GD32F207xx 2 Device overview 2.1 Device information Table 1. GD32F207xx devices features and peripheral list GD32F207xx Part Number RE RG RK VC VE VG VK Code Area (KB) 256 512 384 384 256 512 384 384 Data Area (KB) 0 0 640 2688 0 0 640 2688 Total (KB) 256 512 1024 3072 256 512 1024 3072 128 128 256 256 128 128 256 256 GPTM 10 10 10 10 10 10 10 10 Advanced TM 2 2 2 2 2 2 2 2 SysTick 1 1 1 1 1 1 1 1 Basic TM 2 2 2 2 2 2 2 2 Watchdog 2 2 2 2 2 2 2 2 RTC 1 1 1 1 1 1 1 1 USART+UART 4+2 4+2 4+2 4+2 4+4 4+4 4+4 4+4 I2C 3 3 3 3 3 3 3 3 SPI/I2S 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 SDIO 1 1 1 1 1 1 1 1 CAN 2.0B 2 2 2 2 2 2 2 2 USB OTG FS 1 1 1 1 1 1 1 1 Ethernet MAC 1 1 1 1 1 1 1 1 TFT-LCD 0 0 0 0 1 1 1 1 Digital Camera 1 1 1 1 1 1 1 1 Crypto/Hash 1 1 1 1 1 1 1 1 GPIO 51 51 51 51 82 82 82 82 EXMC/SDRAM 0/0 0/0 0/0 0/0 1/0 1/0 1/0 1/0 ADC Unit (CHs) 3(16) 3(16) 3(16) 3(16) 3(16) 3(16) 3(16) 3(16) DAC 2 2 2 2 2 2 2 2 Flash RC Connectivity Timers SRAM (KB) Package LQFP64 LQFP100 6 / 49 GD32F207xx Table 1. GD32F207xx devices features and peripheral list (continued) GD32F207xx Part Number ZE ZG ZK IE IG IK Code Area (KB) 256 512 384 384 512 384 384 Data Area (KB) 0 0 640 2688 0 640 2688 Total (KB) 256 512 1024 3072 512 1024 3072 128 128 256 256 128 256 256 GPTM 10 10 10 10 10 10 10 Advanced TM 2 2 2 2 2 2 2 SysTick 1 1 1 1 1 1 1 Basic TM 2 2 2 2 2 2 2 Watchdog 2 2 2 2 2 2 2 RTC 1 1 1 1 1 1 1 USART+UART 4+4 4+4 4+4 4+4 4+4 4+4 4+4 I2C 3 3 3 3 3 3 3 SPI/I2S 3/2 3/2 3/2 3/2 3/2 3/2 3/2 SDIO 1 1 1 1 1 1 1 CAN 2.0B 2 2 2 2 2 2 2 USB OTG FS 1 1 1 1 1 1 1 Ethernet MAC 1 1 1 1 1 1 1 TFT-LCD 1 1 1 1 1 1 1 Digital Camera 1 1 1 1 1 1 1 Crypto/Hash 1 1 1 1 1 1 1 GPIO 114 114 114 114 140 140 140 EXMC/SDRAM 1/1 1/1 1/1 1/1 1/1 1/1 1/1 ADC Unit (CHs) 3(24) 3(24) 3(24) 3(24) 3(24) 3(24) 3(24) DAC 2 2 2 2 2 2 2 Flash ZC Connectivity Timers SRAM (KB) Package LQFP144 LQFP176 7 / 49 GD32F207xx 2.2 Block diagram Figure 1. GD32F207xx block diagram SW/JTAG TPIU ICode DCode System ARM Cortex-M3 Processor Fmax:120MHz NVIC POR/ PDR Flash Memory PLL F max : 144MHz Dbus Slave Slave Master Slave Master DMA2 (7 chs) Master AHB Matrix DMA1(7 chs) ETH Flash Memory Controller Ibus Master Slave Slave EXMC SRAM1 SRAM2 SRAM3 Slave HSI 8MHz DCI CRYP HASH RNG AHB2 Peripherals SDIO TLDI LDO 1.2V USB OTG CRC RCC AHB1 Peripherals AHB to AP B Brid ge2 HSE 4-25MHz AHB to AP B Brid ge1 Master LVD Interrput request WWDG USART1 Slave SAR ADC Slave SPI1 IWDG ADC1~3 RTC EXTI DAC GPIOA CAN1 GPIOB CAN2 Powered By V DDA GPIOE APB1: Fmax = 60MHZ GPIOD APB2: Fmax = 120MHz GPIOC SPI2~3 TIMER2~4 TIMER5~7 GPIOF TIMER 12~14 GPIOG USART2~5 TIMER1 USART7~8 TIMER8 I2C1 TIMER9~11 USART6 Powered By VDDA I2C2 I2C3 GPIOH USB FS GPIOI 8 / 49 GD32F207xx Pinouts and pin assignment 2.3 Figure 2. GD32F207Ix LQFP176 pinouts PI2 PI3 VSS VDD PA14 PA15 PC10 PC11 PC12 PD0 PD1 PD2 PD3 PD4 PD5 VSS_10 VDD_10 PD6 PD7 PG9 PG11 PG10 PG12 PG14 PG13 VSS_11 VDD_11 PB3 PG15 PB4 PB5 PB6 PB7 BOOT0 PB8 PB9 PE0 PE1 VSS_3 VDD_3 PI4 PI5 PI6 PI7 PE2 1 176175174173172171170169168167166165 164163162161160159158157156155154153152 151150149148147146145144143142141140139138137136135134133 132 PE3 PE4 2 131 PI0 3 130 PH15 PE5 PE6 4 129 5 128 PH14 PH13 VBAT 6 127 VDD_2 PI8 7 126 VSS_2 PC13-TAMPER-RTC PC14-OSC32_IN 8 125 9 124 NC PA13 PC15-OSC32_OUT 10 123 PA12 PI9 11 122 PA11 PI10 12 121 PA10 PI11 13 120 PA9 PI1 VSS_5 14 119 PA8 VDD_5 15 118 PC9 PF0 16 117 PF1 17 116 PC8 PC7 PF2 18 115 PC6 PF3 19 114 VDD_9 PF4 20 113 VSS_9 PF5 21 112 PG8 VSS 22 VDD 23 PF6 24 PF7 25 PF8 111 PG7 110 PG6 109 PG5 108 PG4 26 107 PG3 PF9 27 106 PG2 PF10 28 105 PD15 PH0-OSC_IN 29 104 PD14 PH1-OSC_OUT 30 103 VDD_8 NRST 31 102 VSS_8 PC0 32 101 PD13 PC1 33 100 PD12 PC2 34 99 PD11 PC3 35 98 PD10 VSSA 36 97 PD9 VREFVREF+ 37 96 PD8 38 95 PB15 VDD 39 94 PB14 PA0_WKUP 40 93 PA1 41 92 PB13 PB12 VDD GigaDevice GD32F207Ix LQFP176 PA2 42 91 PH2 43 90 VSS PH3 44 89 PH12 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 PH11 PH10 PH9 PH8 PH7 VDD_1 PH6 VSS_1 PB11 PB10 PE15 PE13 PE14 PE12 PE11 VDD_7 PE10 VSS_7 PE9 PE7 PE8 PG1 PI5 PG0 PI4 VDD_6 PI3 VSS_6 PF12 PB2 PF11 PB1 PC5 PB0 PA7 PC4 PA6 PA5 VDD_4 PA4 VSS_4 PA3 PH5 PH4 9 / 49 GD32F207xx Figure 3. GD32F207Zx LQFP144 pinouts PA14 PA15 PC10 PC11 PC12 PD0 PD1 PD2 PD3 PD4 PD5 VSS_10 VDD_10 PD6 PD7 PG9 PG10 PG11 PG12 PG13 PG14 VSS_11 VDD_11 PG15 PB4 PB3 PB5 PB6 PB7 BOOT0 PB8 PB9 PE0 PE1 VSS_3 VDD_3 144143142141140139138137136135134133 132131130129128127126125124123122121120 119118117116115114113112111110109 PE2 1 108 PE3 PE4 2 107 VSS_2 3 106 NC PE5 PE6 4 105 PA13 5 104 PA12 VBAT 6 103 PA11 PC13-TAMPER-RTC PC14-OSC32_IN 7 102 PA10 8 101 PA9 PC15-OSC32_OUT 9 100 PA8 PF0 10 99 PC9 VDD_2 PF1 11 98 PC8 PF2 12 97 PC7 PF3 PF4 13 96 PC6 14 95 VDD_9 PF5 15 94 VSS_9 VSS_5 16 93 PG8 92 PG7 91 PG6 90 PG5 89 PG4 VDD_5 17 PF6 18 PF7 19 PF8 20 PF9 21 PF10 22 GigaDevice GD32F207Zx LQFP144 88 PG3 87 PG2 OSC_IN 23 86 PD15 OSC_OUT 24 85 PD14 NRST 25 84 VDD_8 PC0 26 83 VSS_8 PC1 27 82 PD13 PC2 28 81 PD12 PC3 VSSA 29 80 PD11 30 79 PD10 VREFVREF+ 31 78 PD9 32 77 PD8 VDDA 33 76 PB15 PA0_WKUP 34 75 PB14 PA1 35 74 PB13 PA2 36 73 PB12 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 VDD_1 VSS_1 PB11 PB10 PE15 PE13 PE14 PE12 PE11 VDD_7 PE10 VSS_7 PE9 PE7 PE8 PG1 PG0 PF15 PF14 VDD_6 PF13 VSS_6 PF12 PB2 PF11 PB1 PC5 PB0 PA7 PC4 PA6 PA5 VDD_4 PA4 VSS_4 PA3 10 / 49 GD32F207xx Figure 4. GD32F207Vx LQFP100 pinouts PA14 PA15 PC10 PC11 PC12 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PB4 PB3 PB5 PB6 PB7 BOOT0 PB8 PB9 PE0 PE1 VSS_3 VDD_3 PE2 1 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 PE3 PE4 2 74 VSS_2 3 73 NC PE5 PE6 4 72 PA13 5 71 PA12 VBAT 6 PC13-TAMPER-RTC PC14-OSC32_IN 7 70 69 PA10 8 68 PA9 PC15-OSC32_OUT 9 67 PA8 VSS_5 10 66 PC9 65 PC8 64 PC7 63 PC6 14 62 PD15 VDD_2 PA11 VDD_5 11 OSC_IN 12 OSC_OUT NRST PC0 13 15 61 PD14 PC1 16 60 PD13 PC2 PC3 17 59 PD12 18 58 PD11 VSSA 19 57 PD10 VREFVREF+ 20 56 PD9 21 55 PD8 VDDA 22 54 PB15 PA0-WKUP 23 53 PB14 PA1 24 52 PB13 PA2 25 51 PB12 GigaDevice GD32F207Vx LQFP100 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VSS_1 VDD_1 PB11 PB10 PE15 PE14 PE13 PE11 PE12 PE10 PE9 PE8 PB2 PE7 PB1 PC5 PB0 PA7 PC4 PA6 PA5 PA4 VDD_4 PA3 VSS_4 11 / 49 GD32F207xx Figure 5. GD32F207Rx LQFP64 pinouts PA14 PA15 PC10 PC11 PC12 PD2 PB3 PB4 PB5 PB6 PB7 BOOT0 PB8 PB9 VSS_3 VDD_3 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 VBAT 1 48 VDD_2 PC13-TAMPER-RTC 2 47 VSS_2 PC14-OSC32_IN 3 46 PA13 PC15-OSC32_OUT PD0-OSC_IN 4 45 PA12 5 44 PA11 PD1 OSC_OUT 6 43 PA10 NRST PC0 7 42 PA9 PC1 9 PC2 PC3 VSSA GigaDevice GD32F207Rx LQFP64 41 PA8 40 PC9 10 39 PC8 11 38 PC7 12 37 PC6 VDDA 13 36 PB15 PA0-WKUP 14 35 PB14 PA1 15 34 PB13 PA2 16 33 PB12 8 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VSS_1 VDD_1 PB11 PB10 PB2 PB1 PC5 PB0 PA7 PC4 PA6 PA5 PA4 VDD_4 PA3 VSS_4 12 / 49 GD32F207xx 2.4 Memory map Figure 6. GD32F207xx memory map 0xFFFF FFFF 4 0xE010 0000 0x1FFF FFFF 0x1FFF F80F reserved reserved 0xE000 0000 Cortex-M3 Internal Peripherals 3 EXMC Option Bytes 0x1FFF F800 System memory 0x1FFF B000 reserved 0x6000 0000 0x082F FFFF 2 Peripherals 0x4000 0000 Flash memory 1 reserved 0x2000 0000 SRAM 0 reserved 0x0800 0000 Aliased to Flash or system memory according to BOOT 0x0000 0000 pins configuration 0x0000 0000 0x5FFF FFFF 0x5006 0C00 0x5006 0800 0x5006 0400 0x5006 0000 0x5005 0400 0x5005 0000 0x5000 0000 0x5000 0000 0x4002 A000 0x4002 8000 0x4002 3400 0x4002 3000 0x4002 2400 0x4002 2000 0x4002 1400 0x4002 1000 0x4002 0800 0x4002 0400 0x4002 0000 0x4001 8400 0x4001 8000 0x4001 7C00 0x4001 7800 0x4001 7400 0x4001 7000 0x4001 6C00 0x4001 6800 0x4001 5800 0x4001 5400 0x4001 5000 0x4001 4C00 0x4001 4000 0x4001 3C00 0x4001 3800 0x4001 3400 0x4001 3000 0x4001 2C00 0x4001 2800 0x4001 2400 0x4001 2000 0x4001 1C00 0x4001 1800 0x4001 1400 0x4001 1000 0x4001 0C00 0x4001 0800 0x4001 0400 0x4001 0000 0x4000 C400 0x4000 C000 0x4000 8000 0x4000 7C00 0x4000 7800 0x4000 7400 0x4000 7000 0x4000 6C00 0x4000 6800 0x4000 6400 0x4000 6000 0x4000 5C00 0x4000 5800 0x4000 5400 0x4000 5000 0x4000 4C00 0x4000 4800 0x4000 4400 0x4000 4000 0x4000 3C00 0x4000 3800 0x4000 3400 0x4000 3000 0x4000 2C00 0x4000 2800 0x4000 2400 0x4000 2000 0x4000 1C00 0x4000 1800 0x4000 1400 0x4000 1000 0x4000 0C00 0x4000 0800 0x4000 0400 0x4000 0000 reserved RNG HASH CRYP reserved DCI reserved USBOTG reserved ETH reserved CRC reserved FMC reserved RCC reserved DMA2 DMA1 reserved SDIO reserved Port I Port H USART6 reserved TLDI reserved TIMER11 TIMER10 TIMER9 reserved ADC3 USART1 TIMER8 SPI1 TIMER1 ADC2 ADC1 Port G Port F Port E Port D Port C Port B Port A EXTI AFIO reserved I2C3 reserved UART8 UART7 DAC PWR BKP CAN2 CAN1 USB/CAN shared USB FS I2C2 I2C1 USART5 USART4 USART3 USART2 reserved SPI3 SPI2 reserved IWDG WWDG RTC reserved TIMER14 TIMER13 TIMER12 TIMER7 TIMER6 TIMER5 TIMER4 TIMER3 TIMER2 13 / 49 GD32F207xx 2.5 Clock tree Figure 7. GD32F207xx clock tree CK_HSE PLLT prescaler (PLLTPS ) ÷2,3...63 1 PLLT input clock 0 CK_HSI PLLTSEL VCO input clock ×49,50, …,432 CK_VCO PLLTR prescaler (PLLTRPS ) ÷2,3...7 CK_PLLTR TCDI prescaler (TCDIPS ) ÷2,4,8,16 USB OTG Prescaler ÷1,1.5,2,2.5 48 MHz CK_TCDI PLLTMF (to FMC) 1 SCS[1:0] CK_USB OTG (to USB OTG) CK_FMC CK_HSI 8 MHz HSI RC 00 ×2,3,4 …,32 PLL 0 /2 1 PLLSEL PLLPREDV 0 3-25 MHz HSE XTAL 1 CK_PLL PLLMF /1,2,3… 15,16 10 AHB Prescaler ÷1,2...512 CK_SYS 120 MHz max CK_AHB 120 MHz max CK_RNG Peripheral enable (to RNG ) 01 CK_HAU Peripheral enable (to HAU) Peripheral enable (to CAU ) Clock Monitor CK_CAU PREDV1SEL EXT1 to CK_OUT CK_HSE CK_DCI Peripheral enable (to DCI) CK_EXMC ×8,9,10…, 14,16,20 PLL2 CK_PLL2 ×8,9,10…, 14,16,20 PLL3 PREDV2 (to EXMC) AHB enable (to AHB bus,Cortex-M3,SRAM,DMA) HCLK PLL2MF /1,2,3… 15,16 EXMC enable (by hardware) 0 CK_PLL3 x2 CK_CST CK_I2S ÷8 1 (to I2S2,3) (to Cortex-M3 SysTick) FCLK I2S2/3SEL (free running clock) PLL3MF /128 32.768 KHz LSE OSC 11 CK_RTC 01 (to RTC) RTCSRC[1:0] 40 KHz LSI RC CK_IWDG (to IWDG) CKOUTDIV ÷1,2...64 00xx 0100 0101 0110 0111 NO CLK CK_SYS CK_HSI CK_HSE /2 CK_PLL CK_PLL2 /2 CK_PLL3 1000 1001 1010 1011 EXT1 CK_PLL3 CK_APB1 60 MHz max PCLK1 to APB1 peripherals Peripheral enable TIMER2,3,4,5,6,7, 12,13,14 if(APB1 prescale =1)x1 else x 2 10 CK_OUT APB1 Prescaler ÷1,2,4,8,16 APB2 Prescaler ÷1,2,4,8,16 TIMERx enable CK_TIMERx to TIMER2,3,4,5, 6,7,12,13,14 CK_APB2 120 MHz max PCLK2 to APB2 peripherals Peripheral enable TIMER1,8,9,10,11 if(APB2 prescale =1)x1 else x 2 ADC Prescaler ÷2,4,8,12,16 CK_TIMERx TIMERx enable to TIMER1,8,9,10,11 CK_ADCX to ADC1,2,3 14 MHz max CKOUTSEL[3:0] CK_OUT2 CKOUT2DIV ÷1,2...64 00xx 0100 0101 0110 0111 NO CLK CK_SYS CK_HSI CK_HSE CK_PLL /2 CK_PLL2 CK_PLL3 /2 1000 1001 1010 1011 EXT1 CK_PLL3 CKOUT2SEL[3:0] 0 CK_MACTX 1 Ethernet PHY /2,20 0 CK_MACRX 1 CK_MACRMII Legend: HSE = High speed external clock HSI = High speed internal clock LSE = Low speed external clock LSI = Low speed internal clock 14 / 49 GD32F207xx 2.6 Pin definitions I/O(2) Level LQFP64 LQFP100 LQFP144 Pin Name LQFP176 Pins Pin Type(1) Table 2. GD32F207xx pin definitions Functions description Default: PE2 PE2 1 1 1 - I/O 5VT Alternate: TRACECK, EXMC_A23 Remap: ETH_MII_TXD3 Default: PE3 PE3 2 2 2 - I/O 5VT PE4 3 3 3 - I/O 5VT Alternate:TRACED1, EXMC_A20 Alternate: TRACED0, EXMC_A19 Default: PE4 Remap: DCMI_D4, LCD_B0 Default: PE5 PE5 4 4 4 - I/O 5VT Alternate:TRACED2, EXMC_A21 Remap: TM9_CH1, DCMI_D6, LCD_G0 Default: PE6 PE6 5 5 5 - I/O 5VT Alternate:TRACED3, EXMC_A22 Remap: TM9_CH2, DCMI_D7, LCD_G1 VBAT 6 6 6 1 P Default: VBAT PI8 7 - - - I/O Default: PI8 8 7 7 2 I/O 5VT 9 8 8 3 I/O 10 9 9 4 I/O PC13TAMPERRTC PC14OSC32_IN PC15OSC32_OUT Default: PC13 Alternate: TAMPER, RTC Default: PC14 Alternate: OSC32_IN Default: PC15 Alternate: OSC32_OUT Default: PI9 PI9 11 - - - I/O 5VT Alternate: EXMC_D30 Remap: LCD_VSYNC, CAN1_RX Default: PI10 PI10 12 - - - I/O 5VT Alternate: EXMC_D31 PI11 13 - - - I/O 5VT Default: PI11 VSS 14 - - - P Default: VSS VDD 15 - - - P Default: VDD PF0 16 10 - - Remap: LCD_HSYNC, ETH_MII_RX_ER Default: PF0 I/O 5VT Alternate: EXMC_A0 Remap: I2C2_SDA Default: PF1 PF1 17 11 - - I/O 5VT Alternate: EXMC_A1 Remap: I2C2_SCL 15 / 49 I/O(2) Level LQFP64 LQFP100 LQFP144 Pin Name LQFP176 Pins Pin Type(1) GD32F207xx Functions description Default: PF2 PF2 18 12 - - I/O 5VT Alternate: EXMC_A2 Remap: I2C2_SMBA Default: PF3 PF3 19 13 - - I/O 5VT Alternate: EXMC_A3 Remap: ADC3_IN9 Default: PF4 PF4 20 14 - - I/O 5VT Alternate: EXMC_A4 Remap: ADC3_IN14 Default: PF5 PF5 21 15 - - I/O 5VT Alternate: EXMC_A5 Remap: ADC3_IN15 VSS_5 22 16 10 - P VDD_5 23 17 11 - P Default: VSS_5 Default: VDD_5 Default: PF6 PF6 24 18 - - I/O Alternate: ADC3_IN4, EXMC_NIORD Remap: TM10_CH1, UART7_RX Default: PF7 PF7 25 19 - - I/O Alternate: ADC3_IN5, EXMC_NREG Remap: TM11_CH1, UART7_TX Default: PF8 PF8 26 20 - - I/O Alternate: ADC3_IN6, EXMC_NIOWR Remap: TM13_CH1 Default: PF9 PF9 27 21 - - I/O Alternate: ADC3_IN7, EXMC_CD Remap: TM14_CH1 Default: PF10 PF10 28 22 - - I/O Alternate: ADC3_IN8, EXMC_INTR Remap: DCMI_D11, LCD_DE PH0- 29 23 12 5 I 30 24 13 6 O NRST 31 25 14 7 I/O PC0 32 26 15 8 I/O OSC_IN PH1OSC_OUT Default: OSC_IN Remap: PD0, PH0 Default: OSC_OUT Remap: PD1, PH1 Default: NRST Default: PC0 Alternate: ADC_IN10 Remap: EXMC_SDNWE PC1 33 27 16 9 I/O Default: PC1 Alternate: ADC_IN11, ETH_MII_MDC, ETH_RMII_MDC Default: PC2 PC2 34 28 17 10 I/O Alternate: ADC_IN12, ETH_MII_TXD2 Remap: EXMC_SDNE0, SPI2_MISO PC3 35 29 18 11 I/O Default: PC3 16 / 49 I/O(2) Level LQFP64 LQFP100 LQFP144 Pin Name LQFP176 Pins Pin Type(1) GD32F207xx Functions description Alternate: ADC_IN13, ETH_MII_TX_CLK Remap: EXMC_SDCKE0, SPI2_MOSI, I2S2_SD VSSA 36 30 19 12 P Default: VSSA VREF- 37 31 20 - P Default: VREF- VREF+ 38 32 21 - P Default: VREF+ VDDA 39 33 22 13 P Default: VDDA Default: PA0 PA0-WKUP 40 34 23 14 I/O Alternate: WKUP, USART2_CTS, ADC_IN0, TM2_CH1_ETR, TM5_CH1, TM8_ETR, ETH_MII_CRS_WKUP Remap: UART4_TX Default: PA1 PA1 41 35 24 15 I/O Alternate: USART2_RTS, ADC_IN1, TM2_CH2, TM5_CH2,ETH_MII_RX_CLK, ETH_RMII_REF_CLK Remap: UART4_RX Default: PA2 PA2 42 36 25 16 I/O Alternate: USART2_TX, ADC_IN2, TM2_CH3, TM5_CH3, TM9_CH1,ETH_MII_MDIO, ETH_RMII_MDIO, SPI1_IO3 Default: PH2 PH2 43 - - - I/O 5VT Alternate: EXMC_SDCKE0 Remap: LCD_R0, ETH_MII_CRS_WKUP Default: PH3 PH3 44 - - - I/O 5VT Alternate: EXMC_SDNE0 Remap: LCD_R1, ETH_MII_COL Default: PH4 PH4 45 - - - I/O 5VT PH5 46 - - - I/O 5VT Alternate: EXMC_SDNWE Remap: I2C2_SCL, LCD_R0 Default: PH5 Remap: I2C2_SDA Default: PA3 PA3 47 37 26 17 I/O Alternate: USART2_RX, ADC_IN3, TM2_CH4, TM5_CH4, TM9_CH2, ETH_MII_COL, SPI1_IO4 Remap: LCD_B5 VSS_4 48 38 27 18 P VDD_4 49 39 28 19 P Default: VSS_4 Default: VDD_4 Default: PA4 PA4 50 40 29 20 I/O Alternate: SPI1_NSS, USART2_CK, DAC_OUT1, ADC12_IN4, DCMI_HSYNC Remap: SPI3_NSS, I2S3_WS, LCD_VSYNC Default: PA5 PA5 51 41 30 21 I/O Alternate: SPI1_SCK, ADC12_IN5, DAC_OUT2 Remap: TM2_CH1_ETR, TM8_CH1N PA6 52 42 31 22 I/O Default: PA6 Alternate: SPI1_MISO, ADC12_IN6, TM3_CH1, TM8_BKIN, 17 / 49 I/O(2) Level LQFP64 LQFP100 LQFP144 Pin Name LQFP176 Pins Pin Type(1) GD32F207xx Functions description TM13_CH1, DCMI_PIXCLK Remap: TM1_BKIN, LCD_G2 Default: PA7 PA7 53 43 32 23 I/O Alternate: SPI1_MOSI, ADC12_IN7, TM3_CH2, TM8_CH1N, TM14_CH1, ETH_MII_RX_DV, ETH_RMII_CRS_DV Remap: TM1_CH1N PC4 54 44 33 24 I/O PC5 55 45 34 25 I/O PB0 56 46 35 26 I/O Default: PC4 Alternate: ADC12_IN14, ETH_MII_RXD0. ETH_RMII_RXD0 Default: PC5 Alternate: ADC12_IN15, ETH_MII_RXD1, ETH_RMII_RXD1 Default: PB0 Alternate: ADC12_IN8, TM3_CH3, TM8_CH2N, ETH_MII_RXD2 Remap: TM1_CH2N, LCD_R3 Default: PB1 PB1 57 47 36 27 I/O Alternate: ADC12_IN9, TM3_CH4, TM8_CH3N, ETH_MII_RXD3 Remap: TM1_CH3N, LCD_R6 I/O 5VT Default: PB2, BOOT1 PB2 58 48 37 28 PF11 59 49 - - I/O 5VT PF12 60 50 - - I/O 5VT VSS_6 61 51 - - P Default: VSS_6 VDD_6 62 52 - - P Default: VDD_6 PF13 63 53 - - I/O 5VT PF14 64 54 - - I/O 5VT PF15 65 55 - - I/O 5VT PG0 66 56 - - I/O 5VT PG1 67 57 - - I/O 5VT Default: PF11 Alternate: EXMC_NIOS16, DCMI_D12, EXMC_SDNRAS Default: PF12 Alternate: EXMC_A6 Default: PF13 Alternate: EXMC_A7 Default: PF14 Alternate: EXMC_A8 Default: PF15 Alternate: EXMC_A9 Default: PG0 Alternate: EXMC_A10 Default: PG1 Alternate: EXMC_A11 Default: PE7 PE7 68 58 38 - I/O 5VT Alternate: EXMC_D4, UART7_RX Remap: TM1_ETR Default: PE8 PE8 69 59 39 - I/O 5VT Alternate: EXMC_D5, UART7_TX Remap: TM1_CH1N Default: PE9 PE9 70 60 40 - VSS_7 71 61 - - I/O 5VT Alternate: EXMC_D6 Remap: TM1_CH1 P Default: VSS_7 18 / 49 LQFP176 LQFP144 LQFP100 LQFP64 Pin Type(1) Pins VDD_7 72 62 - - P PE10 73 63 41 - Pin Name I/O(2) Level GD32F207xx Functions description Default: VDD_7 Default: PE10 I/O 5VT Alternate: EXMC_D7 Remap: TM1_CH2N Default: PE11 PE11 74 64 42 - I/O 5VT Alternate: EXMC_D8 Remap: TM1_CH2, LCD_G3 Default: PE12 PE12 75 65 43 - I/O 5VT Alternate: EXMC_D9 Remap: TM1_CH3N, LCD_B4 Default: PE13 PE13 76 66 44 - I/O 5VT Alternate: EXMC_D10 Remap: TM1_CH3, LCD_DE Default: PE14 PE14 77 67 45 - I/O 5VT Alternate: EXMC_D11 Remap: TM1_CH4, LCD_CLK Default: PE15 PE15 78 68 46 - I/O 5VT Alternate: EXMC_D12 Remap: TM1_BKIN, LCD_R7 Default: PB10 PB10 79 69 47 29 I/O 5VT Alternate: I2C2_SCL, USART3_TX, ETH_MII_RX_ER Remap: TM2_CH3, LCD_G4, SPI2_SCK, I2S2_CK Default: PB11 PB11 80 70 48 30 I/O 5VT Alternate: I2C2_SDA, USART3_RX, ETH_MII_TX_EN, ETH_RMII_TX_EN Remap: TM2_CH4, LCD_G5 VSS_1 81 71 49 31 P Default: VSS_1 VDD_1 82 72 50 32 P Default: VDD_1 Default: PH6 PH6 83 - - - I/O 5VT Alternate: EXMC_SDNE1 Remap: I2C2_SMBA, TM12_CH1, ETH_MII_RXD2, DCMI_D8 Default: PH7 PH7 84 - - - I/O 5VT Alternate: EXMC_SDCKE1 Remap: I2C3_SCL, ETH_MII_RXD3, DCMI_D9 Default: PH8 PH8 85 - - - I/O 5VT Alternate: EXMC_D16 Remap: LCD_R2, I2C3_SDA, DCMI_HSYNC Default: PH9 PH9 86 - - - I/O 5VT Alternate: EXMC_D17 Remap: LCD_R3, I2C3_SMBA, TM12_CH2, DCMI_D0 Default: PH10 PH10 87 - - - I/O 5VT Alternate: EXMC_D18 Remap: LCD_R4, TM5_CH1, DCMI_D1 19 / 49 I/O(2) Level LQFP64 LQFP100 LQFP144 Pin Name LQFP176 Pins Pin Type(1) GD32F207xx Functions description Default: PH11 PH11 88 - - - I/O 5VT Alternate: EXMC_D19 Remap: LCD_R5, TM5_CH2, DCMI_D2 Default: PH12 I/O 5VT Alternate: EXMC_D20 PH12 89 - - - VSS 90 - - - P Default: VSS VDD 91 - - - P Default: VDD Remap: LCD_R6, TM5_CH3, DCMI_D3 Default: PB12 PB12 92 73 51 33 I/O 5VT Alternate: SPI2_NSS, I2C2_SMBA, USART3_CK, TM1_BKIN, I2S2_WS, CAN2_RX, ETH_MII_TXD0, ETH_RMII_TXD0 Default: PB13 PB13 93 74 52 34 I/O 5VT Alternate: SPI2_SCK, USART3_CTS, TM1_CH1N, I2S2_CK, CAN2_TX , ETH_MII_TXD1, ETH_RMII_TXD1 PB14 94 75 53 35 I/O 5VT PB15 95 76 54 36 I/O 5VT PD8 96 77 55 - Default: PB14 Alternate: SPI2_MISO, USART3_RTS, TM1_CH2N, TM12_CH1 Default: PB15 Alternate: SPI2_MOSI, TM1_CH3N, I2S2_SD, TM12_CH2 Default: PD8 I/O 5VT Alternate: EXMC_D13 Remap: USART3_TX, ETH_MII_RX_DV, ETH_RMII_CRS_DV Default: PD9 PD9 97 78 56 - I/O 5VT Alternate: EXMC_D14 Remap: USART3_RX, ETH_MII_RXD0, ETH_RMII_RXD0 Default: PD10 PD10 98 79 57 - I/O 5VT Alternate: EXMC_D15 Remap: USART3_CK, ETH_MII_RXD1, ETH_RMII_RXD1, LCD_B3 Default: PD11 PD11 99 80 58 - I/O 5VT Alternate: EXMC_A16 Remap: USART3_CTS, ETH_MII_RXD2 Default: PD12 PD12 100 81 59 - I/O 5VT Alternate: EXMC_A17 Remap: TM4_CH1, USART3_RTS Default: PD13 I/O 5VT Alternate: EXMC_A18 PD13 101 82 60 - VSS_8 102 83 - - P Default: VSS_8 VDD_8 103 84 - - P Default: VDD_8 Remap: TM4_CH2 Default: PD14 PD14 104 85 61 - I/O 5VT Alternate: EXMC_D0 Remap: TM4_CH3 PD15 105 86 62 - I/O 5VT Default: PD15 Alternate: EXMC_D1 20 / 49 I/O(2) Level LQFP64 LQFP100 LQFP144 Pin Name LQFP176 Pins Pin Type(1) GD32F207xx Functions description Remap: TM4_CH4 PG2 106 87 - - I/O 5VT PG3 107 88 - - I/O 5VT PG4 108 89 - - I/O 5VT PG5 109 90 - - I/O 5VT Default: PG2 Alternate: EXMC_A12 Default: PG3 Alternate: EXMC_A13 Default: PG4 Alternate: EXMC_A14, EXMC_BA0 Default: PG5 Alternate: EXMC_A15, EXMC_BA1 Default: PG6 PG6 110 91 - - I/O 5VT Alternate: EXMC_INT2 Remap: DCMI_D12, LCD_R7 Default: PG7 PG7 111 92 - - I/O 5VT Alternate: EXMC_INT3, DCMI_D13 Remap: USART6_CK, LCD_CLK Default: PG8 PG8 112 93 - - I/O 5VT Alternate: EXMC_SDCLK, USART6_RTS Remap: ETH_PPS_OUT VSS_9 113 94 - - P Default: VSS_9 VDD_9 114 95 - - P Default: VDD_9 PC6 115 96 63 37 Default: PC6 I/O 5VT Alternate: I2S2_MCK; TM8_CH1, SDIO_D6, USART6_TX Remap: TM3_CH1, DCMI_D0, LCD_HSYNC Default: PC7 PC7 116 97 64 38 I/O 5VT Alternate: I2S3_MCK; TM8_CH2, SDIO_D7, USART6_RX Remap: TM3_CH2, DCMI_D1, LCD_G6 Default: PC8 PC8 117 98 65 39 I/O 5VT Alternate: TM8_CH3, SDIO_D0, DCMI_D2, USART6_CK Remap: TM3_CH3 Default: PC9 PC9 118 99 66 40 I/O 5VT Alternate: TM8_CH4, SDIO_D1, DCMI_D3, MCO2 Remap: TM3_CH4, I2C3_SDA Default: PA8 PA8 119 100 67 41 I/O 5VT Alternate: USART1_CK, TM1_CH1, MCO, VCORE, OTG_FS_SOF Remap: LCD_R6, I2C3_SCL Default: PA9 PA9 120 101 68 42 I/O 5VT Alternate: USART1_TX, TM1_CH2, OTG_FS_VBUS, DCMI_D0 Remap: I2C3_SMBAI Default: PA10 PA10 121 102 69 43 I/O 5VT PA11 122 103 70 44 I/O 5VT Alternate: USART1_CTS, CANRX, OTG_FS_DM, USBDM, TM1_CH4 Alternate: USART1_RX, TM1_CH3, OTG_FS_ID, DCMI_D1 Default: PA11 Remap: LCD_R4 21 / 49 I/O(2) Level LQFP64 LQFP100 LQFP144 Pin Name LQFP176 Pins Pin Type(1) GD32F207xx Functions description Default: PA12 PA12 123 104 71 45 I/O 5VT Alternate: USART1_RTS, OTG_FS_DP, CAN1_TX, TM1_ETR,USBDP Remap: LCD_R5 I/O 5VT Default: JTMS, SWDIO PA13 124 105 72 46 NC 125 106 73 - VSS_2 126 107 74 47 P Default: VSS_2 VDD_2 127 108 75 48 P Default: VDD_2 PH13 128 Remap: PA13 - Default: PH13 - - - I/O 5VT Alternate: EXMC_D21 Remap: LCD_G2, TM8_CH1N, CAN1_TX Default: PH14 PH14 129 - - - I/O 5VT Alternate: EXMC_D22 Remap: LCD_G3, TM8_CH2N, DCMI_D4 Default: PH15 PH15 130 - - - I/O 5VT Alternate: EXMC_D23 Remap: LCD_G4, TM8_CH3N, DCMI_D11 Default: PI0 PI0 131 - - I/O 5VT Alternate: EXMC_D24 Remap: LCD_G5, TM5_CH4, SPI2_NSS, I2S2_WS, DCMI_D13 Default: PI1 PI1 132 - - - I/O 5VT Alternate: EXMC_D25 Remap: LCD_G6, SPI2_SCK, I2S2_CK, DCMI_D8 Default: PI2 PI2 133 - - - I/O 5VT Alternate: EXMC_D26 Remap: LCD_G7, TM8_CH4, SPI2_MISO, DCMI_D9 Default: PI3 I/O 5VT Alternate: EXMC_D27 PI3 134 - - - VSS 135 - - - P Default: VSS VDD 136 - - - P Default: VDD PA14 137 Remap: TM8_ETR, SPI2_MOSI, I2S2_SD, LCD_R1, DCMI_D10 109 76 49 I/O 5VT Default: JTCK, SWCLK Remap: PA14 Default: JTDI PA15 138 110 77 50 I/O 5VT Alternate: SPI3_NSS, I2S3_WS Remap: TM2_CH1_ETR, PA15, SPI1_NSS Default: PC10 PC10 139 111 78 51 I/O 5VT Alternate: UART4_TX, SDIO_D2, DCMI_D8 Remap: USART3_TX, SPI3_SCK, I2S3_CK, LCD_R2 Default: PC11 PC11 140 112 79 52 I/O 5VT Alternate: UART4_RX, SDIO_D3, DCMI_D4 Remap: USART3_RX, SPI3_MISO 22 / 49 I/O(2) Level LQFP64 LQFP100 LQFP144 Pin Name LQFP176 Pins Pin Type(1) GD32F207xx Functions description Default: PC12 PC12 141 113 80 53 I/O 5VT Alternate: UART5_TX, SDIO_CK, DCMI_D9 Remap: USART3_CK, SPI3_MOSI, I2S3_SD Default: PD0 PD0 142 114 81 5 I/O 5VT Alternate: EXMC_D2 Remap: CAN1_RX, OSC_IN Default: PD1 PD1 143 115 82 6 I/O 5VT Alternate: EXMC_D3 Remap: CAN1_TX, OSC_OUT PD2 144 116 83 54 I/O 5VT Default: PD2 Alternate: TM3_ETR, UART5_RX, SDIO_CMD, DCMI_D11 Default: PD3 PD3 145 117 84 - I/O 5VT Alternate: EXMC_CLK Remap: USART2_CTS, DCMI_D5, LCD_G7, SPI2_SCK, I2S2_CK Default: PD4 PD4 146 118 85 - I/O 5VT Alternate: EXMC_NOE Remap: USART2_RTS Default: PD5 PD5 147 119 86 - I/O 5VT Alternate: EXMC_NWE Remap: USART2_TX VSS_10 148 120 - - P Default: VSS_10 VDD_10 149 121 - - P Default: VDD_10 PD6 150 122 87 Default: PD6 - I/O 5VT Alternate: EXMC_NWAIT Remap: USART2_RX, DCMI_D10, LCD_B2, SPI3_MOSI, I2S3_SD Default: PD7 PD7 151 123 88 - I/O 5VT Alternate: EXMC_NE1, EXMC_NCE2 Remap: USART2_CK Default: PG9 PG9 152 124 - - I/O 5VT Alternate: EXMC_NE2, EXMC_NCE3 Remap: DCMI_VSYNC, USART6_RX Default: PG10 PG10 153 125 - - I/O 5VT Alternate: EXMC_NCE4_1, EXMC_NE3 Remap: DCMI_D2, LCD_G3, LCD_B2 Default: PG11 PG11 154 126 - - I/O 5VT Alternate: EXMC_NCE4_2 Remap: DCMI_D3, LCD_B3, ETH_MII_TX_EN, ETH_RMII_TX_EN Default: PG12 PG12 155 127 - - I/O 5VT Alternate: EXMC_NE4 Remap: USART6_RTS, LCD_B4, LCD_B1 Default: PG13 PG13 156 128 - - I/O 5VT Alternate: EXMC_A24 Remap: USART6_CTS, ETH_MII_TXD0, ETH_RMII_TXD0 23 / 49 I/O(2) Level LQFP64 LQFP100 LQFP144 Pin Name LQFP176 Pins Pin Type(1) GD32F207xx Functions description Default: PG14 PG14 157 129 - - I/O 5VT Alternate: EXMC_A25 Remap: USART6_TX, ETH_MII_TXD1, ETH_RMII_TXD1 VSS_11 158 130 - - P Default: VSS_10 VDD_11 159 131 - - P Default: VDD_10 Default: PG15 PG15 160 132 - - I/O 5VT Alternate: EXMC_SDNCAS, USART6_CTS Remap: DCMI_D13 Default: JTDO PB3 161 133 89 55 I/O 5VT Alternate:SPI3_SCK, I2S3_CK Remap: PB3, TRACESWO, TM2_CH2, SPI1_SCK Default: NJTRST PB4 162 134 90 56 I/O 5VT Alternate: SPI3_MISO Remap: TM3_CH1, PB4, SPI1_MISO Default: PB5 PB5 163 135 91 57 I/O Alternate: I2C1_SMBA, SPI3_MOSI, I2S3_SD, ETH_MII_PPS, ETH_RMII_PPS_OUT, DCMI_D10 Remap: TM3_CH2, SPI1_MOSI, CAN2_RX, EXMC_SDCKE1 Default: PB6 PB6 164 136 92 58 I/O 5VT Alternate: I2C1_SCL, TM4_CH1, DCMI_D5 Remap: USART1_TX, CAN2_TX, EXMC_SDNE1, SPI1_IO3 Default: PB7 PB7 165 137 93 59 I/O 5VT Alternate: I2C1_SDA , TM4_CH2, EXMC_NADV, DCMI_VSYNC Remap: USART1_RX, SPI1_IO4 BOOT0 166 138 94 60 I Default: BOOT0 Default: PB8 PB8 167 139 95 61 I/O 5VT Alternate: TM4_CH3, TM10_CH1, ETH_MII_TXD3, SDIO_D4, DCMI_D6 Remap: I2C1_SCL, CAN1_RX, LCD_B6 Default: PB9 PB9 168 140 96 62 I/O 5VT Alternate: TM4_CH4, TM11_CH1, SDIO_D5, DCMI_D7 Remap: I2C1_SDA, CAN1_TX, LCD_B7, SPI2_NSS, I2S2_WS Default: PE0 PE0 169 141 97 - I/O 5VT Alternate: TM4_ETR, EXMC_NBL0, UART8_RX Remap: DCMI_D2 Default: PE1 PE1 170 142 98 - I/O 5VT Alternate: EXMC_NBL1, UART8_TX Remap: DCMI_D3 VSS_3 171 143 99 63 P Default: VSS_3 VDD_3 172 144 100 64 P Default: VDD_3 PI4 173 - - - I/O 5VT Default: PI4 Alternate: EXMC_NBL2 24 / 49 Pin Type(1) LQFP64 LQFP100 LQFP144 Pin Name LQFP176 Pins I/O(2) Level GD32F207xx Functions description Remap: LCD_B4, TM8_BKIN, DCMI_D5 Default: PI5 PI5 174 - - - I/O 5VT Alternate: EXMC_NBL3 Remap: LCD_B5, TM8_CH1, DCMI_VSYNC Default: PI6 PI6 175 - - - I/O 5VT Alternate: EXMC_D28 Remap: LCD_B6, TM8_CH2, DCMI_D6 Default: PI7 PI7 176 - - - I/O 5VT Alternate: EXMC_D29 Remap: LCD_B7, TM8_CH3, DCMI_D7 Notes: 1. Type: I = input, O = output, P = power. 2. I/O Level: 5VT = 5 V tolerant. 25 / 49 GD32F207xx 3 Functional description 3.1 ARM® Cortex®-M3 core The Cortex®-M3 processor is the latest generation of ARM® processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.  32-bit ARM® Cortex®-M3 processor core  Up to 120 MHz operation frequency  Single-cycle multiplication and hardware divider  Integrated Nested Vectored Interrupt Controller (NVIC)  24-bit SysTick timer The Cortex®-M3 processor is based on the ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M3:  Internal Bus Matrix connected with ICode bus, DCode bus, system bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP) 3.2  Nested Vectored Interrupt Controller (NVIC)  Flash Patch and Breakpoint (FPB)  Data Watchpoint and Trace (DWT)  Instrument Trace Macrocell (ITM)  Memory Protection Unit (MPU)  Serial Wire JTAG Debug Port (SWJ-DP)  Trace Port Interface Unit (TPIU) On-chip memory  Up to 3072 Kbytes of Flash memory, including code Flash and data Flash  Up to 256 Kbytes of SRAM The ARM® Cortex®-M3 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 3072 Kbytes of inner Flash at most, which includes code Flash and data Flash is available for storing programs and data, and accessed (R/W) at CPU clock speed with zero wait states. Up to 256 Kbytes of inner SRAM is composed of SRAM1, SRAM2, and SRAM3 that can be accessed at same time. The Figure of GD32F207xx memory map shows the memory map of the GD32F207xx series of devices, including Flash, SRAM, peripheral, and other pre-defined regions. 26 / 49 GD32F207xx 3.3 Clock, reset and supply management  Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator  Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator  Integrated system clock PLL  2.6 to 3.6 V application supply and I/Os  Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD) The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB and two APB domains is 72 MHz. See Figure 9 for details on the clock tree. The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 2.6 V and down to 1.8V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security. Power supply schemes:  VDD range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.  VSSA, VDDA range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.  VBAT range: 1.8 to 3.6 V, power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. 3.4 Boot modes At startup, boot pins are used to select one of three boot options:  Boot from main Flash memory (default)  Boot from system memory  Boot from on-chip SRAM The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART1, USART2, CAN2, USB OTG FS in device mode. It also can be used to transfer and update the Flash memory code, the data and the vector table sections. In default condition, boot from bank 1 of Flash memory is selected. It also supports to boot from bank 2 of Flash memory by setting a bit in option bytes. 27 / 49 GD32F207xx 3.5 Power saving modes The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are Sleep mode, Deep-sleep mode, and Standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.  Sleep mode In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.  Deep-sleep mode In Deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (HSI, HSE) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the Deep-sleep mode including the 16 external lines, the RTC alarm, the LVD output, and USB wakeup. When exiting the Deep-sleep mode, the HSI is selected as the system clock.  Standby mode In Standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of HSI, HSE and PLL are disabled. The contents of SRAM and registers (except Backup Registers) are lost. There are four wakeup sources for the Standby mode, including the external reset from NRST pin, the RTC alarm, the IWDG reset, and the rising edge on WKUP pin. 3.6 Analog to digital converter (ADC)  12-bit SAR ADC engine with up to 2M SPS conversion rate  12-bit, 10-bit, 8-bit or 6-bit configurable resolution  Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit  Conversion range: VSSA to VDDA (2.6 to 3.6 V)  Temperature sensor Up to three 12-bit 2M SPS multi-channel ADC are integrated in the device. It is a total of up to 16 multiplexed external channels with 2 internal channels for temperature sensor and voltage reference measurement. The conversion range is between 2.6 V < VDDA < 3.6 V. An on-chip 16-bit hardware oversample scheme improves performances while off-loading the related computational burden from the MCU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block of analog inputs also can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced usages. The ADC can be triggered from the events generated by the general-purpose timers (TMx) and the advanced-control timers (TM1 and TM8) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally 28 / 49 GD32F207xx connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. 3.7 Digital to analog converter (DAC)  12-bit DAC converter of independent output channel  8-bit or 12-bit mode in conjunction with the DMA controller The 12-bit buffered DAC channel is used to generate variable analog outputs. The DAC is designed with integrated resistor strings structure. The DAC channels can be triggered by the timer update outputs or EXTI with DMA support. The maximum output value of the DAC is VREF+. 3.8 DMA  14 channels DMA controller and each channel are configurable (7 for DMA1 and 7 for DMA2)  Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs, DAC, I2S, SDIO, DCMI, CAU and HAU The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable. 3.9 General-purpose inputs/outputs (GPIOs)  Up to 140 fast GPIOs, all mappable on 16 external interrupt vectors (EXTI)  Analog input/output configurable  Alternate function input/output configurable There are up to 140 general purpose I/O pins (GPIO) in GD32F207xx, named PA0 ~ PA15, PB0 ~ PB15, PC0 ~ PC15, PD0 ~ PD15, PE0 ~ PE15, PF0 ~ PF15, PG0 ~ PG15, PH0 ~ PH15 and PI0 ~ PI11 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO 29 / 49 GD32F207xx pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs. 3.10 Timers and PWM generation  Two 16-bit advanced-control timer (TM1 & TM8), ten 16-bit general-purpose timers (TM2  Up to 4 independent channels of PWM, output compare or input capture for each general- ~ TM5, TM9 ~ TM14), and two 16-bit basic timer (TM6 & TM7) purpose timer (GPTM) and external trigger input  16-bit, motor control PWM advanced-control timer with programmable dead-time generation for output match  Encoder interface controller with two inputs using quadrature decoder  24-bit SysTick timer down counter  2 watchdog timers (Independent watchdog and window watchdog) The advanced-control timer (TM1 & TM8) can be used as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general-purpose timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge- or center-aligned counting modes) and single pulse mode output. If configured as a general-purpose 16-bit timer, it has the same functions as the TMx timer. It can be synchronized with external signals or to interconnect with other GPTMs together which have the same architecture and features. The general-purpose timer (GPTM), known TM2 ~ TM5, TM9 ~ TM14 as can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. The GPTM is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. TM2 ~ TM5 and TM9/TM12 also supports an encoder interface with two inputs using quadrature decoder. The basic timer, known as TM6 & TM7, are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base. The GD32F207xx have two watchdog peripherals, Independent watchdog and window watchdog. They offer a combination of high safety level, flexibility of use and timing accuracy. The independent watchdog timer includes a 12-bit down-counting counter and a 8-bit prescaler, It is clocked from an independent 40 kHz internal RC and as it operates independently of the main clock, it can operate in stop and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 30 / 49 GD32F207xx The SysTick timer is dedicated for OS, but could also be used as a standard down counter. It features: 3.11  A 24-bit down counter  Auto reload capability  Maskable system interrupt generation when the counter reaches 0  Programmable clock source Real time clock (RTC) and backup registers  32-bit up-counter with a programmable 20-bit prescaler  Alarm function  Interrupt and wake-up event  84 bytes backup registers for data protection The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz from external crystal oscillator. The Backup registers are located in the Backup domain that remains powered-on by VBAT even if VDD power is shut down, they are forty two 16-bit (84 bytes) registers for data protection of user application data, and the wake-up action from standby mode or system reset are not affect these registers. In addition, the backup registers can be used to implement the tamper detection, RTC calibration function and waveform detection. 3.12 Inter-integrated circuit (I2C)  Up to three I2C bus interfaces can support both master and slave mode with a frequency up to 400 kHz  Provide arbitration function, optional PEC (packet error checking) generation and checking  Supports 7-bit and 10-bit addressing mode and general call addressing mode The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides two data transfer rates: 100 kHz of standard mode or 400 kHz of the fast mode. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data. 31 / 49 GD32F207xx 3.13 Serial peripheral interface (SPI)  Up to three SPI interfaces with a frequency of up to 30 MHz  Support both master and slave mode  Hardware CRC calculation and transmit automatic CRC error checking  Quad wire configuration available in master mode The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. 3.14 Universal synchronous/asynchronous receiver transmitter (USART/UART)  Up to four USARTs and four UARTs with operating frequency up to 7.5 MHz  Supports both asynchronous and clocked synchronous serial communication modes  IrDA SIR encoder and decoder support  LIN break generation and detection  ISO 7816-3 compliant smart card interface The USART (USART1, USART2, USART3, USART6) and UART (UART4, UART5, UART7, UART8) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART/UART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART/UART transmitter and receiver. The USART/UART also supports DMA function for high speed data communication. 3.15 Inter-IC sound (I2S)  Two I2S bus Interfaces with sampling frequency from 8 kHz to 192 kHz, multiplexed with SPI2 and SPI3  Support either master or slave mode Audio  Sampling frequencies from 8 kHz up to 192 kHz are supported. The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32F207xx contain an I2S-bus interface that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI2 and SPI3. The audio sampling frequencies from 8 kHz to 192 kHz is supported with less than 0.5% accuracy error. 32 / 49 GD32F207xx 3.16 Universal serial bus on-the-go full-speed (USB OTG FS)  One USB device/host/OTG full-speed Interface with frequency up to 12 Mbit/s  Internal main PLL for USB CLK compliantly The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device controller enables 12 Mbit/s data exchange with integrated transceivers in device/host/OTG mode. Full-speed peripheral is compliant with the USB 2.0 specification. Transaction formatting is performed by the hardware, including CRC generation and checking. The status of a completed USB transfer or error condition is indicated by status registers. An interrupt is also generated if enabled. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator) and the operating frequency divided from APB1 should be 12 MHz above. 3.17 Controller area network (CAN)  Two CAN2.0B interface with communication frequency up to 1 Mbit/s  Internal main PLL for USB CLK compliantly Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three mailboxes for transmission and two FIFOs of three message deep for reception. It also provides 14 scalable/configurable identifier filter banks for selecting the incoming messages needed and discarding the others. 3.18 Ethernet MAC interface  IEEE 802.3 compliant media access controller (MAC) for Ethernet LAN  10/100 Mbit/s rates with dedicated DMA controller and SRAM  Support hardware precision time protocol (PTP) with conformity to IEEE 1588 The Ethernet media access controller (MAC) conforms to IEEE 802.3 specifications and fully supports IEEE 1588 standards. The embedded MAC provides the interface to the required external network physical interface (PHY) for LAN bus connection via an internal media independent interface (MII) or a reduced media independent interface (RMII). The number of MII signals provided up to 17 with 25 MHz output and RMII up to 9 with 50 MHz output. The function of 32-bit CRC checking is also available. 33 / 49 GD32F207xx 3.19 External memory controller (EXMC)  Supported external memory: SRAM, PSRAM, ROM and NOR-Flash, NAND Flash and CF card, SDRAM with up to 32-bit data bus  Provide ECC calculating hardware module for NAND Flash memory block  Two SDRAM banks with independent configuration, up to 13-bits Row Address, 11-bits Column Address, 2-bits internal banks address  SDRAM Memory size: 4x16Mx32bit(256 MB), 4x16Mx16bit (128 MB), 4x16Mx8bit (64 MB) External memory controller (EXMC) is an abbreviation of external memory controller. It is divided in to several sub-banks for external device support, each sub-bank has its own chip selection signal but at one time, only one bank can be accessed. The EXMC support code execution from external memory except NAND Flash and CF card. The EXMC also can be configured to interface with the most common LCD module of Motorola 6800 and Intel 8080 series and reduce the system cost and complexity. The EXMC of GD32F207xx in LQFP144 package above also supports synchronous dynamic random access memory (SDRAM). It translates AHB transactions into the appropriate SDRAM protocol, and meanwhile, makes sure the access time requirements of the external SDRAM devices are satisfied. 3.20 Secure digital input and output card interface (SDIO)  Support SD2.0/SDIO2.0/MMC4.2 host interface The Secure Digital Input and Output Card Interface (SDIO) provides access to external SD memory cards specifications version 2.0, SDIO card specification version 2.0 and multi-media card system specification version 4.2 with DMA supported. In addition, this interface is also compliant with CE-ATA digital protocol rev1.1. 3.21 TFT LCD display interface (TLDI)  24-bit RGB Parallel Pixel Output; 8 bits-per-pixel (RGB888)  Supports up to SVGA (800x600) resolution The TFT LCD display interface provides a parallel digital RGB (Red, Green, Blue) and signals for horizontal, vertical synchronization, Pixel Clock and Data Enable as output to interface directly to a variety of LCD (Liquid Crystal Display) and TFT (Thin Film Transistor) panels. 34 / 49 GD32F207xx 3.22 Digital camera interface (DCI)  Digital video/picture capture  8/10/12/14 data width supported  High transfer efficiency with DMA interface  Video/picture crop supported  Various pixel formats supported including JPEG/YCrCb/RG  Hard/embedded synchronous signals supported DCI is an 8-bit to 14-bit parallel interface that able to capture video or picture from a camera via Digital Camera Interface. It supports 8/10/12/14 bits data width through DMA operation and sustain up to 27 MB/s at 27 MHz or 48 MB/s at 48 MHz. 3.23 Cryptographic acceleration Unit (CAU)  Supports DES, 3DES or AES algorithm  DES/3DES supports Electronic codebook (ECB) or Cipher block chaining (CBC) mode  3DES supports 64bits-key, 128bits-key or 192bits-key  AES supports 128bits-key, 192bits-key or 256 bits-key  AES supports Electronic codebook (ECB), Cipher block chaining (CBC) mode or Counter mode (CTR) mode  Support DMA mode for input data flow The Cryptographic Acceleration Unit supports acceleration of DES, 3DES or AES (128, 192, or 256) algorithms. The DES/3DES supports Electronic codebook (ECB) or Cipher block chaining (CBC) mode. The AES supports Electronic codebook (ECB), Cipher block chaining (CBC) mode or Counter mode (CTR) mode. 3.24 Hash acceleration unit (HAU)  Supports SHA-1, SHA-224 and SHA-256 algorithms, compliant with FIPS PUB 180-2 (Federal Information Processing Standards Publication 180-2)  Supports MD5 compliant with IETF RFC 1321 (Internet Engineering Task Force Request For Comments number 1321)  Supports HMAC (keyed-hash message authentication code) algorithm  Automatic swapping to comply with the big-endian or little-endian for MD5, SHA-1, SHA224 and SHA-256 algorithms  Automatic padding to fit module 512  Support DMA mode for input data flow The HAU supports acceleration of SHA-1, SHA-224, SHA-256, MD5 algorithm and the HMAC (keyed-hash message authentication code) algorithm, which calling the SHA-1, SHA-224, SHA-256 or MD5 hash function to calculate key, message, digest three times. 35 / 49 GD32F207xx 3.25 Random number generator (RNG)  About 40 period PLL clock consumed between two consecutive random numbers  Disable RNG module will reduce the chip power consumption  32-bit random value seed is generated from analog noise The random number generator (RNG) module can generate a 32-bit value using continuous analog noise. 3.26 Debug mode  Serial wire JTAG debug port (SWJ-DP) The ARM® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. 3.27 Package and operation temperature  LQFP176 (GD32F207Ix), LQFP144 (GD32F207Zx), LQFP100 (GD32F207Vx), LQFP64 (GD32F207Rx)  Operation temperature range: -40°C to +85°C (industrial level) 36 / 49 GD32F207xx 4 Electrical characteristics 4.1 Absolute maximum ratings The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. Table 3. Absolute maximum ratings Symbol Min Max Unit VDD External voltage range VSS - 0.3 VSS + 3.6 V VDDA External analog supply voltage VSSA - 0.3 VSSA + 3.6 V VBAT External battery supply voltage VSS - 0.3 VSS + 3.6 V Input voltage on 5V tolerant pin VSS - 0.3 VDD + 4.0 V Input voltage on other I/O VSS - 0.3 4.0 V Maximum current for GPIO pins — 25 mA Injected current on 5V tolerant pin — ±5 mA Injected current on other I/O — ±5 mA Injected current on all I/O — ±25 mA Operating temperature range -40 +85 °C Storage temperature range -55 +150 °C Maximum junction temperature — 125 °C VIN IIO IINJ ∑IINJ TA TSTG TJ 4.2 Parameter Recommended DC characteristics Table 4. DC operating conditions Symbol Parameter Conditions Min Typ Max Unit VDD Supply voltage — 2.6 3.3 3.6 V VDDA Analog supply voltage Same as VDD 2.6 3.3 3.6 V VBAT Battery supply voltage — 1.8 — 3.6 V 37 / 49 GD32F207xx 4.3 Power consumption The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications. Table 5. Power consumption characteristics Symbol Parameter Conditions Ma Min Typ — 130.15 — mA — 56.43 — mA — 117.45 — mA — 51.07 — mA -— 79.03 — mA — 35.05 — mA — 93.05 — mA — 12.54 — mA — 1.21 — mA — 1.18 — mA Supply current VDD=VDDA=3.3V, LSE off, LSI on, RTC on — 7.49 — μA (Standby VDD=VDDA=3.3V, LSE off, LSI on, RTC off — 7.18 — μA mode) VDD=VDDA=3.3V, LSE off, LSI off, RTC off — 6.02 — μA VBAT=3.6V, LSE on, RTC on, LSE High driving — 2.77 — μA VBAT=3.3V, LSE on, RTC on, LSE High driving — 2.48 — μA VBAT=2.6V, LSE on, RTC on, LSE High driving — 1.86 — μA VBAT=3.6V, LSE on, RTC on,LSE Mid High driving — 1.11 — μA VBAT=3.3V, LSE on, RTC on,LSE Mid High driving — 1.04 — μA VBAT=2.6V, LSE on, RTC on,LSE Mid High driving — 0.93 — μA VBAT=3.6V, LSE on, RTC on, LSE Mid Low driving — 0.84 — μA VBAT=3.3V, LSE on, RTC on, LSE Mid Low driving — 0.77 — μA VBAT=2.6V, LSE on, RTC on, LSE Mid Low driving — 0.63 — μA VDD=VDDA=3.3V, HSE=25MHz, System clock=120 x Unit MHz, All peripherals enabled VDD=VDDA=3.3V, HSE=25MHz, System clock =120 MHz, All peripherals disabled VDD=VDDA=3.3V, HSE=25MHz, System clock=108 Supply current MHz, All peripherals enabled (Run mode) VDD=VDDA=3.3V, HSE=25MHz, System clock =108 MHz, All peripherals disabled VDD=VDDA=3.3V, HSE=25MHz, System clock =72MHz, All peripherals enabled VDD=VDDA=3.3V, HSE=25MHz, System Clock =72 MHz, All peripherals disabled IDD VDD=VDDA=3.3V, HSE=8MHz, CPU clock off, Supply current System clock=120 MHz, All peripherals enabled (Sleep mode) VDD=VDDA=3.3V, HSE=8MHz, CPU clock off, System clock=120 MHz, All peripherals disabled Supply current (Deep-Sleep mode) VDD=VDDA=3.3V, Regulator in Run mode, LSI on, RTC on, All GPIOs analog mode VDD=VDDA=3.3V, Regulator in Low Power mode, LSI on, RTC on, All GPIOs analog mode IBAT Battery supply current 38 / 49 GD32F207xx 4.4 EMC characteristics EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in the following table, based on the EMS levels and classes compliant with IEC 61000 series standard. Table 6. EMS characteristics Symbol VESD Parameter Conditions Voltage applied to all device pins to VDD = 3.3 V, TA = +25 °C induce a functional disturbance conforms to IEC 61000-4-2 Fast transient voltage burst applied to VFTB Level/Class induce a functional disturbance through 100 pF on VDD and VSS pins 3B VDD = 3.3 V, TA = +25 °C 4A conforms to IEC 61000-4-4 EMI (Electromagnetic Interference) emission testing result is given in the following table, compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 7. EMI characteristics Symbol Parameter Conditions VDD = 3.3 V, SEMI Peak level TA = +25 °C, compliant with IEC 61967-2 4.5 Conditions Tested frequency band Unit 56M 72M 120M 0.1 to 2 MHz