MXDLN16T
GPS Low Noise Amplifier
VED
APPRO
This document contains information that is confidential and proprietary to Maxscend Technologies Inc.
(Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No
transfer or licensing of technology is implied by this document.
Page 1 of 13
Maxscend Technologies Inc. All rights reserved.
Maxscend Confidential
MXDLN16T Low Noise GPS Amplifier
General Description
Features
MXDLN16T high gain, low noise amplifier (LNA) is
dedicated to GPS, GLONASS Galileo and Beidou
standards. This product has an extremely low
noise figure of 0.6dB, 18.5dB gain and excellent
linearity.
High Gain: 18.5dB
Low noise figure 0.6dB @ 1575.42MHz
Low operation current 7 mA & PD current
less than 1uA
MXDLN16T works under a 1.2V to 2.85V single
power supply while consumes 7 mA current, in
power down (PD) mode, the power consumption
will be reduced to less than 1uA.
Single supply voltage range 1.2V to 2.85V
Small package 1.1mmx0.7mmx0.45mm
Low cost BOM
MXDLN16T uses a small 1.1mmx0.7mmx0.45mm
LGA 6-pin package.
Lead-Free and RoHS-Compliant
Applications
Automotive Navigation
Personal Navigation Device (PND)
Cell Phone with GPS
MID/PAD with GPS
Pin Configuration/Application Diagram (Top view)
GND
4
3
RFOUT
VDD
MXDLN16T
RF input
L1
RFIN
5
2
RF output
V DD
0.1 uF
Enable
EN
6
1
GND
Figure 1.MXDLN16T application circuit
Number
L1
Vendor
Part Number
Sunlord
SDWL1005C10N, 10nH
Murata
LQW15AN10N, 10nH
Various
Ceramic inductor, 10nH
Page 2 of 13
Maxscend Technologies Inc. All rights reserved.
Maxscend Confidential
MXDLN16T Low Noise GPS Amplifier
Absolute Maximum Ratings
Table 1.
Parameters
Power supply
Other Pin to GND
Maximum RF Input Power
Operation Temperature Range
Junction Temperature
Storage temperature Range
Lead Temperature (soldering)
Soldering Temperature (reflow)
Human Body Mode ESD
Machine Mode ESD
Charge Device Mode ESD
Range
-0.3 ~ 3
-0.3~VDD+0.3
10
-40~85
150
-65~160
260
260
-2000~+2000
-125~+125
-500~+500
Units
V
V
dBm
℃
℃
℃
℃
℃
V
V
V
Specifications
DC Characteristics
Typically TA=25℃ VDD=2.8V, unless otherwise noted
Table 2.
Parameters
Supply Voltage
Supply Current
EN Input High
EN Input Low
Condition
Min
1.1
EN=High
VDD = 1.2V
EN=Low
Typ
2.8
7
3.6
Max
2.85
Units
V
mA
1
0.8
0.6
uA
V
V
Page 3 of 13
Maxscend Technologies Inc. All rights reserved.
Maxscend Confidential
AC Characteristics
Typically TA=25℃ VDD=2.8V, all data measured on Maxscend’s EVB, unless otherwise noted
Table 3.
Parameters
RF Frequency Range
Conditions
None
Power Gain
Input Return Loss
Output Return Loss
Reverse Isolation
VSWR
Jammed Noise Figure
Input Power 1-dB Compression Point
Input IP2
Note1
1.7
Note2
0.85
Note3
Stability
Input Out-Band IP3
Note7
Note1
Note7
Note1
Note7
Note1
Typ
1575.42
18.5
18.5
0.6
0.8
-12
-10
-12
-11
-28
Note7
Noise Figure
Input In-Band IP3
Min
Max
Units
MHz
dB
dB
dB
dB
dB
dB
1.5
1575MHz
900MHz
2400MHz
Note4
-9
-11
-5
-1
Note5
+15
Note6
43
dBm
dBm
dBm
dBm
Note1: sweep power -30dBm, 1575.42MHz
Note2: jammed signal @ 1.8GHz & 950MHz, -30dBm
Note3: frequency range 500MHz-5GHz
Note4: f1 = 1574.5 MHz, f2 = 1575.5 MHz, -30dBm
Note5: f1 = 2400 MHz, f2 = 2000 MHz, -30dBm IP3 = pin-(IM3- Gain1575MHz)/2
Note6: f1 = 2475 MHz, f2 = 900 MHz, -30dBm, IP2 = pin-(IM2-Gain1575MHz), IMD2 referred to input port.
Note7: Beidou frequency range B1:1559.052MHz---1591.788MHz
Page 4 of 13
Maxscend Technologies Inc. All rights reserved.
Maxscend Confidential
Current vs Input Power over Power Supply
10
10
9
9
8
8
7
7
6
6
Current (mA)
Current (mA)
Current vs Power Supply over Temperature
5
4
3
3
2
1
5
4
3
2
2
1
1
0
1
1.5
2
2.5
2
3
1
0
3
-40
-30
Power Supply(V)
-20
-10
0
Input Power (dB)
Figire 2. Current vs Power Supply over Temperature
1. -40℃
2. +25℃
3. +85℃
Figire 3. Current vs Input Power over Power Supply
TA = 25℃
1. 1.2V
2. 1.8V
3. 2.8V
Gain vs Fequency over temperature
Gain vs Fequency over Power Supply
20
25
20
15
2
3
15
Gain (dB)
Gain (dB)
1
10
1
2
3
10
5
5
0
1000
1200
1400
1600
1800
2000
0
1000
1200
Frequency(MHz)
Figire 4. Gain vs Frequency over Temperature
VDD =1.2V
1. -40℃
2. +25℃
3. +85℃
1400
1600
1800
2000
Frequency(MHz)
Figire 5. Gain vs Frequency over Power Supply
TA = 25℃
1. 1.2V
2. 1.8V
3. 2.8V
Page 5 of 13
Maxscend Technologies Inc. All rights reserved.
Maxscend Confidential
Noise Figure vs Power Supply over
temperature
Gain vs Fequency over temperature
25
1.6
1.4
20
1.2
1
1
2
Noise Figure (dB)
Gain (dB)
15
3
10
5
0.8
0.6
2
1
3
0.4
0.2
0
1000
0
1200
1400
1600
1800
2000
1
1.5
Frequency(MHz)
2
2.5
3
Power Supply(V)
Figire 6. Gain vs Frequency over Temperature
Figire 7. Noise Figure vs Power Supply over temperature
VDD =2.8V
1. -40℃
2. +25℃
3. +85℃
VDD=2.8V
1. -40℃
2. +25℃
3. +85℃
Noise Figure vs Frequency over temperature
Jammed Noise Figure vs Jam Strength over
temperature
2
3.5
1.8
3
1.6
1.4
1.2
2
Noise Figure (dB)
Noise Figure (dB)
2.5
1.5
1
1
1
0.8
2
1
3
0.6
0.4
0.5
3
2
0
1000
0.2
0
1200
1400
1600
1800
2000
-40
-35
Frequency(MHz)
Figire 8. Noise Figure vs Frequency over temperature
VDD=2.8V
1. -40℃
2. +25℃
3. +85℃
-30
-25
-20
-15
-10
Jammed Strength(dBm)
Figire 9. Jammed Noise Figure vs Jam Strength over
temperature
VDD=2.8V
1. -40℃
2. +25℃
3. +85℃
Page 6 of 13
Maxscend Technologies Inc. All rights reserved.
Maxscend Confidential
Gain vs Input Power over temperature
Gain vs Input Power over temperature
20
20
18
18
16
16
14
14
12
2
Gain(dB)
Gain(dB)
1
3
10
1
2
12
3
10
8
8
6
6
4
4
2
2
0
0
-30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10
-8
‐30 ‐28 ‐26 ‐24 ‐22 ‐20 ‐18 ‐16 ‐14 ‐12 ‐10
-6
‐8
‐6
Input Power (dBm)
Input Power (dBm)
Figire 12. Gain vs Input Power over temperature
VDD=1.8V
1. -40℃
2. +25℃
3. +85℃
Figire 11. Gain vs Input Power over temperature
VDD=2.8V
1. -40℃
2. +25℃
3. +85℃
In-Band IIP3 vs Input Power over temperature
In-Band IIP3 vs Input Power over temperature
5
10
4
8
3
6
4
3
2
1
2
IIP3 (dB)
IIP3 (dB)
2
1
1
0
2
3
-1
0
-2
-2
-3
-4
-4
-30
-28
-26
-24
-22
-20
-18
-16
-14
-12
-10
-30
-28
-26
Input Power(dBm)
-24
-22
-20
-18
-16
-14
-12
-10
Input Power(dBm)
Figire 12. In-Band IIP3 vs Input Power over temperature
Figire 13. In-Band IIP3 vs Input Power over temperature
VDD=2.8V, f1=1574.5MHz,f2=1575.5MHz
1. -40℃
2. +25℃
3. +85℃
VDD=1.2V, f1=1574.5MHz,f2=1575.5MHz
1. -40℃
2. +25℃
3. +85℃
Page 7 of 13
Maxscend Technologies Inc. All rights reserved.
Maxscend Confidential
Out-Band IIP3 vs Input Power over
temperature
Out-Band IIP3 vs Input Power over
temperature
30
35
30
25
25
20
IIP3 (dB)
IIP3 (dB)
20
15
15
3
10
1
10
2
3
5
0
0
-30
-28
-26
-24
-22
-20
-18
-16
-14
-12
-10
-30
-28
-26
Input Power(dBm)
VDD=2.8V, f1=2175MHz,f2=1875MHz
1. -40℃
2. +25℃
3. +85℃
-20
-18
-16
-14
-12
-10
VDD=1.2V, f1=2175MHz,f2=1875MHz
1. -40℃
2. +25℃
3. +85℃
Input IIP2 vs Input Power over temperature
55
50
50
45
45
IIP2 (dB)
55
1
-22
Figire 15. Out-Band IIP3 vs Input Power over temperature
Input IIP2 vs Input Power over temperature
2
40
-24
Input Power(dBm)
Figire 14. Out-Band IIP3 vs Input Power over temperature
IIP2 (dB)
2
1
5
40
3
1
35
35
2
30
3
30
-30
-28
-26
-24
-22
-20
-18
-16
-14
-12
-10
-30
-28
-26
Input Power(dBm)
Figire 16. Input IIP2 vs Input Power over temperature
VDD=2.8V, f1=2475MHz,f2=900MHz
1. -40℃
2. +25℃
3. +85℃
-24
-22
-20
-18
-16
-14
-12
-10
Input Power(dBm)
Figire 17. Input IIP2 vs Input Power over temperature
VDD=1.2V, f1=2475MHz,f2=900MHz
1. -40℃
2. +25℃
3. +85℃
Page 8 of 13
Maxscend Technologies Inc. All rights reserved.
Maxscend Confidential
Output Return Loss vs Frequency over Power
Supply
Input Return Loss vs Frequency over Power
Supply
0
0
-1
-2
Output Return Loss (dB)
Input Return Loss (dB)
-2
-3
-4
-5
-6
-7
-8
-6
-8
1
-10
2
3
-12
2
-9
-10
1000
-4
3
1
1200
1400
1600
1800
-14
1000
2000
1200
1400
1600
1800
2000
Frequency(MHz)
Figire 18. Input Return Loss vs Frequency over Power
Supply
Frequency(MHz)
Figire 19. Output Return Loss vs Frequency over Power
Supply
Ta = 25℃
1. 1.2V
2. 1.8V
3. 2.8V
Ta = 25℃
1. 1.2V
2. 1.8V
3. 2.8V
Output Return Loss vs Frequency over
Temperature
Input Return Loss vs Frequency over
Temperature
-2
0
-2
-3
Output Return Loss (dB)
Input Return Loss (dB)
-4
-4
-5
-6
-7
-8
1
1200
1400
1600
-12
1
-14
2
3
1800
2000
Frequency(MHz)
Figire 20. Input Return Loss vs Frequency over
Temperature
VDD = 2.8V
1. -40℃
2. +25℃
3. +85℃
-10
-18
3
-10
1000
-8
-16
2
-9
-6
-20
1000
1200
1400
1600
1800
2000
Frequency(MHz)
Figire 21. Output Return Loss vs Frequency over
Temperature
VDD = 2.8V
1. -40℃
2. +25℃
3. +85℃
Page 9 of 13
Maxscend Technologies Inc. All rights reserved.
Maxscend Confidential
Output Return Loss vs Frequency over
Temperature
Input Return Loss vs Frequency over
Temperature
0
0
-1
Output Return Loss (dB)
Input Return Loss (dB)
-5
-2
-3
-4
-5
-6
1
-10
-15
1
2
-20
3
2
-7
3
-8
1000
1200
1400
1600
1800
-25
1000
2000
1400
1600
1800
2000
Frequency(MHz)
Frequency(MHz)
Figire 22. Input Return Loss vs Frequency over
Temperature
VDD = 1.2V
1. -40℃
2. +25℃
3. +85℃
1200
Figire 23. Output Return Loss vs Frequency over
Temperature
VDD = 1.2V
1. -40℃
2. +25℃
3. +85℃
Rollet Stability Factor vs Frequency over
Temperature
Isolation vs Frequency over Temperature
7
0
-5
6
-10
Isolation(dB)
Kf
5
4
3
-15
-20
-25
2
-30
2
1
0
1000
2
1
-35
3
1200
3
1
1400
1600
1800
2000
-40
1000
1200
Frequency(MHz)
Figire 24. Rollet Stability Factor vs Frequency over
Temperature
VDD = 2.8V, Input Power = -50dBm
1. -40℃
2. +25℃
3. +85℃
1400
1600
1800
2000
Frequency(MHz)
Figire 25. Isolation vs Frequency over Temperature
VDD = 1.2V, Input Power = -30dBm
1. -40℃
2. +25℃
3. +85℃
Page 10 of 13
Maxscend Technologies Inc. All rights reserved.
Maxscend Confidential
Isolation vs Frequency over Temperature
0
0
-5
-5
-10
-10
-15
-15
Isolation(dB)
Isolation(dB)
Isolation vs Frequency over Temperature
-20
-25
-30
3
-35
2
-25
-30
1
3
-35
-40
-45
1000
-20
2
1
-40
1200
1400
1600
1800
2000
-45
1000
1200
Frequency(MHz)
Figire 26. Isolationvs Frequency over Temperature
Ta = 25℃, Input Power = -30dBm
1. 1.2V
2. 1.8V
3. 2.8V
1400
1600
1800
2000
Frequency(MHz)
Figire 27. Isolation vs Frequency over Temperature
VDD = 2.8V, Input Power = -30dBm
1. -40℃
2. +25℃
3. +85℃
Page 11 of 13
Maxscend Technologies Inc. All rights reserved.
Maxscend Confidential
Pin Descriptions
Table 4.
Pin
Pin Name
I/O
Pin Description
1
GND
AG
Analog VSS
2
VDD
AP
Power supply, 1.1~2.85V
3
RFOUT
AO
LNA output
4
GND
AG
Analog VSS
5
RFIN
AI
LNA input from antenna
6
EN
DI
Pull high enable, pull low into power down mode
Note: DI (digital input), DO (digital output), DIO (digital bidirectional), AI (analog input), AO (analog output), AIO
(analog bidirectional), AP (analog power), AG (analog ground),
Outline Dimensions
aaa C
A
D
ccc C
A3
E
A
A2
SIDE VIEW
aaa C
LASER MARK FOR PIN1
IDENTIFICATION IN THIS AREA
TOP VIEW
e
ALL DIMENSIONS ARE IN MILLIMETERS.
0.050
SYMBOL
A
A
AA
A
A
B
0.050
PIN1 ID
A
A2
A3
e
D
E
aaa
MILLIMETER
MIN.
NOR.
0.40
0.45
0.09
0.12
0.31
0.33
0.35
0.40
0.65
0.70
1.05
1.10
0.10
ccc
0.20
MAX.
0.50
0.15
0.35
0.45
0.85
1.15
MIN.
0.0157
0.0035
0.0122
0.0138
0.0256
0.0413
INCH
NOR.
0.0177
0.0047
0.0130
0.0157
0.0276
0.0433
0.0039
MAX.
0.0197
0.0059
0.0138
0.0177
0.0295
0.0453
0.0079
BOTTOM VIEW
0.1±0.035
0.2±0.035
B
0.1±0.035
0.2±0.035
0.2±0.035
A
0.2±0.035
Figure 2. MXDLN16T outline dimension
Page 12 of 13
Maxscend Technologies Inc. All rights reserved.
Maxscend Confidential
Temperature
Reflow Chart
Figure 3. Recommended Lead-Free Reflow Profile
Table 5.
Profile Parameter
Lead-Free Assembly,Convection,IR/Convection
Ramp-up rate(TSmax to Tp)
3℃/second max.
Preheat temperature(TSmin to TSmax)
150℃ to 200℃
Preheat time(ts)
60 - 180 seconds
Time above TL , 217℃(tL)
60 - 150 seconds
Peak temperature(Tp)
260℃
Time within 5℃ of peak temperature(tp)
20 - 40 seconds
Ramp-down rate
6℃/second max.
Time 25℃ to peak temperature
8 minutes max.
ESD Sensitivity
Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD
protection techniques should be used when handling these devices.
RoHS Compliant
This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls
(PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.
Page 13 of 13
Maxscend Technologies Inc. All rights reserved.
Maxscend Confidential