0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
GD32EPRTRDT6

GD32EPRTRDT6

  • 厂商:

    GIGADEVICE(兆易创新)

  • 封装:

  • 描述:

  • 数据手册
  • 价格&库存
GD32EPRTRDT6 数据手册
GD32EPRTxx Datasheet GigaDevice Semiconductor Inc. GD32EPRTxx Arm® Cortex®-M33 32-bit MCU Datasheet GD32EPRTxx Datasheet Table of Contents Table of Contents ........................................................................................................... 1 List of Figures ................................................................................................................ 4 List of Tables .................................................................................................................. 5 1. General description ................................................................................................. 7 2. Device overview ....................................................................................................... 8 2.1. Device information ...................................................................................................... 8 2.2. Block diagram .............................................................................................................. 9 2.3. Pinouts and pin assignment ..................................................................................... 10 2.4. Memory map .............................................................................................................. 12 2.5. Clock tree ................................................................................................................... 16 2.6. Pin definitions ............................................................................................................ 18 2.6.1. GD32EPRTVDT6 LQFP100 pin definitions .......................................................................... 18 2.6.2. GD32EPRTRDT6 LQFP64 pin definitions ............................................................................ 25 3. Functional description .......................................................................................... 30 3.1. Arm® Cortex®-M33 core ............................................................................................. 30 3.2. Embedded memory ................................................................................................... 30 3.3. Clock, reset and supply management ...................................................................... 31 3.4. Boot modes ................................................................................................................ 31 3.5. Power saving modes ................................................................................................. 32 3.6. Analog to digital converter (ADC) ............................................................................ 33 3.7. Digital to analog converter (DAC) ............................................................................. 33 3.8. DMA ............................................................................................................................ 33 3.9. General-purpose inputs/outputs (GPIOs) ................................................................ 34 3.10. Timers and PWM generation ................................................................................. 34 3.11. Real time clock (RTC) ............................................................................................ 35 3.12. Inter-integrated circuit (I2C) .................................................................................. 36 3.13. Serial peripheral interface (SPI) ............................................................................ 36 3.14. Universal synchronous asynchronous receiver transmitter (USART) ............... 37 3.15. Inter-IC sound (I2S) ................................................................................................ 37 3.16. Universal Serial Bus full-speed device interface (USBD) .................................... 37 1 GD32EPRTxx Datasheet 3.17. Ethernet (ENET) ...................................................................................................... 38 3.18. External memory controller (EXMC) ..................................................................... 38 3.19. Serial/Quad Parallel Interface (SQPI) .................................................................... 38 3.20. Debug mode ........................................................................................................... 39 3.21. Package and operation temperature ..................................................................... 39 4. Electrical characteristics ....................................................................................... 40 4.1. Absolute maximum ratings ....................................................................................... 40 4.2. Operating conditions characteristics ....................................................................... 40 4.3. Power consumption .................................................................................................. 42 4.4. EMC characteristics .................................................................................................. 51 4.5. Power supply supervisor characteristics ................................................................ 51 4.6. Electrical sensitivity .................................................................................................. 52 4.7. External clock characteristics .................................................................................. 53 4.8. Internal clock characteristics ................................................................................... 55 4.9. PLL characteristics.................................................................................................... 56 4.10. Memory characteristics ......................................................................................... 58 4.11. NRST pin characteristics ....................................................................................... 59 4.12. GPIO characteristics .............................................................................................. 60 4.13. Temperature sensor characteristics ..................................................................... 61 4.14. ADC characteristics ............................................................................................... 61 4.15. DAC characteristics ............................................................................................... 64 4.16. I2C characteristics ................................................................................................. 65 4.17. SPI characteristics ................................................................................................. 65 4.18. I2S characteristics.................................................................................................. 66 4.19. USART characteristics ........................................................................................... 67 4.20. USBD characteristics ............................................................................................. 67 4.21. EXMC characteristics............................................................................................. 68 4.22. Serial/Quad Parallel Interface (SQPI) characteristics .......................................... 72 4.23. TIMER characteristics ............................................................................................ 72 4.24. WDGT characteristics ............................................................................................ 73 4.25. Parameter condition............................................................................................... 73 5. Package information.............................................................................................. 74 2 GD32EPRTxx Datasheet 5.1. LQFP100 package outline dimensions..................................................................... 74 5.2. LQFP64 package outline dimensions....................................................................... 75 6. Ordering information ............................................................................................. 76 7. Revision history ..................................................................................................... 77 3 GD32EPRTxx Datasheet List of Figures Figure 2-1. GD32EPRTxx block diagram ................................................................................................... 9 Figure 2-2. GD32EPRTVDT6 LQFP100 pinouts ...................................................................................... 10 Figure 2-3. GD32EPRTRDT6 LQFP64 pinouts ......................................................................................... 11 Figure 2-4. GD32EPRTxx clock tree......................................................................................................... 16 Figure 4-1. Recommended power supply decoupling capacitors (1)(2) ................................................. 41 Figure 4-2. Typical supply current consumption in Run mode ............................................................ 48 Figure 4-3. Typical supply current consumption in Sleep mode .......................................................... 48 Figure 4-4. Recommended external NRST pin circuit............................................................................ 59 Figure 4-5. I/O port AC characteristics definition ................................................................................... 61 Figure 4-6. USBD timings: definition of data signal rise and fall time ................................................. 67 Figure 5-1. LQFP100 package outline ..................................................................................................... 74 Figure 5-2. LQFP64 package outline ....................................................................................................... 75 4 GD32EPRTxx Datasheet List of Tables Table 2-1. GD32EPRTxx devices features and peripheral list ................................................................ 8 Table 2-2. GD32EPRTxx memory map .................................................................................................... 12 Table 2-3. GD32EPRTVDT6 LQFP100 pin definitions ............................................................................ 18 Table 2-4. GD32EPRTRDT6 LQFP64 pin definitions .............................................................................. 25 Table 4-1. Absolute maximum ratings (1)(4) .............................................................................................. 40 Table 4-2. DC operating conditions ......................................................................................................... 40 Table 4-3. Clock frequency (1) ................................................................................................................... 41 Table 4-4. Operating conditions at Power up/ Power down Table 4-5. Start-up timings of Operating conditions (1)(2)(3) (1) .............................................................. 41 .................................................................... 41 Table 4-6. Power saving mode wakeup timings characteristics (1)(2) .................................................... 42 Table 4-7. Power consumption characteristics (2)(3)(4)(5) ......................................................................... 42 Table 4-8. Peripheral current consumption characteristics (1) .............................................................. 49 Table 4-9. EMS characteristics (1) ............................................................................................................. 51 Table 4-10. Power supply supervisor characteristics............................................................................ 51 Table 4-11. ESD characteristics (1) ........................................................................................................... 52 Table 4-12. Static latch-up characteristics (1) .......................................................................................... 52 Table 4-13. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics. 53 Table 4-14. High speed external clock characteristics (HXTAL in bypass mode) .............................. 53 Table 4-15. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics .. 53 Table 4-16. Low speed external user clock characteristics (LXTAL in bypass mode) ....................... 54 Table 4-17. High speed internal clock (IRC8M) characteristics ............................................................ 55 Table 4-18. Low speed internal clock (IRC40K) characteristics ........................................................... 55 Table 4-19. High speed internal clock (IRC48M) characteristics .......................................................... 56 Table 4-20. PLL characteristics ................................................................................................................ 56 Table 4-21. PLL1 characteristics .............................................................................................................. 57 Table 4-22. PLL2 characteristics .............................................................................................................. 57 Table 4-23. PLLUSB characteristics ........................................................................................................ 57 Table 4-24. Flash memory characteristics .............................................................................................. 58 Table 4-25. SIP PSRAM memory characteristics (1) (2) ............................................................................ 58 Table 4-26. NRST pin characteristics ...................................................................................................... 59 Table 4-27. I/O port DC characteristics (1)(3) ............................................................................................. 60 Table 4-28. I/O port AC characteristics (1)(2) ............................................................................................. 60 Table 4-29. Temperature sensor characteristics (1) ................................................................................ 61 Table 4-30. ADC characteristics ............................................................................................................... 61 Table 4-31. ADC RAIN max for fADC = 35 MHz ............................................................................................ 62 Table 4-32. ADC dynamic accuracy at fADC = 14 MHz (1) ......................................................................... 62 Table 4-33. ADC dynamic accuracy at fADC = 35 MHz (1) ......................................................................... 63 Table 4-34. ADC static accuracy at fADC = 14 MHz (1) .............................................................................. 63 Table 4-35. DAC characteristics ............................................................................................................... 64 Table 4-36. I2C characteristics (1)(2)(3) ....................................................................................................... 65 5 GD32EPRTxx Datasheet Table 4-37. Standard SPI characteristics Table 4-38. I2S characteristics (1)(2) (1) ............................................................................................ 65 .......................................................................................................... 66 Table 4-39. USART characteristics (1) ...................................................................................................... 67 Table 4-40. USBD start up time ................................................................................................................ 67 Table 4-41. USBD DC electrical characteristics ..................................................................................... 67 Table 4-42. USBD full speed-electrical characteristics (1) ...................................................................... 67 Table 4-43. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings (1)(2)(3)(4) ..................... 68 Table 4-44. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings (1)(2)(3)(4) .................... 68 (1)(2)(3)(4) Table 4-45. Asynchronous multiplexed PSRAM/NOR read timings Table 4-46. Asynchronous multiplexed PSRAM/NOR write timings Table 4-47. Synchronous multiplexed PSRAM/NOR read timings Table 4-48. Synchronous multiplexed PSRAM write timings (1)(2)(3)(4) (1)(2)(3)(4) (1)(2)(3)(4) ........................................ 69 ........................................ 69 ........................................... 70 ................................................... 70 Table 4-49. Synchronous non-multiplexed PSRAM/NOR read timings (1)(2)(3)(4) ................................... 71 Table 4-50. Synchronous non-multiplexed PSRAM write timings (1)(2)(3)(4) ........................................... 71 Table 4-51.SQPI characteristics ............................................................................................................... 72 Table 4-52. TIMER characteristics (1) ....................................................................................................... 72 Table 4-53. FWDGT min/max timeout period at 40 kHz (IRC40K) Table 4-54. WWDGT min-max timeout value at 90 MHz (fPCLK1) (1) (1) ..................................................... 73 ........................................................ 73 Table 5-1. LQFP100 package dimensions ............................................................................................... 74 Table 5-2. LQFP64 package dimensions ................................................................................................. 75 Table 6-1. Part ordering code for GD32EPRTxx devices ....................................................................... 76 Table 7-1. Revision history ....................................................................................................................... 77 6 GD32EPRTxx Datasheet 1. General description The GD32EPRTxx device belongs to the high performance line of GD32 MCU family. It is a new 32-bit general-purpose microcontroller based on the Arm® Cortex®-M33 core. The Cortex®-M33 processor is a 32-bit processor that possesses low interrupt latency and lowcost debug. The characteristics of integrated and advanced make the Cortex®-M33 processor suitable for market products that require microcontrollers with high performance and low power consumption. The processor is based on the ARMv8 architecture and supports a powerful and scalable instruction set including general data processing I/O control tasks, advanced data processing bit field manipulations and DSP. The GD32EPRTxx device incorporates the Arm® Cortex®-M33 32-bit processor core operating at up to 180 MHz frequency with Flash accesses 0~4 waiting time to obtain maximum efficiency. It provides 384 KB embedded Flash memory, 96 KB SRAM memory and 4 MB PSRAM. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer three 12-bit ADCs, two DACs, three general 16-bit timers, a general 32-bit timer, two basic timers, two PWM advanced timers, as well as standard and advanced communication interfaces: up to three SPIs, three I2Cs, six USARTs, two I2Ss, an USBD and an ENET. Additional peripherals as EXMC interface, Serial/Quad Parallel Interface (SQPI) are included. The device operates from a 1.62 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make the GD32EPRTxx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike, optical module and so on. 7 GD32EPRTxx Datasheet 2. Device overview 2.1. Device information Table 2-1. GD32EPRTxx devices features and peripheral list Part Number GD32EPRTxx RDT6 VDT6 FLASH (KB) 384 384 SRAM (KB)/PSRAM (MB) 96 / 4 96 / 4 General timer(16-bit) Timers General timer(32-bit) Advanced timer(16-bit) SysTick 1 1 (1) (1) 2 2 (0,7) (0,7) 1 1 2 2 (5-6) SHRTIMER 0 0 Watchdog 2 2 RTC 1 1 USART UART Connectivity 3 (2-4) (5-6) Basic timer(16-bit) ADC 3 (2-4) 4 4 (0-2,5) (0-2,5) 2 2 (3-4) (3-4) 3 3 (0-2) (0-2) 3/2 3/2 (0-2)/(1-2) (0-2)/(1-2) Ethernet 1 1 CAN 0 0 USBD 1 1 GPIO 51 80 EXMC 1 1 DAC 2 2 CMP 0 0 TMU 0 0 Units 3 3 Channels 16 16 LQFP64 LQFP100 I2C SPI/I2S Package 8 GD32EPRTxx Datasheet 2.2. Block diagram Figure 2-1. GD32EPRTxx block diagram SW/JTAG TPIU NVIC Code System ARM Cortex-M33 Processor Fmax:180MHz POR/ PDR Flash Memory Controller Cbus Flash Memory PLL F max : 180MHz Master FMC SQPI CRC GP DMA 12 chs AHB Peripherals Slave ENET Master AHB Matrix Master Slave EXMC Slave Slave LDO 1.1V RCU SRAM Controller AHB to APB Bridge2 IRC 8MHz SRAM HXTAL 4-32MHz AHB to APB Bridge1 LVD Interrput request USBD USART0 Slave USART5 Slave WWDGT SPI0 12-bit SAR ADC TIMER1~3 ADC0~2 SPI1~2\ I2S1~2 Powered By V DDA EXTI USART1~2 GPIOA GPIOD I2C0 APB1: Fmax = 90MHZ GPIOC APB2: Fmax = 180MHz GPIOB Powered By VDDA I2C1 I2C2 FWDGT GPIOE RTC TIMER0 TIMER7 DAC TIMER4~6 UART3~4 CTC 9 GD32EPRTxx Datasheet 2.3. Pinouts and pin assignment Figure 2-2. GD32EPRTVDT6 LQFP100 pinouts PA14 PA15 PC10 PC11 PC12 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PB4 PB3 PB5 PB6 PB7 BOOT0 PB8 PB9 PE0 PE1 VSS_3 VDD_3 PE2 1 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 PE3 PE4 2 74 VSS_2 3 73 NC PE5 PE6 4 72 PA13 5 71 PA12 VBAT 6 PC13-TAMPER-RTC PC14-OSC32IN 7 70 69 PA10 8 68 PA9 PC15-OSC32OUT 9 67 PA8 VSS_5 10 66 PC9 VDD_5 11 65 PC8 64 PC7 63 PC6 62 PD15 OSCIN GigaDevice GD32EPRTVDT6 LQFP100 12 VDD_2 PA11 OSCOUT NRST PC0 13 15 61 PD14 PC1 16 60 PD13 PC2 PC3 17 59 PD12 18 58 PD11 VSSA 19 57 PD10 VREFVREF+ 20 56 PD9 21 55 PD8 VDDA 22 54 PB15 PA0-WKUP0 23 53 PB14 PA1 24 52 PB13 PA2 25 51 PB12 14 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VSS_1 VDD_1 PB11 PB10 PE15 PE14 PE13 PE11 PE12 PE10 PE9 PE8 PE7 PB2 PB1 PC5 PB0 PA7 PC4 PA6 PA5 PA4 VDD_4 PA3 VSS_4 10 GD32EPRTxx Datasheet Figure 2-3. GD32EPRTRDT6 LQFP64 pinouts PA14 PA15 PC10 PC11 PC12 PD2 PB3 PB4 PB5 PB6 PB7 PB8 BOOT0 PB9 VSS_3 VDD_3 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 VBAT 1 48 VDD_2 PC13-TAMPER-RTC 2 47 VSS_2 PC14-OSC32IN 3 46 PA13 PC15-OSC32OUT PD0-OSCIN 4 45 PA12 5 44 PA11 PD1-OSCOUT 6 43 PA10 NRST PC0 7 42 PA9 PC1 9 PC2 PC3 VSSA GigaDevice GD32EPRTRDT6 LQFP64 41 PA8 40 PC9 10 39 PC8 11 38 PC7 12 37 PC6 VDDA 13 36 PB15 PA0-WKUP0 14 35 PB14 PA1 15 34 PB13 PA2 16 33 PB12 8 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VDD_1 VSS_1 PB11 PB10 PB2 PB1 PC5 PB0 PA7 PC4 PA6 PA5 PA4 VDD_4 PA3 VSS_4 11 GD32EPRTxx Datasheet 2.4. Memory map Table 2-2. GD32EPRTxx memory map Pre-defined Regions Bus External device AHB3 External RAM Address Peripherals 0xC000 0000 - 0xDFFF FFFF Reserved 0xB000 0000 - 0xBFFF FFFF SQPI_PSRAM(MEM) 0xA000 1400 - 0xAFFF FFFF Reserved 0xA000 1000 - 0xA000 13FF SQPI_PSRAM(REG) 0xA000 0000 - 0xA000 0FFF EXMC - SWREG 0x9000 0000 - 0x9FFF FFFF EXMC - PC CARD 0x7000 0000 - 0x8FFF FFFF EXMC - NAND 0x6000 0000 - 0x6FFF FFFF Peripheral AHB1 EXMC NOR/PSRAM/SRAM 0x5000 0000 - 0x5003 FFFF Reserved 0x4008 0400 - 0x4FFF FFFF Reserved 0x4008 0000 - 0x4008 03FF Reserved 0x4004 0000 - 0x4007 FFFF Reserved 0x4002 BC00 - 0x4003 FFFF Reserved 0x4002 B000 - 0x4002 BBFF Reserved 0x4002 A000 - 0x4002 AFFF Reserved 0x4002 8000 - 0x4002 9FFF ENET 0x4002 6800 - 0x4002 7FFF Reserved 0x4002 6400 - 0x4002 67FF Reserved 0x4002 6000 - 0x4002 63FF Reserved 0x4002 5000 - 0x4002 5FFF Reserved 0x4002 4000 - 0x4002 4FFF Reserved 0x4002 3C00 - 0x4002 3FFF Reserved 0x4002 3800 - 0x4002 3BFF Reserved 0x4002 3400 - 0x4002 37FF Reserved 0x4002 3000 - 0x4002 33FF CRC 0x4002 2C00 - 0x4002 2FFF Reserved 0x4002 2800 - 0x4002 2BFF Reserved 0x4002 2400 - 0x4002 27FF Reserved 0x4002 2000 - 0x4002 23FF FMC 0x4002 1C00 - 0x4002 1FFF Reserved 0x4002 1800 - 0x4002 1BFF Reserved 0x4002 1400 - 0x4002 17FF Reserved 0x4002 1000 - 0x4002 13FF RCU 0x4002 0C00 - 0x4002 0FFF Reserved 0x4002 0800 - 0x4002 0BFF Reserved 0x4002 0400 - 0x4002 07FF DMA1 12 GD32EPRTxx Datasheet Pre-defined Regions Bus APB2 APB1 Address Peripherals 0x4002 0000 - 0x4002 03FF DMA0 0x4001 8400 - 0x4001 FFFF Reserved 0x4001 8000 - 0x4001 83FF Reserved 0x4001 7C00 - 0x4001 7FFF Reserved 0x4001 7800 - 0x4001 7BFF Reserved 0x4001 7400 - 0x4001 77FF Reserved 0x4001 7000 - 0x4001 73FF USART5 0x4001 6C00 - 0x4001 6FFF Reserved 0x4001 6800 - 0x4001 6BFF Reserved 0x4001 5C00 - 0x4001 67FF Reserved 0x4001 5800 - 0x4001 5BFF Reserved 0x4001 5400 - 0x4001 57FF Reserved 0x4001 5000 - 0x4001 53FF Reserved 0x4001 4C00 - 0x4001 4FFF Reserved 0x4001 4800 - 0x4001 4BFF Reserved 0x4001 4400 - 0x4001 47FF Reserved 0x4001 4000 - 0x4001 43FF Reserved 0x4001 3C00 - 0x4001 3FFF ADC2 0x4001 3800 - 0x4001 3BFF USART0 0x4001 3400 - 0x4001 37FF TIMER7 0x4001 3000 - 0x4001 33FF SPI0 0x4001 2C00 - 0x4001 2FFF TIMER0 0x4001 2800 - 0x4001 2BFF ADC1 0x4001 2400 - 0x4001 27FF ADC0 0x4001 2000 - 0x4001 23FF Reserved 0x4001 1C00 - 0x4001 1FFF Reserved 0x4001 1800 - 0x4001 1BFF GPIOE 0x4001 1400 - 0x4001 17FF GPIOD 0x4001 1000 - 0x4001 13FF GPIOC 0x4001 0C00 - 0x4001 0FFF GPIOB 0x4001 0800 - 0x4001 0BFF GPIOA 0x4001 0400 - 0x4001 07FF EXTI 0x4001 0000 - 0x4001 03FF AFIO 0x4000 CC00 - 0x4000 FFFF Reserved 0x4000 CC00 - 0x4000 CFFF Reserved 0x4000 C800 - 0x4000 CBFF CTC 0x4000 C400 - 0x4000 C7FF Reserved 0x4000 C000 - 0x4000 C3FF I2C2 0x4000 8C00 - 0x4000 BFFF Reserved 0x4000 8800 - 0x4000 8BFF Reserved 13 GD32EPRTxx Datasheet Pre-defined Regions Bus Address Peripherals 0x4000 8400 - 0x4000 87FF USBSRAM_B 0x4000 8000 - 0x4000 BFFF Reserved 0x4000 7C00 - 0x4000 7FFF Reserved 0x4000 7800 - 0x4000 7BFF Reserved 0x4000 7400 - 0x4000 77FF DAC 0x4000 7000 - 0x4000 73FF PMU 0x4000 6C00 - 0x4000 6FFF BKP 0x4000 6800 - 0x4000 6BFF Reserved 0x4000 6400 - 0x4000 67FF Reserved 0x4000 6000 - 0x4000 63FF SRAM AHB USBD SRAM 512 bytes 0x4000 5C00 - 0x4000 5FFF USBD 0x4000 5800 - 0x4000 5BFF I2C1 0x4000 5400 - 0x4000 57FF I2C0 0x4000 5000 - 0x4000 53FF UART4 0x4000 4C00 - 0x4000 4FFF UART3 0x4000 4800 - 0x4000 4BFF USART2 0x4000 4400 - 0x4000 47FF USART1 0x4000 4000 - 0x4000 43FF I2S2_add 0x4000 3C00 - 0x4000 3FFF SPI2/I2S2 0x4000 3800 - 0x4000 3BFF SPI1/I2S1 0x4000 3400 - 0x4000 37FF I2S1_add 0x4000 3000 - 0x4000 33FF FWDGT 0x4000 2C00 - 0x4000 2FFF WWDGT 0x4000 2800 - 0x4000 2BFF RTC 0x4000 2400 - 0x4000 27FF Reserved 0x4000 2000 - 0x4000 23FF Reserved 0x4000 1C00 - 0x4000 1FFF Reserved 0x4000 1800 - 0x4000 1BFF Reserved 0x4000 1400 - 0x4000 17FF TIMER6 0x4000 1000 - 0x4000 13FF TIMER5 0x4000 0C00 - 0x4000 0FFF TIMER4 0x4000 0800 - 0x4000 0BFF TIMER3 0x4000 0400 - 0x4000 07FF TIMER2 0x4000 0000 - 0x4000 03FF TIMER1 0x2007 0000 - 0x3FFF FFFF Reserved 0x2006 0000 - 0x2006 FFFF Reserved 0x2003 0000 - 0x2005 FFFF Reserved 0x2002 0000 - 0x2002 FFFF Reserved 0x2000 0000 - 0x2001 FFFF SRAM 14 GD32EPRTxx Datasheet Pre-defined Regions Code Bus AHB Address Peripherals 0x1FFF F810 - 0x1FFF FFFF Reserved 0x1FFF F800 - 0x1FFF F80F Option Bytes 0x1FFF B000 - 0x1FFF F7FF Boot loader 0x1FFF 7800 - 0x1FFF AFFF Reserved 0x1FFF 7000 - 0x1FFF 77FF OTP 0x1FFF 0000 - 0x1FFF 6FFF Reserved 0x1FFE C010 - 0x1FFE FFFF Reserved 0x1FFE C000 - 0x1FFE C00F Reserved 0x1001 0000 - 0x1FFE BFFF Reserved 0x1000 0000 - 0x1000 FFFF Reserved 0x083C 0000 - 0x0FFF FFFF Reserved 0x0830 0000 - 0x083B FFFF Reserved 0x0808 0000 - 0x082F FFFF Reserved 0x0800 0000 - 0x0807 FFFF Main Flash 0x0030 0000 - 0x07FF FFFF Reserved 0x0010 0000 - 0x002F FFFF Reserved 0x0008 0000 - 0x000F FFFF Reserved 0x0002 0000 - 0x0007 FFFF Aliased to Main Flash 0x0000 0000 - 0x0001 FFFF or Boot loader 15 GD32EPRTxx Datasheet 2.5. Clock tree Figure 2-4. GD32EPRTxx clock tree CK_PLLUSB USBHS PHY clock 24Mhz to 60Mhz (to USBHS in high-speed mode) CK48MSEL[1:0] PLLUSBPR ESEL PLLUSBMF PLLUSBPREDV CK_IRC48M 1 CK_HXTAL 0 ×16,17…, 127 PLLUSB /1,2,3… 15 0 1 USBHSDV 480MHz max CK_PLL2 11 10 /2,4…1 6 USBHS Presacaler /1,1.5,2,2.5 3,3.5,4 CK_PLL1 PLLUSBPRE DVSEL PHSEL 48 MHz/ 60MHz 0 00 0 CK_USBHS 1 (to USBHS) 1 01 USBHSSEL From USBHS (to FMC) CRS CK_IRC48M CK_FMC CK_CTC CK_PLLSRC 48 MHz IRC48M SCS[1:0] CK_IRC8M 8 MHz IRC8M 00 /2 ×2,3,4 …,64 PLL 0 1 PLLPRESEL CK_IRC48M 1 0 4-32 MHz HXTAL PLLSEL PREDV0 0 1 CK_PLL PLLMF /1,2,3… 15,16 CK_SYS 10 180 MHz max AHB Prescaler ÷1,2...512 CK_AHB 180 MHz max CK_EXMC EXMC enable (by hardware) (to EXMC) HCLK 01 AHB enable (to AHB bus,Cortex-M33,SRAM,DMA) CK_CST Clock Monitor ÷8 (to Cortex-M33 SysTick) FCLK PREDV0SEL EXT1 to CK_OUT (free running clock) CK_HXTAL APB1 Prescaler ÷1,2,4,8,16 CK_APB1 PCLK1 to APB1 peripherals 90 MHz max Peripheral enable ×8,9,10…1 2,,14,16,20 PLL1 ×8,9,10…,14 ,16,18…,32, 34...64,80 PLL2 11 32.768 KHz LXTAL CK_PLL2 x2 CK_I2Sx 1 to I2S APB2 Prescaler ÷1,2,4,8,16 (to RTC) 10 TIMER0,7,8,9,10 if(APB2 prescale =1)x1 else x 2 ADC Prescaler ÷2,4,6, 8,12,16 CK_FWDGT (to FWDGT) CK_APB2 PCLK2 to APB2 peripherals 180 MHz max Peripheral enable I2SxSEL CK_RTC RTCSRC[1:0] 0 I2S enable PLL2MF 01 40 KHz IRC40K CK_TIMERx to TIMER1,2,3,4,5,6,1 1,12,13 TIMERx enable PLL1MF /1,2,3… 15,16 PREDV1 /128 TIMER1,2,3,4,5,6, 11,12,13 if(APB1 prescale =1)x1 else x 2 CK_PLL1 ADC Prescaler ÷5,6,10,20 CK_TIMERx TIMERx enable to TIMER0,7,8,9,10 ADCPSC[3] 0 CK_ADCX t o ADC0,1,2 1 35 MHz max SHRTIMERSEL CK_OUT0 00xx 0100 0101 0110 0111 NO CLK CK_SYS CK_IRC8M CK_HXTAL /2 CK_PLL CK_PLL1 /2 CK_PLL2 1000 1001 1010 1011 1100 1101 1110 EXT1 CK_PLL2 CK_IRC48M /8 CK_IRC48M /32 CK_PLLU CK_APB2 0 CK_SYS 1 CK_SHRTIMER USART5SEL[1:0] CK_APB2 CK_SYS CK_LXTAL CK_IRC8M 00 01 10 11 CK_USART5 CKOUT0SEL[3:0] 0 CK_MACTX I2C2SEL[1:0] 1 Ethernet PHY MII_RMII_SEL /2,20 CK_APB1 00 1 CK_MACRX CK_SYS 01 0 CK_IRC8M 1x CK_I2C2 CK_MACRMII Note: The TIMERs are clocked by the clock divided from CK_APB2 and CK_APB1. The frequency of TIMERs clock is equal to CK_APBx(APB prescaler is 1), twice the CK_APBx(APB prescaler is not 1). Legend: HXTAL: High speed crystal oscillator LXTAL: Low speed crystal oscillator IRC8M: Internal 8M RC oscillator IRC40K: Internal 40K RC oscillator 16 GD32EPRTxx Datasheet IRC48M: Internal 48M RC oscillator 17 GD32EPRTxx Datasheet 2.6. Pin definitions 2.6.1. GD32EPRTVDT6 LQFP100 pin definitions Table 2-3. GD32EPRTVDT6 LQFP100 pin definitions Pin I/O Type(1) Level(2) 1 I/O 5VT PE3 2 I/O 5VT PE4 3 I/O 5VT PE5 4 I/O 5VT PE6 5 I/O 5VT VBAT 6 P 7 I/O 8 I/O 9 I/O VSS_5 10 P Default: VSS_5 VDD_5 11 P Default: VDD_5 OSCIN 12 I OSCOUT 13 O NRST 14 I/O PC0 15 I/O Pin Name Pins PE2 PC13TAMPER- Functions description(3) Default: PE2 Alternate2: TRACECK, EXMC_A23 Default: PE3 Alternate2: TRACED0, EXMC_A19 Default: PE4 Alternate2:TRACED1, EXMC_A20 Default: PE5 Alternate2:TRACED2, EXMC_A21 Default: PE6 Alternate2:TRACED3, EXMC_A22, WKUP2 Default: VBAT Default: PC13 Alternate2: TAMPER-RTC, WKUP1 RTC PC14OSC32IN PC15OSC32OUT Default: PC14 Alternate2: OSC32IN Default: PC15 Alternate2: OSC32OUT Default: OSCIN Remap: PD0 Default: OSCOUT Remap: PD1 Default: NRST Default: PC0 Alternate2: ADC012_IN10 Default: PC1 PC1 16 I/O Alternate2: ADC012_IN11, ETH_MII_MDC, ETH_RMII_MDC Default: PC2 PC2 17 I/O Alternate1: I2S1_ADD_SD Alternate2: ADC012_IN12, ETH_MII_TXD2 PC3 18 I/O Default: PC3 Alternate2: ADC012_IN13, ETH_MII_TX_CLK 18 GD32EPRTxx Datasheet Pin I/O Type(1) Level(2) Functions description(3) Pin Name Pins VSSA 19 P Default: VSSA VREF- 20 P Default: VREF- VREF+ 21 P Default: VREF+ VDDA 22 P Default: VDDA Default: PA0 PA0-WKUP0 23 I/O Alternate2: WKUP0, USART1_CTS, ADC012_IN0, TIMER1_CH0, TIMER1_ETI, TIMER4_CH0, TIMER7_ETI, ETH_MII_CRS Default: PA1 PA1 24 I/O Alternate2: USART1_RTS, ADC012_IN1, TIMER4_CH1, TIMER1_CH1, ETH_MII_RX_CLK, ETH_RMII_REF_CLK Default: PA2 PA2 25 I/O Alternate2: USART1_TX, TIMER4_CH2, ADC012_IN2, TIMER1_CH2, ETH_MII_MDIO, ETH_RMII_MDIO, SPI0_IO2, WKUP3 Default: PA3 Alternate2: USART1_RX, TIMER4_CH3, ADC012_IN3, PA3 26 I/O VSS_4 27 P Default: VSS_4 VDD_4 28 P Default: VDD_4 TIMER1_CH3, ETH_MII_COL, SPI0_IO3 Default: PA4 PA4 29 I/O Alternate2: SPI0_NSS, USART1_CK, DAC_OUT0, ADC01_IN4 Remap: SPI2_NSS, I2S2_WS PA5 30 I/O Default: PA5 Alternate2: SPI0_SCK, ADC01_IN5, DAC_OUT1 Default: PA6 PA6 31 I/O Alternate2: SPI0_MISO, TIMER7_BRKIN, ADC01_IN6, TIMER2_CH0 Remap: TIMER0_BRKIN Default: PA7 PA7 32 I/O Alternate2: SPI0_MOSI, TIMER7_CH0_ON, ADC01_IN7, TIMER2_CH1, ETH_MII_RX_DV, ETH_RMII_CRS_DV Remap: TIMER0_CH0_ON Default: PC4 PC4 33 I/O Alternate2: ADC01_IN14, ETH_MII_RXD0, ETH_RMII_RXD0 Default: PC5 PC5 34 I/O Alternate2: ADC01_IN15, ETH_MII_RXD1, ETH_RMII_RXD1, WKUP4 PB0 35 I/O Default: PB0 Alternate2: ADC01_IN8, TIMER2_CH2, 19 GD32EPRTxx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description(3) TIMER7_CH1_ON, ETH_MII_RXD2 Remap: TIMER0_CH1_ON Default: PB1 PB1 36 Alternate2: ADC01_IN9, TIMER2_CH3, I/O TIMER7_CH2_ON, ETH_MII_RXD3 Remap: TIMER0_CH2_ON PB2 37 I/O 5VT Default: PB2, BOOT1 Default: PE7 PE7 38 I/O 5VT Alternate2: EXMC_D4 Remap: TIMER0_ETI Default: PE8 PE8 39 I/O 5VT Alternate2: EXMC_D5 Remap: TIMER0_CH0_ON Default: PE9 PE9 40 I/O 5VT Alternate2: EXMC_D6 Remap: TIMER0_CH0 Default: PE10 PE10 41 I/O 5VT Alternate2: EXMC_D7 Remap: TIMER0_CH1_ON Default: PE11 PE11 42 I/O 5VT Alternate2: EXMC_D8 Remap: TIMER0_CH1 Default: PE12 PE12 43 I/O 5VT Alternate2: EXMC_D9 Remap: TIMER0_CH2_ON Default: PE13 PE13 44 I/O 5VT Alternate2: EXMC_D10 Remap: TIMER0_CH2 Default: PE14 PE14 45 I/O 5VT Alternate2: EXMC_D11 Remap: TIMER0_CH3 Default: PE15 PE15 46 I/O 5VT Alternate2: EXMC_D12 Remap: TIMER0_BRKIN Default: PB10 PB10 47 I/O 5VT Alternate2: I2C1_SCL, USART2_TX, ETH_MII_RX_ER Remap: TIMER1_CH2 Default: PB11 PB11 48 I/O 5VT Alternate2: I2C1_SDA, USART2_RX, ETH_MII_TX_EN, ETH_RMII_TX_EN Remap: TIMER1_CH3 VSS_1 49 P Default: VSS_1 VDD_1 50 P Default: VDD_1 20 GD32EPRTxx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description(3) Default: PB12 PB12 51 I/O 5VT Alternate2: SPI1_NSS, I2S1_WS, I2C1_SMBA, USART2_CK, TIMER0_BRKIN, ETH_MII_TXD0, ETH_RMII_TXD0 Default: PB13 PB13 52 I/O 5VT Alternate2: SPI1_SCK, I2S1_CK, USART2_CTS, TIMER0_CH0_ON, ETH_MII_TXD1, ETH_RMII_TXD1, I2C1_TXFRAME Default: PB14 PB14 53 I/O 5VT Alternate1: I2S1_ADD_SD Alternate2: SPI1_MISO, USART2_RTS, TIMER0_CH1_ON Default: PB15 PB15 54 I/O 5VT Alternate2: SPI1_MOSI, TIMER0_CH2_ON, I2S1_SD, WKUP6 Default: PD8 PD8 55 I/O 5VT Alternate2: EXMC_D13 Remap: USART2_TX, ETH_MII_RX_DV, ETH_RMII_CRS_DV Default: PD9 PD9 56 I/O 5VT Alternate2: EXMC_D14 Remap: USART2_RX, ETH_MII_RXD0, ETH_RMII_RXD0 Default: PD10 PD10 57 I/O 5VT Alternate2: EXMC_D15 Remap: USART2_CK, ETH_MII_RXD1, ETH_RMII_RXD1 Default: PD11 PD11 58 I/O 5VT Alternate2: EXMC_A16 Remap: USART2_CTS, ETH_MII_RXD2 Default: PD12 PD12 59 I/O 5VT Alternate2: EXMC_A17 Remap: TIMER3_CH0, USART2_RTS, ETH_MII_RXD3 Default: PD13 PD13 60 I/O 5VT Alternate2: EXMC_A18 Remap: TIMER3_CH1 Default: PD14 PD14 61 I/O 5VT Alternate2: EXMC_D0 Remap: TIMER3_CH2 Default: PD15 PD15 62 I/O 5VT Alternate2: EXMC_D1 Remap: TIMER3_CH3, CTC_SYNC PC6 63 I/O 5VT Default: PC6 21 GD32EPRTxx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description(3) Alternate1: USART5_TX Alternate2: I2S1_MCK, TIMER7_CH0 Remap: TIMER2_CH0 Default: PC7 PC7 64 I/O 5VT Alternate1: USART5_RX Alternate2: I2S2_MCK, TIMER7_CH1 Remap: TIMER2_CH1 Default: PC8 PC8 65 I/O 5VT Alternate1: USART5_CK Alternate2: TIMER7_CH2 Remap: TIMER2_CH2 Default: PC9 PC9 66 I/O 5VT Alternate1: I2C2_SDA Alternate2: TIMER7_CH3 Remap: TIMER2_CH3 Default: PA8 PA8 67 I/O 5VT Alternate1: I2C2_SCL Alternate2: USART0_CK, TIMER0_CH0, CK_OUT, CTC_SYNC Default: PA9 PA9 68 I/O 5VT Alternate1: I2C2_SMBA Alternate2: USART0_TX, TIMER0_CH1 PA10 69 I/O 5VT Default: PA10 Alternate2: USART0_RX, TIMER0_CH2 Default: PA11 PA11 70 I/O 5VT Alternate1: USART5_TX Alternate2: USART0_CTS, USBDM, TIMER0_CH3 Default: PA12 PA12 71 I/O 5VT Alternate1: USART5_RX Alternate2: USART0_RTS, USBDP, TIMER0_ETI I/O 5VT Default: JTMS, SWDIO PA13 72 NC 73 VSS_2 74 P Default: VSS_2 VDD_2 75 P Default: VDD_2 PA14 76 I/O Remap: PA13 - 5VT Default: JTCK, SWCLK Remap: PA14 Default: JTDI PA15 77 I/O 5VT Alternate2: SPI2_NSS, I2S2_WS Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS Default: PC10 PC10 78 I/O 5VT Alternate1: I2C2_SCL Alternate2: UART3_TX 22 GD32EPRTxx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description(3) Remap: USART2_TX, SPI2_SCK, I2S2_CK Default: PC11 PC11 79 I/O 5VT Alternate1: I2S2_ADD_SD Alternate2: UART3_RX Remap: USART2_RX, SPI2_MISO Default: PC12 PC12 80 I/O 5VT Alternate2: UART4_TX Remap: USART2_CK, SPI2_MOSI, I2S2_SD Default: PD0 PD0 81 I/O 5VT Alternate2: EXMC_D2 Remap: OSCIN Default: PD1 PD1 82 I/O 5VT Alternate2: EXMC_D3 Remap: OSCOUT PD2 83 I/O 5VT Default: PD2 Alternate2: TIMER2_ETI, UART4_RX Default: PD3 PD3 84 I/O 5VT Alternate2: EXMC_CLK Remap: USART1_CTS Default: PD4 PD4 85 I/O 5VT Alternate2: EXMC_NOE Remap: USART1_RTS Default: PD5 PD5 86 I/O 5VT Alternate2: EXMC_NWE Remap: USART1_TX Default: PD6 PD6 87 I/O 5VT Alternate2: EXMC_NWAIT Remap: USART1_RX Default: PD7 PD7 88 I/O 5VT Alternate2: EXMC_NE0, EXMC_NCE1 Remap: USART1_CK Default: JTDO PB3 89 I/O 5VT Alternate2: SPI2_SCK, I2S2_CK Remap: TIMER1_CH1, PB3, TRACESWO, SPI0_SCK Default: NJTRST PB4 90 I/O 5VT Alternate1: I2C2_SDA, I2S2_ADD_SD Alternate2: SPI2_MISO, I2C0_TXFRAME Remap: TIMER2_CH0, PB4, SPI0_MISO Default: PB5 Alternate1: I2C2_SCL PB5 91 I/O Alternate2: I2C0_SMBA, SPI2_MOSI, I2S2_SD, ETH_MII_PPS_OUT, ETH_RMII_PPS_OUT, WKUP5 Remap: TIMER2_CH1, SPI0_MOSI 23 GD32EPRTxx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description(3) Default: PB6 PB6 92 I/O 5VT Alternate2: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX, SPI0_IO2 Default: PB7 PB7 93 I/O 5VT Alternate2: I2C0_SDA , TIMER3_CH1, EXMC_NADV Remap: USART0_RX, SPI0_IO3 BOOT0 94 Default: BOOT0 I Default: PB8 PB8 95 I/O 5VT Alternate1: I2C2_SDA Alternate2: TIMER3_CH2, ETH_MII_TXD3 Remap: I2C0_SCL Default: PB9 PB9 96 I/O 5VT Alternate2: TIMER3_CH3 Remap: I2C0_SDA Default: PE0 PE0 97 I/O 5VT PE1 98 I/O 5VT VSS_3 99 P Default: VSS_3 VDD_3 100 P Default: VDD_3 Alternate2: TIMER3_ETI, EXMC_NBL0 Default: PE1 Alternate2: EXMC_NBL1 Notes: (1) Type: I = input, O = output, P = power. (2) I/O Level: 5VT = 5 V tolerant. (3) Alternate1: The specified function can be mapped to the specific pin by configuring AFIO_PCFA ~ AFIO_PCFG registers. Alternate2: These functions can be enabled with correct GPIO and function module mode configurations. Remap: A group of the specified module functions can be mapped to the specified pins by configuring AFIO_PCF0 ~ AFIO_PCF1 registers. 24 GD32EPRTxx Datasheet 2.6.2. GD32EPRTRDT6 LQFP64 pin definitions Table 2-4. GD32EPRTRDT6 LQFP64 pin definitions Pin I/O Type(1) Level(2) Pin Name Pins VBAT 1 P 2 I/O 3 I/O 4 I/O OSCIN 5 I OSCOUT 6 O NRST 7 I/O PC0 8 I/O PC1 9 I/O PC13TAMPERRTC PC14OSC32IN PC15OSC32OUT Functions description(3) Default: VBAT Default: PC13 Alternate2: TAMPER-RTC, WKUP1 Default: PC14 Alternate2: OSC32IN Default: PC15 Alternate2: OSC32OUT Default: OSCIN Remap: PD0 Default: OSCOUT Remap: PD1 Default: NRST Default: PC0 Alternate2: ADC012_IN10 Default: PC1 Alternate2: ADC012_IN11, ETH_MII_MDC, ETH_RMII_MDC Default: PC2 PC2 10 I/O Alternate1: I2S1_ADD_SD Alternate2: ADC012_IN12, ETH_MII_TXD2 Default: PC3 PC3 11 I/O VSSA 12 P Default: VSSA VDDA 13 P Default: VDDA Alternate2: ADC012_IN13, ETH_MII_TX_CLK Default: PA0 PA0-WKUP0 14 I/O Alternate2: WKUP0, USART1_CTS, ADC012_IN0, TIMER1_CH0, TIMER1_ETI, TIMER4_CH0, TIMER7_ETI, ETH_MII_CRS Default: PA1 PA1 15 I/O Alternate2: USART1_RTS, ADC012_IN1, TIMER4_CH1, TIMER1_CH1, ETH_MII_RX_CLK, ETH_RMII_REF_CLK Default: PA2 PA2 16 I/O Alternate2: USART1_TX, TIMER4_CH2, ADC012_IN2, TIMER1_CH2, ETH_MII_MDIO, ETH_RMII_MDIO, SPI0_IO2, WKUP3 PA3 17 I/O Default: PA3 Alternate2: USART1_RX, TIMER4_CH3, ADC012_IN3, 25 GD32EPRTxx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description(3) TIMER1_CH3, ETH_MII_COL, SPI0_IO3 VSS_4 18 P Default: VSS_4 VDD_4 19 P Default: VDD_4 Default: PA4 PA4 20 Alternate2: SPI0_NSS, USART1_CK, DAC_OUT0, I/O ADC01_IN4 Remap: SPI2_NSS, I2S2_WS PA5 21 Default: PA5 I/O Alternate2: SPI0_SCK, ADC01_IN5, DAC_OUT1 Default: PA6 PA6 22 Alternate2: SPI0_MISO, TIMER7_BRKIN, ADC01_IN6, I/O TIMER2_CH0 Remap: TIMER0_BRKIN Default: PA7 PA7 23 Alternate2: SPI0_MOSI, TIMER7_CH0_ON, ADC01_IN7, I/O TIMER2_CH1, ETH_MII_RX_DV, ETH_RMII_CRS_DV Remap: TIMER0_CH0_ON Default: PC4 PC4 24 Alternate2: ADC01_IN14, ETH_MII_RXD0, I/O ETH_RMII_RXD0 Default: PC5 PC5 25 Alternate2: ADC01_IN15, ETH_MII_RXD1, I/O ETH_RMII_RXD1, WKUP4 Default: PB0 PB0 26 Alternate2: ADC01_IN8, TIMER2_CH2, TIMER7_CH1_ON, I/O ETH_MII_RXD2 Remap: TIMER0_CH1_ON Default: PB1 PB1 27 Alternate2: ADC01_IN9, TIMER2_CH3, TIMER7_CH2_ON, I/O ETH_MII_RXD3 Remap: TIMER0_CH2_ON PB2 28 I/O 5VT Default: PB2, BOOT1 Default: PB10 PB10 29 I/O 5VT Alternate2: I2C1_SCL, USART2_TX, ETH_MII_RX_ER Remap: TIMER1_CH2 Default: PB11 5VT Alternate2: I2C1_SDA, USART2_RX, ETH_MII_TX_EN, PB11 30 I/O VSS_1 31 P Default: VSS_1 VDD_1 32 P Default: VDD_1 PB12 33 I/O ETH_RMII_TX_EN Remap: TIMER1_CH3 5VT Default: PB12 26 GD32EPRTxx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description(3) Alternate2: SPI1_NSS, I2S1_WS, I2C1_SMBA, USART2_CK, TIMER0_BRKIN, ETH_MII_TXD0, ETH_RMII_TXD0 Default: PB13 PB13 34 I/O 5VT Alternate2: SPI1_SCK, I2S1_CK, USART2_CTS, TIMER0_CH0_ON, ETH_MII_TXD1, ETH_RMII_TXD1, I2C1_TXFRAME Default: PB14 PB14 35 I/O 5VT Alternate1: I2S1_ADD_SD Alternate2: SPI1_MISO, USART2_RTS, TIMER0_CH1_ON Default: PB15 PB15 36 I/O 5VT Alternate2: SPI1_MOSI, TIMER0_CH2_ON, I2S1_SD, WKUP6 Default: PC6 PC6 37 I/O 5VT Alternate1: USART5_TX Alternate2: I2S1_MCK, TIMER7_CH0 Remap: TIMER2_CH0 Default: PC7 PC7 38 I/O 5VT Alternate1: USART5_RX Alternate2: I2S2_MCK, TIMER7_CH1 Remap: TIMER2_CH1 Default: PC8 PC8 39 I/O 5VT Alternate1: USART5_CK Alternate2: TIMER7_CH2 Remap: TIMER2_CH2 Default: PC9 PC9 40 I/O 5VT Alternate1: I2C2_SDA Alternate2: TIMER7_CH3 Remap: TIMER2_CH3 Default: PA8 PA8 41 I/O 5VT Alternate1: I2C2_SCL Alternate2: USART0_CK, TIMER0_CH0, CK_OUT, CTC_SYNC Default: PA9 PA9 42 I/O 5VT Alternate1: I2C2_SMBA Alternate2: USART0_TX, TIMER0_CH1 PA10 43 I/O 5VT PA11 44 I/O 5VT Default: PA10 Alternate2: USART0_RX, TIMER0_CH2 Default: PA11 Alternate1: USART5_TX Alternate2: USART0_CTS, USBDM, TIMER0_CH3 PA12 45 I/O 5VT Default: PA12 Alternate1: USART5_RX 27 GD32EPRTxx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description(3) Alternate2: USART0_RTS, USBDP, TIMER0_ETI 5VT Default: JTMS, SWDIO PA13 46 I/O VSS_2 47 P Default: VSS_2 VDD_2 48 P Default: VDD_2 PA14 49 I/O 5VT PA15 50 I/O 5VT Remap: PA13 Default: JTCK, SWCLK Remap: PA14 Default: JTDI Alternate2: SPI2_NSS, I2S2_WS Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS Default: PC10 PC10 51 I/O 5VT Alternate1: I2C2_SCL Alternate2: UART3_TX Remap: USART2_TX, SPI2_SCK, I2S2_CK Default: PC11 PC11 52 I/O 5VT Alternate1: I2S2_ADD_SD Alternate2: UART3_RX Remap: USART2_RX, SPI2_MISO Default: PC12 PC12 53 I/O 5VT Alternate2: UART4_TX Remap: USART2_CK, SPI2_MOSI, I2S2_SD PD2 54 I/O 5VT PB3 55 I/O 5VT Default: PD2 Alternate2: TIMER2_ETI, UART4_RX Default: JTDO Alternate2: SPI2_SCK, I2S2_CK Remap: TIMER1_CH1, PB3, TRACESWO, SPI0_SCK Default: NJTRST PB4 56 I/O 5VT Alternate1: I2C2_SDA, I2S2_ADD_SD Alternate2: SPI2_MISO, I2C0_TXFRAME Remap: TIMER2_CH0, PB4, SPI0_MISO Default: PB5 Alternate1: I2C2_SCL PB5 57 Alternate2: I2C0_SMBA, SPI2_MOSI, I2S2_SD, I/O ETH_MII_PPS_OUT, ETH_RMII_PPS_OUT, WKUP5 Remap: TIMER2_CH1, SPI0_MOSI Default: PB6 PB6 58 I/O 5VT Alternate2: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX, SPI0_IO2 Default: PB7 PB7 59 I/O BOOT0 60 I 5VT Alternate2: I2C0_SDA , TIMER3_CH1, EXMC_NADV Remap: USART0_RX, SPI0_IO3 Default: BOOT0 28 GD32EPRTxx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description(3) Default: PB8 PB8 61 I/O 5VT Alternate1: I2C2_SDA Alternate2: TIMER3_CH2, ETH_MII_TXD3 Remap: I2C0_SCL Default: PB9 PB9 62 I/O 5VT Alternate2: TIMER3_CH3 Remap: I2C0_SDA VSS_3 63 P Default: VSS_3 VDD_3 64 P Default: VDD_3 Notes: (1) Type: I = input, O = output, P = power. (2) I/O Level: 5VT = 5 V tolerant. (3) Alternate1: The specified function can be mapped to the specific pin by configuring AFIO_PCFA ~ AFIO_PCFG registers. Alternate2: These functions can be enabled with correct GPIO and function module mode configurations. Remap: A group of the specified module functions can be mapped to the specified pins by configuring AFIO_PCF0 ~ AFIO_PCF1 registers. 29 GD32EPRTxx Datasheet 3. Functional description 3.1. Arm® Cortex®-M33 core The Cortex®-M33 processor is a 32-bit processor that possesses low interrupt latency and low-cost debug. The characteristics of integrated and advanced make the Cortex®-M33 processor suitable for market products that require microcontrollers with high performance and low power consumption. 32-bit Arm® Cortex®-M33 processor core  Up to 180 MHz operation frequency  Ultra-low power, energy-efficient operation  Integrated Nested Vectored Interrupt Controller (NVIC)  24-bit SysTick timer The Cortex®-M33 processor is based on the ARMv8 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M33:  Internal Bus Matrix connected with Code bus, System bus, and Private Peripheral Bus (PPB) and debug accesses 3.2.  Nested Vectored Interrupt Controller (NVIC)  Breakpoint Unit (BPU)  Data Watchpoint and Trace (DWT)  Instrumentation Trace Macrocell (ITM)  Serial Wire JTAG Debug Port (SWJ-DP)  Trace Port Interface Unit (TPIU)  Memory Protection Unit (MPU)  Floating Point Unit (FPU)  DSP Extension (DSP) Embedded memory  Up to 384 Kbytes of Flash memory  Up to 96 Kbytes of SRAM with hardware parity checking  Up to 4 Mbytes of PSRAM embedded 384 Kbytes of inner Flash, 96 Kbytes of inner SRAM and 4 Mbytes of inner PSRAM at most is available for storing programs and data, both accessed (R/W) at CPU clock speed with 0~4 waiting time. Table 2-2. GD32EPRTxx memory map shows the memory map of the GD32EPRTxx series of devices, including code, SRAM, peripheral, and other pre-defined regions. 30 GD32EPRTxx Datasheet 3.3. Clock, reset and supply management  Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator  Internal 48 MHz RC oscillator  Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator  Integrated system clock PLL  1.62 to 3.6 V application supply and I/Os  Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD) The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB, APB2 and APB1 domains is 180 MHz/180 MHz/90 MHz. See Figure 2-4. GD32EPRTxx clock tree for details on the clock tree. The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 1.56 V and down to 1.52V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security. Power supply schemes:  VDD range: 1.62 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.  VSSA, VDDA range: 1.62 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL.  VBAK range: 1.62 to 3.6 V, power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. 3.4. Boot modes At startup, boot pins are used to select one of three boot options:  Boot from main Flash memory (default)  Boot from system memory  Boot from on-chip SRAM In default condition, boot from main Flash memory is selected. The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10) or USART1 (PD5 and PD6). 31 GD32EPRTxx Datasheet 3.5. Power saving modes The MCU supports five kinds of power saving modes to achieve even lower power consumption. They are Sleep, Deep-sleep, Deep-sleep 1, Deep-sleep 2 and Standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.  Sleep mode In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.  Deep-sleep mode In Deep-sleep mode, all clocks in the 1.1V domain are off, and all of IRC8M, IRC48M, HXTAL and PLLs are disabled. The contents of SRAM and registers are preserved. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, LVD output, USB wakeup, Ethernet wakeup, I2C2 wakeup and USART5 wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.  Deep-sleep 1 mode In Deep-sleep 1 mode, all clocks in the 1.1V domain are off, and all of IRC8M, IRC48M, HXTAL and PLLs are disabled. The power of COREOFF1 domain is cut off. The contents of registers in COREOFF1 domain are lost. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep 1 mode including the 16 external lines, the RTC alarm, LVD output, USB wakeup, Ethernet wakeup, I2C2 wakeup and USART5 wakeup. Waking up from Deep-sleep 1 mode needs an additional delay to power on COREOFF1 domain. When exiting the deep-sleep 1 mode, the IRC8M is selected as the system clock.  Deep-sleep 2 mode In Deep-sleep 2 mode, all clocks in the 1.1V domain are off, and all of IRC8M, IRC48M, HXTAL and PLLs are disabled. The power of COREOFF0/COREOFF1 domain is cut off. The contents of SRAM except for the first 32K and registers in COREOFF0/COREOFF1 domain are lost. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, LVD output, USB wakeup, Ethernet wakeup, I2C2 wakeup and USART5 wakeup. Waking up from Deep-sleep 2 mode needs an additional delay to power on COREOFF1 domain. Waking up from Deep-sleep 2 mode needs an additional delay to power on COREOFF0/COREOFF1 domain. When exiting the deep-sleep 2 mode, the IRC8M is selected as the system clock.  Standby mode In Standby mode, the whole 1.1V domain is power off, the LDO is shut down, and all of IRC8M, IRC48M, HXTAL and PLL are disabled. There are four wakeup sources for the Standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pins. 32 GD32EPRTxx Datasheet 3.6. Analog to digital converter (ADC)  12-bit SAR ADC's conversion rate is up to 2.5 MSPS  12-bit, 10-bit, 8-bit or 6-bit configurable resolution  Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit  Input voltage range: VREF- to VREF+  Temperature sensor Three 12-bit 2.5 MSPS multi-channel ADCs are integrated in the device. It has a total of 18 multiplexed channels: up to 16 external channels, 1 channel for internal temperature sensor (VSENSE) and 1 channel for internal reference voltage (V REFINT). The input voltage range is between VREF- and VREF+. An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. The analog watchdog allows the application to detect whether the input voltage goes outside the user-defined higher or lower thresholds. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use. The ADC can be triggered from the events generated by the general level 0 timers (TIMERx), and the advanced timers (TIMER0 and TIMER7). The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value. To ensure a high accuracy on ADC and DAC, the ADC/DAC independent external reference voltage should be connected to VREF+/VREF- pins. According to the different packages, VREF+ pin can be connected to VDDA pin, or external reference voltage, VREF- pin must be connected to VSSA pin. The VREF+ pin is only available on no less than 100-pin packages, or else the VREF+ pin is not available and internally connected to VDDA. The VREF- pin is only available on no less than 100-pin packages, or else the VREF- pin is not available and internally connected to VSSA. 3.7. Digital to analog converter (DAC)  Two 12-bit DACs with independent output channels  8-bit or 12-bit mode in conjunction with the DMA controller The 12-bit buffered DAC is used to generate variable analog outputs. The DAC channels can be triggered by the timer, or EXTI with DMA support. In dual DAC channel operation, conversions could be done independently or simultaneously. The maximum output value of the DAC is VREF+. 3.8. DMA  7 channels for DMA0 controller and 5 channels for DMA1 controller  Peripherals supported: Timers, ADCs, DACs, SPIs, I2Cs, USARTs and I2S 33 GD32EPRTxx Datasheet The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory. Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable. 3.9. General-purpose inputs/outputs (GPIOs)  Up to 112 fast GPIOs, all mappable on 16 external interrupt lines  Analog input/output configurable  Alternate function input/output configurable There are up to 80 general purpose I/O pins (GPIO) in GD32EPRTxx, named PA0 ~ PA15, PB0 ~ PB15, PC0 ~ PC15, PD0 ~ PD15 and PE0 ~ PE15 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), input, peripheral alternate function or analog mode. Most of the GPIO pins are shared with digital or analog alternate functions. 3.10. Timers and PWM generation  Two 16-bit advanced timer (TIMER0, TIMER7), one 32-bit general timer (TIMER1), up to three 16-bit general timers (TIMER2 ~ TIMER4), and two 16-bit basic timer (TIMER5, TIMER6)  Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input  16-bit, motor control PWM advanced timer with programmable dead-time generation for output match  Encoder interface controller with two inputs using quadrature decoder  24-bit SysTick timer down counter  2 watchdog timers (free watchdog timer and window watchdog timer) The advanced timer (TIMER0, TIMER7) can be used as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge- or center- aligned counting modes) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other 34 GD32EPRTxx Datasheet general timers together which have the same architecture and features. The general timer can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER1 is based on a 32-bit auto-reload up/down counter and a 16-bit prescaler. TIMER2 ~ TIMER4 is based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder. The basic timer, known as TIMER5 &TIMER6, are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base. The GD32EPRTxx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy. The free watchdog timer includes a 12-bit down-counting counter and an 8-stage prescaler. It is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep, deep-sleep 1, deep-sleep 2 and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a freerunning timer for application timeout management. The window watchdog timer is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode. The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below: 3.11.  A 24-bit down counter  Auto reload capability  Maskable system interrupt generation when the counter reaches 0  Programmable clock source Real time clock (RTC)  32-bit programmable counter with a programmable 20-bit prescaler  Alarm function  Interrupt and wakeup event The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. The RTC features a 32-bit programmable counter for longterm measurement using the compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 KHz from external crystal oscillator. 35 GD32EPRTxx Datasheet 3.12. Inter-integrated circuit (I2C) I2C0 and I2C1:  Support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)  Provide arbitration function, optional PEC (packet error checking) generation and checking  Supports 7-bit and 10-bit addressing mode and general call addressing mode  SMBus 2.0 and PMBus compatible  Supports SAM_V mode I2C2:  Support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)  Provide arbitration function, optional PEC (packet error checking) generation and checking  Supports 7-bit and 10-bit addressing mode and general call addressing mode  SMBus 3.0 and PMBus 1.3 compatible  Wakeup from Deep-sleep mode on address match The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides different data transfer rates: up to 100 KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data. 3.13. Serial peripheral interface (SPI)  Up to three SPI interfaces with a frequency of up to 30 MHz  Support both master and slave mode  Hardware CRC calculation and transmit automatic CRC error checking  Quad-SPI configuration available in master mode (only in SPI0) The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). All SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Quad-SPI master mode is also supported in SPI0. 36 GD32EPRTxx Datasheet 3.14. Universal synchronous asynchronous receiver transmitter (USART) USART0~2, UART3~4:  Maximum speed up to 22.5 MBits/s  Supports both asynchronous and clocked synchronous serial communication modes  IrDA SIR encoder and decoder support  LIN break generation and detection  ISO 7816-3 compliant smart card interface USART5:  Maximum speed up to 22.5 MBits/s  Supports both asynchronous and clocked synchronous serial communication modes  IrDA SIR encoder and decoder support  LIN break generation and detection  ISO 7816-3 compliant smart card interface  Dual clock domain  Wake up from Deep-sleep mode The USART (USART0, USART1, USART2, USART5) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication. 3.15. Inter-IC sound (I2S)  Two I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz  Support either master or slave mode The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 4-wire serial lines. GD32EPRTxx contain an I2S-bus interface that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1 and SPI2. The audio sampling frequency from 8 KHz to 192 KHz is supported. 3.16. Universal Serial Bus full-speed device interface (USBD)  USB 2.0 full-speed device controller.  Support USB 2.0 Link Power Management.  Dedicated 512-byte SRAM used for data packet buffer.  Integrated USB PHY. 37 GD32EPRTxx Datasheet The Universal Serial Bus full-speed device interface (USBD) module contains a full-speed internal USB PHY and no more external PHY chip is needed. USBD supports all the four types of transfer (control, bulk, interrupt and isochronous) defined in USB 2.0 protocol. USBD supports 8 USB endpoints that can be individually configured. 3.17. Ethernet (ENET)  IEEE 802.3 compliant media access controller (MAC) for Ethernet LAN  10/100 Mbit/s rates with dedicated DMA controller and SRAM  Support hardware precision time protocol (PTP) with conformity to IEEE 1588 The Ethernet media access controller (MAC) conforms to IEEE 802.3 specifications and fully supports IEEE 1588 standards. The embedded MAC provides the interface to the required external network physical interface (PHY) for LAN bus connection via an internal media independent interface (MII) or a reduced media independent interface (RMII). The number of MII signals provided up to 16 with 25 MHz output and RMII up to 7 with 50 MHz output. The function of 32-bit CRC checking is also available. 3.18. External memory controller (EXMC)  Supported external memory: SRAM, PSRAM, ROM and NOR-Flash, NAND Flash and PC card  Up to 16-bit data bus  Support to interface with Motorola 6800 and Intel 8080 type LCD directly External memory controller (EXMC) is an abbreviation of external memory controller. It is divided in to several sub-banks for external device support, each sub-bank has its own chip selection signal but at one time, only one bank can be accessed. The EXMC support code execution from external memory except NAND Flash and PC card. The EXMC also can be configured to interface with the most common LCD module of Motorola 6800 and Intel 8080 series and reduce the system cost and complexity. 3.19. Serial/Quad Parallel Interface (SQPI)  SQPI controller support configuring output clock frequency which is divided by HCLK.  SQPI controller support no address phase and data phase operation which is named special command by the controller.  SQPI controller support 256MB external memory space. Logic memory address range: 0xB000_0000 - 0xBFFF_FFFF.  SQPI controller support 6 types mode for different combination of command, address, wait cycle, and data phase. Serial/Quad Parallel Interface (SQPI) is a controller for external serial/dual/quad parallel 38 GD32EPRTxx Datasheet interface memory peripheral. For example: SQPI-PSRAM and SQPI-FLASH. With this controller, users can use external SQPI interface memory as SRAM simply. Note: There is a 4 Mbytes PSRAM embedded, and the SQPI interface is internally connected to GPIOF ports: SQPI_DO – PF0, SQPI_D1 – PF4, SQPI_D2 – PF2, SQPI_D3 – PF10, SQPI_CLK – PF8, SQPI_CSN – PF6. Users should configure the GPIOF corresponding bits to SQPI function before using the embedded PSRAM. 3.20. Debug mode  Serial wire JTAG debug port (SWJ-DP) The Arm® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. 3.21. Package and operation temperature  LQFP100 (GD32EPRTVDT6) and LQFP64 (GD32EPRTRDT6).  Operation temperature range: -40°C to +85°C (industrial level) 39 GD32EPRTxx Datasheet 4. Electrical characteristics 4.1. Absolute maximum ratings The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. Table 4-1. Absolute maximum ratings (1)(4) Symbol Parameter Min Max Unit VDD External voltage range(2) VSS - 0.3 VSS + 3.6 V VDDA External analog supply voltage VSSA - 0.3 VSSA + 3.6 V VBAT External battery supply voltage VSS - 0.3 VSS + 3.6 V Input voltage on 5V tolerant pin(3) VSS - 0.3 VDD + 3.6 V Input voltage on other I/O VSS - 0.3 3.6 V |ΔVDDx| Variations between different VDD power pins — 50 mV |VSSX −VSS| Variations between different ground pins — 50 mV IIO Maximum current for GPIO pins — ±25 mA TA Operating temperature range -40 +85 °C TSTG Storage temperature range -55 +150 °C TJ Maximum junction temperature — 125 °C VIN (1) (2) (3) (4) 4.2. Guaranteed by design, not tested in production. All main power and ground pins should be connected to an external power source within the allowable range. VIN maximum value cannot exceed 6.5 V. It is recommended that VDD and VDDA are powered by the same source. The maximum difference between V DD and VDDA does not exceed 300 mV during power-up and operation. Operating conditions characteristics Table 4-2. DC operating conditions Symbol Parameter Conditions VDD Supply voltage — VDDA VBAT Analog supply voltage, fADCMAX = 35 MHz Analog supply voltage, fADCMAX = 14 MHz Battery supply voltage — — Min(1) Typ Max(1) Unit 1.71 3.3 3.6 2.4 3.3 3.6 1.71 — 2.4 1.71 — 3.6 V V V (1) Based on characterization, not tested in production. 40 GD32EPRTxx Datasheet Figure 4-1. Recommended power supply decoupling capacitors (1)(2) VBAT 100 nF VSS N * VDD 4.7 μF + N * 100 nF VSS VDDA 1 μF 10 nF VSSA VREF+ 1 μF 10 nF VREF- (1) The VREF+ and VREF- pins are only available on no less than 100-pin packages, or else the VREF+ and VREF- pins are not available and internally connected to VDDA and VSSA pins. (2) All decoupling capacitors need to be as close as possible to the pins on the PCB board. Table 4-3. Clock frequency (1) Symbol Parameter Conditions Min Max Unit fHCLK AHB clock frequency — — 180 MHz fAPB1 APB1 clock frequency — — 90 MHz fAPB2 APB2 clock frequency — — 180 MHz Min Max Unit 0 ∞ 20 ∞ (1) Guaranteed by design, not tested in production. Table 4-4. Operating conditions at Power up/ Power down Symbol tVDD Parameter (1) Conditions VDD rise time rate — VDD fall time rate μs/ V (1) Guaranteed by design, not tested in production. Table 4-5. Start-up timings of Operating conditions Symbol Parameter tstart-up Start-up time (1)(2)(3) Conditions Typ Clock source from HXTAL — Clock source from IRC8M — Unit μs (1) Based on characterization, not tested in production. (2) After power-up, the start-up time is the time between the rising edge of NRST high and the first I/O instruction conversion in SystemInit function. (3) PLL is off. 41 GD32EPRTxx Datasheet Table 4-6. Power saving mode wakeup timings characteristics (1)(2) Symbol Parameter Typ tSleep Wakeup from Sleep mode — Wakeup from Deep-sleep mode (LDO On) — Wakeup from Deep-sleep mode (LDO in low power mode) — Wakeup from Standby mode — tDeep-sleep tStandby Unit μs (1) Based on characterization, not tested in production. (2) The wakeup time is measured from the wakeup event to the point at which the application code reads the first instruction under the below conditions: VDD = VDDA = 3.3 V, IRC8M = System clock = 8 MHz. 4.3. Power consumption The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications. Table 4-7. Power consumption characteristics (2)(3)(4)(5) Symbol Parameter Conditions Min Typ(1) Max Unit VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 180 MHz, All peripherals — 59.8 — mA — 26.1 — mA — 53.6 — mA — 23.5 — mA — 41 — mA — 18.2 — mA — 37.2 — mA — 16.6 — mA — 33.4 — mA enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 180 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 160 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 160 MHz, All peripherals disabled IDD+IDDA Supply current (Run mode) VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 120 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 120 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 108 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 108 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 96 MHz, All peripherals enabled 42 GD32EPRTxx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 96 MHz, All peripherals — 15 — mA — 25.7 — mA — 11.8 — mA — 18 — mA — 7.96 — mA — 14 — mA — 6.49 — mA — 9.73 — mA — 4.83 — mA — 7.2 — mA — 3.9 — mA — 4.62 — mA — 2.9 — mA — — — mA disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 72 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 72 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 48 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 48 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 36 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 36 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 24 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 24 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 16 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 16 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 8 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 8 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 4 MHz, System clock = 4 MHz, All peripherals enabled 43 GD32EPRTxx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit VDD = VDDA = 3.3 V, HXTAL = 4 MHz, System clock = 4 MHz, All peripherals — — — mA — — — mA — — — mA — 47.8 — mA — 9.5 — mA — 42.8 — mA — 8.7 — mA — 32.8 — mA — 7.07 — mA — 29.8 — mA — 6.57 — mA — 26.7 — mA — 6.1 — mA — 20.7 — mA disabled VDD = VDDA = 3.3 V, HXTAL = 2 MHz, System clock = 2 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 2 MHz, System Clock = 2 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 180 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 180 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 160 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 160 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 120 MHz, CPU clock off, All peripherals enabled Supply current (Sleep mode) VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 120 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 108 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 108 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 96 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 96 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 72 MHz, CPU clock off, All peripherals enabled 44 GD32EPRTxx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 72 MHz, CPU clock off, All — 5.1 — mA — 14.5 — mA — 4.1 — mA — 11.4 — mA — 3.6 — mA — 8.3 — mA — 3.1 — mA — 6.2 — mA — 2.7 — mA — 4.2 — mA — 2.4 — mA — — — mA — — — mA — — — mA peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 48 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 48 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 36 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 36 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 24 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 24 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 16 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 16 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 8 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 8 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 4 MHz, System Clock = 4 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 4 MHz, System Clock = 4 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 2 MHz, System Clock = 2 MHz, CPU clock off, All peripherals enabled 45 GD32EPRTxx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit VDD = VDDA = 3.3 V, HXTAL = 2 MHz, System Clock = 2 MHz, CPU clock off, All — — — mA — μA — μA — μA — μA peripherals disabled VDD = VDDA = 3.3 V, LDO in run mode, IRC40K off, RTC off, All GPIOs analog — mode VDD = VDDA = 3.3 V, LDO in low power Supply current (Deep-Sleep mode) mode, IRC40K off, RTC off, All GPIOs — analog mode VDD = VDDA = 3.3 V, Main LDO in under drive mode, IRC40K off, RTC off, All — GPIOs analog mode VDD = VDDA = 3.3 V, Low Power LDO in under drive mode, IRC40K off, RTC off, All — GPIOs analog mode VDD = VDDA = 3.3 V, LXTAL off, IRC40K on, RTC on Supply current VDD = VDDA = 3.3 V, LXTAL off, IRC40K on, (Standby mode) RTC off VDD = VDDA = 3.3 V, LXTAL off, IRC40K off, RTC off 461.3 3 413.0 0 258.0 0 210.6 7 — 3.79 — μA — 3.58 — μA — 3.08 — μA — 1.95 — μA — 1.82 — μA — 1.67 — μA — 1.59 — μA — 1.53 — μA — 1.40 — μA — 1.25 — μA VDD off, VDDA off, VBAT = 3.6 V, LXTAL on with external crystal, RTC on, LXTAL High driving VDD off, VDDA off, VBAT = 3.3 V, LXTAL on with external crystal, RTC on, LXTAL High driving VDD off, VDDA off, VBAT = 2.5 V, LXTAL on with external crystal, RTC on, LXTAL High Battery supply IBAT current (Backup mode) driving VDD off, VDDA off, VBAT = 1.8 V, LXTAL on with external crystal, RTC on, LXTAL High driving VDD off, VDDA off, VBAT = 3.6 V, LXTAL on with external crystal, RTC on, LXTAL Medium High driving VDD off, VDDA off, VBAT = 3.3 V, LXTAL on with external crystal, RTC on, LXTAL Medium High driving VDD off, VDDA off, VBAT = 2.5 V, LXTAL on with external crystal, RTC on, LXTAL 46 GD32EPRTxx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit Medium High driving VDD off, VDDA off, VBAT = 1.8 V, LXTAL on with external crystal, RTC on, LXTAL — 1.18 — μA — 1.12 — μA — 0.99 — μA — 0.84 — μA — 0.77 — μA — 1.00 — μA — 0.87 — μA — 0.72 — μA — 0.64 — μA Medium High driving VDD off, VDDA off, VBAT = 3.6 V, LXTAL on with external crystal, RTC on, LXTAL Medium Low driving VDD off, VDDA off, VBAT = 3.3 V, LXTAL on with external crystal, RTC on, LXTAL Medium Low driving VDD off, VDDA off, VBAT = 2.5 V, LXTAL on with external crystal, RTC on, LXTAL Medium Low driving VDD off, VDDA off, VBAT = 1.8 V, LXTAL on with external crystal, RTC on, LXTAL Medium Low driving VDD off, VDDA off, VBAT = 3.6 V, LXTAL on with external crystal, RTC on, LXTAL Low driving VDD off, VDDA off, VBAT = 3.3 V, LXTAL on with external crystal, RTC on, LXTAL Low driving VDD off, VDDA off, VBAT = 2.5 V, LXTAL on with external crystal, RTC on, LXTAL Low driving VDD off, VDDA off, VBAT = 1.8 V, LXTAL on with external crystal, RTC on, LXTAL Low driving (1) Based on characterization, not tested in production. (2) Unless otherwise specified, all values given for TA = 25 °C and test result is mean value. (3) When System Clock is less than 4 MHz, an external source is used, and the HXTAL bypass function is needed, no PLL. (4) When System Clock is greater than 8 MHz, a crystal 8 MHz is used, and the HXTAL bypass function is closed, using PLL. (5) When analog peripheral blocks such as ADCs, DACs, HXTAL, LXTAL, IRC8M, or IRC40K are ON, an additional power consumption should be considered. 47 GD32EPRTxx Datasheet Figure 4-2. Typical supply current consumption in Run mode Figure 4-3. Typical supply current consumption in Sleep mode 48 GD32EPRTxx Datasheet Table 4-8. Peripheral current consumption characteristics (1) Peripherals(4) APB1 APB2 AHB1 Typical consumption at TA = 25 ℃ (TYP) CTC — I2C2 — DAC(2) — PMU — BKP — I2C1 — I2C0 — UART4 — UART3 — USART2 — USART1 — SPI2/I2S2 — SPI1/I2S1 — FWDGT — WWDGT — RTC — TIMER5 — TIMER4 — TIMER3 — TIMER2 — TIMER1 — USART5 — USART0 — SPI0 — TIMER0 — ADC1(3) — ADC0(3) — GPIOE — GPIOD — GPIOC — GPIOB — GPIOA — EXTI — AFIO — ENET — CRC — FMC — DMA1 — DMA0 — Unit mA (1) Based on characterization, not tested in production. 49 GD32EPRTxx Datasheet (2) DEN0 and DEN1 bits in the DAC_CTL register are set to 1, and the converted value set to 0x800. (3) system clock = fHCLK = 180 Mhz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/2, ADON bit is set to 1. (4) If there is no other description, then HXTAL = 25 MHz, system clock = fHCLK = 180 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK. 50 GD32EPRTxx Datasheet 4.4. EMC characteristics EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in Table 4-9. EMS characteristics (1), based on the EMS levels and classes compliant with IEC 61000 series standard. Table 4-9. EMS characteristics (1) Symbol VESD VFTB Parameter Conditions Voltage applied to all device pins to induce a functional disturbance Level/Class VDD = 3.3 V, TA = 25 °C — LQFP144, fHCLK = 180 MHz conforms to IEC 61000-4-2 Fast transient voltage burst applied to VDD = 3.3 V, TA = 25 °C induce a functional disturbance through LQFP144, fHCLK = 180 MHz 100 pF on VDD and VSS pins conforms to IEC 61000-4-4 — (1) Based on characterization, not tested in production. 4.5. Power supply supervisor characteristics Table 4-10. Power supply supervisor characteristics Symbol VLVD(1) Parameter Conditions Min Typ Max LVDT = 000(rising edge) — — — LVDT = 000(falling edge) — — — LVDT = 001(rising edge) — — — LVDT = 001(falling edge) — — — LVDT = 010(rising edge) — — — LVDT = 010(falling edge) — — — Low voltage LVDT = 011(rising edge) — — — Detector level selection LVDT = 011(falling edge) — — — LVDT = 100(rising edge) — — — LVDT = 100(falling edge) — — — LVDT = 101(rising edge) — — — LVDT = 101(falling edge) — — — LVDT = 110(rising edge) — — — LVDT = 110(falling edge) — — — Unit V 51 GD32EPRTxx Datasheet Symbol Parameter Conditions Min Typ Max LVDT = 111(rising edge) — — — LVDT = 111(falling edge) — — — Unit VLVDhyst(2) LVD hysteresis — — 100 — mV VPOR(1) Power on reset threshold — — 1.56 — V — — 1.52 — V — — 40 — mV Falling edge — 2.8 — V Rising edge — 2.9 — V Falling edge — 2.5 — V Rising edge — 2.6 — V Falling edge — 2.2 — V Rising edge — 2.3 — V VPDR(1) Power down reset threshold VPDRhyst(2) PDR hysteresis VBOR3(2) Brownout level 3 threshold VBOR2(2) Brownout level 2 threshold VBOR1(2) Brownout level 1 threshold VBORhyst(2) BOR hysteresis — — 100 — mV tRSTTEMPO(2) Reset temporization — — 2.88 — ms (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. 4.6. Electrical sensitivity The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up (LU) test is based on the two measurement methods. Table 4-11. ESD characteristics (1) Symbol VESD(HBM) VESD(CDM) Parameter Conditions Electrostatic discharge TA=25 °C; voltage (human body model) JESD22-A114 Electrostatic discharge TA=25 °C; voltage (charge device model) JESD22-C101 Min Typ Max Unit — — — V — — — V Min Typ Max Unit — — — mA — — — V (1) Based on characterization, not tested in production. Table 4-12. Static latch-up characteristics (1) Symbol Parameter Conditions I-test LU TA=25 °C; JESD78 Vsupply over voltage (1) Based on characterization, not tested in production. 52 GD32EPRTxx Datasheet 4.7. External clock characteristics Table 4-13. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics Symbol fHXTAL RF (1) (2) CHXTAL(2)(3) Parameter Conditions Min Typ Max Unit Crystal or ceramic frequency 1.71 V ≤ VDD ≤ 3.6 V 4 8 32 MHz Feedback resistor VDD = 3.3 V — 400 — kΩ Recommended load capacitance — — 20 30 on OSCIN and OSCOUT pF Ducy(HXTAL)(2) Crystal or ceramic duty cycle — 30 50 70 % gm(2) Oscillator transconductance Startup — 25 — mA/V — — — mA — 2 — ms IDDHXTAL (1) VDD = 3.3 V, fHCLK = Crystal or ceramic operating fIRC8M = 8 MHz current TA = 25 °C VDD = 3.3 V, fHCLK = tSUHXTAL(1) Crystal or ceramic startup time fIRC8M = 8 MHz TA = 25 °C (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. (3) CHXTAL1 = CHXTAL2 = 2*(CLOAD - CS), For CHXTAL1 and CHXTAL2, it is recommended matching capacitance on OSCIN and OSCOUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For CS, it is PCB and MCU pin stray capacitance. Table 4-14. High speed external clock characteristics (HXTAL in bypass mode) Symbol fHXTAL_ext(1) VHXTALH(2) VHXTALL(2) Parameter Conditions External clock source or 1.71 V ≤ VDD ≤ 3.6 oscillator frequency V OSCIN input pin high level voltage OSCIN input pin low level Min Typ Max Unit 1 — 50 MHz 0.7 VDD — VDD V VSS — 0.3 VDD V VDD = 3.3 V voltage OSCIN high or low time — 5 — — ns OSCIN rise or fall time — — — 10 ns CIN(2) OSCIN input capacitance — — 5 — pF Ducy(HXTAL)(2) Duty cycle — 40 — 60 % tH/L(HXTAL)(2) tR/F(HXTAL) (2) (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. Table 4-15. Low speed external clock (LXTAL) generated from a crystal/ceramic 53 GD32EPRTxx Datasheet characteristics Symbol Parameter Crystal or ceramic fLXTAL(1) frequency Conditions Min Typ Max Unit VDD = 3.3 V — 32.768 — kHz — — 10 — pF — 30 — 70 % — 4 — — 6 — Recommended matching CLXTAL (2)(3) capacitance on OSC32IN and OSC32OUT Ducy(LXTAL)(2) Crystal or ceramic duty cycle Lower driving capability Medium low driving gm(2) Oscillator transconductance capability Medium high driving — 12 — — 18 — LXTALDRI[1:0] = 00 — 0.7 — Crystal or ceramic operating LXTALDRI[1:0] = 01 — 0.8 — current LXTALDRI[1:0] = 10 — 1.2 — LXTALDRI[1:0] = 11 — 1.5 — — — 2 — capability Higher driving capability IDDLXTAL(1) tSULXTAL(1)(4) μA/V Crystal or ceramic startup time μA s (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. (3) CLXTAL1 = CLXTAL2 = 2*(CLOAD - CS), For CLXTAL1 and CLXTAL2, it is recommended matching capacitance on SC32IN and OSC32OUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For CS, it is PCB and MCU pin stray capacitance. (4) tSULXTAL is the startup time measured from the moment it is enabled (by software) to the 32.768 kHz oscillator stabilization flags is SET. This value varies significantly with the crystal manufacturer. Table 4-16. Low speed external user clock characteristics (LXTAL in bypass mode) Symbol Parameter fLXTAL_ext(1) VLXTALH(2) VLXTALL External clock source or oscillator frequency Conditions Min Typ Max Unit VDD = 3.3 V — 32.768 1000 kHz — 0.7 VDD — VDD OSC32IN input pin high level voltage OSC32IN input pin low level (2) voltage V — VSS — 0.3 VDD tH/L(LXTAL)(2) OSC32IN high or low time — 450 — — tR/F(LXTAL)(2) OSC32IN rise or fall time — — — 50 CIN(2) OSC32IN input capacitance — — 5 — pF Duty cycle — 30 50 70 % Ducy(LXTAL) (2) ns (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. 54 GD32EPRTxx Datasheet 4.8. Internal clock characteristics Table 4-17. High speed internal clock (IRC8M) characteristics Symbol Parameter Conditions Min Typ Max Unit VDD = VDDA = 3.3 V — 8 — MHz -2.5 — +2.5 % -1.8 — +1.8 % VDD = VDDA = 3.3 V, TA = 25 °C -1.0 — +1.0 % — — 0.5 — % VDD = VDDA = 3.3 V 45 50 55 % VDD = VDDA = 3.3 V, — 80 — μA VDD = VDDA = 3.3 V, — 1.5 — μs Min Typ Max Unit 20 40 45 kHz — 0.4 — μA — 80 — μs High Speed Internal fIRC8M Oscillator (IRC8M) frequency VDD = VDDA = 3.3 V, TA = -40 °C ~ +85 °C(1) IRC8M oscillator Frequency VDD = VDDA = 3.3 V, accuracy, Factory-trimmed ACCIRC8M TA = 0 °C ~ +85 °C(1) IRC8M oscillator Frequency accuracy, User trimming step(1) DucyIRC8M(2) IRC8M oscillator duty cycle IDDAIRC8M(1) tSUIRC8M(1) IRC8M oscillator operating current IRC8M oscillator startup time (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. Table 4-18. Low speed internal clock (IRC40K) characteristics Symbol fIRC40K(1) IDDAIRC40K(2) tSUIRC40K(2) Parameter Conditions Low Speed Internal oscillator VDD = VDDA = 3.3 V, (IRC40K) frequency TA = -40 °C ~ +85 °C IRC40K oscillator operating current IRC40K oscillator startup time VDD = VDDA = 3.3 V, fHCLK = fHXTAL_PLL = 180 MHz TA = 25 °C VDD = VDDA = 3.3 V, fHCLK = fHXTAL_PLL = 180 MHz TA = 25 °C (1) Guaranteed by design, not tested in production. (2) Based on characterization, not tested in production. 55 GD32EPRTxx Datasheet Table 4-19. High speed internal clock (IRC48M) characteristics Symbol fIRC48M Parameter Conditions Min Typ VDD = 3.3 V — 48 — MHz -4.0 — +5.0 % -3.0 — +3.0 % -2.0 — +2.0 % — — 0.12 — % VDD = VDDA = 3.3 V 45 50 55 % — — — μA — — — μs High Speed Internal Oscillator (IRC48M) frequency VDD = VDDA = 3.3 V, TA = -40 °C ~ +85 °C(1) IRC48M oscillator Frequency VDD = VDDA = 3.3 V, accuracy, Factory-trimmed TA = 0 °C ~ +85 °C (1) ACCIRC48M VDD = VDDA = 3.3 V, TA = 25 °C IRC48M oscillator Frequency accuracy, User trimming step(1) DIRC48M(2) IDDAIRC48M(1) IRC48M oscillator duty cycle IRC48M oscillator operating current Max Unit VDD = VDDA = 3.3 V, fHCLK = fHXTAL_PLL = 180 MHz VDD = VDDA = 3.3 V, tSUIRC48M(1) IRC48M oscillator startup time fHCLK = fHXTAL_PLL = 180 MHz (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. 4.9. PLL characteristics Table 4-20. PLL characteristics Symbol fPLLIN (1) fPLLOUT (2) fVCO(2) Parameter Conditions Min Typ Max Unit PLL input clock frequency — 2 — 16 MHz PLL output clock frequency — 16 — 200 MHz — 32 — 400 MHz PLL VCO output clock frequency tLOCK(2) PLL lock time — — — 300 μs IDDA(1)(3) Current consumption on VDDA VCO freq = 400 MHz — 700 — μA IDD(1)(3) Current consumption on VDD VCO freq = 400 MHz — 500 — μA — 40 — Cycle to cycle Jitter JitterPLL(1)(4) (rms) Cycle to cycle Jitter (peak to peak) (1) (2) (3) (4) System clock ps — 400 — Based on characterization, not tested in production. Guaranteed by design, not tested in production. System clock = IRC8M = 8 MHz, PLL clock source = IRC8M/2 = 4 MHz, fPLLOUT = 200 MHz. Value given with main PLL running. 56 GD32EPRTxx Datasheet Table 4-21. PLL1 characteristics Symbol fPLLIN (1) fPLLOUT (2) fVCO(2) Parameter Conditions Min Typ Max Unit PLL input clock frequency — 2 — 16 MHz PLL output clock frequency — 16 — 100 MHz — 32 — 200 MHz PLL VCO output clock frequency tLOCK(2) PLL lock time — — — 300 μs IDDA(1) Current consumption on VDDA VCO freq = 200 MHz — 400 — μA IDD(1) Current consumption on VDD VCO freq = 200 MHz — 250 — μA JitterPLL(1) Cycle to cycle Jitter — — 40 — ps Parameter Conditions Min Typ Max Unit PLL input clock frequency — 2 — 16 MHz PLL output clock frequency — 16 — 200 MHz — 32 — 400 MHz (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. Table 4-22. PLL2 characteristics Symbol fPLLIN (1) fPLLOUT (2) fVCO(2) PLL VCO output clock frequency tLOCK(2) PLL lock time — — — 300 μs IDDA(1) Current consumption on VDDA VCO freq = 200 MHz — 700 — μA IDD(1) Current consumption on VDD VCO freq = 200 MHz — 500 — μA JitterPLL(1) Cycle to cycle Jitter — — 40 — ps (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. Table 4-23. PLLUSB characteristics Symbol fPLLIN (1) fPLLOUT (2) fVCO(2) tLOCK(2) IDD(1) JitterPLL(1) Parameter Conditions Min Typ Max Unit PLL input clock frequency — 4 — 25 MHz PLL output clock frequency — — 480 — MHz — — 480 — MHz — — — 300 μs VCO freq = 480 MHz — 2.5 — mA — — 40 — ps PLL VCO output clock frequency PLL lock time Current consumption on VDDA Cycle to cycle Jitter (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. 57 GD32EPRTxx Datasheet 4.10. Memory characteristics Table 4-24. Flash memory characteristics Symbol Conditions Min(1) Typ(1) Max Unit TA = -40 °C ~ +85 °C 10 — — kcycles Parameter Number of guaranteed PECYC program /erase cycles before failure (Endurance) tRET Data retention time — 10 — — years tPROG Word programming time TA = -40 °C ~ +85 °C — 37.5 — μs tERASE Page erase time TA = -40 °C ~ +85 °C — 11 — ms tMERASE Mass erase time TA = -40 °C ~ +85 °C — 12 — s (1) Based on characterization, not tested in production. Table 4-25. SIP PSRAM memory characteristics (1) (2) Symbol ISB_STDroom ISB ICC tCLK for read tCLK for others tRST Parameter Standby current (standard room temp) Standby current Operation current(standard room temp) For Read(‘h03) and Read ID(‘h9F) command For command except read and read ID command Time between end of RST CMD to next valid CMD Conditions Min Max Unit TA = +25 °C — 40 μA TA = -40 °C ~ +85 °C — 150 μA TA = +25 °C — 6 mA TA = -40 °C ~ +85 °C 2 33 MHz TA = -40 °C ~ +85 °C 2 45 MHz TA = -40 °C ~ +85 °C 50 — ns (1) Guaranteed by design, not tested in production. (2) Need to configure specified pins to PSRAM functions respectively (PF0 to SQPI_D0, PF2 to SQPI_D2, PF4 to SQPI_D1, PF6 to SQPI_CSN, PF8 to SQPI_CLK and PF10 to SQPI_D3). 58 GD32EPRTxx Datasheet 4.11. NRST pin characteristics Table 4-26. NRST pin characteristics Symbol VIL(NRST) NRST Input low level voltage (1) NRST Input high level voltage VIH(NRST) — — — — — — — NRST Input low level voltage — — — (1) NRST Input high level voltage — — — VDD = VDDA = 2.5 V Schmidt trigger Voltage hysteresis — — — (1) NRST Input low level voltage — — — (1) NRST Input high level voltage — — — VDD = VDDA = 3.3 V Unit V mV V mV V Schmidt trigger Voltage hysteresis — — — (1) NRST Input low level voltage — — — (1) NRST Input high level voltage — — — — — — mV — 40 — kΩ Vhyst(1) VIH(NRST) Vhyst(1) Rpu Max — VIH(NRST) (2) Typ — Vhyst(1) VIL(NRST) VDD = VDDA = 1.71 V Min Schmidt trigger Voltage hysteresis VIH(NRST) VIL(NRST) Conditions (1) Vhyst(1) VIL(NRST) Parameter (1) VDD = VDDA = 3.6 V Schmidt trigger Voltage hysteresis — Pull-up equivalent resistor mV V (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. Figure 4-4. Recommended external NRST pin circuit VDD VDD External reset circuit 10 kΩ RPU NRST K 100 nF GND 59 GD32EPRTxx Datasheet 4.12. GPIO characteristics Table 4-27. I/O port DC characteristics (1)(3) Symbol Parameter Standard IO Low level input VIL voltage 5V-tolerant IO Low level input voltage Standard IO Low level input VIH voltage 5V-tolerant IO Low level input voltage VOL VOL VOH VOH RPU(2) RPD(2) Conditions Min Typ 1.8 V ≤ VDD = VDDA ≤ 3.6 V — — 1.8 V ≤ VDD = VDDA ≤ 3.6 V — — 1.8 V ≤ VDD = VDDA ≤ 3.6 V 1.8 V ≤ VDD = VDDA ≤ 3.6 V — — Max — — Unit V V — — V — — V Low level output voltage VDD = 1.8V — — — for an IO Pin VDD = 3.3 V — — — (IIO = +8 mA) VDD = 3.6V — — — Low level output voltage VDD = 1.8V — — — for an IO Pin VDD = 3.3 V — — — (IIO = +20 mA) VDD = 3.6V — — — High level output voltage VDD = 1.8V — — — for an IO Pin VDD = 3.3 V — — — (IIO = +8 mA) VDD = 3.6V — — — High level output voltage VDD = 1.8V — — — for an IO Pin VDD = 3.3 V — — — (IIO = +20 mA) VDD = 3.6V — — — Internal pull-up All pins — — — — resistor PA10 — — — — Internal pull- All pins — — — — down resistor PA10 — — — — V V V V kΩ kΩ (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. (3) All pins except PC13 / PC14 / PC15. Since PC13 to PC15 are supplied through the Power Switch, which can only be obtained by a small current, the speed of GPIOs PC13 to PC15 should not exceed 2 MHz when they are in output mode(maximum load: 30 pF). Table 4-28. I/O port AC characteristics (1)(2) GPIOx_MDy[1:0] bit value(3) Parameter GPIOx_CTL->MDy[1:0]=10 Maximum (IO_Speed = 2MHz) frequency(4) GPIOx_CTL->MDy[1:0] = 01 Maximum (IO_Speed = 10MHz) frequency(4) GPIOx_CTL->MDy[1:0]=11 Maximum Conditions Max 1.8 ≤ VDD ≤ 3.6 V, CL = 10 pF — 1.8 ≤ VDD ≤ 3.6 V, CL = 30 pF — 1.8 ≤ VDD ≤ 3.6 V, CL = 50 pF — 1.8 ≤ VDD ≤ 3.6 V, CL = 10 pF — 1.8 ≤ VDD ≤ 3.6 V, CL = 30 pF — 1.8 ≤ VDD ≤ 3.6 V, CL = 50 pF — 1.8 ≤ VDD ≤ 3.6 V, CL = 10 pF — Unit MHz MHz MHz 60 GD32EPRTxx Datasheet GPIOx_MDy[1:0] bit value(3) (IO_Speed = 50MHz) Parameter Conditions Max frequency(4) 1.8 ≤ VDD ≤ 3.6 V, CL = 30 pF — 1.8 ≤ VDD ≤ 3.6 V, CL = 50 pF — 1.8 ≤ VDD ≤ 3.6 V, CL = 10 pF — 1.8 ≤ VDD ≤ 3.6 V, CL = 30 pF — 1.8 ≤ VDD ≤ 3.6 V, CL = 50 pF — GPIOx_CTL->MDy[1:0]=11 and Maximum GPIOx_SPDy=1 frequency(4) (IO_Speed = MAX) Unit MHz (1) Based on characterization, not tested in production. (2) Unless otherwise specified, all test results given for TA = 25 °C. (3) The I/O speed is configured using the GPIOx_CTL -> MDy[1:0] bits. Refer to the GD32E50x user manual which is selected to set the GPIO port output speed. (4) The maximum frequency is defined in Figure 4-5. I/O port AC characteristics definition, and maximum frequency cannot exceed 180 MHz. Figure 4-5. I/O port AC characteristics definition 90% EXTERNAL OUTPUT ON 50pF 90% 50% 50% 10% 10% tf(IO)out tr(IO)out T If (tr + tf) ≤ 2/3 T, then maximum frequency is achieved . The duty cycle is (45%-55%)when loaded by 50 pF 4.13. Temperature sensor characteristics Table 4-29. Temperature sensor characteristics (1) Symbol Parameter Min Typ Max Unit TL VSENSE linearity with temperature — — — °C Avg_Slope Average slope — — — mV/°C V25 Voltage at 25 °C — — — V tS_temp(2) ADC sampling time when reading the temperature — — — μs (1) Based on characterization, not tested in production. (2) Shortest sampling time can be determined in the application by multiple iterations. 4.14. ADC characteristics Table 4-30. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA(1) Operating voltage — 1.71 3.3 3.6 V VIN(1) ADC input voltage range — 0 — VREF+ V VREF+(2) Positive Reference Voltage — 1.8 — VDDA V Negative Reference — — VSSA — V VREF- (2) 61 GD32EPRTxx Datasheet Symbol Parameter Conditions Min Typ Max Unit VDDA = 1.71 V to 2.4 V 0.1 — 14 MHz VDDA = 2.4 V to 3.6 V 0.1 — 35 MHz 12-bit 0.007 — 2.86 10-bit 0.008 — 3.33 MSP 8-bit 0.01 — 4 S 6-bit 0.012 — 5 Voltage fADC(1) ADC clock fS(1) Sampling rate (1) Analog input voltage 16 external; 2 internal 0 — VDDA V (2) External input impedance See Equation 1 — — 37.73 kΩ — — — 0.55 kΩ — — 5.5 pF VAIN RAIN Input sampling switch RADC(2) resistance No pin/pad capacitance CADC(2) Input sampling capacitance tCAL(2) Calibration time fADC = 40 MHz — 3.275 — μs Sampling time fADC = 40 MHz 0.0375 — 5.99 μs 12-bit — 14 — 10-bit — 12 — 1/ 8-bit — 10 — fADC 6-bit — 8 — — — — 1 (2) ts included Total conversion tCONV(2) time(including sampling time) tSU(2) Startup time μs (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. Equation 1: RAIN max formula RAIN < Ts fADC *CADC * ln (2N+2 ) -RADC The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 4-31. ADC RAIN max for fADC = 35 MHz Ts (cycles) ts (μs) RAIN max (kΩ) 1.5 0.0429 0.25 7.5 0.2143 3.46 13.5 0.3857 6.68 28.5 0.8143 14.71 41.5 1.1857 21.67 55.5 1.5857 29.16 71.5 2.0429 37.73 239.5 6.8429 N/A Table 4-32. ADC dynamic accuracy at fADC = 14 MHz (1) Symbol Parameter Test conditions Min Typ Max Unit ENOB Effective number of bits fADC = 14 MHz — — — bits 62 GD32EPRTxx Datasheet Symbol Parameter Test conditions Min Typ Max Unit SNDR Signal-to-noise and distortion ratio VDDA = VREF+ = 3.3 V — — — SNR Signal-to-noise ratio Input Frequency = 20 kHz — — — THD Total harmonic distortion Temperature = 25 °C — — — Max Unit dB (1) Based on characterization, not tested in production. Table 4-33. ADC dynamic accuracy at fADC = 35 MHz (1) Symbol Parameter Test conditions Min Typ ENOB Effective number of bits fADC = 35 MHz — — — SNDR Signal-to-noise and distortion ratio VDDA = VREF+ = 3.3 V — — — SNR Signal-to-noise ratio Input Frequency = 20 kHz — — — THD Total harmonic distortion Temperature = 25 °C — — — Typ Max — — — — — — bits dB (1) Based on characterization, not tested in production. Table 4-34. ADC static accuracy at fADC = 14 MHz (1) Symbol Parameter Offset Offset error DNL Differential linearity error INL Integral linearity error Test conditions fADC = 14 MHz VDDA = VREF+ = 3.3 V Unit LSB (1) Based on characterization, not tested in production. 63 GD32EPRTxx Datasheet 4.15. DAC characteristics Table 4-35. DAC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA(1) Operating voltage — 1.8 3.3 3.6 V — 1.8 — VDDA V — — VSSA — V 5 — — kΩ — — — 15 kΩ No pin/pad capacitance included — — 50 pF — 0.2 — — V — — — — — 0.5 — — — — 400 — uA — 450 — uA — 100 — uA — 150 — uA DAC in 12-bit mode — — ±2 LSB VREF+(2) VREF-(2) RLOAD(2) Ro(2) CLOAD(2) Positive Reference Voltage Negative Reference Voltage Load resistance Impedance output with buffer OFF Load capacitance DAC_OUT Lower DAC_OUT voltage min(2) with buffer ON DAC_OUT Higher DAC_OUT voltage max(2) with buffer ON DAC_OUT Lower DAC_OUT voltage min(2) with buffer OFF DAC_OUT Higher DAC_OUT voltage max(2) with buffer OFF Resistive load with buffer ON With no load, middle code(0x800) IDDA(1) DAC current consumption on the input, VREF+ = 3.6 V in quiescent mode With no load, worst code(0xF1C) on the input, VREF+ = 3.6 V With no load, middle code(0x800) IDDVREF+(1) DAC current consumption on the input, VREF+ = 3.6 V in quiescent mode With no load, worst code(0xF1C) on the input, VREF+ = 3.6 V DNL(1) Differential non-linearity error VDDA0.2 — VDDA1LSB V mV V INL(1) Integral non-linearity DAC in 12-bit mode — — ±4 LSB Offset(1) Offset error DAC in 12-bit mode — — 10 LSB GE(1) Tsetting Gain error DAC in 12-bit mode — — 0.5 % (1) Settling time CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ — — 0.5 μs (2) Wakeup from off state — — — 5 μs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ — — 4 MS/s — 55 80 — dB Twakeup Max frequency for a Update correct DAC_OUT rate(2) change from code i to i±1LSBs PSRR(2) Power supply rejection 64 GD32EPRTxx Datasheet Symbol Parameter Conditions Min Typ Max Unit ratio (to VDDA) (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. 4.16. I2C characteristics Table 4-36. I2C characteristics (1)(2)(3) Symbol Parameter Condition Standard mode s Fast mode Fast mode plus Unit Min Max Min Max Min Max tSCL(H) SCL clock high time — 4.0 — 0.6 — 0.2 — μs tSCL(L) SCL clock low time — 4.7 — 1.3 — 0.5 — μs tsu(SDA) SDA setup time — 2 — 0.8 — 0.1 — ns th(SDA) SDA data hold time — 250 — 250 — 130 — ns — — 1000 20 300 — 120 ns — 4 300 4 300 4 120 ns — 4.0 — 0.6 — 0.26 — μs tr(SDA/SCL) tf(SDA/SCL) th(STA) SDA and SCL rise time SDA and SCL fall time Start condition hold time (1) Guaranteed by design, not tested in production. (2) To ensure the standard mode I2C frequency, fPCLK1 must be at least 2 MHz, To ensure the fast mode I2C frequency, fPCLK1 must be at least 4 MHz. To ensure the fast mode plus I2C frequency, fPCLK1 must be at least a multiple of 10 MHz. (3) The device should provide a data hold time of 300 ns at least in order to bridge the undefined region of the falling edge of SCL. 4.17. SPI characteristics Table 4-37. Standard SPI characteristics (1) Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency — — — 22.5 MHz tSCK(H) SCK clock high time tSCK(L) SCK clock low time Master mode, fPCLKx = 90 MHz, presc = 8 Master mode, fPCLKx = 90 MHz, presc = 8 43.94 44.44 44.94 ns 43.94 44.44 44.94 ns SPI master mode tV(MO) Data output valid time — — 5 6 ns tH(MO) Data output hold time — 3 — — ns tSU(MI) Data input setup time — 1 — — ns tH(MI) Data input hold time — 0 — — ns 65 GD32EPRTxx Datasheet SPI slave mode tSU(NSS) NSS enable setup time — 0 — — ns tH(NSS) NSS enable hold time — 1 — — ns tA(SO) Data output access time — 5 — 9 ns tDIS(SO) Data output disable time — 6 — 10 ns tV(SO) Data output valid time — — 10 12 ns tH(SO) Data output hold time — 8 — — ns tSU(SI) Data input setup time — 0 — — ns tH(SI) Data input hold time — 1 — — ns Typ Max Unit (1) Based on characterization, not tested in production. 4.18. I2S characteristics Table 4-38. I2S characteristics (1)(2) Symbol Parameter Conditions Master mode (data: 16 bits, fCK Clock frequency Audio frequency = 96 kHz) Slave mode Min 3.075 3.077 3.079 MHz 0 — 10 162 — — ns 163 — — ns tH Clock high time tL Clock low time tV(WS) WS valid time Master mode 0 — — ns tH(WS) WS hold time Master mode 0 — — ns tSU(WS) WS setup time Slave mode 0 — — ns tH(WS) WS hold time Slave mode 2 — — ns Slave mode — 50 — % Ducy(SCK) — I2S slave input clock duty cycle tSU(SD_MR) Data input setup time Master mode 1 — — ns tsu(SD_SR) Data input setup time Slave mode 0 — — ns Master receiver 0 — — ns Slave receiver 1 — — ns — — 12 ns 7 — — ns — — 6 ns 2 — — ns tH(SD_MR) tH(SD_SR) Data input hold time tv(SD_ST) Data output valid time th(SD_ST) Data output hold time tv(SD_MT) Data output valid time th(SD_MT) Data output hold time Slave transmitter (after enable edge) Slave transmitter (after enable edge) Master transmitter (after enable edge) Master transmitter (after enable edge) (1) Guaranteed by design, not tested in production. (2) Based on characterization, not tested in production 66 GD32EPRTxx Datasheet 4.19. USART characteristics Table 4-39. USART characteristics (1) Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency fPCLKx = 180 MHz — — 90 MHz tSCK(H) SCK clock high time fPCLKx = 180 MHz 5 — — ns tSCK(L) SCK clock low time fPCLKx = 180 MHz 5 — — ns (1) Guaranteed by design, not tested in production. 4.20. USBD characteristics Table 4-40. USBD start up time Symbol Parameter Max Unit tSTARTUP(1) USBD startup time 1 μs (1) Guaranteed by design, not tested in production. Table 4-41. USBD DC electrical characteristics Symbol Parameter Conditions Min Typ VDD USBFS operating voltage — 3 — 3.6 Input VDI Differential input sensitivity — 0.2 — — levels(1) VCM Differential common mode range Includes VDI range 0.8 — 2.5 VSE Single ended receiver threshold — 1.3 — 2.0 VOL Static output level low RL of 1.0 kΩ to 3.6 V — 0.064 0.3 levels (2) VOH Static output level high RL of 15 kΩ to VSS 2.8 3.3 3.6 Output Max Unit V V (1) Guaranteed by design, not tested in production. (2) Based on characterization, not tested in production. Table 4-42. USBD full speed-electrical characteristics (1) Symbol Parameter Conditions Min Typ Max Unit tR Rise time CL = 50 pF 4 — 20 ns tF Fall time CL = 50 pF 4 — 20 ns tRFM Rise/ fall time matching tR / tF 90 — 110 % vCRS Output signal crossover voltage — 1.3 — 2.0 V (1) Guaranteed by design, not tested in production. Figure 4-6. USBD timings: definition of data signal rise and fall time Crossover points Differential data lines VCRS VSS tf tr 67 GD32EPRTxx Datasheet 4.21. EXMC characteristics Table 4-43. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings (1)(2)(3)(4) Symbol Parameter Min Max Unit tw(NE) EXMC_NE low time 27 29 ns tV(NOE_NE) EXMC_NEx low to EXMC_NOE low 0 — ns tw(NOE) EXMC_NOE low time 27 29 ns th(NE_NOE) EXMC_NOE high to EXMC_NE high hold time 0 — ns tv(A_NE) EXMC_NEx low to EXMC_A valid 0 — ns tv(BL_NE) EXMC_NEx low to EXMC_BL valid 0 — ns tsu(DATA_NE) Data to EXMC_NEx high setup time 21.4 — ns tsu(DATA_NOE) Data to EXMC_NOEx high setup time 21.4 — ns th(DATA_NOE) Data hold time after EXMC_NOE high 0 — ns th(DATA_NE) Data hold time after EXMC_NEx high 0 — ns tv(NADV_NE) EXMC_NEx low to EXMC_NADV low 0 — ns tw(NADV) EXMC_NADV low time 4.6 6.6 ns (1) (2) (3) (4) CL = 30 pF. Guaranteed by design, not tested in production. Based on characterization, not tested in production. Based on configure: fHCLK = 180 MHz, AddressSetupTime = 0, AddressHoldTime = 1, DataSetupTime = 1. Table 4-44. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings (1)(2)(3)(4) Symbol Parameter Min Max Unit tw(NE) EXMC_NE low time 15.8 17.8 ns tV(NWE_NE) EXMC_NEx low to EXMC_NWE low 4.6 — ns tw(NWE) EXMC_NWE low time 4.6 6.6 ns th(NE_NWE) EXMC_NWE high to EXMC_NE high hold time 4.6 6.6 ns tv(A_NE) EXMC_NEx low to EXMC_A valid 0 — ns tV(NADV_NE) EXMC_NEx low to EXMC_NADV low 0 — ns tw(NADV) EXMC_NADV low time 4.6 6.6 ns 10.2 — ns th(AD_NADV) EXMC_AD(address) valid hold time after EXMC_NADV high th(A_NWE) Address hold time after EXMC_NWE high 4.6 — ns th(BL_NWE) EXMC_BL hold time after EXMC_NWE high 4.6 — ns tv(BL_NE) EXMC_NEx low to EXMC_BL valid 15.8 17.8 ns tv(DATA_NADV) EXMC_NADV high to DATA valid 4.6 — ns th(DATA_NWE) Data hold time after EXMC_NWE high 4.6 6.6 ns (1) (2) (3) (4) CL = 30 pF. Guaranteed by design, not tested in production. Based on characterization, not tested in production. Based on configure: fHCLK = 180 MHz, AddressSetupTime = 0, AddressHoldTime = 1, DataSetupTime = 1. 68 GD32EPRTxx Datasheet Table 4-45. Asynchronous multiplexed PSRAM/NOR read timings (1)(2)(3)(4) Symbol Parameter Min Max Unit tw(NE) EXMC_NE low time 38.2 40.2 ns tV(NOE_NE) EXMC_NEx low to EXMC_NOE low 15.8 — ns tw(NOE) EXMC_NOE low time 21.4 23.4 ns th(NE_NOE) EXMC_NOE high to EXMC_NE high hold time 0 — ns tv(A_NE) EXMC_NEx low to EXMC_A valid 0 — ns tv(A_NOE) Address hold time after EXMC_NOE high 0 — ns tv(BL_NE) EXMC_NEx low to EXMC_BL valid 0 — ns th(BL_NOE) EXMC_BL hold time after EXMC_NOE high 0 — ns tsu(DATA_NE) Data to EXMC_NEx high setup time 22.4 — ns tsu(DATA_NOE) Data to EXMC_NOEx high setup time 22.4 — ns th(DATA_NOE) Data hold time after EXMC_NOE high 0 — ns th(DATA_NE) Data hold time after EXMC_NEx high 0 — ns tv(NADV_NE) EXMC_NEx low to EXMC_NADV low 0 — ns tw(NADV) EXMC_NADV low time 4.6 6.6 ns 4.6 6.6 ns Th(AD_NADV) (1) (2) (3) (4) EXMC_AD(adress) valid hold time after EXMC_NADV high CL = 30 pF. Guaranteed by design, not tested in production. Based on characterization, not tested in production. Based on configure: fHCLK = 180 MHz, AddressSetupTime = 0, AddressHoldTime = 1, DataSetupTime = 1. Table 4-46. Asynchronous multiplexed PSRAM/NOR write timings (1)(2)(3)(4) Symbol Parameter Min Max Unit tw(NE) EXMC_NE low time 27 29 ns tV(NWE_NE) EXMC_NEx low to EXMC_NWE low 7.3 — ns tw(NWE) EXMC_NWE low time 15.8 17.8 ns th(NE_NWE) EXMC_NWE high to EXMC_NE high hold time 4.6 — ns tv(A_NE) EXMC_NEx low to EXMC_A valid 0 — ns tV(NADV_NE) EXMC_NEx low to EXMC_NADV low 0 — ns tw(NADV) EXMC_NADV low time 4.6 6.6 ns 4.6 — ns th(AD_NADV) EXMC_AD(address) valid hold time after EXMC_NADV high th(A_NWE) Address hold time after EXMC_NWE high 4.6 — ns th(BL_NWE) EXMC_BL hold time after EXMC_NWE high 4.6 — ns tv(BL_NE) EXMC_NEx low to EXMC_BL valid 0 — ns tv(DATA_NADV) EXMC_NADV high to DATA valid 4.6 — ns th(DATA_NWE) Data hold time after EXMC_NWE high 4.6 — ns (1) (2) (3) (4) CL = 30 pF. Guaranteed by design, not tested in production. Based on characterization, not tested in production. Based on configure: fHCLK = 180 MHz, AddressSetupTime = 0, AddressHoldTime = 1, DataSetupTime = 1. 69 GD32EPRTxx Datasheet Table 4-47. Synchronous multiplexed PSRAM/NOR read timings (1)(2)(3)(4) Symbol Parameter Min Max Unit tw(CLK) EXMC_CLK period 22.4 — ns td(CLKL-NExL) EXMC_CLK low to EXMC_NEx low 0 — ns td(CLKH-NExH) EXMC_CLK high to EXMC_NEx high 10.2 — ns td(CLKL-NADVL) EXMC_CLK low to EXMC_NADV low 0 — ns td(CLKL-NADVH) EXMC_CLK low to EXMC_NADV high 0 — ns td(CLKL-AV) EXMC_CLK low to EXMC_Ax valid 0 — ns td(CLKH-AIV) EXMC_CLK high to EXMC_Ax invalid 10.2 — ns td(CLKL-NOEL) EXMC_CLK low to EXMC_NOE low 0 — ns td(CLKH-NOEH) EXMC_CLK high to EXMC_NOE high 10.2 — ns td(CLKL-ADV) EXMC_CLK low to EXMC_AD valid 0 — ns td(CLKL-ADIV) EXMC_CLK low to EXMC_AD invalid 0 — ns (1) (2) (3) (4) CL = 30 pF. Guaranteed by design, not tested in production. Based on characterization, not tested in production. Based on configure: fHCLK = 180 MHz, BurstAccessMode = Enable; Memory Type = PSRAM; WriteBurst = Enable; CLKDivision = 3 (EXMC_CLK is 4 divided by HCLK); Data Latency = 1. Table 4-48. Synchronous multiplexed PSRAM write timings (1)(2)(3)(4) Symbol Parameter Min Max Unit tw(CLK) EXMC_CLK period 22.4 — ns td(CLKL-NExL) EXMC_CLK low to EXMC_NEx low 0 — ns td(CLKH-NExH) EXMC_CLK high to EXMC_NEx high 10.2 — ns td(CLKL-NADVL) EXMC_CLK low to EXMC_NADV low 0 — ns td(CLKL-NADVH) EXMC_CLK low to EXMC_NADV high 0 — ns td(CLKL-AV) EXMC_CLK low to EXMC_Ax valid 0 — ns td(CLKH-AIV) EXMC_CLK high to EXMC_Ax invalid 10.2 — ns td(CLKL-NWEL) EXMC_CLK low to EXMC_NWE low 0 — ns td(CLKH-NWEH) EXMC_CLK high to EXMC_NWE high 10.2 — ns td(CLKL-ADIV) EXMC_CLK low to EXMC_AD invalid 0 — ns td(CLKL-DATA) EXMC_A/D valid data after EXMC_CLK low 0 — ns th(CLKL-NBLH) EXMC_CLK low to EXMC_NBL high 0 — ns (1) (2) (3) (4) CL = 30 pF. Guaranteed by design, not tested in production. Based on characterization, not tested in production. Based on configure: fHCLK = 180 MHz, BurstAccessMode = Enable; MemoryType = PSRAM; WriteBurst = Enable; CLKDivision = 3 (EXMC_CLK is 4 divided by HCLK); DataLatency = 1. 70 GD32EPRTxx Datasheet Table 4-49. Synchronous non-multiplexed PSRAM/NOR read timings (1)(2)(3)(4) Symbol Parameter Min Max Unit tw(CLK) EXMC_CLK period 22.4 — ns td(CLKL-NExL) EXMC_CLK low to EXMC_NEx low 0 — ns td(CLKH-NExH) EXMC_CLK high to EXMC_NEx high 10.2 — ns td(CLKL-NADVL) EXMC_CLK low to EXMC_NADV low 0 — ns td(CLKL-NADVH) EXMC_CLK low to EXMC_NADV high 0 — ns td(CLKL-AV) EXMC_CLK low to EXMC_Ax valid 0 — ns td(CLKH-AIV) EXMC_CLK high to EXMC_Ax invalid 10.2 — ns td(CLKL-NOEL) EXMC_CLK low to EXMC_NOE low 0 — ns td(CLKH-NOEH) EXMC_CLK high to EXMC_NOE high 10.2 — ns (1) (2) (3) (4) CL = 30 pF. Guaranteed by design, not tested in production. Based on characterization, not tested in production. Based on configure: HCLK=180 MHz, BurstAccessMode = Enable; MemoryType = PSRAM; WriteBurst = Enable; CLKDivision = 3 (EXMC_CLK is 4 divided by HCLK); DataLatency = 1. Table 4-50. Synchronous non-multiplexed PSRAM write timings (1)(2)(3)(4) Symbol Parameter Min Max Unit tw(CLK) EXMC_CLK period 22.4 — ns td(CLKL-NExL) EXMC_CLK low to EXMC_NEx low 0 — ns td(CLKH-NExH) EXMC_CLK high to EXMC_NEx high 10.2 — ns td(CLKL-NADVL) EXMC_CLK low to EXMC_NADV low 0 — ns td(CLKL-NADVH) EXMC_CLK low to EXMC_NADV high 0 — ns td(CLKL-AV) EXMC_CLK low to EXMC_Ax valid 0 — ns td(CLKH-AIV) EXMC_CLK high to EXMC_Ax invalid 10.2 — ns td(CLKL-NWEL) EXMC_CLK low to EXMC_NWE low 0 — ns td(CLKH-NWEH) EXMC_CLK high to EXMC_NWE high 10.2 — ns td(CLKL-DATA) EXMC_A/D valid data after EXMC_CLK low 0 — ns th(CLKL-NBLH) EXMC_CLK low to EXMC_NBL high 0 — ns (1) (2) (3) (4) CL = 30 pF. Guaranteed by design, not tested in production. Based on characterization, not tested in production. Based on configure: HCLK = 180 MHz, BurstAccessMode = Enable; MemoryType = PSRAM; WriteBurst = Enable; CLKDivision = 3 (EXMC_CLK is 4 divided by HCLK); DataLatency = 1. 71 GD32EPRTxx Datasheet 4.22. Serial/Quad Parallel Interface (SQPI) characteristics Table 4-51.SQPI characteristics Symbol Parameter Min Typ Max Unit CLK period 11.0(4) — — ns CLK high level duty for even clock divided 45 50 55 CLK high level duty for odd clock divided 45 — 71 tKHKL(3) CLK rise or fall time — — tCPH(2) CE# high between subsequent burst operations 22.2 — — ns tCEM(2) CE# low pulse width 88.8 — — ns tCSP(2) CE# setup time to CLK rising edge 5.5 — 177.7 ns tCHD(2) CE# hold time from CLK rising edge 5.5 — 177.7 ns tSP(2) Setup time to active CLK edge 5.5 — 177.7 ns tHD(2) Hold time from active CLK edge 5.5 — 177.7 ns CE# rise to data output high-Z — 0 — ns CLK fall to data output valid delay — 0 — ns Data hold time from CLK falling edge — 0 — ns tCLK(2) tCD(2) tHZ (2) tACLK(2) (2) tKOH (1) (2) (3) (4) 4.23. % ns Based on characterization, not tested in production. Guaranteed by design, not tested in production. Output driven mode is 50 MHz. This is designed minimal period. The operating minimal clock period is 22.2 ns(45 MHz = 180 MHz/4). TIMER characteristics Table 4-52. TIMER characteristics (1) Symbol Parameter tres Timer resolution time fEXT Conditions Min Max Unit — 1 — tTIMERxCLK fTIMERxCLK = 180 MHz 5.6 — ns Timer external clock — 0 fTIMERxCLK/2 MHz frequency fTIMERxCLK = 180 MHz 0 90 MHz — 16 TIMER1 — 32 — 1 65536 tTIMERxCLK fTIMERxCLK = 180 MHz 0.0056 367 μs — — fTIMERxCLK = 180 MHz — TIMERx (except RES TIMER1) Timer resolution 16-bit counter clock period tCOUNTER when internal clock is selected tMAX_COUNT Maximum possible count bit 65536x65536 tTIMERxCLK 24.1 s (1) Guaranteed by design, not tested in production. 72 GD32EPRTxx Datasheet 4.24. WDGT characteristics Table 4-53. FWDGT min/max timeout period at 40 kHz (IRC40K) Prescaler divider PR[2:0] bits 1/4 (1) Min timeout RLD[11:0] = Max timeout RLD[11:0] 0x000 = 0xFFF 000 0.1 409.6 1/8 001 0.2 819.2 1/16 010 0.4 1638.4 1/32 011 0.8 3276.8 1/64 100 1.6 6553.6 1/128 101 3.2 13107.2 1/256 110 or 111 6.4 26214.4 Unit ms (1) Guaranteed by design, not tested in production. Table 4-54. WWDGT min-max timeout value at 90 MHz (fPCLK1) (1) Min timeout value Prescaler divider PSC[2:0] 1/1 00 45.5 1/2 01 91.0 1/4 10 182.0 1/8 11 364.1 CNT[6:0] = 0x40 Unit Max timeout value CNT[6:0] = 0x7F Unit 2.91 μs 5.83 11.65 ms 23.30 (1) Guaranteed by design, not tested in production. 4.25. Parameter condition Unless otherwise specified, all values given for VDD = VDDA = 3.3 V, TA = 25 °C. 73 GD32EPRTxx Datasheet 5. Package information 5.1. LQFP100 package outline dimensions Figure 5-1. LQFP100 package outline Table 5-1. LQFP100 package dimensions Symbol Min Typ Max A — — 1.60 A1 0.05 — 0.15 A2 1.35 1.40 1.45 A3 0.59 0.64 0.69 D 15.80 16.0 16.20 D1 13.90 14.0 14.10 E 15.80 16.0 16.20 E1 13.90 14.0 14.10 θ 0° 3.5° 7° c 0.13 — 0.17 c1 0.12 0.13 0.14 L 0.45 0.6 0.75 L1 — 1.0 REF — b 0.18 0.20 0.26 b1 0.17 0.20 0.23 eB 15.05 — 15.35 e — 0.50 BSC — 74 GD32EPRTxx Datasheet (Original dimensions are in millimeters) 5.2. LQFP64 package outline dimensions Figure 5-2. LQFP64 package outline Table 5-2. LQFP64 package dimensions Symbol Min Typ Max A — — 1.60 A1 0.05 — 0.15 A2 1.35 1.40 1.45 A3 0.59 0.64 0.69 D 11.80 12.00 12.20 D1 9.90 10.00 10.10 E 11.80 12.00 12.20 E1 9.90 10.00 10.10 θ 0° 3.5° 7° c 0.13 — 0.17 L 0.45 0.60 0.75 L1 — 1.00 REF — b 0.17 0.20 0.27 e — 0.50 BSC — eB 11.25 — 11.45 (Original dimensions are in millimeters) 75 GD32EPRTxx Datasheet 6. Ordering information Table 6-1. Part ordering code for GD32EPRTxx devices Ordering code GD32EPRTRDT 6 GD32EPRTVDT 6 Flash 384 KB 384 KB SRAM 96 KB + 4 MB PSRAM 96 KB + 4 MB PSRAM Package Package type LQFP64 Green LQFP100 Green Temperature operating range Industrial -40°C to +85°C Industrial -40°C to +85°C 76 GD32EPRTxx Datasheet 7. Revision history Table 7-1. Revision history Revision No. Description Date 1.0 Initial Release Jun.17, 2020 77 GD32EPRTxx Datasheet Important Notice This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only. The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products. Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice. © 2020 GigaDevice – All rights reserved 78
GD32EPRTRDT6 价格&库存

很抱歉,暂时无法提供与“GD32EPRTRDT6”相匹配的价格&库存,您可以联系我们找货

免费人工找货