0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
GD32W515PIQ6

GD32W515PIQ6

  • 厂商:

    GIGADEVICE(兆易创新)

  • 封装:

    QFN56_7X7MM_EP

  • 描述:

    GD32W515PIQ6

  • 数据手册
  • 价格&库存
GD32W515PIQ6 数据手册
GigaDevice Semiconductor Inc. GD32W515xx Arm® Cortex®-M33 32-bit MCU Datasheet Revision 1.1 (Jul. 2022) GD32W515xx Datasheet Table of Contents Table of Contents ..................................................................................................... 1 List of Figures .......................................................................................................... 4 List of Tables ............................................................................................................ 5 1. General description ........................................................................................... 7 2. Device overview ................................................................................................. 8 2.1. Device information ................................................................................................ 8 2.2. Block diagram ........................................................................................................ 9 2.3. Pinouts and pin assignment ............................................................................... 10 2.4. Memory map ........................................................................................................ 12 2.5. Clock tree ............................................................................................................. 16 2.6. Pin definitions ...................................................................................................... 18 2.6.1. GD32W515Px QFN56 pin definitions ............................................................................. 18 2.6.2. GD32W515Tx QFN36 pin definitions ............................................................................. 23 2.6.3. GD32W515xx pin alternate functions ............................................................................. 26 3. Functional description..................................................................................... 29 3.1. Arm® Cortex®-M33 core ....................................................................................... 29 3.2. On-chip memory .................................................................................................. 29 3.3. Clock, reset and supply management ................................................................ 30 3.4. Boot modes.......................................................................................................... 30 3.5. Power saving modes ........................................................................................... 32 3.6. Electronic fuse (EFUSE) ...................................................................................... 33 3.7. Instruction cache (ICACHE) ................................................................................ 33 3.8. General-purpose inputs / outputs (GPIOs) ........................................................ 34 3.9. TrustZone protection controller union (TZPCU) ................................................ 34 3.10. CRC calculation unit (CRC) ............................................................................. 35 3.11. True Random number generator (TRNG) ....................................................... 35 3.12. Direct memory access controller (DMA)......................................................... 35 3.13. Analog to digital converter (ADC) ................................................................... 36 3.14. Real time clock (RTC) ...................................................................................... 36 3.15. Timers and PWM generation ........................................................................... 37 1 GD32W515xx Datasheet 3.16. Universal synchronous asynchronous receiver transmitter (USART) ......... 38 3.17. Inter-integrated circuit (I2C) ............................................................................ 38 3.18. Serial peripheral interface (SPI) ...................................................................... 39 3.19. Inter-IC sound (I2S) .......................................................................................... 39 3.20. Serial / Quad Parallel Interface (SQPI) ............................................................ 39 3.21. Quad-SPI interface (QSPI) ............................................................................... 40 3.22. Secure digital input and output card interface (SDIO) ................................... 40 3.23. Universal serial bus full-speed interface (USBFS) ......................................... 40 3.24. Digital camera interface (DCI) ......................................................................... 40 3.25. Touch sensing interface (TSI) ......................................................................... 41 3.26. Cryptographic acceleration Unit (CAU) .......................................................... 41 3.27. Hash acceleration unit (HAU) .......................................................................... 41 3.28. Public Key Cryptographic Acceleration Unit (PKCAU) .................................. 42 3.29. High-Performance Digital Filter (HPDF) .......................................................... 42 3.30. Infrared ray port (IFRP) .................................................................................... 43 3.31. Wi-Fi .................................................................................................................. 43 3.31.1. Standards Supported ..................................................................................................... 43 3.31.2. Wi-Fi MAC ...................................................................................................................... 43 3.31.3. Wi-Fi PHY ....................................................................................................................... 44 3.31.4. Wi-Fi Radio ..................................................................................................................... 44 3.32. Debug mode ..................................................................................................... 44 3.33. Package and operation temperature............................................................... 44 4. Electrical characteristics ................................................................................. 45 4.1. Absolute maximum ratings ................................................................................. 45 4.2. Operating conditions characteristics ................................................................. 45 4.3. Power consumption ............................................................................................ 47 4.4. EMC characteristics ............................................................................................ 54 4.5. Power supply supervisor characteristics .......................................................... 54 4.6. Electrical sensitivity ............................................................................................ 55 4.7. External clock characteristics ............................................................................ 56 4.8. Internal clock characteristics ............................................................................. 58 4.9. PLL characteristics ............................................................................................. 59 4.10. Memory characteristics ................................................................................... 60 2 GD32W515xx Datasheet 4.11. NRST pin characteristics ................................................................................. 60 4.12. GPIO characteristics ........................................................................................ 61 4.13. ADC characteristics ......................................................................................... 64 4.14. Temperature sensor characteristics ............................................................... 65 4.15. I2C characteristics ........................................................................................... 66 4.16. SPI characteristics ........................................................................................... 67 4.17. I2S characteristics ........................................................................................... 68 4.18. USART characteristics..................................................................................... 70 4.19. SDIO characteristics ........................................................................................ 71 4.20. USBFS characteristics ..................................................................................... 71 4.21. TIMER characteristics ...................................................................................... 72 4.22. WDGT characteristics ...................................................................................... 73 4.23. HPDF Characteristics....................................................................................... 73 4.24. Serial / Quad Parallel Interface (SQPI) Characteristics .................................. 75 4.25. Wi-Fi Radio characteristics ............................................................................. 75 4.26. Parameter conditions....................................................................................... 77 5. Package information ........................................................................................ 78 5.1. QFN56 package outline dimensions .................................................................. 78 5.2. QFN36 package outline dimensions .................................................................. 80 5.3. Thermal characteristics ...................................................................................... 82 6. Ordering information ....................................................................................... 84 7. Revision history ............................................................................................... 85 3 GD32W515xx Datasheet List of Figures Figure 2-1. GD32W515xx block diagram ............................................................................................. 9 Figure 2-2. GD32W515Px QFN56 pinouts ......................................................................................... 10 Figure 2-3. GD32W515Tx QFN36 pinouts ......................................................................................... 11 Figure 2-4. GD32W515xx clock tree .................................................................................................. 16 Figure 4-1. Recommended power supply decoupling capacitors (1)(2)(3) ......................................... 46 Figure 4-2. Recommended external NRST pin circuit(1) .................................................................. 61 Figure 4-3. I/O port AC characteristics definition ............................................................................ 64 Figure 4-4. I2C bus timing diagram ................................................................................................... 67 Figure 4-5. SPI timing diagram - master mode ................................................................................ 68 Figure 4-6. SPI timing diagram - slave mode ................................................................................... 68 Figure 4-7. I2S timing diagram - master mode ................................................................................. 69 Figure 4-8. I2S timing diagram - slave mode .................................................................................... 70 Figure 4-9. USBFS timings: definition of data signal rise and fall time ........................................ 72 Figure 5-1. QFN56 package outline ................................................................................................... 78 Figure 5-2. QFN56 recommended footprint ...................................................................................... 79 Figure 5-3. QFN36 package outline ................................................................................................... 80 Figure 5-4. QFN36 recommended footprint ...................................................................................... 81 4 GD32W515xx Datasheet List of Tables Table 2-1. GD32W515xx devices features and peripheral list .......................................................... 8 Table 2-2. GD32W515xx memory map .............................................................................................. 12 Table 2-3. GD32W515Px QFN56 pin definitions ............................................................................... 18 Table 2-4. GD32W515Tx QFN36 pin definitions ............................................................................... 23 Table 2-5. Port A alternate functions summary ............................................................................... 26 Table 2-6. Port B alternate functions summary ............................................................................... 27 Table 2-7. Port C alternate functions summary ............................................................................... 28 Table 3-1. BOOT0 modes.................................................................................................................... 31 Table 3-2. BOOT1 modes.................................................................................................................... 31 Table 3-3. Boot address modes when TrustZone is disabled (TZEN=0) ....................................... 31 Table 3-4. Boot modes when TrustZone is enabled (TZEN=1) ....................................................... 31 Table 4-1. Absolute maximum ratings (1)(4) ....................................................................................... 45 Table 4-2. DC operating conditions ................................................................................................... 45 Table 4-3. Clock frequency (1) ............................................................................................................. 46 Table 4-4. Operating conditions at Power up / Power down Table 4-5. Start-up timings of Operating conditions (1)(2)(3) ....................................................... 46 (1) ............................................................. 47 Table 4-6. Power saving mode wakeup timings characteristics (1)(2) ............................................. 47 Table 4-7. Wi-Fi Power consumption characteristics ...................................................................... 47 Table 4-8. Wi-Fi Power consumption characteristics(1)(2)(3) ............................................................. 47 Table 4-9. Power consumption characteristics (2)(3)(4)(5)(6) ................................................................ 48 Table 4-10. EMS characteristics (1) .................................................................................................... 54 Table 4-11. Power supply supervisor characteristics ..................................................................... 54 Table 4-12. ESD characteristics (1) ..................................................................................................... 56 Table 4-13. Static latch-up characteristics (1) ................................................................................... 56 Table 4-14. High speed external clock (HXTAL) generated from a crystal / ceramic characteristics ..................................................................................................................................... 56 Table 4-15. High speed external user clock characteristics (HXTAL in bypass mode) ............... 56 Table 4-16. Low speed external clock (LXTAL) generated from a crystal / ceramic characteristics ..................................................................................................................................... 57 Table 4-17. Low speed external user clock characteristics (LXTAL in bypass mode) ................ 57 Table 4-18. High speed internal clock (IRC16M) characteristics.................................................... 58 Table 4-19. Low speed internal clock (IRC32K) characteristics ..................................................... 58 Table 4-20. PLL characteristics ......................................................................................................... 59 Table 4-21. PLLDIG characteristics ................................................................................................... 59 Table 4-22. PLLI2S characteristics .................................................................................................... 59 Table 4-23. Flash memory characteristics........................................................................................ 60 Table 4-24. NRST pin characteristics ................................................................................................ 60 Table 4-25. I/O port DC characteristics (1)(3) ...................................................................................... 61 Table 4-26. I/O port AC characteristics (1)(2) ...................................................................................... 63 Table 4-27. ADC characteristics ........................................................................................................ 64 5 GD32W515xx Datasheet Table 4-28. ADC RAIN max for fADC = 35 MHz (1) ................................................................................. 64 Table 4-29. ADC dynamic accuracy at fADC = 35 MHz (1) .................................................................. 65 Table 4-30. ADC static accuracy at fADC = 35 MHz............................................................................ 65 Table 4-31. Temperature sensor characteristics (1) .......................................................................... 65 Table 4-32. I2C characteristics (1)(2)(3) ................................................................................................. 66 Table 4-33. Standard SPI characteristics (1) ...................................................................................... 67 Table 4-34. I2S characteristics (1) ....................................................................................................... 68 Table 4-35. USART characteristics (1) ................................................................................................ 70 Table 4-36. SDIO characteristics (1)(2) ................................................................................................. 71 Table 4-37. USBFS start up time ........................................................................................................ 71 Table 4-38. USBFS DC electrical characteristics ............................................................................. 72 Table 4-39. USBFS full speed-electrical characteristics (1) ............................................................. 72 Table 4-40. TIMER characteristics (1) ................................................................................................. 72 Table 4-41. FWDGT min/max timeout period at 32 kHz (IRC32K) (1) ............................................... 73 Table 4-42. WWDGT min-max timeout value at 45 MHz (fPCLK1) (1) .................................................. 73 Table 4-43. HPDF characteristics (1)(2)................................................................................................ 73 Table 4-44. SQPI characteristics ....................................................................................................... 75 Table 4-45. Transmitter power characteristics (1)(2) .......................................................................... 75 Table 4-46. Receiver sensitivity characteristics (1) .......................................................................... 75 Table 4-47. Rx Maximum Input Level (1)(2) ......................................................................................... 76 Table 4-48. Adjacent Channel Rejection (1)(4) .................................................................................... 77 Table 5-1. QFN56 package dimensions ............................................................................................ 78 Table 5-2. QFN36 package dimensions ............................................................................................ 80 Table 5-3. Package thermal characteristics(1) .................................................................................. 82 Table 6-1. Part ordering code for GD32W515xx devices ................................................................ 84 Table 7-1. Revision history................................................................................................................. 85 6 GD32W515xx Datasheet 1. General description The GD32W515xx is a highly integrated 2.4GHz Wi-Fi System-on-Chip (SoC) that includes an ARM Cortex®-M33 processor with Trustzone, a single stream IEEE 802.11b/g/n MAC/baseband/radio, a power amplifier (PA), and a receive low-noise amplifier (LNA). It is an optimized SoC designed for a broad array of smart devices for Internet of Things (IoT) applications. The Cortex®-M33 processor is a 32-bit processor that possesses low interrupt latency and low-cost debug. The Cortex®-M33 processor is a 32-bit processor that possesses low interrupt latency and low-cost debug. The characteristics of integrated and advanced make the Cortex®-M33 processor suitable for market products that require microcontrollers with high performance and low power consumption. The Cortex®-M33 processor is based on the ARMv8 architecture and supports a powerful and scalable instruction set including general data processing I/O control tasks, advanced data processing bit field manipulations and DSP. The GD32W515xx device incorporates the Arm® Cortex®-M33 32-bit processor core operating at up to 180 MHz frequency to obtain maximum efficiency. It provides up to 2048 KB on-chip Flash memory or support up to 32MB of EXT Flash memory and up to 448 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer a 12-bit ADC, up to four general 16-bit timers, two general 32-bit timers, one basic timer, one PWM advanced timer, as well as standard and advanced communication interfaces: up to two SPIs, a SQPI, a SDIO, two I2Cs, three USARTs, one I2S, an USBFS and a Wi-Fi. Additional peripherals as TrustZone protection controller union (TZPCU), digital camera interface (DCI), touch sensing interface (TSI), high-performance digital filter (HPDF), quad-SPI interface (QSPI) are included. The device operates from a 1.62 to 3.63 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make the GD32W515xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike, optical module and so on. 7 GD32W515xx Datasheet 2. Device overview 2.1. Device information Table 2-1. GD32W515xx devices features and peripheral list Part Number GD32W515xx P0 TI TG FLASH (KB) 2048 0 2048 1024 SRAM (KB) 448 448 448 384 Timers PI General 4 4 3 3 timer(16-bit) (3-4,15-16) (3-4,15-16) (4,15-16) (4,15-16) General 2 2 2 2 timer(32-bit) (1-2) (1-2) (1-2) (1-2) Advanced 1 1 1 1 timer(16-bit) (0) (0) (0) (0) SysTick 1 1 1 1 Basic 1 1 1 1 timer(16-bit) (5) (5) (5) (5) Watchdog 2 2 2 2 RTC 1 1 1 1 USART Connectivity I2C 3 3 3 (0-2) (0-2) (0-2) 2 2 2 2 (0-1) (0-1) (0-1) (0-1) 2/1 2/1 2/1 2/1 (0-1)/(1) (0-1)/(1) (0-1)/(1) (0-1)/(1) SDIO 1 1 1 1 QSPI 1 1 1 1 SQPI 1 1 1 1 USBFS 1 1 1 1 Wi-Fi 1 1 1 1 GPIO 43 43 25 25 HPDF 1 1 0 0 DCI 1 1 0 0 12 12 7 7 1 1 1 1 Units 1 1 1 1 Channels 9 9 5 5 SPI/I2S TSI (Channels) TZGPC ADC 3 (0-2) Package QFN56 QFN36 8 GD32W515xx Datasheet 2.2. Block diagram Figure 2-1. GD32W515xx block diagram POR/ PDR SW/JTAG TPIU NVIC Code System Arm Cortex-M33 Processor Fmax:180MHz Cbus Icache Flash Memory CRC EFUSE PLL Slave F max : 180MHz AHB1:Fmax=180MHz TSI GPIO TZSPC DCI CAU TZIAC USBFS RCU Master P M P Master Master Master AHB Matrix M GP DMA1 8 chs SRAM Master Master GP DMA0 8 chs SRAM Controller Flash Memory Controller Slave TRNG PKCAU IRC 16 MHz Slave AHB2:Fmax=180MHz Master Slave Slave QSPI TZBMPCX TZMPB HAU AHB3:Fmax=180MHz TZWMMPC1 LDO 1.2V HXTAL 20-52MHz TZWMMPC2 SQPI LVD WIFI RF PHY MAC Master Slave AHB to APB Bridge AHB to APB Bridge Powered By VDDA Interrput request USART2 12-bit SAR ADC Slave WWDGT Slave SPI0 FWDGT ADC PMU EXTI SPI1/I2S1 Powered By V DDA WIFI_RF APB1: Fmax = 45MHZ SDIO APB2: Fmax = 90MHz HPDF USART0~1 I2C0 I2C1 SYSCFG I2S1_add TIMER15 RTC TIMER16 TIMER5 TIMER0 TIMER1~4 9 GD32W515xx Datasheet 2.3. Pinouts and pin assignment Figure 2-2. GD32W515Px QFN56 pinouts PB14 VDD PB15 PA8 PA9 PA10 PA11 PA12-WKUP3 PB3 PB4 PC6 PC7 PB6 PB5 PB7 1 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 PB8 2 41 PB9 PC8-BOOT0 3 40 PA15-WKUP1 PA13 PA14 PC14-OSC32IN PC15-OSC32OUT 4 5 6 7 8 9 PB12 PB11 PB10 PB2-WKUP2 PB1 PB0 34 PC5 PC4 33 32 PA7 PA6 31 30 PA5 PA4 14 29 15 16 17 18 19 20 21 22 23 24 25 26 27 28 PC3 VBAT AVDD33_ANA 10 11 RF 12 13 NC NC 39 38 37 36 35 GigaDevice GD32W515Px QFN56 PB13 GND PC2 PC0 PC1 PA2-WKUP0 PA3 PA1 PA0 VDDA XTAL2 XTAL1 AVDD33_CLK PU AVDD33_PA NRST 10 GD32W515xx Datasheet Figure 2-3. GD32W515Tx QFN36 pinouts VDD PB15 PA8 PA9 PC14-OSC32IN PC15-OSC32OUT PA10 PA13 PA14 PA11 PA15-WKUP1 2 PA12-WKUP3 1 PB3 PB4 PC8-BOOT0 36 35 34 33 32 31 30 29 28 27 PB13 26 PB12 25 PB11 24 PA7 23 PA6 22 PA5 21 PA4 20 PA3 GigaDevice GD32W515Tx QFN36 3 4 5 6 GND AVDD33_ANA 7 RF 8 NC 19 9 10 11 12 13 14 15 16 17 18 PA2-WKUP0 PA1 PA0 VDDA XTAL2 XTAL1 AVDD33_CLK AVDD33_PA PU NRST 11 GD32W515xx Datasheet 2.4. Memory map Table 2-2. GD32W515xx memory map Pre-defined Regions Bus - External device Secure Non-Secure boundary address boundary address Peripherals - 0xE000 1000 - 0xE00F FFFF Cortex M33 internal peripherals - 0x9800 0000 - 0xDFFF FFFF Reserved - 0x9000 0000 - 0x97FF FFFF QSPI_FLASH(MEM) - 0x6800 0000 - 0x8FFF FFFF Reserved - 0x6000 0000 - 0x67FF FFFF SQPI_PSRAM(MEM) 0x5C06 3000 - 0x5FFF FFFF 0x4C06 3000 - 0x4FFF FFFF Reserved 0x5C06 1000 - 0x5C06 2FFF 0x4C06 1000 - 0x4C06 2FFF PKCAU 0x5C06 0C00 - 0x5C06 0FFF 0x4C06 0C00 - 0x4C06 0FFF Reserved 0x5C06 0800 - 0x5C06 0BFF 0x4C06 0800 - 0x4C06 0BFF TRNG 0x5C06 0400 - 0x5C06 07FF 0x4C06 0400 - 0x4C06 07FF HAU 0x5C06 0000 - 0x5C06 03FF 0x4C06 0000 - 0x4C06 03FF CAU 0x5C05 0400 - 0x5C05 FFFF 0x4C05 0400 - 0x4C05 FFFF Reserved 0x5C05 0000 - 0x5C05 03FF 0x4C05 0000 - 0x4C05 03FF DCI 0x5C04 0000 - 0x5C04 FFFF 0x4C04 0000 - 0x4C04 FFFF Reserved 0x5C00 0000 - 0x5C03 FFFF 0x4C00 0000 - 0x4C03 FFFF Reserved 0x5904 0000 - 0x5BFF FFFF 0x4904 0000 - 0x4BFF FFFF Reserved 0x5900 0000 - 0x5903 FFFF 0x4900 0000 - 0x4903 FFFF USBFS 0x500B 1000 - 0x58FF FFFF 0x400B 1000 - 0x48FF FFFF Reserved 0x500B 0800 - 0x500B 0FFF 0x400B 0800 - 0x400B 0FFF Reserved 0x500B 0400 - 0x500B 07FF 0x400B 0400 - 0x400B 07FF TZBMPC3 0x500B 0000 - 0x500B 03FF 0x400B 0000 - 0x400B 03FF TZBMPC2 0x500A 1000 - 0x500A FFFF 0x400A 1000 - 0x400A FFFF Reserved 0x500A 0C00 - 0x500A 0FFF 0x400A 0C00 - 0x400A 0FFF TZBMPC1 0x500A 0800 - 0x500A 0BFF 0x400A 0800 - 0x400A 0BFF TZBMPC0 0x500A 0400 - 0x500A 07FF 0x400A 0400 - 0x400A 07FF TZIAC 0x500A 0000 - 0x500A 03FF 0x400A 0000 - 0x400A 03FF TZSPC 0x5008 0400 - 0x5009 FFFF 0x4008 0400 - 0x4009 FFFF Reserved 0x5008 0000 - 0x5008 03FF 0x4008 0000 - 0x4008 03FF ICACHE 0x5003 3000 - 0x5007 FFFF 0x4003 3000 - 0x4007 FFFF Reserved 0x5003 0000 - 0x5003 2FFF 0x4003 0000 - 0x4003 2FFF Wi-Fi 0x5002 BC00 - 0x5002 FFFF 0x4002 BC00 - 0x4002 FFFF Reserved 0x5002 B000 - 0x5002 BBFF 0x4002 B000 - 0x4002 BBFF Reserved 0x5002 A000 - 0x5002 AFFF 0x4002 A000 - 0x4002 AFFF Reserved 0x5002 8000 - 0x5002 9FFF 0x4002 8000 - 0x4002 9FFF Reserved 0x5002 6800 - 0x5002 7FFF 0x4002 6800 - 0x4002 7FFF Reserved 0x5002 6400 - 0x5002 67FF 0x4002 6400 - 0x4002 67FF DMA1 0x5002 6000 - 0x5002 63FF 0x4002 6000 - 0x4002 63FF DMA0 AHB3 AHB2 Peripheral AHB1 12 GD32W515xx Datasheet Pre-defined Regions Bus APB2 Secure Non-Secure boundary address boundary address Peripherals 0x5002 5C00 - 0x5002 5FFF 0x4002 5C00 - 0x4002 5FFF Reserved 0x5002 5800 - 0x5002 5BFF 0x4002 5800 - 0x4002 5BFF QSPI_FLASH(REG) 0x5002 5400 - 0x5002 57FF 0x4002 5400 - 0x4002 57FF SQPI_PSRAM(REG) 0x5002 5000 - 0x5002 53FF 0x4002 5000 - 0x4002 53FF Reserved 0x5002 4000 - 0x5002 4FFF 0x4002 4000 - 0x4002 4FFF TSI 0x5002 3C00 - 0x5002 3FFF 0x4002 3C00 - 0x4002 3FFF Reserved 0x5002 3800 - 0x5002 3BFF 0x4002 3800 - 0x4002 3BFF RCU 0x5002 3400 - 0x5002 37FF 0x4002 3400 - 0x4002 37FF Reserved 0x5002 3000 - 0x5002 33FF 0x4002 3000 - 0x4002 33FF CRC 0x5002 2C00 - 0x5002 2FFF 0x4002 2C00 - 0x4002 2FFF Reserved 0x5002 2800 - 0x5002 2BFF 0x4002 2800 - 0x4002 2BFF EFUSE 0x5002 2400 - 0x5002 27FF 0x4002 2400 - 0x4002 27FF Reserved 0x5002 2000 - 0x5002 23FF 0x4002 2000 - 0x4002 23FF FMC 0x5002 1C00 - 0x5002 1FFF 0x4002 1C00 - 0x4002 1FFF Reserved 0x5002 1800 - 0x5002 1BFF 0x4002 1800 - 0x4002 1BFF Reserved 0x5002 1400 - 0x5002 17FF 0x4002 1400 - 0x4002 17FF Reserved 0x5002 1000 - 0x5002 13FF 0x4002 1000 - 0x4002 13FF Reserved 0x5002 0C00 - 0x5002 0FFF 0x4002 0C00 - 0x4002 0FFF Reserved 0x5002 0800 - 0x5002 0BFF 0x4002 0800 - 0x4002 0BFF GPIOC 0x5002 0400 - 0x5002 07FF 0x4002 0400 - 0x4002 07FF GPIOB 0x5002 0000 - 0x5002 03FF 0x4002 0000 - 0x4002 03FF GPIOA 0x5001 8800 - 0x5001 FFFF 0x4001 8800 - 0x4001 FFFF Reserved 0x5001 8400 - 0x5001 87FF 0x4001 8400 - 0x4001 87FF TIMER16 0x5001 8000 - 0x5001 83FF 0x4001 8000 - 0x4001 83FF TIMER15 0x5001 7C00 - 0x5001 7FFF 0x4001 7C00 - 0x4001 7FFF Reserved 0x5001 7800 - 0x5001 7BFF 0x4001 7800 - 0x4001 7BFF Wi-Fi_RF 0x5001 6800 - 0x5001 77FF 0x4001 6800 - 0x4001 77FF Reserved 0x5001 6000 - 0x5001 67FF 0x4001 6000 - 0x4001 67FF HPDF 0x5001 5800 - 0x5001 5FFF 0x4001 5800 - 0x4001 5FFF Reserved 0x5001 5400 - 0x5001 57FF 0x4001 5400 - 0x4001 57FF Reserved 0x5001 4C00 - 0x5001 53FF 0x4001 4C00 - 0x4001 53FF Reserved 0x5001 4800 - 0x5001 4BFF 0x4001 4800 - 0x4001 4BFF Reserved 0x5001 4400 - 0x5001 47FF 0x4001 4400 - 0x4001 47FF Reserved 0x5001 4000 - 0x5001 43FF 0x4001 4000 - 0x4001 43FF Reserved 0x5001 3C00 - 0x5001 3FFF 0x4001 3C00 - 0x4001 3FFF EXTI 0x5001 3800 - 0x5001 3BFF 0x4001 3800 - 0x4001 3BFF SYSCFG 0x5001 3400 - 0x5001 37FF 0x4001 3400 - 0x4001 37FF Reserved 0x5001 3000 - 0x5001 33FF 0x4001 3000 - 0x4001 33FF SPI0 0x5001 2C00 - 0x5001 2FFF 0x4001 2C00 - 0x4001 2FFF SDIO 0x5001 2400 - 0x5001 2BFF 0x4001 2400 - 0x4001 2BFF Reserved 13 GD32W515xx Datasheet Pre-defined Regions Bus Secure Non-Secure boundary address boundary address 0x5001 2000 - 0x5001 23FF 0x4001 2000 - 0x4001 23FF ADC 0x5001 1400 - 0x5001 1FFF 0x4001 1400 - 0x4001 1FFF Reserved 0x5001 1000 - 0x5001 13FF 0x4001 1000 - 0x4001 13FF USART2 0x5001 0800 - 0x5001 0FFF 0x4001 0800 - 0x4001 0FFF Reserved 0x5001 0400 - 0x5001 07FF 0x4001 0400 - 0x4001 07FF Reserved 0x5001 0000 - 0x5001 03FF 0x4001 0000 - 0x4001 03FF TIMER0 0x5000 7400 - 0x5000 FFFF 0x4000 D000 - 0x4000 FFFF Reserved 0x5000 CC00 - 0x5000 CFFF 0x4000 CC00 - 0x4000 CFFF Reserved 0x5000 7400 - 0x5000 CBFF 0x4000 7400 - 0x4000 CBFF Reserved 0x5000 7000 - 0x5000 73FF 0x4000 7000 - 0x4000 73FF PMU 0x5000 6C00 - 0x5000 6FFF 0x4000 6C00 - 0x4000 6FFF Reserved 0x5000 5C00 - 0x5000 6BFF 0x4000 5C00 - 0x4000 6BFF Reserved 0x5000 5800 - 0x5000 5BFF 0x4000 5800 - 0x4000 5BFF I2C1 0x5000 5400 - 0x5000 57FF 0x4000 5400 - 0x4000 57FF I2C0 0x5000 4C00 - 0x5000 53FF 0x4000 4C00 - 0x4000 53FF Reserved 0x5000 4800 - 0x5000 4BFF 0x4000 4800 - 0x4000 4BFF USART0 0x5000 4400 - 0x5000 47FF 0x4000 4400 - 0x4000 47FF USART1 0x5000 4000 - 0x5000 43FF 0x4000 4000 - 0x4000 43FF Reserved 0x5000 3C00 - 0x5000 3FFF 0x4000 3C00 - 0x4000 3FFF Reserved 0x5000 3800 - 0x5000 3BFF 0x4000 3800 - 0x4000 3BFF SPI1/I2S1 0x5000 3400 - 0x5000 37FF 0x4000 3400 - 0x4000 37FF I2S1_add 0x5000 3000 - 0x5000 33FF 0x4000 3000 - 0x4000 33FF FWDGT 0x5000 2C00 - 0x5000 2FFF 0x4000 2C00 - 0x4000 2FFF WWDGT 0x5000 2800 - 0x5000 2BFF 0x4000 2800 - 0x4000 2BFF RTC 0x5000 2400 - 0x5000 27FF 0x4000 2400 - 0x4000 27FF Reserved 0x5000 2000 - 0x5000 23FF 0x4000 2000 - 0x4000 23FF Reserved 0x5000 1C00 - 0x5000 1FFF 0x4000 1C00 - 0x4000 1FFF Reserved 0x5000 1800 - 0x5000 1BFF 0x4000 1800 - 0x4000 1BFF Reserved 0x5000 1400 - 0x5000 17FF 0x4000 1400 - 0x4000 17FF Reserved 0x5000 1000 - 0x5000 13FF 0x4000 1000 - 0x4000 13FF TIMER5 0x5000 0C00 - 0x5000 0FFF 0x4000 0C00 - 0x4000 0FFF TIMER4 0x5000 0800 - 0x5000 0BFF 0x4000 0800 - 0x4000 0BFF TIMER3 0x5000 0400 - 0x5000 07FF 0x4000 0400 - 0x4000 07FF TIMER2 0x5000 0000 - 0x5000 03FF 0x4000 0000 - 0x4000 03FF TIMER1 0x3007 0000 - 0x3FFF FFFF 0x2007 0000 - 0x2FFF FFFF Reserved 0x3004 0000 - 0x2006 FFFF 0x2004 0000 - 0x2006 FFFF SRAM3 (192KB) 0x3002 0000 - 0x3003 FFFF 0x2002 0000 - 0x2003 FFFF SRAM2 (128KB) 0x3001 0000 - 0x3001 FFFF 0x2001 0000 - 0x2001 FFFF SRAM1 (64KB) 0x3000 0000 - 0x3000 FFFF 0x2000 0000 - 0x2000 FFFF SRAM0 (64KB) - 0x1000 0000 - 0x1FFF FFFF External memories remap APB1 SRAM Code AHB AHB Peripherals 14 GD32W515xx Datasheet Pre-defined Regions Bus Secure Non-Secure boundary address boundary address Peripherals - 0x0BFF 8000 - 0x0BFF FFFF Reserved 0x0FF8 8000 - 0x0FFF FFFF 0x0BF8 0000 – 0x0BFF 7FFF Reserved 0x0FF8 4000 – 0x0FF8 7FFF - ROM(16KB) 0x0FF8 0000 – 0x0FF8 3FFF - GSSA(16KB) 0x0FF4 E000 – 0x0FF7 FFFF 0x0BF4 E000 – 0x0BF7 FFFF ROM(200KB) - 0x0BF4 6000 – 0x0BF4 CFFF Reserved - 0x0BF4 0000 - 0x0BF4 5FFF ROM(24KB) 0x0E07 0000 - 0x0FF4 DFFF 0x0A07 0000 - 0x0BF3 FFFF Reserved 0x0E04 0000 - 0x0E06 FFFF 0x0A04 0000 - 0x0A06 FFFF SRAM3 (192KB) 0x0E02 0000 - 0x0E03 FFFF 0x0A02 0000 - 0x0A03 FFFF SRAM2 (128KB) 0x0E01 0000 - 0x0E01 FFFF 0x0A01 0000 - 0x0A01 FFFF SRAM1 (64KB) 0x0E00 0000 - 0x0E00 FFFF 0x0A00 0000 - 0x0A00 FFFF SRAM0 (64KB) 0x0C20 0000 - 0x0DFF FFFF 0x0820 0000 - 0x09FF FFFF Reserved 0x0C00 0000 - 0x0C1F FFFF 0x0800 0000 - 0x081F FFFF Flash memory - 0x0000 0000 - 0x07FF FFFF External memories remap 15 GD32W515xx Datasheet 2.5. Clock tree Figure 2-4. GD32W515xx clock tree CK_HXTAL /2 to /32 11 32.768 KHz LXTAL OSC CK_RTC 01 (to RTC) 10 RTCSRC[1:0] CK_FWDGT 32 KHz IRC32K CK_OUT1 (to FWDGT) 00 01 10 11 CKOUT1DIV ÷1,2,3,4,5 CK_SYS CK_PLLI2S CK_HXTAL CK_PLLDIG CKOUT1SEL[1:0] HCLK (to AHB bus,CortexM33,SRAM,DMA,peripherals) AHB enable CK_OUT0 00 01 10 11 CKOUT0DIV ÷1,2,3,4,5 CK_IRC16M CK_LXTAL CK_HXTAL CK_CST ÷8 (to Cortex-M33 SysTick) FCLK CK_PLLP (free running clock) APB1 Prescaler ÷4,8,16 FMC CKOUT0SEL[1:0] CK_APB1 IRC16 MDIV 16 MHz IRC16M Peripheral enable CK_IRC16M 00 CK_HXTAL 01 CK_PLLP 10 CK_PLLDIG CK_SYS 180 MHz max AHB Prescaler ÷1,2...512 CK_AHB TIMER1,2,3,4,5 CK_APB1 x1 x2 or x4 TIMERx enable APB2 Prescaler ÷2,4,8,16 90 MHz max 180 MHz max CK_APB2 Clock Monitor TIMER0,15,16 CK_APB2 x1 x2 or x4 0 180 MHz max TIMERx enable 1 CK_TIMERx to TIMER0,15,16 ADCCK[2] /PLLP VCO PCLK2 to APB2 peripherals Peripheral enable PLLSEL /PSC CK_TIMERx to TIMER1,2,3,4, 5 180 MHz max 11 20-52 MHz HXTAL PCLK1 to APB1 peripherals 45 MHz max SCS[1:0] /DIGFS YSDIV xN PLL USBFSSEL 0 ADC Prescaler ÷2,4,6,8 0 ADC Prescaler ÷5,6,10,20 1 35 MHz max /USBFSDIV 1 VCO Peripheral enable SDIOSEL xN PLLDIG CK_IRC16M CK_HXTAL /PLLFI 2SDIV CK_ADC to ADC 00 01 10 11 to USBFS/TRNG CK_SDIO /SDIODIV Peripheral enable to SDIO CK160_WIFI RFDIV Peripheral enable /PLLI2 SPSC to WIFI11N CK80_WIFI ÷2 Peripheral enable to WIFI11N CK40_WIFI ÷4 Peripheral enable to WIFI11N CK44DSM_WIFI ÷3.6 Peripheral enable to WIFI11N HPDFAUDIOS EL[1:0] /PLLI2SDIV VCO 00 CK_HPDFAU DIO 01 xN 10 PLLI2S CK_IRC16M HPDFSEL 11 I2SSEL[1:0] CK_APB2 0 CK_SYS 1 Peripheral enable to HPDFAUDIO CK_HPDF Peripheral enable to HPDF 00 CK_I2S 01 Peripheral enable 10 USART0SEL[1:0] CK_APB1 CK_SYS CK_LXTAL CK_IRC16M 00 01 10 11 to I2S USART2SEL[1:0] CK_USART0 to USART0 CK_APB2 CK_SYS CK_LXTAL CK_IRC16M 00 01 10 11 I2C0SEL[1:0] CK_USART2 CK_APB1 CK_SYS to USART2 CK_IRC16M 00 CK_I2C0 01 1x Legend: HXTAL: High speed crystal oscillator LXTAL: Low speed crystal oscillator 16 GD32W515xx Datasheet IRC16M: Internal 16M RC oscillator IRC32K: Internal 32K RC oscillator 17 GD32W515xx Datasheet 2.6. Pin definitions 2.6.1. GD32W515Px QFN56 pin definitions Table 2-3. GD32W515Px QFN56 pin definitions Pin Name Pins PB7 1 Pin I/O Type(1) Level(2) I/O 5VT Functions description Default: PB7 Alternate: I2S1_WS, SPI1_NSS, EVENTOUT, TIMER3_CH1, I2C0_SDA, USART0_RX, DCI_VSYNC Default: PB8 PB8 2 I/O 5VT Alternate: SPI1_SCK, I2S1_CK, EVENTOUT, TIMER3_CH2, SDIO_D4, DCI_D6 Default: PB9 PB9 3 I/O 5VT Alternate: I2S1_SD, SPI1_MOSI, EVENTOUT, TIMER1_CH1, TIMER3_CH3, SDIO_D5, DCI_D7 Default: PC8 PC8-BOOT0 4 I/O 5VT Alternate: I2C0_SDA, USART0_TX, I2C1_SDA, EVENTOUT, TIMER2_CH2, SDIO_D0, DCI_D2 Additional: BOOT0 Default: JTDI, PA15 PA15WKUP1 5 I/O 5VT Alternate: I2C0_SCL, USART0_RX, I2C1_SCL, EVENTOUT, SPI0_NSS Additional: WKUP1 Default: JTMS, SWDIO, PA13 PA13 6 I/O 5VT Alternate: USART0_CTS, USART1_CTS, I2C0_SMBA, EVENTOUT, TSITG Default: JTCK, SWCLK, PA14 Alternate: USART0_RTS / USART0_DE, PA14 7 I/O 5VT USART1_RTS / USART1_DE, I2C1_SMBA, EVENTOUT Additional: BOOT1 PC14OSC32IN Default: PC14 8 I/O 5VT Alternate: USART0_CK, USART1_CK, EVENTOUT Additional: OSC32IN Default: PC15 PC15OSC32OUT 9 I/O 5VT Alternate: IFRP_OUT, EVENTOUT Additional: RTC_TAMP0, RTC_OUT, RTC_TS, OSC32OUT VBAT AVDD33_AN A RF 10 P Default: VBAT 11 P Default: AVDD33_ANA 12 AI/AO Default: RF 18 GD32W515xx Datasheet Pin I/O Type(1) Level(2) Pin Name Pins NC 13 - NC 14 - PU 15 I NRST 16 I/O AVDD33_PA 17 P Default: AVDD33_PA 18 P Default: AVDD33_CLK XTAL1 19 AI Default: XTAL1 XTAL2 20 AO Default: XTAL2 VDDA 21 P Default: VDDA AVDD33_CL K Functions description Default: PU Default: NRST Default: PA0 Alternate: USART0_TX, TSI_G0_IO0, USART1_CTS, PA0 22 I/O 5VT EVENTOUT, TIMER1_CH0, TIMER1_ETI, TIMER4_CH0 Additional: ADC_IN0 Default: PA1 Alternate: USART0_RX, TSI_G0_IO1, USART1_RTS / PA1 23 I/O 5VT USART1_DE, EVENTOUT, TIMER1_CH1, TIMER4_CH1 Additional: ADC_IN1 Default: PA2 Alternate: USART0_CK, TSI_G0_IO2, TIMER0_CH0, PA2-WKUP0 24 I/O 5VT EVENTOUT, TIMER1_CH2, TIMER4_CH2, I2S1_CKIN, USART1_TX, HPDF_AUDIO Additional: ADC_IN2, WKUP0, RTC_TAMP1 Default: PA3 Alternate: USART1_CK, TSI_G0_IO3, PA3 25 I/O 5VT TIMER0_CH0_ON, HPDF_DATAIN1, EVENTOUT, TIMER1_CH3, TIMER4_CH3, I2S1_MCK, USART1_RX, RTC_OUT Additional: ADC_IN3 Default: PC0 PC0 26 I/O 5VT Alternate: USART1_TX, TIMER0_CH3, I2C0_SMBA, HPDF_CKIN0, EVENTOUT, DCI_D4 Additional: ADC_IN4 Default: PC1 Alternate: I2S1_SD, USART1_RX, DCI_HSYNC, PC1 27 I/O 5VT TIMER0_BRKIN, I2C1_SMBA, HPDF_CKIN1, EVENTOUT, SPI1_MOSI, DCI_D8 Additional: ADC_IN5 PC2 28 I/O 5VT Default: PC2 Alternate: HPDF_CKOUT, I2C1_SDA, I2C0_SCL, 19 GD32W515xx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description TIMER4_CH0, TIMER0_CH0, DCI_VSYNC, TIMER0_ETI, EVENTOUT, SPI1_MISO, I2S1_ADD_SD, DCI_D9 Additional: ADC_IN6 Default: PC3 Alternate: I2S1_SD, HPDF_DATAIN0, I2C1_SCL, PC3 29 I/O 5VT I2C0_SDA, TIMER4_CH1, TIMER0_CH0_ON, DCI_PIXCLK, TIMER1_CH0, TIMER1_ETI, EVENTOUT, SPI1_MOSI, DCI_D11 Additional: ADC_IN7 Default: PA4 Alternate: I2S1_ADD_SD, SPI1_MOSI, I2S1_SD, PA4 30 I/O 5VT SPI0_MOSI, QSPI_SCK, TIMER4_CH2, DCI_HSYNC, USART1_TX, TIMER0_CH1, EVENTOUT, SPI0_NSS, USART1_CK Additional: ADC_IN8 Default: PA5 PA5 31 I/O 5VT Alternate: I2S1_MCK, SPI0_MISO, QSPI_CSN, TIMER4_CH3, DCI_VSYNC, USART1_RX, TIMER0_CH1_ON, EVENTOUT, SPI0_SCK Default: PA6 Alternate: I2S1_CKIN, SPI0_SCK, QSPI_IO0, PA6 32 I/O 5VT TIMER2_CH0, DCI_PIXCLK, USART2_TX, TIMER0_CH1, TIMER1_CH1, EVENTOUT, SPI0_MISO, I2S1_MCK, SDIO_CMD, HPDF_AUDIO Default: PA7 Alternate: SPI1_NSS, I2S1_WS, SPI0_NSS, PA7 33 I/O 5VT QSPI_IO1, TIMER2_CH1, DCI_D7, USART2_RX, TIMER0_CH1_ON, TIMER1_CH2, EVENTOUT, TIMER0_CH0_ON, SPI0_MOSI Default: PC4 PC4 34 I/O 5VT Alternate: I2S1_ADD_SD, SPI0_IO2, QSPI_IO2, TIMER2_CH2, DCI_D6, EVENTOUT, SQPI_CLK, DCI_D12 Default: PC5 PC5 35 I/O 5VT Alternate: CK_OUT1, SPI0_IO3, QSPI_IO3, TIMER2_CH3, TIMER2_CH0, DCI_D5, DCI_D7, EVENTOUT, USART2_RX, SQPI_CSN, DCI_D13 Default: PB0 PB0 36 I/O 5VT Alternate: TSI_G1_IO0, TIMER3_CH0, TIMER2_CH1, DCI_D4, DCI_D6, EVENTOUT, TIMER0_CH1_ON, 20 GD32W515xx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description SDIO_D1 Default: PB1 PB1 37 I/O 5VT Alternate: TSI_G1_IO1, TIMER3_CH1, TIMER2_CH2, DCI_D3, DCI_D5, EVENTOUT, TIMER0_CH2_ON, SDIO_D2 Default: PB2 Alternate: TSI_G1_IO2, TIMER3_CH2, TIMER2_CH3, PB2-WKUP2 38 I/O 5VT DCI_D2, DCI_D4, EVENTOUT, TIMER1_CH3, SDIO_CK Additional: WKUP2 Default: PB10 PB10 39 I/O 5VT Alternate: TSI_G1_IO3, TIMER3_CH3, TIMER0_CH1, DCI_D1, DCI_D3, IFRP_OUT, EVENTOUT, TIMER1_CH2, TIMER3_ETI, USART2_TX, SDIO_D7 Default: PB11 PB11 40 I/O 5VT Alternate: USBFS_ID, TSI_G2_IO0, TIMER0_CH1_ON, DCI_D0, DCI_D2, EVENTOUT, I2S1_CKIN, USART2_RX, SDIO_D6 Default: PB12 PB12 41 I/O 5VT Alternate: I2S1_WS, USBFS_DP, TSI_G2_IO1, DCI_D1, TIMER0_CH3, EVENTOUT, TIMER0_BRKIN, SPI1_NSS, USART2_CK Default: PB13 PB13 42 I/O 5VT Alternate: USBFS_DM, TSI_G2_IO2, DCI_D0, EVENTOUT, TIMER15_CH0, TIMER0_CH0_ON, SPI1_SCK, I2S1_CK, USART2_CTS Default: PB14 Alternate: TSI_G2_IO3, EVENTOUT, PB14 43 I/O 5VT TIMER15_BRKIN, TIMER0_CH1_ON, SPI1_MISO, I2S1_ADD_SD, USART2_RTS / USART2_DE Additional: USBFS_VBUS VDD 44 Default: VDD P Default: PB15 PB15 45 I/O 5VT Alternate: I2S1_SD, USART1_TX, USART0_TX, I2C0_SCL, I2C1_SCL, IFRP_OUT, EVENTOUT, RTC_REFIN, TIMER0_CH2_ON, SPI1_MOSI Default: PA8 Alternate: CK_OUT0, USART1_RX, USART0_RX, PA8 46 I/O 5VT I2C0_SDA, I2C1_SDA, EVENTOUT, TIMER15_CH0, TIMER0_CH0, USART0_CK, USBFS_SOF, SDIO_D1, RTC_OUT PA9 47 I/O 5VT Default: PA9 Alternate: SPI0_MOSI, SDIO_CMD, SQPI_CLK, 21 GD32W515xx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description QSPI_SCK, EVENTOUT, TIMER15_CH0_ON, TIMER0_CH1, SPI1_SCK, I2S1_CK, USART0_TX, SDIO_D2, DCI_D0 Default: PA10 PA10 48 I/O 5VT Alternate: SPI0_MISO, SDIO_D0, SQPI_CSN, QSPI_CSN, EVENTOUT, TIMER16_CH0, TIMER0_CH2, DCI_D1 Default: PA11 PA11 49 I/O 5VT Alternate: SPI0_SCK, SDIO_CK, SQPI_D0, QSPI_IO0, EVENTOUT, TIMER16_BRKIN, TIMER0_CH3, DCI_D2 Default: PA12 PA12WKUP3 Alternate: SPI0_NSS, SDIO_D1, SQPI_D1, QSPI_IO1, 50 I/O 5VT EVENTOUT, TIMER16_CH0_ON, TIMER0_ETI, USART0_RTS / USART0_DE, DCI_D3 Additional: WKUP3 Default: JTDO, TRACESWO, PB3 PB3 51 I/O 5VT Alternate: USART2_CTS, SPI0_IO2, SDIO_D2, SQPI_D2, QSPI_IO2, EVENTOUT, TIMER15_BRKIN, TIMER1_CH1, SPI0_SCK, USART0_RX Default: NJTRST, PB4 PB4 52 I/O 5VT Alternate: USART2_RTS / USART2_DE, SPI0_IO3, SDIO_D3, SQPI_D3, QSPI_IO3, TIMER1_CH0, TIMER1_ETI, EVENTOUT, SPI0_MISO Default: PC6 PC6 53 I/O 5VT Alternate: USART2_TX, TIMER1_CH1, TIMER0_CH1, TIMER0_BRKIN, TRACECK, TIMER16_BRKIN, TIMER2_CH0, I2S1_MCK, SDIO_D6, DCI_D0 Default: PC7 Alternate: USART2_RX, TIMER1_CH2, PC7 54 I/O 5VT TIMER0_CH1_ON, TIMER0_ETI, TIMER16_CH0, TIMER2_CH1, SPI1_SCK, I2S1_CK, SDIO_D7, DCI_D1 Default: PB5 PB5 55 I/O 5VT Alternate: USART2_CK, TIMER1_CH3, IFRP_OUT, EVENTOUT, TSITG, SPI0_MOSI, DCI_D10 Default: PB6 PB6 56 I/O 5VT Alternate: SPI1_MISO, EVENTOUT, DCI_D5 Note: (1) Type: I = input, O = output, A = analog, P = power. (2) I/O Level: 5VT = 5 V tolerant. 22 GD32W515xx Datasheet 2.6.2. GD32W515Tx QFN36 pin definitions Table 2-4. GD32W515Tx QFN36 pin definitions Pin Name Pins Pin I/O Type(1) Level(2) Functions description Default: PC8 PC8-BOOT0 1 I/O 5VT Alternate: I2C0_SDA, USART0_TX, I2C1_SDA, EVENTOUT, TIMER2_CH2, SDIO_D0 Additional: BOOT0 Default: JTDI, PA15 PA15WKUP1 2 I/O 5VT Alternate: I2C0_SCL, USART0_RX, I2C1_SCL, EVENTOUT, SPI0_NSS Additional: WKUP1 Default: JTMS, SWDIO, PA13 PA13 3 I/O 5VT Alternate: USART0_CTS, USART1_CTS, I2C0_SMBA, EVENTOUT, TSITG Default: JTCK, SWCLK, PA14 PA14 4 I/O 5VT Alternate: USART0_RTS / USART0_DE, USART1_RTS / USART1_DE, I2C1_SMBA, EVENTOUT Additional: BOOT1 PC14OSC32IN Default: PC14 5 I/O 5VT Alternate: USART0_CK, USART1_CK, EVENTOUT Additional: OSC32IN Default: PC15 PC15OSC32OUT 6 I/O 5VT Alternate: IFRP_OUT, EVENTOUT Additional: RTC_TAMP0, RTC_OUT, RTC_TS, OSC32OUT AVDD33_AN Default: AVDD33_ANA 7 P RF 8 AI/AO NC 9 PU 10 I NRST 11 I/O AVDD33_PA 12 P Default: AVDD33_PA 13 P Default: AVDD33_CLK XTAL1 14 AI Default: XTAL1 XTAL2 15 AO Default: XTAL2 VDDA 16 P Default: VDDA A AVDD33_CL K Default: RF Default: PU Default: NRST Default: PA0 PA0 17 I/O 5VT Alternate: USART0_TX, TSI_G0_IO0, USART1_CTS, EVENTOUT, TIMER1_CH0, TIMER1_ETI, TIMER4_CH0 23 GD32W515xx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Additional: ADC_IN0 Default: PA1 Alternate: USART0_RX, TSI_G0_IO1, USART1_RTS / PA1 18 I/O 5VT USART1_DE, EVENTOUT, TIMER1_CH1, TIMER4_CH1 Additional: ADC_IN1 Default: PA2 Alternate: USART0_CK, TSI_G0_IO2, TIMER0_CH0, PA2-WKUP0 19 I/O 5VT EVENTOUT, TIMER1_CH2, TIMER4_CH2, I2S1_CKIN, USART1_TX Additional: ADC_IN2, WKUP0, RTC_TAMP1 Default: PA3 Alternate: USART1_CK, TSI_G0_IO3, PA3 20 I/O 5VT TIMER0_CH0_ON, EVENTOUT, TIMER1_CH3, TIMER4_CH3, I2S1_MCK, USART1_RX, RTC_OUT Additional: ADC_IN3 Default: PA4 Alternate: I2S1_ADD_SD, SPI1_MOSI, I2S1_SD, PA4 21 I/O 5VT SPI0_MOSI, QSPI_SCK, TIMER4_CH2, USART1_TX, TIMER0_CH1, EVENTOUT, SPI0_NSS, USART1_CK Additional: ADC_IN8 Default: PA5 PA5 22 I/O 5VT Alternate: I2S1_MCK, SPI0_MISO, QSPI_CSN, TIMER4_CH3, USART1_RX, TIMER0_CH1_ON, EVENTOUT, SPI0_SCK Default: PA6 Alternate: I2S1_CKIN, SPI0_SCK, QSPI_IO0, PA6 23 I/O 5VT TIMER2_CH0, USART2_TX, TIMER0_CH1, TIMER1_CH1, EVENTOUT, SPI0_MISO, I2S1_MCK, SDIO_CMD Default: PA7 Alternate: SPI1_NSS, I2S1_WS, SPI0_NSS, QSPI_IO1, PA7 24 I/O 5VT TIMER2_CH1, USART2_RX, TIMER0_CH1_ON, TIMER1_CH2, EVENTOUT, TIMER0_CH0_ON, SPI0_MOSI Default: PB11 PB11 25 I/O 5VT Alternate: USBFS_ID, TSI_G2_IO0, TIMER0_CH1_ON, EVENTOUT, I2S1_CKIN, USART2_RX, SDIO_D6 Default: PB12 PB12 26 I/O 5VT Alternate: I2S1_WS, USBFS_DP, TSI_G2_IO1, TIMER0_CH3, EVENTOUT, TIMER0_BRKIN, SPI1_NSS, USART2_CK PB13 27 I/O 5VT Default: PB13 24 GD32W515xx Datasheet Pin Name Pins Pin I/O Type(1) Level(2) Functions description Alternate: USBFS_DM, TSI_G2_IO2, EVENTOUT, TIMER15_CH0, TIMER0_CH0_ON, SPI1_SCK, I2S1_CK, USART2_CTS VDD 28 Default: VDD P Default: PB15 PB15 29 I/O 5VT Alternate: I2S1_SD, USART1_TX, USART0_TX, I2C0_SCL, I2C1_SCL, IFRP_OUT, EVENTOUT, RTC_REFIN, TIMER0_CH2_ON, SPI1_MOSI Default: PA8 Alternate: CK_OUT0, USART1_RX, USART0_RX, PA8 30 I/O 5VT I2C0_SDA, I2C1_SDA, EVENTOUT, TIMER15_CH0, TIMER0_CH0, USART0_CK, USBFS_SOF, SDIO_D1, RTC_OUT Default: PA9 Alternate: SPI0_MOSI, SDIO_CMD, SQPI_CLK, PA9 31 I/O 5VT QSPI_SCK, EVENTOUT, TIMER15_CH0_ON, TIMER0_CH1, SPI1_SCK, I2S1_CK, USART0_TX, SDIO_D2 Default: PA10 PA10 32 I/O 5VT Alternate: SPI0_MISO, SDIO_D0, SQPI_CSN, QSPI_CSN, EVENTOUT, TIMER16_CH0, TIMER0_CH2 Default: PA11 PA11 33 I/O 5VT Alternate: SPI0_SCK, SDIO_CK, SQPI_D0, QSPI_IO0, EVENTOUT, TIMER16_BRKIN, TIMER0_CH3 Default: PA12 PA12WKUP3 Alternate: SPI0_NSS, SDIO_D1, SQPI_D1, QSPI_IO1, 34 I/O 5VT EVENTOUT, TIMER16_CH0_ON, TIMER0_ETI, USART0_RTS / USART0_DE Additional: WKUP3 Default: JTDO, TRACESWO, PB3 PB3 35 I/O 5VT Alternate: USART2_CTS, SPI0_IO2, SDIO_D2, SQPI_D2, QSPI_IO2, EVENTOUT, TIMER15_BRKIN, TIMER1_CH1, SPI0_SCK, USART0_RX Default: NJTRST, PB4 PB4 36 I/O 5VT Alternate: USART2_RTS / USART2_DE, SPI0_IO3, SDIO_D3, SQPI_D3, QSPI_IO3, TIMER1_CH0, TIMER1_ETI, EVENTOUT, SPI0_MISO Note: (1) Type: I = input, O = output, A = analog, P = power. (2) I/O Level: 5VT = 5 V tolerant. 25 GD32W515xx Datasheet GD32W515xx pin alternate functions 2.6.3. Table 2-5. Port A alternate functions summary Pin AF0 Name PA0 AF1 AF2 TIME R1_C TIME USAR H0/TI R4_C T0_TX MER1 H0 _ETI AF3 AF4 AF5 AF6 AF7 USAR T1_CT S EVEN TOUT USAR T1_RT S/ USAR T1_D E EVEN TOUT HPDF EVEN _AUDI TOUT (1) O USAR TIME TIME T0_R R1_C R4_C X H1 H1 TSI_G 0_IO1 PA2 USAR TIME TIME T0_C R1_C R4_C K H2 H2 TIME TSI_G I2S1_ USAR R0_C 0_IO2 CKIN T1_TX H0 PA3 USAR TIME TIME T1_C R1_C R4_C K H3 H3 TSI_G I2S1_ 0_IO3 MCK PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA14 AF9 AF10 AF11 AF12 AF13 AF14 AF15 TSI_G 0_IO0 PA1 PA4 AF8 TIME USAR R0_C RTC_ T1_R H0_O OUT X N SPI1_ I2S1_ TIME USAR TIME USAR SPI0_ QSPI_ SPI0_ MOSI/ ADD_ R4_C T1_C R0_C T1_TX MOSI SCK NSS I2S1_ SD H2 K H1 SD TIME USAR TIME I2S1_ QSPI_ SPI0_ SPI0_ R0_C T1_R R4_C MCK CSN MISO SCK H1_O X H3 N TIME TIME QSPI_ I2S1_ SPI0_ I2S1_ SPI0_ R2_C R0_C IO0 CKIN MISO MCK SCK H0 H1 SPI1_ TIME TIME TIME USAR NSS/I R0_C QSPI_ SPI0_ SPI0_ R0_C DCI_D R2_C T2_R 2S1_ H0_O IO1 NSS MOSI H1_O 7(1) H1 X WS N N TIME USAR USAR USAR TIME CK_O I2C0_ I2C1_ R0_C T0_R T1_R T0_C R15_ UT0 SDA SDA H0 X X K CH0 SPI1_ TIME TIME SPI0_ SDIO_ SQPI_ QSPI_ SCK/I USAR R15_ R0_C MOSI CMD CLK SCK 2S1_C T0_TX CH0_ H1 K ON TIME TIME SPI0_ SDIO_ SQPI_ QSPI_ R0_C R16_ MISO D0 CSN CSN H2 CH0 TIME TIME SPI0_ SDIO_ SQPI_ QSPI_ R0_C R16_B SCK CK D0 IO0 H3 RKIN USAR T0_RT TIME QSPI_ SPI0_ S / SQPI_ R0_E IO1 NSS USAR D1 TI T0_D E JTMS/ USAR USAR I2C0_ SWDI TSITG T0_CT T1_CT SMBA O S S USAR USAR T0_RT T1_RT JTCK/ I2C1_ S/ S/ SWCL SMBA USAR USAR K T0_D T1_D E E HPDF EVEN _DAT TOUT AIN1(1) DCI_H SYNC( 1) DCI_V SYNC( 1) TIME USAR R1_C T2_TX H1 EVEN TOUT EVEN TOUT DCI_P HPDF SDIO_ EVEN IXCLK _AUDI CMD TOUT (1) (1) O TIME R1_C H2 EVEN TOUT USBF RTC_ S_SO OUT F TIME R16_ CH0_ ON SDIO_ D1 EVEN TOUT SDIO_ DCI_D D2 0(1) EVEN TOUT DCI_D 1(1) EVEN TOUT DCI_D 2(1) EVEN TOUT SDIO_ DCI_D D1 3(1) EVEN TOUT EVEN TOUT EVEN TOUT 26 GD32W515xx Datasheet Pin AF0 Name PA15 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 USAR I2C0_ SPI0_ I2C1_ T0_R SCL NSS SCL X JTDI EVEN TOUT Table 2-6. Port B alternate functions summary Pin Name PB0 PB1 PB2 PB3 AF0 AF1 TIME R0_C H1_O N(1) TIME R0_C H2_O N(1) TIME R1_C H3(1) JTDO/ TIME TRAC R1_C ESWO H1 PB4 TIME R1_C NJTR H0/TI ST MER1 _ETI PB5 TIME IFRP_ (1) R1_C OUT H3(1) AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 TIME TIME TSI_G R2_C R3_C 1_IO0( 1) H1(1) H0(1) EVEN SDIO_ DCI_D DCI_D TOUT( D1(1) 4(1) 6(1) 1) TIME TIME TSI_G R3_C R2_C 1_IO1( 1) H1(1) H2(1) EVEN SDIO_ DCI_D DCI_D TOUT( D2(1) 3(1) 5(1) 1) TIME TIME TSI_G R3_C R2_C 1_IO2( 1) H2(1) H3(1) EVEN SDIO_ DCI_D DCI_D TOUT( CK(1) 2(1) 4(1) 1) USAR SPI0_ SPI0_I SQPI_ T0_R SCK O2 D2 X USAR T2_RT QSPI_ SPI0_ SPI0_I S / SQPI_ IO3 MISO O3 USAR D3 T2_D E SPI0_ USAR TSITG MOSI( T2_C (1) 1) K(1) SPI1_ MISO( QSPI_ IO2 PB6 USAR TIME SDIO_ T2_CT R15_B D2 S RKIN EVEN TOUT SDIO_ D3 EVEN TOUT DCI_D 10(1) DCI_D 5(1) 1) TIME R3_C H1(1) PB7 TIME R3_C H2(1) PB8 PB9 PB10 PB11 PB12 PB13 PB14 TIME TIME R1_C R3_C H1(1) H3(1) TIME TIME R1_C R3_E H2(1) TI(1) TIME R0_C H1_O N TIME TIME R0_B R0_C RKIN H3 TIME R0_C H0_O N TIME R0_C H1_O SPI1_ I2C0_ NSS(1) SDA(1) /I2S1_ WS(1) SPI1_ SCK(1) /I2S1_ CK(1) SPI1_ MOSI( 1)/I2S1 _SD(1) TIME TSI_G R3_C 1_IO3( 1) H3(1) TSI_G I2S1_ 2_IO0 CKIN USAR T0_R X(1) SPI1_ USAR TSI_G NSS/I T2_C 2_IO1 2S1_ K WS SPI1_ USAR TSI_G SCK/I T2_CT 2_IO2 2S1_C S K TSI_G SPI1_ I2S1_ USAR 2_IO3( MISO( ADD_ T2_RT 1) 1) SD(1) S(1) / TIME R15_B RKIN(1 1) 1) 1) EVEN TOUT( 1) EVEN TOUT( 1) EVEN SDIO_ DCI_D DCI_D TOUT( D7(1) 1(1) 3(1) 1) USBF S_ID TIME R15_ CH0 EVEN TOUT( EVEN TOUT( SDIO_ DCI_D D5(1) 7(1) USAR T2_R X 1) DCI_V SYNC( SDIO_ DCI_D D4(1) 6(1) USAR TIME IFRP_ T2_TX R0_C (1) (1) (1) OUT H1 EVEN TOUT( SDIO_ DCI_D DCI_D EVEN D6 0(1) 2(1) TOUT USBF S_DP DCI_D 1(1) EVEN TOUT USBF S_DM DCI_D 0(1) EVEN TOUT EVEN TOUT( 1) 27 GD32W515xx Datasheet Pin Name AF0 AF1 AF2 AF3 AF4 AF5 AF6 N(1) PB15 TIME RTC_ R0_C REFIN H2_O N AF7 AF8 USAR T2_D E(1) ) AF9 AF10 AF11 AF12 AF13 AF14 AF15 SPI1_ I2C0_ MOSI/ I2C1_ USAR USAR IFRP_ SCL I2S1_ SCL T1_TX T0_TX OUT SD EVEN TOUT Table 2-7. Port C alternate functions summary Pin Name PC0 AF0 AF1 USAR T1_TX PC2 PC3 PC4 PC5 PC6 PC7 PC15 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 HPDF EVEN DCI_D _CKIN TOUT( (1) 4 1) 0(1) 1) SPI1_ MOSI( 1)/I2S1 _SD(1) I2C1_ SMBA( 1) TIME TIME TIME R0_E R0_C R4_C TI(1) H0(1) H0(1) TIME R1_C TIME H0(1)/T R4_C IMER1 H1(1) _ETI(1) I2S1_ TIME ADD_ R2_C SD(1) H2(1) TIME TIME CK_O R2_C R2_C UT1(1) H0(1) H3(1) TIME TIME TRAC R0_B R2_C ECK(1) RKIN(1 H0(1) ) DCI_H HPDF EVEN DCI_D SYNC( _CKIN TOUT( (1) 8 1) 1) 1(1) SPI1_ I2S1_ I2C0_ MISO( ADD_ SCL(1) 1) SD(1) QSPI_ IO3(1) I2C1_ SDA(1) DCI_V HPDF EVEN DCI_D SYNC( _CKO TOUT( (1) 9 1) 1) UT(1) SPI1_ I2C0_ MOSI( I2C1_ SDA(1) 1)/I2S1 SCL(1) _SD(1) TIME R0_C H0_O N(1) DCI_P HPDF EVEN DCI_D IXCLK _DAT TOUT( (1) 11 (1) 1) AIN0(1) SPI0_I O2(1) SQPI_ CLK(1) DCI_D DCI_D 6(1) 12(1) QSPI_ IO2(1) TIME TIME R0_C R2_C H1_O H1(1) N(1) TIME R2_C H2 TIME R0_E TI(1) AF4 I2C0_ SMBA( TIME USAR R0_B T1_R RKIN(1 X(1) ) PC8 PC14 AF3 TIME R0_C H3(1) (1) PC1 AF2 USAR SPI0_I SQPI_ T2_R O3(1) CSN(1) (1) X TIME TIME TIME USAR I2S1_ R16_B R0_C R1_C T2_TX MCK(1) RKIN(1 (1) H1(1) H1(1) ) SPI1_ SCK(1) /I2S1_ CK(1) TIME USAR TIME R16_ T2_R R1_C CH0(1) X(1) H2(1) I2C0_ I2C1_ USAR SDA SDA T0_TX USAR USAR T0_C T1_C K K IFRP_ OUT EVEN TOUT( 1) EVEN DCI_D DCI_D DCI_D TOUT( 7(1) 13(1) 5(1) 1) SDIO_ DCI_D D6(1) 0(1) SDIO_ DCI_D D7(1) 1(1) SDIO_ DCI_D D0 2(1) EVEN TOUT EVEN TOUT EVEN TOUT Note: (1) Functions are available on GD32W515Px devices only. 28 GD32W515xx Datasheet 3. Functional description 3.1. Arm® Cortex®-M33 core The Cortex®-M33 processor is a 32-bit processor that possesses low interrupt latency and low-cost debug. The characteristics of integrated and advanced make the Cortex®M33 processor suitable for market products that require microcontrollers with high performance and low power consumption. 32-bit Arm® Cortex®-M33 processor core  Up to 180 MHz operation frequency  Ultra-low power, energy-efficient operation  Integrated Nested Vectored Interrupt Controller (NVIC)  24-bit SysTick timer The Cortex®-M33 processor is based on the ARMv8 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M33:  Internal Bus Matrix connected with Code bus, System bus, and Private Peripheral Bus (PPB) and debug accesses  Nested Vectored Interrupt Controller (NVIC)  Breakpoint Unit (BPU)  Data Watchpoint and Trace (DWT)  Instrumentation Trace Macrocell (ITM)  Serial Wire JTAG Debug Port (SWJ-DP)  Trace Port Interface Unit (TPIU)  Arm® TrustZone® technology, using the ARMv8-M main extension supporting secure and non-secure states  Memory Protection Unit (MPU), supporting 8 regions for secure and 8 regions for non-secure. 3.2.  Configurable secure attribute unit (SAU) supporting up to 8 memory regions  Floating Point Unit (FPU)  DSP Extension (DSP) On-chip memory  Up to 2048 Kbytes of SIP Flash memory  Up to 32M bytes of EXT Flash memory  Up to 448 Kbytes of SRAM with hardware parity checking 2048 Kbytes of inner Flash or 32M bytes of EXT Flash memory, and 448 Kbytes of inner SRAM at most is available for storing programs and data. Table 2-2. GD32W515xx memory map shows the memory map of the GD32W515xx series of devices, including 29 GD32W515xx Datasheet code, SRAM, peripheral, and other pre-defined regions. 3.3. Clock, reset and supply management  Internal 16 MHz factory-trimmed RC and external 20 to 52 MHz crystal oscillator  Internal 32 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator  Integrated system clock PLL  1.62 to 3.63 V application supply and I/Os  Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD) The Clock Control Unit (CCTL) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB, APB2 and APB1 domains is 180 MHz/90 MHz/45MHz. See Figure 2-4. GD32W515xx clock tree for details on the clock tree. The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 1.54 V and down to 1.50V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security. Power supply schemes:  VDD range: 1.62 to 3.63 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.  VSSA is 0 V.  VDDA range: 2.7 to 3.63 V, external analog power supplies for ADC, reset blocks, RCs and PLL.  VBAK range: 1.62 to 3.63 V, power supply for RTC unit, LXTAL oscillator, BPOR, and two pads, including PC14 to PC15 when VDD is not present. 3.4. Boot modes At startup, a BOOT0 pin, a BOOT1 pin are used to select the boot memory address. The BOOT0 value may come from the BOOT0 pin or from the value of SWBOOT0 bit in the EFUSE_CTL register to free the GPIO pad if needed. The BOOT1 value may come from the PA14 pin or from the value of SWBOOT1 bit in the EFUSE_CTL register to free the GPIO pad if needed. 30 GD32W515xx Datasheet Table 3-1. BOOT0 modes SWBOOT0 EFBOOT0 BOOT0 PC8 pin BOOT0 0 - 0 0 0 - 1 1 1 0 - 0 1 1 - 1 Table 3-2. BOOT1 modes BOOT1 PA14 SWBOOT1 EFBOOT1 0 - 0 0 0 - 1 1 1 0 - 0 1 1 - 1 pin BOOT1 Refer to Table 3-3. Boot address modes when TrustZone is disabled (TZEN=0) and Table 3-4. Boot modes when TrustZone is enabled (TZEN=1) for boot address when TrustZone is disabled and enabled respectively. When the EFBOOTLK bit in the EFUSE_CTL register is set, the boot memory address selected according to boot1 and boot0. Table 3-3. Boot address modes when TrustZone is disabled (TZEN=0) EFBOOTLK BOOT0 BOOT1 Boot address Boot area SIP Flash when 0 0 - 0x08000000 cfg_qspi is 0 QSPI Flash when cfg_qspi is 1 0 1 0 0x0BF40000 Bootloader / ROM 0 1 1 0x0A000000 SRAM0 SIP Flash when 1 0 - 0x08000000 cfg_qspi is 0 QSPI Flash when cfg_qspi is 1 1 1 - 0x0BF40000 Bootloader / ROM When TrustZone is enabled by setting the TZEN option bit, the boot space must be in secure area. Table 3-4. Boot modes when TrustZone is enabled (TZEN=1) GSSAC MD == EFBOOTLK BOOT0 BOOT1 EFSB 8’hc(1) Boot address Boot area SPI Flash when 0 0 0 - 0 0x0C000000 cfg_qspi is 0 QSPI Flash when 31 GD32W515xx Datasheet GSSAC MD == EFBOOTLK BOOT0 BOOT1 EFSB 8’hc(1) Boot address Boot area cfg_qspi is 1 0 0 0 - 1 0X0FF84000 secure boot 0 0 1 0 - 0x0FF80000 GSSA 0 0 1 1 - 0x0E000000 SRAM0 SPI Flash when - 1 0 - 0 0x0C000000 cfg_qspi is 0 QSPI Flash when cfg_qspi is 1 - 1 0 - 1 0X0FF84000 secure boot - 1 1 - - 0x0FF80000 GSSA 1 0 - - - 0x0FF80000 GSSA Note: (1) When the GSSACMD bit field is 0x0C, it means 1, otherwise it means 0. The BOOTx (x=0/1) value (either coming from the pin or the EFBOOTx bit) is latched upon reset release. It is up to the user to set BOOTx values to select the required boot mode. The BOOTx pin or EFBOOTx bit (depending on the EFBOOTLK and SWBOOTx bit value in the EFUSE_CTL register) is also re-sampled when exiting from Standby mode. Consequently, they must be kept in the required Boot mode configuration in Standby mode. After startup delay, the selection of the boot area is done before releasing the processor reset. The embedded boot loader is located in the System memory, which is used to reprogram the Flash memory. The boot loader can be activated through one of the following serial interfaces: USART0 (PA8, PB15), USART1 (PA2, PA3) and USART2 (PB10, PB11). 3.5. Power saving modes The MCU supports five kinds of power saving modes to achieve even lower power consumption. They are Sleep, Deep-sleep, Standby, SRAM_sleep and WIFI_sleep mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.  Sleep mode In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.  Deep-sleep mode In Deep-sleep mode, all clocks in the 1.2V domain are off, and all of IRC16M, HXTAL and PLLs are disabled. The contents of SRAM0 and registers are preserved. In nonsecure mode, any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm non-secure, 32 GD32W515xx Datasheet LVD output, VLVDF interrupt, WIFI11N wakeup, USBFS wakeup, RTC Tamper and Timestamp non-secure, RTC Wakeup event non-secure, I2C0 wakeup and USART0/USART2 wakeup. In secure mode, any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC Alarm secure, LVD output, VLVDF interrupt, WIFI11N wakeup, USBFS wakeup, RTC Tamper and Timestamp secure, RTC Wakeup event secure, I2C0 wakeup and USART0/USART2 wakeup. When exiting the deep-sleep mode, the IRC16M is selected as the system clock.  Standby mode In Standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC16M, HXTAL and PLLs are disabled. There are four wakeup sources for the Standby mode, including the external reset from NRST pin, the RTC alarm/time stamp/tamper/auto wakeup events, the FWDGT reset, and the rising edge on WKUP pins.  SRAM_sleep mode In SRAM_sleep mode, at least one of SRAM1/SRAM2/SRAM3 is power off. When the SRAM enters SRAM_sleep mode, the content of SRAM will lost. SRAM1/SRAM2/SRAM3 can be configured power on or power off when in run/sleep/deep_sleep mode. SRAM1/SRAM2/SRAM3 are power off when in standby mode/BKP_ONLY mode.  WIFI_sleep mode In WIFI_sleep mode, WIFI_OFF domain power off. When exit from WIFI_sleep mode, Wi-Fi is active mode, all Wi-Fi power on. 3.6. Electronic fuse (EFUSE)  One-time programmable nonvolatile EFUSE storage cells organized as 256*8 bit.  All bits in the efuse cannot be rollback from 1 to 0.  Can only be accessed through corresponding registers. The Efuse controller has efuse macro that store system parameters. As a non-volatile unit of storage, the bit of efuse macro cannot be restored to 0 once it is programmed to 1. According to the software operation, the Efuse controller can program all the bits in the system parameters. 3.7. Instruction cache (ICACHE)  Support 32KB cache with 2 ways, 1024 cache lines per way and 16B per cache line.  Support fetch address without any wait state if cache hit.  Support two performance counters: 32-bit hit monitor counter and16-bit miss monitor counter.  Support TrustZone security and configure registers to be protected at system level. 33 GD32W515xx Datasheet The instruction cache (ICACHE) is based on C-AHB code bus of Cortex-M33 processor. It is necessary to improve performance in fetching instruction and data from both internal and external memories. 3.8. General-purpose inputs / outputs (GPIOs)  Up to 43 fast GPIOs, all mappable on 16 external interrupt lines  Analog input/output configurable  Alternate function input/output configurable There are up to 43 general purpose I/O pins (GPIO) in GD32W515xx, named PA0 ~ PA15, PB0 ~ PB15, PC0 ~ PC8, and PC14 ~ PC15 to implement logic input/output functions. Each GPIO port has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/Event Controller Unit (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), input, peripheral alternate function or analog mode. Most of the GPIO pins are shared with digital or analog alternate functions. 3.9. TrustZone protection controller union (TZPCU)  TZSPC, TZBMPC and TZIAC have independent 32-bit AHB interface.  For TZSPC, whether non-secure/non-privilege access is supported that is defined by secure/privilege configuration registers.  For TZBMPC and TZIAC, only secure access is supported.  For securable slave/master peripherals, secure/privilege state is defined in TZSPC registers.  For off-chip memories, the size of non-secure area is defined in TZSPC registers.  For on-chip RAM, the secure states of all blocks is defined in TZBMPC registers. This section describes the TrustZone® protection controller union. Three different subblocks, TrustZone® security privilege controller (TZSPC), TrustZone® block-based memory protection controller (TZBMPC) and TrustZone ® illegal access controller (TZIAC), are used to configure system security or privileg in a product with programmable-security and privileged attributes. TZSPC is used to defines the secure/privilege state for securable slave/master peripherals. TrustZone® mark memory protection controller (TZMMPC) do the security checking of off-chip memories based on the size of nonsecure area which is defined in TZSPC. For the on-chip RAM, the security checking is done based on block level which is configured by the TZBMPC through an AHB interface. TZIAC is used to enable all illegal access events for slave/master peripherals in system. If an interrupt is enabled, a dedicated interrupt signal is asserted and generates a secure 34 GD32W515xx Datasheet interrupt towards NVIC whenever a security violation is detected. The interrupt is cleared by writing to the appropriate register of TZIAC. 3.10. CRC calculation unit (CRC)  32-bit data input and 32-bit data output. Calculation period is 4 AHB clock cycles for 32-bit input data size from data entered to the calculation result available.  Free 8-bit register is unrelated to calculation and can be used for any other goals by any other peripheral devices.  Fixed polynomial: 0x4C11DB7 X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1 A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to raw data. This CRC calculation unit can be used to calculate 32 bit CRC code with fixed polynomial. 3.11. True Random number generator (TRNG)  About 40 periods of TRNG_CLK are needed between two consecutive random numbers  Disable TRNG module will significantly reduce the chip power consumption  32-bit random value seed is generated from analog noise, so the random number is a true random number. The true random number generator (TRNG) module can generate a 32-bit random value by using continuous analog noise. 3.12. Direct memory access controller (DMA)  8 channels for DMA0 controller and 8 channels for DMA1 controller.  Peripherals supported: Timers, ADC, SPIs, I2S, QSPI, I2Cs, USARTs, DCI, CAU, HAU, SDIO and HPDF. The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby increasing system performance by off-loading the MCU from copying large amounts of data and avoiding frequent interrupts to serve peripherals needing more data or having available data. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory. Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable. 35 GD32W515xx Datasheet 3.13. Analog to digital converter (ADC)  12-bit SAR ADC's conversion rate is up to 2.5 MSPS  Hardware oversampling ratio adjustable from 2x to 256x improves resolution to 16bit  Input voltage range: 0 to VDDA  Temperature sensor A 12-bit 2.5 MSPS multi-channel ADC is integrated in the device. It has a total of 12 multiplexed channels: up to 9 external channels, 1 channel for internal temperature sensor (VSENSE), 1 channel for internal reference voltage (V REFINT) and one channel for external battery power supply (VBAT) channel. The input voltage range is between 0 and VDDA. An on-chip hardware oversampling scheme improves performance while offloading the related computational burden from the CPU. The analog watchdog allows the application to detect whether the input voltage goes outside the user-defined higher or lower thresholds. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use. The ADC can be triggered from the events generated by the general level 0 timers (TIMERx, x=1, 2, 3, 4) and the advanced timers (TIMER0) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN9 input channel which is used to convert the sensor output voltage in a digital value. To ensure a high accuracy on ADC, the independent power supply VDDA is implemented to achieve better performance of analog circuits. VDDA can be externally connected to VDD through the external filtering circuit that avoids noise on V DDA, and VSSA should be connected to VSS through the specific circuit independently. 3.14. Real time clock (RTC)  Independent binary-coded decimal (BCD) format timer / counter with twenty 32-bit backup registers.  Calendar with sub-second, second, minute, hour, week day, day, month and year automatically correction.  Alarm function with wake up from deep-sleep and standby mode capability.  On-the-fly correction for synchronization with master clock. Digital calibration with 0.95 ppm resolution for compensation of quartz crystal inaccuracy. The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. In the RTC unit, there are two prescalers used for 36 GD32W515xx Datasheet implementing the calendar and other functions. One prescaler is a 7-bit asynchronous prescaler and the other is a 15-bit synchronous prescaler. 3.15. Timers and PWM generation  One 16-bit advanced timer (TIMER0), two 32-bit general timer (TIMER1, TIMER2), up to four 16-bit general timers (TIMER3, TIMER4, TIMER15 ~ TIMER16), and one 16-bit basic timer (TIMER5)  Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input  16-bit, motor control PWM advanced timer with programmable dead-time generation for output match  Encoder interface controller with two inputs using quadrature decoder  Two 24-bit SysTick timers down counter, a Non-secure SysTick timer and a Secure SysTick timer  2 watchdog timers (free watchdog timer and window watchdog timer) The advanced timer (TIMER0) can be used as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge- or center- aligned counting modes) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features. The general timer can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER1 and TIMER2 are based on a 32-bit auto-reload up/down counter and a 16-bit prescaler. TIMER3 and TIMER4 is based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. TIMER15 ~ TIMER16 are based on a 16-bit auto-reload up counter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder. The basic timer TIMER5, is mainly used as a simple 16-bit time base. The GD32W515xx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy. The free watchdog timer includes a 12-bit down-counting counter and an 8-stage prescaler. It is clocked from an independent 32 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a freerunning timer for application timeout management. 37 GD32W515xx Datasheet The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode. The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below: 3.16.  A 24-bit down counter  Auto reload capability  Maskable system interrupt generation when the counter reaches 0  Programmable clock source Universal synchronous asynchronous receiver transmitter (USART)  Maximum speed up to 11.25 MBits/s  Supports both asynchronous and clocked synchronous serial communication modes  IrDA SIR encoder and decoder support  LIN break generation and detection  ISO 7816-3 compliant smart card interface  Dual clock domain  Wake up from Deep-sleep mode The USART (USART0, USART1, USART2) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication. 3.17. Inter-integrated circuit (I2C)  Support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)  Provide arbitration function, optional PEC (packet error checking) generation and checking  Supports 7-bit and 10-bit addressing mode and general call addressing mode  SMBus 3.0 and PMBus 1.3 compatible  Wakeup from Deep-sleep mode on I2C0 address match The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides different data transfer rates: up to 100 38 GD32W515xx Datasheet KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC8 calculator is also provided in I2C interface to perform packet error checking for I2C data. 3.18. Serial peripheral interface (SPI)  Up to two SPI interfaces with a frequency of up to 22.5 MHz  Support both master and slave mode  Hardware CRC calculation and transmit automatic CRC error checking  Quad-SPI configuration available in master mode (only in SPI0) The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). All SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Quad-SPI master mode is also supported in SPI0. 3.19. Inter-IC sound (I2S)  Sampling frequency from 8 KHz to 192 KHz  Support either master or slave mode The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 4-wire serial lines. GD32W515xx contain an I2S-bus interface that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1. The audio sampling frequency from 8 KHz to 192 KHz is supported. 3.20. Serial / Quad Parallel Interface (SQPI)  SQPI controller support configuring output clock frequency which is divided by HCLK.  SQPI controller support no address phase and data phase operation which is named special command by the controller.  SQPI controller support 256MB external memory space. Logic memory address range: 0x6000_0000 - 0x6FFF_FFFF.  SQPI controller support 6 types mode for different combination of command, address, waitcycle, and data phase. Serial/Quad Parallel Interface (SQPI) is a controller for external serial/dual/quad parallel interface memory peripheral. For example: SQPI-PSRAM and SQPI-FLASH. With this controller, users can use external SQPI interface memory as SRAM simply. 39 GD32W515xx Datasheet 3.21. Quad-SPI interface (QSPI)  Four functional modes: indirect(address extend), status-polling, memory-mapped and FMC mode  Fully programmable command format for both indirect and memory mapped mode  Integrated FIFO for transmission/reception  8, 16, or 32-bit data accesses  DMA channel for indirect mode  Support TrustZone architecture to isolate the secure area and non-secure area The QSPI is a specialized interface that communicate with Flash memories. This interface support single, dual or quad SPI FLASH. 3.22. Secure digital input and output card interface (SDIO)  Support SD2.0/SDIO2.0/MMC4.2 host interface The Secure Digital Input and Output Card Interface (SDIO) provides access to external SD memory cards specifications version 2.0, SDIO card specification version 2.0 and multi-media card system specification version 4.2 with DMA supported. In addition, this interface is also compliant with CE-ATA digital protocol rev1.1. 3.23. Universal serial bus full-speed interface (USBFS)  One USB device/host/OTG full-speed Interface with frequency up to 12 Mbit/s  Internal main PLL for USBCLK compliantly  Internal USBFS PHY support The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device controller enables 12 Mbit/s data exchange with integrated transceivers. Transaction formatting is performed by the hardware, including CRC generation and checking. It supports both host and device modes, as well as OTG mode with Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The controller contains a full-speed USB PHY internal. For full-speed or low-speed operation, no more external PHY chip is needed. It supports all the four types of transfer (control, bulk, Interrupt and isochronous) defined in USB 2.0 protocol. The required precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use an HXTAL crystal oscillator). 3.24. Digital camera interface (DCI)  Digital video/picture capture  8/10/12/14 data width supported 40 GD32W515xx Datasheet  High transfer efficiency with DMA interface  Video/picture crop supported  Various pixel formats supported including JPEG/YCrCb/RGB  Hard/embedded synchronous signals supported DCI is an 8-bit to 14-bit parallel interface that able to capture video or picture from a camera via Digital Camera Interface. It supports 8/10/12/14 bits data width through DMA operation. 3.25. Touch sensing interface (TSI)  3 fully parallel groups implemented.  9 IOs configurable for capacitive sensing Channel Pins and 3 for Sample Pins.  Configurable transfer sequence frequency. Touch Sensing Interface (TSI) provides a convenient solution for touch keys, sliders and capacitive proximity sensing applications. The controller builds on charge transfer method. Placing a finger near fringing electric fields adds capacitance to the system and TSI is able to measure this capacitance change using charge transfer method. 3.26. Cryptographic acceleration Unit (CAU)  Supports DES, TDES or AES (128, 192, or 256) algorithms.  DES/TDES supports Electronic codebook (ECB) or Cipher block chaining (CBC) mode  AES supports 128bits-key, 192bits-key or 256 bits-key  AES supports Electronic codebook (ECB), Cipher block chaining (CBC) mode, Counter mode (CTR) mode, Galois/counter mode (GCM), Galois message authentication code mode (GMAC), Counter with CBC-MAC (CCM), cipher message authentication code mode (CMAC), Cipher Feedback mode (CFB) and Output Feedback mode (OFB).  DMA transfer for incoming and outgoing data is supported The Cryptographic Acceleration Unit supports acceleration of DES, TDES or AES (128, 192, or 256) algorithms. The DES/TDES supports Electronic codebook (ECB) or Cipher block chaining (CBC) mode. The AES supports Electronic codebook (ECB), Cipher block chaining (CBC) mode, Counter mode (CTR) mode, Galois/counter mode (GCM), Galois message authentication code mode (GMAC), Counter with CBC-MAC (CCM), Cipher Feedback mode (CFB) and Output Feedback mode (OFB). 3.27. Hash acceleration unit (HAU)  Supports SHA-1, SHA-224 and SHA-256 algorithms, compliant with FIPS PUB 18041 GD32W515xx Datasheet 2 (Federal Information Processing Standards Publication 180-2)  Supports MD5 compliant with IETF RFC 1321 (Internet Engineering Task Force Request For Comments number 1321)  Supports HMAC (keyed-hash message authentication code) algorithm  Automatic swapping to comply with the big-endian or little-endian for MD5, SHA-1, SHA-224 and SHA-256 algorithms  Automatic padding to fit module 512  Support DMA mode for input data flow The HAU supports acceleration of SHA-1, SHA-224, SHA-256, MD5 algorithm and the HMAC (keyed-hash message authentication code) algorithm, which calling the SHA-1, SHA-224, SHA-256 or MD5 hash function to calculate key, message, digest three times. 3.28. Public Key Cryptographic Acceleration Unit (PKCAU)  Support RSA/DH algorithms with up to 3136 bits of operands  Support ECC algorithm with up to 640 bits of operands  Embedded RAM of 3584 bytes  Conversion between the Montgomery domain and the natural domain  only 32-bit access is supported Public key encryption is also called asymmetric encryption, asymmetric encryption algorithms use different keys for encryption and decryption. The Public Key Cryptographic Acceleration Unit (PKCAU) can accelerate RSA (Rivest, Shamir and Adleman), Diffie-Hellmann (DH key exchange) and ECC (elliptic curve cryptography) in GF(p) (Galois domain). These operations are performed in the Montgomery domain to improve computational efficiency. 3.29. High-Performance Digital Filter (HPDF)  Two multiplex digital serial input channels  Two internal digital parallel input channels  Up to 24 bit output data resolution  Flexible conversion configuration function  Configurable Sinc filter and integrator A high performance digital filter module (HPDF) for external sigma delta (Σ-Δ) modulator is integrated in GD32W515xx. HPDF supports SPI interface and Manchester-coded single-wire interface. The external sigma delta modulator can be connected with MCU by the serial interface, and the serial data stream output by sigma delta modulator can be filtered. In addition, HPDF also supports the parallel data stream input function to filter the data in the internal memory of the MCU. 42 GD32W515xx Datasheet 3.30. Infrared ray port (IFRP)  The IFRP output signal is decided by TIMER15_CH0 and TIMER16_CH0.  To get correct infrared ray signal, TIMER15 should generate low frequency modulation envelope signal, and TIMER16 should generate high frequency carrier signal. Infrared ray port (IFRP) is used to control infrared light LED, and send out infrared data to implement infrared ray remote control. There is no register in this module, which is controlled by TIMER15 and TIMER16. The IFRP_OUT pin can be configured by GPIO alternate function selected register. 3.31. Wi-Fi 3.31.1. Standards Supported 3.31.2.  802.11b/g/n(2.4G) compatible  802.11e QoS Enhancement (WMM)  802.11i (WPA, WPA2). Open, shared key, and pair-wise key authentication services  Wi-Fi WPS  Wi-Fi Direct  Integrated TCP/IP protocol Wi-Fi MAC  Transmission and reception of aggregated MPDUs (A-MPDU) for high throughput (HT).  Support for immediate ACK and Block-ACK policies.  Support for power management schemes, including WMM power-save, power-save multi-poll (PSMP), and multiphase PSMP operation.  Interframe space timing support, including RIFS.  Support for RTS/CTS and CTS-to-self frame sequences for protecting frame exchanges.  Back-off counters in hardware for supporting multiple priorities as specified in the WMM specification.  Timing synchronization function (TSF), network allocation vector (NAV) maintenance, and target beacon transmission time (TBTT) generation in hardware.  Hardware engine for AES-CCMP, legacy WPA TKIP, legacy WEP ciphers, and support for key management.  Programmable independent basic service set (IBSS) or infrastructure basic service set or Access Point functionality. 43 GD32W515xx Datasheet 3.31.3. Wi-Fi PHY  Single antenna 1x1 stream in 20MHz and 40MHz channels  Supports IEEE 802.11b DSSS-CCK modulation: 1, 2, 5.5, 11Mbps  Supports IEEE 802.11g OFDM modulation: 6, 9, 12,18, 24, 36, 48, 54Mbps  Supports IEEE 802.11n HT modulations MCS0-7, 20MHz, 800ns guard interval: 6.5, 13.0, 19.5, 26, 39, 52.0, 58.5, 65.0Mbps  Supports IEEE 802.11n HT modulations MCS0-7, 20MHz, 400ns guard interval: 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2Mbps  Supports IEEE 802.11n HT modulations MCS0-7, 40MHz, 800ns guard interval: 13.5, 27, 40.5, 54, 81, 108, 121.5, 135Mbps  Supports IEEE 802.11n HT modulations MCS0-7, 40MHz, 400ns guard interval: 15, 30, 45, 60, 90, 120, 135, 150Mbps  IEEE 802.11n mixed mode operation  Per packet TX power control  Advanced channel estimation/equalization, automatic gain control, CCA, carrier/symbol recovery, and frame detection  Digital calibration algorithms to handle CMOS RF chip process, voltage, and temperature (PVT) variations 3.31.4. 3.32.  Per-packet channel quality and signal-strength measurements  Compliance with FCC and other worldwide regulatory requirements Wi-Fi Radio  Fractional-N for multiple reference clock support  Integrated PA with power control  Optimized Tx gain distribution for linearity and noise performance  Direct conversion architecture  On-chip gain selectable LNA with optimized noise figure  High dynamic range AGC  Frequency Range 2.4G-2.5G Debug mode  Serial wire JTAG debug port (SWJ-DP) The Arm® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. 3.33. Package and operation temperature  QFN56 (GD32W515Px) and QFN36 (GD32W515Tx).  Operation temperature range: -40°C to +85°C (industrial level). 44 GD32W515xx Datasheet 4. Electrical characteristics 4.1. Absolute maximum ratings The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. Table 4-1. Absolute maximum ratings (1)(4) Symbol Parameter Min Max Unit VDD External voltage range(2) - 0.3 3.63 V VDDA External analog supply voltage - 0.3 3.63 V VBAT External battery supply voltage - 0.3 3.63 V AVDD33_ANA Wi-Fi Analog voltage - 0.3 3.63 V AVDD33_PA Wi-Fi PA voltage - 0.3 3.63 V AVDD33_CLK Wi-Fi Clock voltage - 0.3 3.63 V - 0.3 VDD + 3.63 V Input voltage on other I/O - 0.3 3.63 V |ΔVDDx| Variations between different VDD power pins — 50 mV IIO Maximum current for GPIO pin — ±25 mA TA Operating temperature range -40 +85 °C Power dissipation at TA = 85°C of QFN56 — 1044 Power dissipation at TA = 85°C of QFN36 — 939 TSTG Storage temperature range -65 +150 °C TJ Maximum junction temperature — 125 °C VIN PD (1) (2) (3) (4) 4.2. Input voltage on 5V tolerant pin(3) mW Guaranteed by design, not tested in production. All main power and ground pins should be connected to an external power source within the allowable range. VIN maximum value cannot exceed 5.5 V. It is recommended that VDD and VDDA are powered by the same source. The maximum difference between VDD and VDDA does not exceed 300 mV during power-up and operation. Operating conditions characteristics Table 4-2. DC operating conditions Symbol Parameter VDD Supply voltage VDDA Analog supply voltage VBAT Battery supply voltage Conditions Min(1) Typ Max(1) Unit — 1.62(2) 3.3 3.63 — 2.7 3.3 3.63 — 2.7 3.3 3.63 — 1.62(2) 3.3 3.63 — 2.7 3.3 3.63 V V V 45 GD32W515xx Datasheet Min(1) Typ Max(1) Unit Symbol Parameter Conditions AVDD33_ANA Wi-Fi Analog voltage — 3.0 3.3 3.63 V AVDD33_PA Wi-Fi PA voltage — 3.0 3.3 3.63 V AVDD33_CLK Wi-Fi Clock voltage — 3.0 3.3 3.63 V (1) (2) Based on characterization, not tested in production. Only for GD32W515P0Q6. Figure 4-1. Recommended power supply decoupling capacitors(1)(2)(3) VDD/VBAT GND 10uF+N*100 nF VDDA GND 1uF+10 nF AVDD33 GND 10 μF+N*1 μF (1) (2) (3) When using precision internal reference voltage, and a bypass capacitor about 0.1 μF (or 1 μF connected in parallel, which is recommended) to ground is required. AVDD33 include AVDD33_PA, AVDD33_ANA, AVDD33_CLK. All decoupling capacitors need to be as close as possible to the pins on the PCB board. Table 4-3. Clock frequency (1) Symbol Parameter Conditions Min Max Unit fHCLK AHB clock frequency — — 180 MHz fAPB1 APB1 clock frequency — — 45 MHz fAPB2 APB2 clock frequency — — 90 MHz Min Max Unit — ∞ 20 — (1) Guaranteed by design, not tested in production. Table 4-4. Operating conditions at Power up / Power down Symbol tVDD (1) Parameter VDD rise time rate VDD fall time rate (1) Conditions — μs /V Guaranteed by design, not tested in production. 46 GD32W515xx Datasheet Table 4-5. Start-up timings of Operating conditions Symbol Parameter tstart-up Start-up time (1) (2) (3) (1)(2)(3) Conditions Typ Clock source from HXTAL 1415 Clock source from IRC16M 246 Unit μs Based on characterization, not tested in production. After power-up, the start-up time is the time between the rising edge of NRST high and the first I/O instruction. PLL is off. Table 4-6. Power saving mode wakeup timings characteristics (1)(2) Symbol Parameter Typ tSleep Wakeup from Sleep mode 7.2 Wakeup from Deep-sleep mode (LDO On) 1.7 Wakeup from Deep-sleep mode (LDO in low power mode) 1.7 Wakeup from Deep-sleep mode (LDO On and Low driver mode) 62 tDeep-sleep Wakeup from Deep-sleep mode (LDO in low power and Low driver mode) tStandby (1) (2) 4.3. Wakeup from Standby mode Unit μs 62 261 Based on characterization, not tested in production. The wakeup time is measured from the wakeup event to the point at which the application code reads the first instruction under the below conditions: VDD = VDDA = 3.3 V, IRC16M = System clock = 16 MHz. Power consumption GD32W515xx is designed with advanced power management technologies and suitable for Internet of Things applications. Table 4-7. Wi-Fi Power consumption characteristics Power Mode MCU State Wi-Fi State Active Active Active Wi-Fi Sleep Active Mild Sleep Power on, PLL off, Clock gated Hibernation Shutdown Power save mode: Wi-Fi wake up periodically to listen beacon frame to stay connected to the AP. Power save mode: Wi-Fi wake up periodically to listen beacon frame to stay connected to the AP. Mostly power off, only the wake up source is power on — Power off Power off Table 4-8. Wi-Fi Power consumption characteristics(1)(2)(3) Power Mode Active Description Consumption unit Wi-Fi Tx 802.11b, CCK 1Mbps, Pout = +18dBm(4) 338 mA Wi-Fi Tx 802.11b, CCK 11Mbps, Pout = +17dBm(4) 323 mA 327 mA Wi-Fi Tx 802.11g, OFDM 6Mbps, Pout = +18dBm(4) 47 GD32W515xx Datasheet Power Mode Description Consumption unit 289 mA 297 mA 272 mA 280 mA 267 mA Wi-Fi Rx 802.11b, CCK 1Mbps, -90dBm(5) 101 mA Wi-Fi Rx 802.11b, CCK 11Mbps, -80Bm(5) 102 mA Wi-Fi Rx 802.11g, OFDM 6Mbps, -80dBm(5) 120 mA Wi-Fi Rx 802.11g, OFDM 54Mbps, -70dBm(5) 126 mA Wi-Fi Rx 802.11n, HT 20M MCS0, -75dBm(5) 120 mA Wi-Fi Rx 802.11n, HT 20M MCS7, -65dBm(5) 126 mA Wi-Fi Rx 802.11n, HT 40M MCS0, -72dBm(5) 124 mA Wi-Fi Rx 802.11n, HT 40M MCS7, -62dBm(5) 129 mA 56.5 mA 1.5 mA 0.75 mA 5.4 μA — mA Wi-Fi Tx 802.11g, OFDM 54Mbps, Pout = +15dBm(4) Wi-Fi Tx 802.11n, HT 20M MCS0, Pout = +16dBm(4) Wi-Fi Tx 802.11n, HT 20M MCS7, Pout = +13dBm(4) Wi-Fi Tx 802.11n, HT 40M MCS0, Pout = +14dBm(4) Wi-Fi Tx 802.11n, HT 40M MCS7, Pout = +12dBm(4) Wi-Fi Sleep MCU in Run DTIM=1 Mild Sleep DTIM=3 Hibernation MCU in Standby Shutdown (1) (2) (3) (4) (5) (6) (7) mode(6) mode(7) — Below data are measured at antenna port of GD Wi-Fi Demo board. Unless otherwise specified, all values given for TA condition and test result is mean value. DC Power = 3.3 V, HXTAL = 40 MHz, System clock = 180 MHz. Continuous Tx, Duty cycle = 100%. Rx Packet Length = 1024 Bytes. VDD = VDDA = 3.3 V, HXTAL = 40 MHz, System clock = 180 MHz, all peripherals enabled, except Wi-Fi. VDD = VDDA = 3.3 V, LXTAL off, IRC32K on, RTC on. Table 4-9. Power consumption characteristics (2)(3)(4)(5)(6) Symbol Parameter Conditions Min Typ(1) Max Unit VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 180 MHz, All peripherals — 56.5 — mA — 29.7 — mA — 52.9 — mA — 27.8 — mA enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, IDD+IDDA Supply current (Run mode) System clock = 180 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 168 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 168 MHz, All peripherals 48 GD32W515xx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 120 MHz, All peripherals — 38.4 — mA — 20.5 — mA — 34.8 — mA — 18.6 — mA — 31.2 — mA — 16.8 — mA — 24 — mA — 13.2 — mA — 16.6 — mA — 9.5 — mA — 13 — mA — 7.7 — mA — 9.5 — mA — 5.8 — mA enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 120 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 108 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 108 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 96 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 96 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 72 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 72 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 48 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 48 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 36 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 36 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 25 MHz, PLL off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 25 MHz, PLL off, All 49 GD32W515xx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit peripherals disabled VDD = VDDA = 3.3 V, use IRC16M, System clock = 16 MHz, PLL off, All peripherals — 7.8 — mA — 4.8 — mA — 5.5 — mA — 3.6 — mA — 4.4 — mA — 3.1 — mA — 3.8 — mA — 2.8 — mA — 43.1 — mA — 16.1 — mA — 40.3 — mA — 15.1 — mA — 29 — mA — 11 — mA enabled VDD = VDDA = 3.3 V, use IRC16M, System clock = 16 MHz, PLL off, All peripherals disabled VDD = VDDA = 3.3 V, use IRC16M, System clock = 8 MHz, PLL off, All peripherals enabled VDD = VDDA = 3.3 V, use IRC16M, System clock = 8 MHz, PLL off, All peripherals disabled VDD = VDDA = 3.3 V, use IRC16M, System clock = 4 MHz, PLL off, All peripherals enabled VDD = VDDA = 3.3 V, use IRC16M, System clock = 4 MHz, PLL off, All peripherals disabled VDD = VDDA = 3.3 V, use IRC16M, System clock = 2 MHz, PLL off, All peripherals enabled VDD = VDDA = 3.3 V, use IRC16M, System clock = 2 MHz, PLL off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 180 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 180 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, Supply current (Sleep mode) System Clock = 168 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 168 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 120 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 120 MHz, CPU clock off, 50 GD32W515xx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 108 MHz, CPU clock off, — 26.2 — mA — 9.9 — mA — 23.4 — mA — 8.9 — mA — 17.7 — mA — 6.9 — mA — 12.1 — mA — 4.9 — mA — 9.3 — mA — 3.8 — mA — 6.4 — mA — 2.7 — mA — 5.3 — mA — 2.4 — mA All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 108 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 96 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 96 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 72 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 72 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 48 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 48 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 36 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 36 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 25 MHz, PLL off, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 25 MHz, PLL off, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, use IRC16M, System Clock = 16 MHz, PLL off, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, use IRC16M, System Clock = 16 MHz, PLL off, CPU clock off, All 51 GD32W515xx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit peripherals disabled VDD = VDDA = 3.3 V, use IRC16M, System Clock = 8 MHz, PLL off, CPU clock off, All — 3.6 — mA — 1.7 — mA — 2.7 — mA — 1.4 — mA — 2.3 — mA — 1.3 — mA — 379.3 — μA — 325 — μA — 229.7 — μA — 200.8 — μA — 129 — μA — 5.75 — μA — 5.55 — μA — 5.25 — μA peripherals enabled VDD = VDDA = 3.3 V, use IRC16M, System Clock = 8 MHz, PLL off, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, use IRC16M, System Clock = 4 MHz, PLL off, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, use IRC16M, System Clock = 4 MHz, PLL off, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, use IRC16M, System Clock = 2 MHz, PLL off, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, use IRC16M, System Clock = 2 MHz, PLL off, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, LDO in normal power and normal driver mode, IRC32K off, RTC off, All GPIOs analog mode VDD = VDDA = 3.3 V, LDO in low power and normal driver mode, IRC32K off, RTC off, All GPIOs analog mode Supply current (Deep-Sleep mode) VDD = VDDA = 3.3 V, LDO in normal power and low driver mode, IRC32K off, RTC off, All GPIOs analog mode VDD = VDDA = 3.3 V, LDO in low power and low driver mode, IRC32K off, RTC off, All GPIOs analog mode VDD = VDDA = 3.3 V, LDO in low power and low driver mode, IRC32K off, RTC off, All GPIOs analog mode, Wi-Fi、SRAM1、 SRAM2、SRAM3 sleep VDD = VDDA = 3.3 V, LXTAL off, IRC32K on, RTC on Supply current VDD = VDDA = 3.3 V, LXTAL off, IRC32K on, (Standby mode) RTC off VDD = VDDA = 3.3 V, LXTAL off, IRC32K off, RTC off 52 GD32W515xx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit VDD off, VDDA off, VBAT = 3.63V, LXTAL on with external crystal, RTC on, LXTAL — 1.98 — μA — 1.88 — μA — 1.77 — μA — 1.43 — μA — 1.57 — μA — 1.48 — μA — 1.37 — μA — 1.17 — μA — 1.16 — μA — 1.08 — μA — 0.97 — μA — 0.82 — μA — 1.03 — μA — 0.94 — μA Highest driving VDD off, VDDA off, VBAT = 3.3V, LXTAL on with external crystal, RTC on, LXTAL Highest driving VDD off, VDDA off, VBAT = 2.7V, LXTAL on with external crystal, RTC on, LXTAL Highest driving VDD off, VDDA off, VBAT = 1.62V, LXTAL on with external crystal, RTC on, LXTAL Highest driving VDD off, VDDA off, VBAT = 3.63V, LXTAL on with external crystal, RTC on, LXTAL Higher driving VDD off, VDDA off, VBAT = 3.3V, LXTAL on with external crystal, RTC on, LXTAL Higher driving VDD off, VDDA off, VBAT = 2.7V, LXTAL on Battery supply IBAT current (Backup mode) with external crystal, RTC on, LXTAL Higher driving VDD off, VDDA off, VBAT = 1.62V, LXTAL on with external crystal, RTC on, LXTAL Higher driving VDD off, VDDA off, VBAT = 3.63V, LXTAL on with external crystal, RTC on, LXTAL High driving VDD off, VDDA off, VBAT = 3.3V, LXTAL on with external crystal, RTC on, LXTAL High driving VDD off, VDDA off, VBAT = 2.7V, LXTAL on with external crystal, RTC on, LXTAL High driving VDD off, VDDA off, VBAT = 1.62V, LXTAL on with external crystal, RTC on, LXTAL High driving VDD off, VDDA off, VBAT = 3.63V, LXTAL on with external crystal, RTC on, LXTAL Lower driving VDD off, VDDA off, VBAT = 3.3V, LXTAL on with external crystal, RTC on, LXTAL Lower driving 53 GD32W515xx Datasheet Symbol Parameter Min Typ(1) Conditions Max Unit VDD off, VDDA off, VBAT = 2.7V, LXTAL on with external crystal, RTC on, LXTAL — 0.83 — μA — 0.68 — μA Lower driving VDD off, VDDA off, VBAT = 1.62V, LXTAL on with external crystal, RTC on, LXTAL Lower driving (1) (2) (3) (4) (5) (6) 4.4. Based on characterization, not tested in production. Unless otherwise specified, all values given for TA condition and test result is mean value. When System Clock is greater than 16 MHz, a crystal 25 MHz is used, and the HXTAL bypass function is closed, using PLL. When analog peripheral blocks such as ADCs, HXTAL, LXTAL, IRC16M, or IRC32K are ON, an additional power consumption should be considered. With large margin, it will be adjusted according to the mass production data. When Wi-Fi power off. EMC characteristics EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in Table 4-10. EMS characteristics, based on the EMS levels and classes compliant with IEC 61000 series standard. Table 4-10. EMS characteristics (1) Symbol Parameter Conditions Level/Class VDD = VDDA = AVDD33 = 3.3 V, VESD Voltage applied to all device pins to TA = 25 °C, Wi-Fi on, QFN56, induce a functional disturbance fHCLK = 180 MHz 2A conforms to IEC 61000-4-2 Fast transient voltage burst applied to VFTB induce a functional disturbance through 100 pF on VDD and GND (1) 4.5. VDD = VDDA = AVDD33 = 3.3 V, TA = 25 °C, Wi-Fi on, QFN56, 4A fHCLK = 180 MHz conforms to IEC 61000-4-4 Based on characterization, not tested in production. Power supply supervisor characteristics Table 4-11. Power supply supervisor characteristics Symbol VLVD(1) Parameter Conditions Min Typ Max Unit LVDT[2:0] = 000, rising edge — 2.21 — V Low Voltage Detector LVDT[2:0] = 000, falling edge — 2.11 — V Threshold LVDT[2:0] = 001, rising edge — 2.37 — V LVDT[2:0] = 001, falling edge — 2.25 — V 54 GD32W515xx Datasheet Symbol VVLVD(1) VLVDhyst(2) VPOR(1) VPDR(1) VDDA Low Voltage Detector Threshold LVD hysteresis Conditions Min Typ Max Unit LVDT[2:0] = 010, rising edge — 2.51 — V LVDT[2:0] = 010, falling edge — 2.39 — V LVDT[2:0] = 011, rising edge — 2.65 — V LVDT[2:0] = 011, falling edge — 2.54 — V LVDT[2:0] = 100, rising edge — 2.80 — V LVDT[2:0] = 100, falling edge — 2.68 — V LVDT[2:0] = 101, rising edge — 2.94 — V LVDT[2:0] = 101, falling edge — 2.83 — V LVDT[2:0] = 110, rising edge — 3.08 — V LVDT[2:0] = 110, falling edge — 2.98 — V LVDT[2:0] = 111, rising edge — 3.23 — V LVDT[2:0] = 111, falling edge — 3.13 — V — — 2.36 — V — — 100 — mV — 1.55 — V — 1.51 — V Power on reset threshold Power down reset threshold — VPDRhyst(2) PDR hysteresis — 40 — mV tRSTTEMPO(2) Reset temporization — 2.45 — ms (1) (2) 4.6. Parameter Based on characterization, not tested in production. Guaranteed by design, not tested in production. Electrical sensitivity The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up (LU) test is based on the two measurement methods. 55 GD32W515xx Datasheet Table 4-12. ESD characteristics Symbol Parameter Electrostatic discharge VESD(HBM) VESD(CDM) (1) (2) (1) voltage (human body model) Electrostatic discharge voltage (charge device model) Conditions Min Typ Max Unit — — 2000 V — — 500 V Min Typ Max Unit — — ±200 mA — — 5.4 V TA = 25 °C; ESDA/JEDEC JS-0012017 TA = 25 °C; ESDA/JEDEC JS-0022018 Based on characterization, not tested in production. There is space for adjustment, it will be tested soon. Table 4-13. Static latch-up characteristics (1) Symbol Parameter Conditions I-test LU TA = 25 °C; JESD78E Vsupply over voltage 4.7. (1) Based on characterization, not tested in production. (2) There is space for adjustment, it will be tested soon. External clock characteristics Table 4-14. High speed external clock (HXTAL) generated from a crystal / ceramic characteristics Symbol fHXTAL (1) CHXTAL (1) (2) (2) Parameter Conditions Min Typ Max Unit Frequency Range — 19.2 40 52 MHz Crystal load Capacitance — 9 10 12 pF ESR(2) Equivalent Series Resistance — — — 70 Ω f_tol(2) Frequency tolerance -20 — 20 ppm tSUHXTAL(1) Crystal startup time — 1.2 — ms Initial and over temperature VDD = 3.3 V, TA = 25 °C, fHXTAL = 40 MHz Based on characterization, not tested in production. Guaranteed by design, not tested in production. Table 4-15. High speed external user clock characteristics (HXTAL in bypass mode) Symbol Parameter Conditions Min fHXTAL_ext(1) Frequency Range — — 40 — MHz VHXTAL(2) OSCIN Input Voltage — 0.7 — 3.3 V Duty cycle — 45 50 55 % @1kHz, fHXTAL = 40 MHz — — -125 dBc/Hz @10kHz fHXTAL = 40 MHz — — -138 dBc/Hz @100kHz fHXTAL = 40 MHz — — -143 dBc/Hz -20 — Ducy(HXTAL) PN(2) f_tol(2) (2) Phase Noise Frequency tolerance Initial and over temperature Typ Max 20 Unit ppm 56 GD32W515xx Datasheet (1) (2) Based on characterization, not tested in production. Guaranteed by design, not tested in production. Table 4-16. Low speed external clock (LXTAL) generated from a crystal / ceramic characteristics fLXTAL (1) Parameter Conditions Min Typ Max Unit Crystal or ceramic frequency VDD = 3.3 V — 32.768 — kHz — — 15 — pF Lower driving capability — 4.5 — — 6.5 — Recommended matching CLXTAL (2)(3) capacitance on OSC32IN and OSC32OUT Medium low driving gm(2) Oscillator transconductance capability Medium high driving capability Higher driving capability VDD = VDDA = 3.3 V, Lower driving capability VDD = VDDA = 3.3 V, Medium IDDLXTAL (1) Crystal or ceramic operating low driving capability current VDD = VDDA = 3.3 V, Medium high driving capability VDD = VDDA = 3.3 V, Higher driving capability tSULXTAL(1)(4) (1) (2) (3) (4) Crystal or ceramic startup time VDD = 3.3 V μA/V — 13 — — 19 — — 0.8 — — 0.94 — μA — 1.34 — — 1.74 — — 2 — s Based on characterization, not tested in production. Guaranteed by design, not tested in production. CLXTAL1 = CLXTAL2 = 2*(CLOAD - CS), For CLXTAL1 and CLXTAL2, it is recommended matching capacitance on OSC32IN and OSC32OUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For CS, it is PCB and MCU pin stray capacitance. tSULXTAL is the startup time measured from the moment it is enabled (by software) to the 32.768 kHz oscillator stabilization flags is SET. This value varies significantly with the crystal manufacturer. Table 4-17. Low speed external user clock characteristics (LXTAL in bypass 57 GD32W515xx Datasheet mode) Symbol Parameter External clock source or fLXTAL_ext(1) oscillator frequency 4.8. voltage Typ Max Unit VDD = 3.3 V — 32.768 1000 kHz 0.7*VDD — — VDD = 3.3 V OSC32IN input pin low level (2) V voltage — — 0.3*VDD tH/L(LXTAL)(2) OSC32IN high or low time — 450 — — tR/F(LXTAL)(2) OSC32IN rise or fall time — — — 50 CIN(2) OSC32IN input capacitance — — 5 — pF Duty cycle — 30 — 70 % Ducy(LXTAL) (1) (2) Min OSC32IN input pin high level VLXTALH(2) VLXTALL Conditions (2) ns Based on characterization, not tested in production. Guaranteed by design, not tested in production. Internal clock characteristics Table 4-18. High speed internal clock (IRC16M) characteristics Symbol fIRC16M Parameter High Speed Internal Oscillator (IRC16 M) frequency Conditions Min VDD = VDDA = 3.3 V — 2.7 V ≤ VDD = VDDA ≤ 3.63 V, IRC16 M oscillator Frequency TA = -40 °C ~ +85 accuracy, Factory-trimmed VDD = VDDA = 3.3 V, ACCIRC16M accuracy, User trimming step(1) IDDAIRC16M(1) tSUIRC16M(1) (1) (2) IRC16 M oscillator duty cycle IRC16 M oscillator operating current IRC16 M oscillator startup time 16 -1.6 to 1.3 — MHz — % -1 — 1 % — — 0.5 — % VDD = VDDA = 3.3 V 45 — 55 % VDD = VDDA = 3.3 V — 80 — μA VDD = VDDA = 3.3 V — 1.5 — μs TA = 25°C IRC16 M oscillator Frequency DucyIRC16M(2) — °C(1) Typ Max Unit Based on characterization, not tested in production. Guaranteed by design, not tested in production. Table 4-19. Low speed internal clock (IRC32K) characteristics Symbol Parameter Low Speed Internal fIRC32K(1) oscillator (IRC32K) frequency IDDAIRC32K(2) tSUIRC32K(2) IRC32K oscillator operating current IRC32K oscillator startup time Conditions Min Typ Max Unit — 32 — kHz VDD = VDDA = 3.3 V — 0.4 — μA VDD = VDDA = 3.3 V — 40 — μs VDD = VDDA = 3.3 V, TA = -40 °C ~ +85 °C 58 GD32W515xx Datasheet (1) (2) 4.9. Guaranteed by design, not tested in production. Based on characterization, not tested in production. PLL characteristics Table 4-20. PLL characteristics Symbol fPLLIN (1) fPLLOUT Parameter Conditions Min Typ Max Unit PLL input clock frequency — 1 — 2 MHz PLL output clock frequency — — — 200 MHz fVCO(2) PLL VCO output clock frequency — — — 400 MHz tLOCK(2) PLL lock time — — — 300 μs IDDA(2) Current consumption on VDDA VCO freq = 400 MHz — 2 — mA — 30 — (2) Cycle to cycle Jitter JitterPLL(3) (rms) Cycle to cycle Jitter VCO freq = 360 MHz (peak to peak) (1) (2) (3) ps — 210 — Based on characterization, not tested in production. Guaranteed by design, not tested in production. Value given with main PLL running. Table 4-21. PLLDIG characteristics Symbol Parameter Conditions Min Typ Max Unit fPLLIN(1) PLL input clock frequency — 19.2 40 52 MHz fPLLOUT(2) PLL output clock frequency — — — 480 MHz — — 960 — MHz fVCO(2) (1) (2) PLL VCO output clock frequency tLOCK(2) PLL lock time — — — 50 μs IDDA(2) Current consumption — — 3.5 — mA JitterPLL Absolute RMS Jitter XTAL freq = 40 MHz — 6.5 — ps Based on characterization, not tested in production. Guaranteed by design, not tested in production. Table 4-22. PLLI2S characteristics Symbol Parameter Conditions Min Typ Max Unit PLL input clock frequency — 2 — 16 MHz fVCO(2) PLL VCO output clock frequency — — — 550 MHz tLOCK(2) PLL lock time — — — 300 μs IDDA(2) Current consumption on VDDA VCO freq = 550 MHz — 1.5 — mA JitterPLL(3) Cycle to cycle rms Jitter System clock — 40 — ps fPLLIN (1) (2) (3) (1) Based on characterization, not tested in production. Guaranteed by design, not tested in production. Value given with main PLL running. 59 GD32W515xx Datasheet 4.10. Memory characteristics Table 4-23. Flash memory characteristics Symbol Parameter Conditions Min Typ Max Unit TA = -40 °C ~ +85 °C 100 — — kcycles Data retention time — — 20 — years word programming time TA = -40 °C ~ +105 °C — 47.5 106 μs TA = -40 °C ~ +105 °C — 45 300 ms TA = -40 °C ~ +105 °C — 6 20 s Number of guaranteed PECYC(1) program /erase cycles before failure(Endurance) tRET (1) tPROG (2) tERASE(2) tMERASE(2) (1) (2) (3) 4.11. Page(3) erase time Mass erase time Based on characterization, not tested in production. Guaranteed by design, not tested in production. 4KB. NRST pin characteristics Table 4-24. NRST pin characteristics Symbol VIL(NRST) (1) VIH(NRST) (1) Vhyst(1) Parameter Conditions NRST Input low level voltage NRST Input high level voltage Min Typ Max -0.5 — 0.35 VDD — VDD + 0.5 VDD = VDDA = 2.7 V 0.65 VDD Unit V Schmidt trigger Voltage hysteresis — 250 — (1) NRST Input low level voltage -0.5 — 0.35 VDD VIH(NRST)(1) NRST Input high level voltage — VDD + 0.5 Vhyst(1) Schmidt trigger Voltage hysteresis — 280 — VIL(NRST)(1) NRST Input low level voltage -0.5 — 0.35 VDD VIH(NRST)(1) NRST Input high level voltage — VDD + 0.5 Vhyst(1) Schmidt trigger Voltage hysteresis — 300 — mV Rpu(2) Pull-up equivalent resistor — 40 — kΩ VIL(NRST) (1) (2) VDD = VDDA = 3.3 V 0.65 VDD VDD = VDDA = 3.63 V 0.65 VDD — mV V mV V Based on characterization, not tested in production. Guaranteed by design, not tested in production. 60 GD32W515xx Datasheet Figure 4-2. Recommended external NRST pin circuit(1) VDD VDD External reset circuit 10 kΩ RPU NRST K 100 nF GND (1) 4.12. Unless the voltage on NRST pin go below VIL(NRST) level, the device would not generate a reliable reset. GPIO characteristics Table 4-25. I/O port DC characteristics (1)(3) Symbol Parameter Standard IO Low VIL level input voltage 5V-tolerant IO Low level input voltage Standard IO Low VIH level input voltage 5V-tolerant IO Low level input voltage VOL Low level output (IO_speed = 166 voltage for an IO Pin MHz) (IIO = +8 mA) VOL Low level output (IO_speed = 166 voltage for an IO Pin MHz) (IIO = +20 mA) VOH High level output (IO_speed = 166 voltage for an IO Pin MHz) (IIO = +8 mA) VOH High level output (IO_speed = 166 voltage for an IO Pin MHz) (IIO = +20 mA) Conditions Min Typ Max Unit 1.62 V ≤ VDD ≤ 3.63 V — — 0.35 VDD V 1.62 V ≤ VDD ≤ 3.63 V — — 0.35 VDD V 1.62 V ≤ VDD ≤ 3.63 V 0.65 VDD — — V 1.62 V ≤ VDD ≤ 3.63 V 0.65 VDD — — V V VDD = 1.62V — 0.142 — VDD = 2.7V — 0.1 — VDD = 3.3 V — 0.1 — VDD = 3.63V — 0.1 — VDD = 1.62V — 0.427 — VDD = 2.7V — 0.2 — VDD = 3.3 V — 0.2 — VDD = 3.63V — 0.2 — VDD = 1.62V — 1.406 — VDD = 2.7V — 2.6 — VDD = 3.3 V — 3.2 — VDD = 3.63V — 3.5 — VDD = 1.62V — 1.265 — VDD = 2.7V — 2.3 — VDD = 3.3 V — 3.0 — VDD = 3.63V — 3.3 — V V V V V V V 61 GD32W515xx Datasheet Symbol VOL (IO_speed = 25 MHz) VOL (IO_speed = 25 MHz) VOH (IO_speed = 25 MHz) VOH (IO_speed = 25 MHz) VOL (IO_speed = 10 MHz) VOL (IO_speed = 10 MHz) VOH (IO_speed = 10 MHz) VOH (IO_speed = 10 MHz) VOL (IO_speed = 2 MHz) Parameter Conditions Min Typ Max Unit VDD = 1.62V — 0.204 — V VDD = 2.7V — 0.1 — VDD = 3.3 V — 0.1 — VDD = 3.63V — 0.1 — VDD = 1.62V — 1.477 — VDD = 2.7V — 0.3 — VDD = 3.3 V — 0.3 — VDD = 3.63V — 0.3 — VDD = 1.62V — 1.297 — VDD = 2.7V — 2.5 — VDD = 3.3 V — 3.1 — VDD = 3.63V — 3.4 — VDD = 1.62V — 1.125 — VDD = 2.7V — 2.2 — VDD = 3.3 V — 2.9 — VDD = 3.63V — 3.2 — VDD = 1.62V — 0.403 — VDD = 2.7V — 0.2 — VDD = 3.3 V — 0.2 — VDD = 3.63V — 0.2 — VDD = 1.62V — 1.381 — VDD = 2.7V — 0.5 — VDD = 3.3 V — 0.4 — VDD = 3.63V — 0.4 — VDD = 1.62V — 1.073 — VDD = 2.7V — 2.4 — VDD = 3.3 V — 3.1 — VDD = 3.63V — 3.4 — VDD = 1.62V — 0.927 — VDD = 2.7V — 2.1 — VDD = 3.3 V — 2.8 — VDD = 3.63V — 3.1 — VDD = 1.62V — 0.160 — VDD = 2.7V — 0.1 — VDD = 3.3 V — 0.1 — VDD = 3.63V — 0.1 — VDD = 1.62V — 0.359 — Low level output VDD = 2.7V — 0.4 — voltage for an IO Pin VDD = 3.3 V — 0.4 — Low level output voltage for an IO Pin (IIO = +8 mA) Low level output voltage for an IO Pin (IIO = +20 mA) High level output voltage for an IO Pin (IIO = +8 mA) High level output voltage for an IO Pin (IIO = +20 mA) Low level output voltage for an IO Pin (IIO = +8 mA) Low level output voltage for an IO Pin (IIO = +16 mA) High level output voltage for an IO Pin (IIO = +8 mA) High level output voltage for an IO Pin (IIO = +16 mA) Low level output voltage for an IO Pin (IIO = +1 mA) V V V V V V V V V V V V V V V V V Low level output voltage for an IO Pin VOL (IO_speed = 2 MHz) V (IIO = +2 mA) V 62 GD32W515xx Datasheet Symbol VOH (IO_speed = 2 MHz) Parameter Conditions Min Typ Max (IIO = +4 mA) VDD = 3.63V — 0.4 — VDD = 1.62V — 1.375 — VDD = 2.7V — 2.6 — VDD = 3.3 V — 3.2 — VDD = 3.63V — 3.5 — VDD = 1.62V — 1.130 — High level output voltage for an IO Pin (IIO = +1 mA) Unit V V High level output voltage for an IO Pin VOH (IIO = +2 mA) (IO_speed = 2 MHz) High level output VDD = 2.7V — 2.2 — voltage for an IO Pin VDD = 3.3 V — 2.9 — (IIO = +4 mA) VDD = 3.63V — 3.2 — All pins — — 40 — PU — — 10 — All pins — — 40 — PU — — 10 — Internal RPU (2) Internal RPD V kΩ pull-up resistor (2) V pull-down resistor kΩ (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. (3) All pins except PC13 / PC14 / PC15. Since PC13 to PC15 are supplied through the Power Switch, which can only be obtained by a small current, the speed of GPIOs PC13 to PC15 should not exceed 2 MHz when they are in output mode (maximum load: 30 pF). Table 4-26. I/O port AC characteristics (1)(2) GPIOx_MDy[1:0] bit value(3) Parameter GPIOx_CTL->MDy[1:0]=10 Maximum (IO_Speed = 2 MHz) frequency(4) GPIOx_CTL->MDy[1:0] = 01 Maximum (IO_Speed = 10 MHz) frequency(4) GPIOx_CTL->MDy[1:0]=11 Maximum (IO_Speed = 25 MHz) frequency(4) GPIOx_CTL->MDy[1:0]=11(IO_S peed = 166 MHz) (1) (2) (3) (4) Maximum frequency(4) Conditions Typ 1.62 V ≤ VDD ≤ 3.63 V , CL = 10pF 5 1.62 V ≤ VDD ≤ 3.63 V , CL = 30pF 4 1.62 V ≤ VDD ≤ 3.63 V , CL = 50pF 4 1.62 V ≤ VDD ≤ 3.63 V , CL = 10pF 25 1.62 V ≤ VDD ≤ 3.63 V , CL = 30pF 23 1.62 V ≤ VDD ≤ 3.63 V , CL = 50pF 22 1.62 V ≤ VDD ≤ 3.63 V , CL = 10pF 86 1.62 V ≤ VDD ≤ 3.63 V , CL = 30pF 61 1.62 V ≤ VDD ≤ 3.63 V, CL = 50pF 53 1.62 V ≤ VDD ≤ 3.63 V, CL = 10pF 180 1.62 V ≤ VDD ≤ 3.63 V , CL = 30pF 155 1.62 V ≤ VDD ≤ 3.63 V , CL = 50pF 133 Unit MHz MHz MHz MHz Based on characterization, not tested in production. Unless otherwise specified, all test results given for TA = 25 ℃. The I/O speed is configured using the GPIOx_OSPD0->OSPDy [1:0] bits. Refer to the GD32W515xx user manual which is selected to set the GPIO port output speed. The maximum frequency is defined in Figure 4-3, and maximum frequency cannot exceed 100 MHz. 63 GD32W515xx Datasheet Figure 4-3. I/O port AC characteristics definition 90% 90% 50% 50% 10% EXTERNAL OUTPUT ON 50pF 10% tf(IO)out tr(IO)out T If (tr + tf) ≤ 2/3 T, then maximum frequency is achieved. The duty cycle is (45%-55%) when loaded by 50 pF. 4.13. ADC characteristics Table 4-27. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA(1) Operating voltage — 2.7 3.3 3.6 V VIN(1) ADC input voltage range — 0 — VDDA V fADC(1) ADC clock — 0.1 — 35 MHz fS(1) Sampling rate 12-bit 0.007 — 2.5 MSPS Analog input voltage 9 external; 3 internal 0 — VDDA V External input impedance See Equation 1 — — 440.7 kΩ — — — 0.5 kΩ — — 3.2 pF (1) VAIN RAIN(2) RADC(2) Input sampling switch resistance CADC(2) ts(2) Input sampling No pin / pad capacitance capacitance included Sampling time fADC = 35 MHz 0.04 — 13.7 μs 12-bit — 14 — 1 / fADC — — — 1 μs Total conversion tCONV(2) time(including sampling time) tSU(2) (1) (2) Startup time Based on characterization, not tested in production. Guaranteed by design, not tested in production. Equation 1: RAIN max formula R AIN < Ts fADC *CADC *ln(2N+2 ) -R ADC The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 4-28. ADC RAIN max for fADC = 35 MHz (1) Ts(cycles) ts(μs) RAINmax(kΩ) 1.5 0.04 0.88 14.5 0.41 12.84 27.5 0.79 24.80 64 GD32W515xx Datasheet (1) Ts(cycles) ts(μs) RAINmax(kΩ) 55.5 1.59 50.57 83.5 2.39 76.33 111.5 3.19 102.1 143.5 4.10 131.5 479.5 13.7 440.7 Based on characterization, not tested in production. Table 4-29. ADC dynamic accuracy at f ADC = 35 MHz (1) Symbol Parameter Test conditions Min Typ Max Unit ENOB Effective number of bits fADC = 35 MHz, — 10.6 — bits SNDR Signal-to-noise and distortion ratio VDDA = 3.3 V, — 65.7 — SNR Signal-to-noise ratio Input Frequency = 20 — 66.5 — — -72 — kHz, THD (1) Total harmonic distortion Temperature = 25℃ dB Based on characterization, not tested in production. Table 4-30. ADC static accuracy at fADC = 35 MHz Symbol Parameter Offset Offset error DNL Differential linearity error INL Integral linearity error (1) 4.14. Test conditions Typ(1) Max fADC = 35 MHz, VDDA = 3.3 V ±1 — ±1 — ±2 — Unit LSB Based on characterization, not tested in production. Temperature sensor characteristics Table 4-31. Temperature sensor characteristics (1) Symbol Parameter Min Typ Max Unit TL VSENSE linearity with temperature — ±1 — ℃ Avg_Slope Average slope — 4.3 — mV/℃ V25 Voltage at 25 °C — 1.42 — V Startup time — 8 — μs ADC sampling time when reading the temperature — 13.7 — μs tSTART tS_temp (1) (2) (2) Based on characterization, not tested in production. Shortest sampling time can be determined in the application by multiple iterations. 65 GD32W515xx Datasheet 4.15. I2C characteristics Table 4-32. I2C characteristics (1)(2)(3) Standard Symbol tSCL(H) Parameter SCL clock high time Conditions mode Fast mode Fast mode plus Unit Min Max Min Max Min Max — 4.0 — 0.6 — 0.2 — μs tSCL(L) SCL clock low time — 4.7 — 1.3 — 0.5 — μs tsu(SDA) SDA setup time — 250 — 100 — 50 — ns — 0(3) 3450 0 900 0 450 ns — — 1000 — 300 — 120 ns — — 300 3(4)(5) 300 3(4)(6) 120 ns — 4.0 — 0.6 — 0.26 — μs — 4.7 — 0.6 — 0.26 — μs — 4.0 — 0.6 — 0.26 — μs — 4.7 — 1.3 — 0.5 — μs th(SDA) tr(SDA/SCL) tf(SDA/SCL) th(STA) SDA data hold time SDA and SCL rise time SDA and SCL fall time Start condition hold time Repeated Start ts(STA) condition setup time ts(STO) Stop condition setup time Stop to Start tbuff condition time (bus free) (1) (2) (3) (4) (5) (6) Guaranteed by design, not tested in production. To ensure the standard mode I2C frequency, fPCLK1 must be at least 2 MHz. To ensure the fast mode I2C frequency, fPCLK1 must be at least 4 MHz. To ensure the fast mode plus I2C frequency, f PCLK1 must be at least a multiple of 10 MHz. The external device should provide a data hold time of 300 ns at least in order to bridge the undefined region of the falling edge of SCL. Based on characterization, not tested in production. In the condition of I2C frequency = 400 kHz, IO_Speed = 50 MHz and Pull-up resistor = 1 kΩ. In the condition of I2C frequency = 1 MHz, IO_Speed = 50 MHz and Pull-up resistor = 1 kΩ. 66 GD32W515xx Datasheet Figure 4-4. I2C bus timing diagram tsu(STA) SDA 70% 30% tf(SDA) tr(SDA) tSCL(H) th(STA) SCL tbuff th(SDA) tsu(SDA) 70% 30% tSCL(L) 4.16. tr(SCL) tf(SCL) tsu(STO) SPI characteristics Table 4-33. Standard SPI characteristics Symbol Parameter fSCK SCK clock frequency tsck(H) SCK clock high time tsck (L) SCK clock low time (1) Conditions VDD = VDDA = 3.3 V Min Typ Max Unit — — 22.5 MHz — 22.22 — ns — 22.22 — ns — — 7 ns 2 — — ns 0 — — ns 0 — — ns 2 — — ns — 6 — ns — 9 — ns — 9 — ns 0 — — ns 1 — — ns SPI master mode tV(MO) Data output valid time tSU(MI) Data input setup time tH(MI) Data input hold time VDD = VDDA = 3.3 V SPI slave mode (1) tSU(NSS) NSS enable setup time tH(NSS) NSS enable hold time tA(SO) Data output access time tDIS(SO) Data output disable time tV(SO) Data output valid time tSU(SI) Data input setup time tH(SI) Data input hold time VDD = VDDA = 3.3 V, fPCLK = 90 MHz VDD = VDDA = 3.3 V Based on characterization, not tested in production. 67 GD32W515xx Datasheet Figure 4-5. SPI timing diagram - master mode tSCK SCK (CKPH=0 CKPL=0) SCK (CKPH=0 CKPL=1) SCK (CKPH=1 CKPL=0) tSCK(H) tSCK(L) SCK (CKPH=1 CKPL=1) tSU(MI) MISO D[0] LF=1,FF16=0 D[7] tH(MI) D[0] MOSI D[7] tH(MO) tV(MO) Figure 4-6. SPI timing diagram - slave mode NSS tSCK tSU(NSS) SCK (CKPH=0 CKPL=0) tSCK(H) SCK (CKPH=0 CKPL=1) tSCK(L) tH(NSS) tH(SO) tDIS(SO) tV(SO) tA(SO) MISO D[0] D[7] tSU(SI) D[0] MOSI D[7] tH(SI) 4.17. I2S characteristics Table 4-34. I2S characteristics (1) Symbol Parameter fCK Clock frequency Conditions Master mode (data: 32 bits, Audio frequency = 96 kHz) Min Typ Max Unit — 6.25 — MHz 68 GD32W515xx Datasheet Symbol Parameter Conditions Min Typ Max Unit Slave mode — — 12.5 — 81 — ns — 81 — ns tH Clock high time tL Clock low time tV(WS) WS valid time Master mode — 3 — ns tH(WS) WS hold time Master mode — 3 — ns tSU(WS) WS setup time Slave mode 0 — — ns tH(WS) WS hold time Slave mode 2 — — ns Slave mode — 50 — % Ducy(SCK) fCK = 6.25 MHz I2S slave input clock duty cycle tSU(SD_MR) Data input setup time Master mode 2 — — ns tSU(SD_SR) Data input setup time Slave mode 0 — — ns Master receiver 0 — — ns Slave receiver 1 — — ns — — 9 ns 3 — — ns — — 9 ns 0 — — ns tH(SD_MR) Data input hold time tH(SD_SR) tV(SD_ST) Data output valid time tH(SD_ST) Data output hold time tV(SD_MT) Data output valid time tH(SD_MT) Data output hold time (1) Slave transmitter (after enable edge) Slave transmitter (after enable edge) Master transmitter (after enable edge) Master transmitter (after enable edge) Based on characterization, not tested in production. Figure 4-7. I2S timing diagram - master mode tCK CPOL=0 tL CPOL=1 tV(WS) tH tH(WS) WS output tV(SD_MT) SD transmit SD receive tH(SD_MT) D[0] D[0] tSU(SD_MR) tH(SD_MR) 69 GD32W515xx Datasheet Figure 4-8. I2S timing diagram - slave mode tCK CPOL=0 tL CPOL=1 tH tH(WS) WS input tSU(WS) tH(SD_ST) tV(SD_ST) SD transmit D[0] SD receive D[0] tSU(SD_SR) tH(SD_SR) 4.18. USART characteristics Table 4-35. USART characteristics (1) Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency fPCLKx = 45 MHz — — 22.5 MHz tSCK(H) SCK clock high time fPCLKx = 45 MHz 22.22 — — ns tSCK(L) SCK clock low time fPCLKx = 45 MHz 22.22 — — ns (1) Guaranteed by design, not tested in production. 70 GD32W515xx Datasheet 4.19. SDIO characteristics Table 4-36. SDIO characteristics (1)(2) Symbol Parameter Conditions Min Typ Max Unit fPP(3) Clock frequency in data transfer mode — 0 — 48 MHz tW(CKL)(3) Clock low time fpp = 48 MHz 10.5 11 — ns (3) Clock high time fpp = 48 MHz 9.5 10 — ns tW(CKH) CMD, D inputs (referenced to CK) in MMC and SD HS mode tISU(4) Input setup time HS fpp = 48 MHz 4 — — ns tIH(4) Input hold time HS fpp = 48 MHz 3 — — ns CMD, D outputs (referenced to CK) in MMC and SD HS mode tOV(3) Output valid time HS fpp = 48 MHz — — 13.8 ns tOH(3) Output hold time HS fpp = 48 MHz 12 — — ns CMD, D inputs (referenced to CK) in SD default mode tISUD(4) Input setup time SD fpp = 24 MHz 3 — — ns tIHD(4) Input hold time SD fpp = 24 MHz 3 — — ns CMD, D outputs (referenced to CK) in SD default mode tOVD(3) Output valid default time SD fpp = 24 MHz — 2.4 2.8 ns tOHD(3) Output hold default time SD fpp = 24 MHz 0.8 — — ns (1) (2) (3) (4) 4.20. CLK timing is measured at 50% of VDD. Capacitive load CL = 30 pF. Based on characterization, not tested in production. Guaranteed by design, not tested in production USBFS characteristics Table 4-37. USBFS start up time Symbol Parameter Max Unit tSTARTUP(1) USBFS startup time 1 μs (1) Guaranteed by design, not tested in production. 71 GD32W515xx Datasheet Table 4-38. USBFS DC electrical characteristics Symbol Parameter Conditions Min Typ USBFS operating voltage — 3 — 3.6 VDI Differential input sensitivity — 0.2 — — Includes VDI range 0.8 — 2.5 — 1.3 — 2.0 VDD Input levels(1) VCM Differential common mode range Single ended receiver VSE threshold Max Unit V Output VOL Static output level low RL of 1.0 kΩ to 3.6 V — 0.002 0.3 levels (2) Static output level high RL of 15 kΩ to GND 2.8 3.48 3.6 17 19.02 24 0.65 — 2.0 1.5 1.589 2.1 0.25 — 0.55 VOH PB13, PB12(USBFS_DM/DP) RPD(2) VIN = VDD PB14(USBFS_VBUS) PB13, PB12(USBFS_DM/DP) RPU(2) VIN = GND PB14(USBFS_VBUS) (1) (2) V kΩ Guaranteed by design, not tested in production. Based on characterization, not tested in production. Table 4-39. USBFS full speed-electrical characteristics (1) Symbol Parameter Conditions Min Typ Max Unit tR Rise time CL = 50 pF 4 — 20 ns tF Fall time CL = 50 pF 4 — 20 ns tRFM Rise / fall time matching tR / tF 90 — 110 % vCRS Output signal crossover voltage — 1.3 — 2.0 V (1) Guaranteed by design, not tested in production. Figure 4-9. USBFS timings: definition of data signal rise and fall time Crossover points Differential data lines VCRS VSS tf 4.21. tr TIMER characteristics Table 4-40. TIMER characteristics (1) Symbol Parameter tres Timer resolution time fEXT RES Conditions Min Max Unit — 1 — tCK_TIMERx fCK_TIMERx = 180 MHz 5.56 — ns Timer external clock — 0 2*fCK_TIMERx MHz frequency fCK_TIMERx = 180 MHz 0 360 MHz Timer resolution TIMERx except — 16 bit 72 GD32W515xx Datasheet Symbol Parameter Conditions Min Max Unit TIMER1& TIMER2 — 32 — 1 65536 tCK_TIMERx 364 μs (TIMER1& TIMER2) 16-bit counter clock period when internal clock is tCOUNTER fCK_TIMERx = 180 MHz 0.0056 selected — 1 fCK_TIMERx = 180 MHz — Maximum possible count — — (32-bit) fCK_TIMERx = 180 MHz — 32-bit counter clock period when internal clock is selected tMAX_COUNT (1) 4.22. 65536x65536 tCK_TIMERx 23.9 s 65536x65536 tCK_TIMERx 23.9 s Guaranteed by design, not tested in production. WDGT characteristics Table 4-41. FWDGT min/max timeout period at 32 kHz (IRC32K) (1) Min timeout Max timeout RLD[11:0] =0x000 RLD[11:0] = 0xFFF 000 0.03125 511.90625 1/8 001 0.03125 1023.78125 1/16 010 0.03125 2047.53125 1/32 011 0.03125 4095.03125 1/64 100 0.03125 8190.03125 1/128 101 0.03125 16380.03125 1/256 110 or 111 0.03125 32760.03125 Prescaler divider PSC[2:0] bits 1/4 (1) Unit ms Guaranteed by design, not tested in production. Table 4-42. WWDGT min-max timeout value at 45 MHz (fPCLK1) (1) PSC[2:0] 1/1 00 91.02 1/2 01 182.04 1/4 10 364.09 1/8 11 728.18 (1) 4.23. Min timeout value Prescaler divider CNT[6:0] = 0x40 Max timeout value Unit CNT[6:0] = 0x7F Unit 5.83 11.65 μs ms 23.30 46.60 Guaranteed by design, not tested in production. HPDF Characteristics Table 4-43. HPDF characteristics (1)(2) Symbol Parameter Conditions Min Typ Max Unit fHPDFCLK HPDF clock — — fAPB2 fSYSCLK MHz 73 GD32W515xx Datasheet Symbol Parameter fCKIN Input clock (1 / TCKIN) frequency fCKOUT Output clock frequency Conditions Min Typ Max Unit 20 SPI mode(SITYP[1:0]=01) — — (fHPDFCLK / 4) — — — 20 — 30 50 75 Output clock DutyCKOUT frequency duty % cycle twh(CKIN) Input clock high and twl(CKIN) low time tSU Data input setup time SPI mode(SITYP[1:0]=01), External clock mode(SPICKSS[1:0]=0) TCKIN / 2- TCKIN / 0.5 2 — ns SPI mode(SITYP[1:0]=01), External clock 1 — — 1 — — mode(SPICKSS[1:0]=0) SPI mode(SITYP[1:0]=01), th Data input hold time External clock mode(SPICKSS[1:0]=0) Manchester data TManchester period(recovered clock period) (1) (2) Manchester mode(SITYP[1:0]=10 or 11), Internal clock mode(SPICKSS[1:0]≠0) (CKOUT DIV+1)*T HPDFCLK (2*CKOU — TDIV)*TH PDFCLK Guaranteed by design, not tested in production. Output speed is set to OSPEEDRy[1:0]=10;Capacitive load C = 30 pF;Measurement points are done at COMS levels: 0.5*VDD. 74 GD32W515xx Datasheet 4.24. Serial / Quad Parallel Interface (SQPI) Characteristics Table 4-44. SQPI characteristics Symbol Parameter Min Typ Max Unit CLK period 11.0(4) — — ns CLK high level duty for even clock divided 45 50 55 CLK high level duty for odd clock divided 45 — 71 tKHKL(1)(3) CLK rise or fall time — 2.0 — ns tCPH(2) CE# high between subsequent burst operations 22.2 — — ns tCEM(2) CE# low pulse width 88.8 — — ns tCSP(2) CE# setup time to CLK rising edge 5.5 — 177.7 ns tCHD(2) CE# hold time from CLK rising edge 5.5 — 177.7 ns tSP(2) Setup time to active CLK edge 5.5 — 177.7 ns tHD(2) Hold time from active CLK edge 5.5 — 177.7 ns CE# rise to data output high-Z — 0 — ns CLK fall to data output valid delay — 0 — ns Data hold time from CLK falling edge — 0 — ns tCLK(2) tCD(2) tHZ (2) tACLK(2) (2) tKOH (1) (2) (3) (4) 4.25. % Based on characterization, not tested in production. Guaranteed by design, not tested in production. Output driven mode is 50 MHz. Measured from 10% to 90% of VDD. This is designed minimal period. The operating minimal clock period is 22.2 ns (45 MHz = 180 MHz / 4). Wi-Fi Radio characteristics Below data are measured at antenna port of GD Wi-Fi Demo board. Table 4-45. Transmitter power characteristics (1)(2) Parameter Tx Power (1) (2) Rate Typ 11b 21 11g 18.3 11n, BW20M 17.3 11n, BW40M 17.3 Unit dBm Tx Power level is Limited by 802.11 Mask & EVM spec. Based on characterization, not tested in production. Table 4-46. Receiver sensitivity characteristics (1) Parameter Rx Sensitivity Rate Typ 11b,1Mbps -97.6 11b,2Mbps -94.4 11b,5.5Mbps -92.1 11b,11Mbps -87.6 11g,6Mbps -94.3 11g,9Mbps -92.5 Unit dBm 75 GD32W515xx Datasheet Parameter (1) Rate Typ 11g,12Mbps -91.0 11g,18Mbps -89.1 11g,24Mbps -84.6 11g,36Mbps -82.4 11g,48Mbps -77.0 11g,54Mbps -76.3 11n,HT20,MCS0 -94.0 11n,HT20,MCS1 -90.3 11n,HT20,MCS2 -88.5 11n,HT20,MCS3 -84.4 11n,HT20,MCS4 -82.0 11n,HT20,MCS5 -76.6 11n,HT20,MCS6 -75.6 11n,HT20,MCS7 -74.2 11n,HT40,MCS0 -89.6 11n,HT40,MCS1 -85.4 11n,HT40,MCS2 -83.5 11n,HT40,MCS3 -80.3 11n,HT40,MCS4 -77.9 11n,HT40,MCS5 -72.7 11n,HT40,MCS6 -71.8 11n,HT40,MCS7 -70.7 Unit Based on characterization, not tested in production. Table 4-47. Rx Maximum Input Level (1)(2) Parameter Rx Maximum Level Input (1) (2) Rate Typ 11b,1Mbps >8.5(1) 11b,11Mbps >8.5(1) 11g,6Mbps >8.5(1) 11g,54Mbps 4.6 11n,HT20,MCS0 >8.5(1) 11n,HT20,MCS7 3.7 11n,HT40,MCS0 5.2 11n,HT40,MCS7 3.7 Unit dBm IQxel VSG max TX power = 10 dBm, cable loss = 1.5 dB => max input power = 8.5 dBm. Based on characterization, not tested in production. 76 GD32W515xx Datasheet Table 4-48. Adjacent Channel Rejection (1)(4) Typ Parameter Rate Interference pattern by Adjacent Channel Rejection 4.26. IQxel(2) In-house interference pattern(3) 11b, 11Mbps 47.4 48 11g, 6Mbps 34.6 46 11g, 54Mbps 15.0 25 11n, HT20,MCS0 31.8 45 11n,HT20,MCS7 12.3 20 11n,HT40,MCS0 17.1 32 11n,HT40,MCS7 8.6 16 (1) (2) (3) ACR result depends on interference source. Waveform generated by LitePoint IQxel series instrument, gap = SIFS Waveform generated by GD32W515xx baseband, gap = SIFS (4) Based on characterization, not tested in production. Unit dB Parameter conditions Unless otherwise specified, all values given for V DD = VDDA = AVDD33_ANA = AVDD33_PA = AVDD33_CLK = 3.3 V, TA = 25 ℃. 77 GD32W515xx Datasheet 5. Package information 5.1. QFN56 package outline dimensions Figure 5-1. QFN56 package outline D2 L D h 56 1 56 PIN 1# Laser Mark 1 2 E2 e b Nd TOP VIEW K Ne E h 2 EXPOSED THERMAL PAD ZONE c A1 A BOTTOM VIEW SIDE VIEW Table 5-1. QFN56 package dimensions Symbol Min Typ Max A 0.70 0.75 0.80 A1 — 0.02 0.05 b 0.15 0.20 0.25 c 0.18 0.20 0.25 D 6.90 7.00 7.10 D2 5.10 5.20 5.30 E 6.90 7.00 7.10 E2 5.10 5.20 5.30 e — 0.40 — h 0.30 0.35 0.40 K 0.20 — — L 0.35 0.40 0.45 Nd — 5.20 — Ne — 5.20 — (Original dimensions are in millimeters) 78 GD32W515xx Datasheet Figure 5-2. QFN56 recommended footprint 7.70 43 56 6.10 1 5.45 7.70 5.15 0.25 42 5.15 14 28 15 29 0.80 0.40 (Original dimensions are in millimeters) 79 GD32W515xx Datasheet QFN36 package outline dimensions Figure 5-3. QFN36 package outline D b K b1 36 L 36 PIN 1# Laser Mark 1 h 1 2 2 Ne E E2 h D2 e Nd EXPOSED THERMAL PAD ZONE BOTTOM VIEW A1 A TOP VIEW c 5.2. SIDE VIEW Table 5-2. QFN36 package dimensions Symbol Min Typ Max A 0.70 0.75 0.80 A1 0 0.02 0.05 b 0.15 0.20 0.25 b1 — 0.14 — c — 0.203 — D 4.90 5.00 5.10 D2 3.40 3.50 3.60 E 4.90 5.00 5.10 E2 3.40 3.50 3.60 e — 0.40 — h 0.30 0.35 0.40 K — 0.35 — L 0.35 0.40 0.45 Nd — 3.20 — Ne — 3.20 — (Original dimensions are in millimeters) 80 GD32W515xx Datasheet Figure 5-4. QFN36 recommended footprint 5.70 36 28 4.10 1 3.45 5.70 3.45 0.25 27 3.45 9 18 10 19 0.80 0.40 (Original dimensions are in millimeters) 81 GD32W515xx Datasheet 5.3. Thermal characteristics Thermal resistance is used to characterize the thermal performance of the package device, which is represented by the Greek letter “θ”. For semiconductor devices, thermal resistance represents the steady-state temperature rise of the chip junction due to the heat dissipated on the chip surface. θJA: Thermal resistance, junction-to-ambient. θJB: Thermal resistance, junction-to-board. θJC: Thermal resistance, junction-to-case. ᴪJB: Thermal characterization parameter, junction-to-board. ᴪJT: Thermal characterization parameter, junction-to-top center. θJA =(TJ -TA )/PD (5-1) θJB =(TJ -TB )/PD (5-2) θJC =(TJ -TC )/PD (5-3) Where, TJ = Junction temperature. TA = Ambient temperature TB = Board temperature TC = Case temperature which is monitoring on package surface PD = Total power dissipation θJA represents the resistance of the heat flows from the heating junction to ambient air. It is an indicator of package heat dissipation capability. Lower θJA can be considerate as better overall thermal performance. θJA is generally used to estimate junction temperature. θJB is used to measure the heat flow resistance between the chip surface and the PCB board. θJC represents the thermal resistance between the chip surface and the package top case. θJC is mainly used to estimate the heat dissipation of the system (using heat sink or other heat dissipation methods outside the device package). Table 5-3. Package thermal characteristics(1) Symbol Condition θJA Natural convection, 2S2P PCB θJB Cold plate, 2S2P PCB θJC Cold plate, 2S2P PCB Package Value QFN56 38.32 QFN36 42.58 QFN56 17.23 QFN36 12.22 QFN56 13.28 QFN36 16.76 Unit °C/W °C/W °C/W 82 GD32W515xx Datasheet Symbol Condition ᴪJB Natural convection, 2S2P PCB ᴪJT Natural convection, 2S2P PCB (1) Package Value QFN56 17.48 QFN36 12.81 QFN56 2.90 QFN36 0.69 Unit °C/W °C/W Thermal characteristics are based on simulation, and meet JEDEC specification. 83 GD32W515xx Datasheet 6. Ordering information Table 6-1. Part ordering code for GD32W515xx devices Ordering code Flash (KB) Package Package type GD32W515PIQ6 2048 QFN56 Green GD32W515P0Q6 0 QFN56 Green GD32W515TIQ6 2048 QFN36 Green GD32W515TGQ6 1024 QFN36 Green Temperature operating range Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C 84 GD32W515xx Datasheet 7. Revision history Table 7-1. Revision history Revision No. Description Date 1.0 Initial Release Nov.23, 2021 1. Update the I2C characteristics in Table 7-2. 2. Change the 16-bit general timers from five to four in chapter 3.15. 3. 1.1 Delete TRACED0~3 in chapter 2.6, refers to Pin definitions. 4. Update the I/O port DC characteristics in Table 7-3. 5. Change the title of chapter 3.2 from Embedded memory Jul.12, 2022 to On-chip memory. 6. Add the pin definitions of USARTx_DE. 85 GD32W515xx Datasheet Important Notice This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only. The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products. Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice. © 2022 GigaDevice – All rights reserved 86
GD32W515PIQ6 价格&库存

很抱歉,暂时无法提供与“GD32W515PIQ6”相匹配的价格&库存,您可以联系我们找货

免费人工找货
GD32W515PIQ6
    •  国内价格
    • 1+13.28400
    • 10+12.42000

    库存:839

    GD32W515PIQ6
      •  国内价格
      • 1+14.20650
      • 10+13.28250

      库存:841