0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
K-LD2-RFB-00H-02

K-LD2-RFB-00H-02

  • 厂商:

    RFBEAM

  • 封装:

    SIP8

  • 描述:

    雷达 串行 RF 收发器模块 24.05GHz ~ 24.25GHz 集成,陶瓷贴片 通孔

  • 数据手册
  • 价格&库存
K-LD2-RFB-00H-02 数据手册
data sheet  K-LD 2 radar transceiver Features – – – – – – – – Small and low cost digital 24 GHz radar motion detector Detection distance up to 15m (human) 30m (cars) High immunity against interferences Integrated FFT signal processing with digital outputs Sensitivity and hold time can be set using analogue inputs Advanced detection data read-out over serial interface Wide power supply range from 3.2 to 5.5V 2 × 4 patch antenna with 80° / 34° beam aperture Applications – – – – – – – – General movement detection applications Door opener Illumination of advertising boards Touch free switches Security systems Indoor and outdoor lighting control applications Object speed measurement systems Industrial sensors Description The K-LD2 is a fully digital and low cost radar movement detector. The digital structure makes it very easy to use in any stand-alone or MCU based application where a movement detection or speed measurement is required. The sensor includes a 2 × 4 patch radar front-end with an asymmetrical beam and a powerful signal processing unit with two digital outputs for signal detection information. The sensitivity and the hold time are adjustable using analogue inputs with potentiometers. The serial interface features a powerful command set to read-out advanced detection data or to fully customize the detection algorithm. There is no need to write own signal processing algorithms or ­handle small and noisy signals. This module contains every­thing that is necessary to build a simple, yet reliable movement ­detector. A very small footprint of 25 × 25 × 6.5 mm gives maximum flexibility in the product development process. A powerful evaluation kit (K-LD2-EVAL) with signal visualization on a PC is available. Block Diagram Figure 1: K-LD2 block diagram K-LD2 voltage regulator Rx signal processing unit detect miscellaneous Tx serial interface sensitivity hold time 24.125 GHz                ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 1 / 25 CHARACTERISTICS Parameter Conditions  /   N otes Symbol Min Typ Max Unit Operating Conditions Supply voltage Vcc RMS current IRMS 55 Peak current Ipeak 65 Operating temperature Top -20 +85 °C Tst -40 +105 °C RH 10 90 % 24.050 24.250 GHz Storage temperature Relative humidity Non-condensing, given by design 3.2 5.5 V mA mA Transmitter Transmitter frequency Tamb  =  -20 ° C .. + 85 ° C fTX Frequency drift vs temperature Vcc = 3.3 V ∆ fTX 0.6 Output power EIRP PTX +12 Spurious emission According to ETSI 300 440 PSpur GLNA 20 dB Mixer Conversion loss fIF = 1 kHz Dmixer 6 dB Antenna gain fTX = 24.125 GHz GAnt 8.6 dBi Receiver sensitivity fIF = 500 Hz, B = 1 kHz, S / N = 6dB PRX -112 dBm Overall sensitivity fIF = 500 Hz, B = 1 kHz, S / N = 6dB Dsystem -127 Max. Detection distance σ  =  1 m ² ( Person          ) R MHz / ° C dBm -30 dBm Receiver LNA gain dBc 20 m Signal Processing Modulation none Velocity processing 256 point FFT fsample 1.28 12.8 kHz Speed range Depending on sampling frequency rspeed 0 143 km / h Response time Depending on sampling frequency and FFT average feature tdetect 20 400 ms Horizontal –3dB beamwidth E-Plane Wφ 80 Vertical –3dB beamwidth H-Plane Wθ 34 ° Sample rate Antenna ° Horiz. Sidelobe suppression Dφ -12 -20 dB Vertical sidelobe suppression Dθ -12 -20 dB Digital Output high level voltage VOH 2.1 2.6 Digital Output low level voltage VOL Digital Input high level voltage VIH Digital Input low level voltage VIL Digital I/O source/sink current Interface V 0.3 0.64 V 2.0 3.3 V -0.3 0.8 V IOH, IOL -20 20 mA Analogue Input level VAin 0 3 V Analogue Input impedance Zin 200 kΩ Body Outline Dimensions 25 × 25 × 6.5 Weight mm³ 6.5 Connector g 8 pin 2.54 mm ESD rating Electrostatic discharge                ©   RFbeam Human body model class 1C VESD Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 2000 V 12 / 2020 – Revision D  |  Page 2 / 25 TA B L E O F CONTENTS Product Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Applications. . Description. . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Antenna Diagram Characteristics. . . . . . . . . . . . . 5 Pin Configuration and Functions. . . . . . . . . . . . . . 5 Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sampling and FFT calculation. . Start up time. 6 . . . . . . . . . . . . . . . . . . . . . 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Threshold generation.. Detection algorithm. . Reaction Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Application Information. . . . . . . . . . . . . . . . . . . . . . . 11 Stand-alone Operation. . Speed measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Host driven Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed limitation and ranging.. . . . . . . . . . . . . . . . . . . . . . 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Micro detection. . FFT filter. 11 Adjust hold time and ­sensitivity. Serial Interface. . . . . . . . . . . . . . . . . . . . 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Command Set Description. . . . . . . . . . . . . . . . . . . 15 Command Classes.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Command Format. Error messages. . Command List. .                ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 3 / 25 TA B L E O F CONTENTS Integrators Information. . . . . . . . . . . . . . . . . . . . . . . 21 Installation Instruction. . Japan (MIC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 United States (FCC) and ­Canada (ISED). Europe (CE-RED). . . . . . . . . . . . 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Outline Dimensions.. . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Order Information.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25                ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 4 / 25 ANTENNA DIAGRAM CHARACTERISTICS This diagram shows module sensitivity (output voltage) in both azimuth and elevation directions. It incorporates the transmitter and receiver antenna characteristics. Figure 2: Antenna characteristics System diagram 340° 350° 0° 10° 0 80° 20° 330° 30° -10 320° 40° -20 310° 50° -30 300° 60° 34° -40 290° 70° -50 280° 80° -60 -70 270° 90° 260° 100° 250° 110° 240° 120° 230° ere ausdrückliche Genehmigung egeben werden. Zuwiderhandlung ed! © RFbeam Microwave 130° 220° 140° 210° 200° 3 2 We reserve all rights in this document and its subject matter. The recipient herby acknowledges these rights and assures the use of this document only for the purpose it was delivered. © RFbeam Microwave 150° 190° 180° Azimuth 170° 160° 5 4 6 Elevation P I N C O N F I G U R AT I O N A N D F U N C T I O N S A 25.00 ±0.1 2.55 ±0.15 Table 1: Pin function description 7x2.54 8.64 ±0.25 Pin No. Name 1 GND 2 Detect Out 2.30 ±0.15 Figure 3: Pin configuration Description Pin 1 Ground pin Pin 1 Digital detection output. ­Signals a ­valid ­detection. B Low " no detection High " valid detection 3 VCC Power supply pin (3.2 to 5.5V) 4 RX Serial interface RX input 5 TX Serial interface TX output 6 Hold Time In Analogue hold time input. ­Range from 0 to 3V 0V " minimum hold time 3V " maximum hold time 7 20.20 ±0.1 Sensitivity In Analogue6.00 sensitivity input. ±0.1 Range from 0 to 3V 0.75 ±0.1 C 0 V " minimum sensitivity 3V " maximum sensitivity 8 Misc. Out Digital miscellaneous output. The function is programmable over the c ­ ommand set with the parameter S06. In the factory setting this output signals the direction of a valid detection. Low " backward / receding movement High " forward / approaching move­ment This output is only valid toge­ther with a high on pin 2 (valid detection) except if it is configured as micro detec­tion output. Project XX YY Object RFbeam Microwave Farbgutstrasse 3 9008 St. Gallen Switzerland XX YY Material Scale Surface 2:1 Tolerance State Index Drawing Nr. Format Prepared A4 Reviewed 2 3                 ©   RFbeam 4 5 Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet Blatt / Anz. 1/1 Plotdate: 31.05.2017 12 / 2020 – Revision D  |  Page 5 / 25 T H E O R Y O F O P E R AT I O N Overview The K-LD2 takes advantage of an internal I/Q doppler signal processing by using a complex FFT ( Fast Fourier Transform ). The main advantages of this processing compared to standard time domain processing solutions are the following: – Easy detection of the direction of a movement – Increased detection range with better SNR due to the FFT ­processing – Efficient interference suppression – Vibration suppression The signal processing unit samples the analogue I/Q doppler signals of the RF frontend and calculates a  complex FFT in real time. In a next step an adap­ tive noise measurement and interference suppression is done which generates a threshold limit that can be adjusted with the sensitivity setting. Then the ­detection algorithm looks for a valid detection and latches it to the detection register and the digital outputs for the length of the hold time setting. Figure 4: Signal processing and detection workflow Sampling & FFT calculation Threshold generation Detection algorithm – I / Q channel – Configurable sample rate – 256 point complex FFT – Adaptive noise measurement – Interference suppression – Depending on sensitivity setting – Search for valid detection – Direction, speed & magnitude calculation – Latch detection for the length of the hold time setting With a powerful command set (See chapter Command Set Description) it is possible to ­configure the  whole signal processing and detection w ­ orkflow. This allows customisation of the K-LD2 to get the best results in different environments and ­applications.                 ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 6 / 25 Sampling and FFT calculation The K-LD2 works with an internal I/Q doppler ­signal sampling and a computation of a 256 point wide complex FFT. I/Q doppler signals are phase s­ hifted by + 90° or - 90° depending on the direction of a ­movement in the front of the sensor. The signal processing unit samples the I/Q data with a ­configurable sampling rate (see parameter S04) and  computes a complex FFT. The sampling rate is an important parameter of the sensor because it directly estimates the speed ­resolution, the maximal speed, and the response time of the system. The  ­response time is doubled if the FFT average feature (described below) is used. Figure 5: I/Q doppler signals of an approaching movement (left) and a receding movement (right) Table 2: Sampling rate vs. speed resolution vs. maximal speed vs. response time Parameter S04 Sample rate [Hz] Resolution [Hz] Max. frequency [Hz] Resolution [km/h] Max speed [km/h] Response time [ms] 01 1280 5 640 0.11 14.3 200 / 400 02 2560 10 1280 0.22 28.6 100 / 200 03 3840 15 1920 0.34 43.0 67 / 134 04 5120 20 2560 0.45 57.3 50 / 100 05 6400 25 3200 0.56 71.6 40 / 80 06 7680 30 3840 0.67 85.9 33 / 66 07 8960 35 4480 0.78 100.2 29 / 58 08 10240 40 5120 0.89 114.5 25 / 50 09 11520 45 5760 1.01 128.9 22 / 44 0A 12800 50 6400 1.12 143.2 20 / 40 The sampled I/Q doppler signals are transformed with a complex FFT into the frequency domain with 256 bins. Those signals ­appear either in the real (right) ­plane for an approaching move­ment or in the imaginary (left) plane for a receding movement. The signal in the centre is the DC offset caused by the amplifier and the analogue to digital conversion.                 ©   RFbeam To reduce random noise, the sensor features a FFT average ­option (see parameter S0A) which is ­enabled in the factory settings. It  is an average over two FFT ­frames. Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 7 / 25 Figure 6: Doppler signals in the frequency domain, approaching Figure 7: Doppler signals in the frequency domain, receding                 ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 8 / 25 Start up time During start up, the sensor calculates the mean over the number of FFT frames specified with the para­ meter start up learn. The start up time of the sensor depends on this parameter, the sampling frequency and the FFT size. tStartup = NFFT · NValue of S05 ƒSample = 256 ∙ NValue of S05 ƒSample Threshold generation The calculated mean during start up represents the  noise floor of the sensor and is stored as spectrum average. During operation the spectrum average is adapted continuously. The speed of this adaption is configurable using the parameter threshold noise adaption speed. This mechanism automatically adapts interferences that are present in both planes of the FFT. This adaptive spectrum average is used together with the parameter minimum threshold margin to generate the minimum possible threshold level. This means that the threshold level for each bin cannot be smaller than the spectrum average + the minimum threshold margin setting and this is independent of the sensitivity setting. Adapted interferences are thus automatically filtered out in the threshold level and do not generate a detection. The noise floor of different sensors can vary. The sensitivity setting is referenced to the ground line in order to get an as constant as possible movement detection over different sensors. The threshold level is defined as an addition of the parameter minimum threshold offset and the set sensitivity setting for each bin (Further information about the adjustment of the sensitivity setting can be found in chapter Adjust Hold Time and Sensitivity). Figure 8: Minimum threshold level and interference adaption If the addition of the minimum threshold offset and the set sensitivity setting is smaller than the minimum threshold level (defined over the s­ pectrum average and the parameter minimum threshold margin), the threshold is set to its minimum level.                 ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 9 / 25 Detection algorithm Reaction Time The detection algorithm uses the following steps: The reaction time of the sensor depends on different settings and can be calculated with the equation below when the FFT average feature is disabled. 1. Scan the FFT spectrum for peaks with a magnitude higher than the set threshold level and with the ­direction to detect set with the parameter D03. 2. Check if the peak is a valid movement with the ­correct direction or if it is an interference. 3. Increase the immunity against interferences by checking if the movement is constant (see parameter Immunity D02). 4. If there is a valid detection, estimate the speed bin and magnitude. 5. Latch all the information to the detection ­register (see parameters R00, R01 & R02) and to the ­digital outputs. 6. Decrease the hold time if there is no valid detection. 7. Reset the hold time if there is another ­valid ­detection. 8. Reset the detection register and the digital outputs if the hold time has elapsed. tReaction = NFFT ƒSample · ( Immunity + 1) = 256 ƒSample · ( Immunity + 1) With the FFT average feature enabled (see parameter S0A) the equation changes to: tReaction = NFFT ƒSample · ( Immunity + 1) · 2 = 256 ƒSample · ( Immunity + 1) · 2 You can find more advanced configuration options for  the detection algorithm in the chapters Speed l­imitation and ranging, FFT filter and Adjust hold time and sensitivity.                 ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 10 / 25 A P P L I C AT I O N I N F O R M AT I O N Stand-alone Operation Host driven Operation With the factory settings the sensor starts up and scans the beam for potential movements with a sampling rate of 2560Hz (app. 0.3 to 29.1 km/h). It filters out interferences and looks for movements with a magnitude that is higher than the threshold level set with the sensitivity. If there is a valid movement the detection output (Pin 2) goes high and the direction is latched to the miscellaneous output (Pin 8) for the length of the set hold time. The hold time (Pin 6) and the sensitivity (Pin 7) can be set using analogue inputs (for example with external potentiometers) in the following ranges: With a connection of the serial interface to a host (for example MCU or PC) it is possible to read-out advanced detection data including speed and magnitude of a valid detection or to use some advanced features of the K-LD2 which are described in the next chapters. The detection output can be used to trigger a serial read-out command over an interrupt. If there is no interrupt input, it is possible to poll the detection state register and then trigger the additional read-out commands. Figure 9: MCU or PC connection example – Hold time from 0.2 to 160s – Sensitivity from 0 to 34dB (app. 2 to 20 m for walking humans) With the factory settings the reaction time of the sensor is approximately 800ms. The K-LD2 can also be factory configured with your settings. Contact RFbeam for more information. Detect out optional Misc. out K-L D2 Input or INT Input or INT TX RX RX TX Host The command set features different parameters to read-out additional detection data. Table 3: Useful commands to read-out advanced detection data Parameter Description Note R00 Get detection state register Includes detection, direction, speed range and micro detection information R01 Get detection speed in bin Only valid when the detection bit in the detection state register is high. R02 Get detection magnitude in dB Only valid when the detection bit in the detection state register is high. C00 Get detection string Complete set of data of the parameters R00 to R02 Speed measurement The speed of a detected object is returned in bin and can be easily converted into the doppler frequency with the sampling rate and the FFT width. The sample rate is adjustable over the command S04 and the FFT width is fixed to 256. ƒDoppler = bin · ƒSample NFFT = bin · α moving object ƒSample 256 The measured doppler frequency is proportional to the speed of the object when it is measured frontal to the sensor. An angle between the object and the sensor reduces the doppler frequency. The speed in km/h is easily computable with the equation below based on the doppler effect.                 ©   RFbeam Figure 10: FFT bin to speed conversion radar sensor v= ƒDoppler · km/h 44.7 Hz · cos(α) Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet = bin ∙ ƒSample ∙ km/h 256 ∙ 44.7 Hz ∙ cos(α) 12 / 2020 – Revision D  |  Page 11 / 25 Speed limitation and ranging The K-LD2 features the possibility to easily filter out slow and fast speeds by setting speed limits with the parameters D04 & D05 over the command set. The limits are independent of each other and can be used stand-alone. The whole FFT can also be divided into two speed ranges with the parameter D06. When the speed range threshold is set, the detection algorithm decides in which speed range (high or low) the detection was found and latches it to the detection register or, if it is configured to signal the speed range (see parameter S06), to the miscellaneous output. The usage of the speed limits and the speed range threshold makes it very easy to divide objects into two speed classes Figure 11: Speed limitation and ranging overview Micro detection The micro detection is a feature to detect very slow speeds in short range applications. It takes advantage of an algorithm that analyses the DC bin of the FFT to detect very slow speeds. The micro detection is independent from the normal detection algorithm and always enabled. If a slow movement generates a signal magnitude that is higher than the adjustable micro detection threshold (see parameter D07) the micro detection flag in the detection register goes to high (see parameter R00). The algorithm computes the micro detection flag for every sampled frame, independent of the hold time setting. The miscellaneous output can be configured to signal the micro detection over the parameter S06. This                 ©   RFbeam gives the host the possibility to directly trigger to a valid micro detection. Furthermore, it is possible to retrigger the detection algorithm over the micro detection feature (see parameter S0D). If this feature is enabled, the detection algorithm first requires a valid detection and then, if there was a valid micro detection, it will retrigger the hold time. If the hold time has elapsed because there was no detection or micro detection, the detection goes to low and needs again a valid detection before the micro detection is used to retrigger the hold time. The covered speed range that is analysed by the micro detection feature depends on the sampling rate (see parameter S04), because the content of the DC bin changes with the sampling rate. Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 12 / 25 FFT filter The FFT filter feature can be used to filter out specific regions in the FFT spectrum. The FFT filter array (see parameters A20…A27) consists of up to 8 independent FFT filters. Further the ± width around these FFT filters can be specified with the parameter D08. For example: The commands $A20000A, $A210032  &  $A220050 define 3 FFT filters at the bin positions 10, 50 & 80. The command $D0802 sets the ± width around the filters to 2. This feature allows easy filtering out of unwanted constant movements like a ventilator. Please note that other movements with the same speed are also filtered out. Figure 12: FFT filter and FFT filter width example                 ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 13 / 25 Adjust hold time and ­s ensitivity The K-LD2 uses arrays with a width of 10 elements to set the range of hold time and sensitivity (see parameters A00…A09 for hold time and parameters A10…A19 for sensitivity). The used index of the arrays is defined using the parameters D00 and D01 or  by the analogue inputs, if these are enabled with the parameters S0B and S0C. In the factory settings these arrays are filled with default values that will work for the most applications. (See Table Hold time array default values and Table Sensitivity array default values) It is possible to overwrite these arrays to generate your own sensitivity or hold time curves. Figure 13: Hold time and sensitivity block diagram S0C analogue hold time input hold time array (A00…A09) 0…9 hold time setting (D00) array value index S0B analogue sensitivity input sensitivity array (A10…A19) 0…9 sensitivity setting (D01) array value hold time Detection Algorithm sensitivity index Serial Interface The K-LD2 features a serial interface with a command set to configure the sensor and read-out measured data. The interface is an ASCII based 3.3V asynchronous UART with the following settings: – – – – Baud rate 38400 bps 8 data bits 1 stop bit no parity, no handshake It is possible to connect the K-LD2 directly with an USB to UART cable with +3.3V TTL level signals. For ex­ ample the TTL-232R3V3 from FTDI can directly be connected to the pins 1 to 6 of the K-LD2 to power it and get access to the serial interface over a standard terminal program. This interface and the complete command set is supported by the K-LD2 Control Panel, which is included in the K-LD2-EVAL evaluation kit.                 ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 14 / 25 COMMAND SET DESCRIPTION Command Classes The command set is divided into different classes. Every class contains a set of parameters. Table 4: Command classes Parameter Type Cmd Class EEPROM Purpose System parameters S Yes System relevant parameters to configure the sampling and interference suppression Detection parameters D Yes Specific parameters to configure the detection algorithm Array parameters A Yes System specific tables Flash read parameters F Yes Read only parameters Real-time read parameters R No Real-time system and detection information Basic write parameters W No Basic write parameters to configure the system Complex read parameters C No Advanced read-out parameters Testing parameters T No Parameters to test the hardware Command Format Error messages Every command is ASCII coded and needs to be sent over the serial interface by a host CPU or an ASCII terminal program. Every request needs to start with the prefix $ and ends with a (0x0D in Hex). The K-LD2 always answers with @ as a prefix excluding the command class C. The K-LD2 responds with a message from the table below if an error has occurred. Table 7: Error messages Error message @E01 Table 5: Command format @E02 @E03 $ P Prefix Command class NN Parameter number (Hex) VV[VV] Value (Hex) 8 or 16Bit wide «Enter» @E04 @E05 @E06 Description Value out of limits Parameter number does not exist Command class does not exist Writing to EEPROM error Command format error UART communication error Table 6: request / response example Example request $S06 $S0602                 ©   RFbeam K-LD2 response @S0601 @S0602 Comment Get actual value Set new value Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 15 / 25 Command List All values are in hexadecimal notation unless otherwise noted. Table 8: Class S 8-Bit system parameters Param. Default Min Max Name Description S04 02 01 0A Sampling rate Sampling rate = value*1280Hz S05 10 01 40 Start up learn Number of FFT blocks that are used to learn the noise threshold average at start up. Only valid after reset. 01: no average at start up, fastest start up time 40: best average at start up, slowest start up time Only valid after reset. S06 01 00 03 Function of miscellaneous output Configurable functions of the miscellaneous output pin. The functions directly represent the detection register. Value Function Logic Low Logic High 00 Detection No detection Valid detection 01 Direction Backward / receding Forward / approaching 02 Range Low speed range High speed range 03 Micro detection No detection Valid micro detection Detailed information about the functions can be found in the command description of the parameter R00. S07 1E 14 50 Minimum ­threshold offset Defines the minimum threshold offset in dB with the ground line as reference. S08 0A 01 30 Minimum ­threshold margin Defines the minimum margin between the noise average and the threshold curve. S09 0A 00 FF Threshold noise adaption speed The speed of the noise average threshold adaption can be set with this parameter. The value defines after how many FFT blocks the noise threshold average is adapted again. S0A 01 00 01 Use FFT average FFT averaging flag to reduce random noise. 00: averaging off 01: averaging on Doubles the response and reaction time if enabled. S0B S0C S0D                 ©   RFbeam 01 01 00 00 00 00 01 01 01 Use sensitivity ­potentiometer Flag to enable the usage of the analogue input for the sensitivity. Use hold time potentiometer Flag to enable the usage of the analogue input for the hold time. Use micro detection for retriggering Flag to enable the usage of the micro detection to retrigger the detection algorithm. 00: use digital sensitivity setting of parameter D01 01: use potentiometer input for sensitivity setting 00: use digital hold time setting of parameter D00 01: use potentiometer input for hold time setting 00: micro detection retriggering disabled 01: micro detection retriggering enabled Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 16 / 25 Table 9: Class D 8-Bit detection parameters Param. Default D00 Min Max 00 09 01 Name Description Hold time Index value to select an element of the hold time array defined with the parameters A00 … A09. This value has no effect if the parameter use hold time potentiometer S0C is enabled. D01 07 00 09 Sensitivity Index value to select an element of the sensitivity array defined with the parameters A10…A19. This value has no effect if the parameter use sensitivity potentiometer S0B is enabled. D02 03 00 10 Immunity Value to change the immunity against interferences like vibrations. 00: minimum immunity 10: maximum immunity Immunity increases the reaction time of the sensor. D03 02 00 02 Direction to detect Defines which direction is detected in the detection algorithm. 00: only forward (approaching) 01: only backward (receding) 02: both directions D04 00 00 7F Low speed limit Can be used to define a low speed limit in bin for the detection algorithm to filter out slow speeds. 00: inactive 01…7F: All speeds below this bin are filtered out D05 00 00 7F High speed limit Can be used to define a high speed limit in bin for the detection algorithm to filter out fast speeds. 00: inactive 01…7F: All speeds above this bin are filtered out D06 00 00 7F Speed range ­threshold Function to divide the spectrum in a high and a low speed range. Triggers the range flag in the detection register R00. 00: inactive 01…7F: threshold in bin for the low and high speed range D07 06 D08 05 02 09 00 0A Micro detection threshold Function to set the threshold of the micro detection feature. FFT filter width Defines the ± width in bin that is filtered out around a specified filter in the FFT filter array defined with the parameters A20…A27. 05: minimum threshold 09: maximum threshold Table 10: Class A 16-Bit array parameters Param. Default Min A00… A09 See table below 0000 A10… A19 See table below 0000 A20… A27 0 0000 Max Name FFFF Description Hold time array 10 elements wide hold time array in 100 ms, addressed by parameter D00. 0000: minimum hold time 0002: 2*100 ms " 0.2 s hold time FFFF: maximum hold time 00FF Sensitivity array 10 elements wide sensitivity array in dB, addressed by parameter D01. 0000: maximum sensitivity 000A: 10 dB sensitivity 00FF: minimum sensitivity 007F FFT filter array FFT filter array in bin to define up to 8 different FFT filters with a ± width defined by parameter D08. 0000: FFT filter inactive 0001…007F: FFT filter position in bin Table 11: Hold time array default values Param. Value [Hex] A00 A01 A02 A03 A04 A05 A06 A07 A08 A09 0002 0005 000A 0014 0032 0064 00C8 0190 0320 0640 Value [s] 0.2 0.5 1 2 5 10 20 40 80 160 Table 12: Sensitivity array default values Param. Value [Hex] A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 0022 001C 0016 0012 000E 000A 0006 0004 0002 0000 Value [dB] 34 28 22 18 14 10 6 4 2 0                 ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 17 / 25 Table 13: Class F 16-Bit flash read parameters Param. Default Min Max Name Description F00 – 0000 FFFF Get software version Returns the firmware version of the sensor as a 16-Bit hex value. F01 – 0000 FFFF Get type of device Returns the type of the device, that the firmware is running on. For example: @F000078 " 120 " Version 01.20 0001: K-LD2 Table 14: Class R 8-Bit real-time read parameters Param. R00 Default – Min Max 00 0F Name Description Get detection register Returns the detection register with the content below. Bit Name Description 0 Det Signals a valid detection. 0: no detection 1: valid detection 1 Dir Signals the direction of the detection. 0: backward / receding movement detected 1: forward / approaching movement detected Only valid if Bit 0 is high. 2 Range Signals the speed range of the detection depending on the speed threshold parameter D06. 0: low speed range detected 1: high speed range detected Only valid if the speed range threshold is > 0 and if Bit 0 is high. 3 Micro Signals a micro detection found in the DC bin of the FFT. 0: no micro detection 1: valid micro detection R01 – 00 FF Get detection speed Returns the speed in bin of the last valid detection. Only valid if the bit 0 in the detection register R00 is high. R02 – 00 FF Get detection magnitude Returns the magnitude in dB of the last valid detection. Only valid if the bit 0 in the detection register R00 is high. R03 – 00 FF Get noise level Returns the mean noise level value in dB. R04 – 00 02 Get operation state Returns the operation state of the sensor. Can be used at start up to check if the sensor is ready. 00: start up 01: learn 02: run R05 R06 – – 00 00 09 09 Get hold time potentiometer index Returns the current hold time potentiometer index. Get sensitivity potentiometer index Returns the current sensitivity potentiometer index. 00: 0V at the analogue input 09: 3V at the analogue input 00: 0V at the analogue input 09: 3V at the analogue input Table 15: Class W 8-Bit basic write parameters Param. W00 Default – Min – Max – Name Reset processor Description Generates a software reset. Check the operation state after the reset with the parameter R04. W01 W02 – 00 – 00 – 01 Restore factory settings Restores the default factory settings for all parameters. Set UART baud rate Sets the baud rate of the serial UART interface. Check the operation state after the restore with the parameter R04. 00: 38400 bps 01: 460800 bps This parameter is not stored. After a reset or restart the baud rate is set to 38400 bps.                 ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 18 / 25 Table 16: Class C variable length complex read parameters Param. Default Min Max Name C00 – – – Get detection string C01 – – – Get target string Description Length Returns the detection register, the detection speed and the detection magnitude as an ASCII string in decimal format. Example response: 001;076;067; Returns an ASCII target list string in decimal format. It returns the speed and magnitude of the dominant movement for the forward and backward plane of the spectrum. 14 bytes 18 bytes Target string structure: Forward speed in bin + Backward speed in bin + Forward magnitude in dB + Backward magnitude in dB C02 – – – Get EEPROM hex string C03 – – – Get FFT spectrum + threshold level C04 C05 C06 – – – – – – – – – Get ADC I/Q data + FFT spectrum + threshold level Get C04 + additional ­parameters Get C05 + spectrum average Example response: 000;000;000;000; " no target found 076;000;045;000; " forward target found 000;076;000;045; " backward target found 020;076;031;045; " two targets found Returns the full 512 EEPROM bytes as an ASCII string in the Intel hex format. 2893 bytes Returns the FFT spectrum and the threshold level in a binary format. 1024 bytes Description Datatype Length FFT spectrum UINT16 * 512 bytes Threshold level UINT16 * 512 bytes Returns the ADC I/Q data, the FFT spectrum and the threshold level in a ­binary ­format. Description Datatype Length ADC I data INT16 * 512 bytes ADC Q data INT16 * 512 bytes FFT spectrum UINT16 * 512 bytes Threshold level UINT16 * 512 bytes Returns the values of C04 and additional parameters in a binary format. Description Datatype Length ADC I data INT16 * 512 bytes ADC Q data INT16 * 512 bytes FFT spectrum UINT16 * 512 bytes Threshold level UINT16 * 512 bytes Detection register UINT8 1 byte Detection speed UINT8 1 byte Detection magnitude UINT8 1 byte Target string ASCII string 15 bytes Noise level mean UINT8 1 byte Operation state UINT8 1 byte Index of hold time potentiometer UINT8 1 byte Index of sensitivity potentiometer UINT8 1 byte Returns the values of C05 and the spectrum average in a binary format. Description Datatype Length ADC I data INT16 * 512 bytes ADC Q data INT16 * 512 bytes FFT spectrum UINT16 * 512 bytes Threshold level UINT16 * 512 bytes Detection register UINT8 1 byte Detection speed UINT8 1 byte Detection magnitude UINT8 1 byte Target string ASCII string 15 bytes Noise level mean UINT8 1 byte Operation state UINT8 1 byte Index of hold time potentiometer UINT8 1 byte Index of sensitivity potentiometer UINT8 1 byte Spectrum average UINT16 * 512 bytes 2048 bytes 2070 bytes 2582 bytes * 16 bit wide datatypes are sent with the high byte first.                 ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 19 / 25 Table 17: Class T 8-Bit testing parameters Param. T00 Default 00 Min Max 00 01 Name Description Activate testing mode Activates the testing mode. 00: Testing mode disabled 01: Testing mode enabled This parameter is not stored. After a reset or restart it is reset to the value 00. T01 T02                 ©   RFbeam – – 00 00 01 01 Force detection output Controls the detection output, if the testing mode T00 is enabled Force miscellaneous output Controls the miscellaneous output, if the testing mode T00 is enabled 00: force to low 01: force to high 00: force to low 01: force to high Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 20 / 25 I N T E G R AT O R S I N F O R M AT I O N Installation Instruction Mechanical enclosure It is possible to hide the sensor behind a so called radome (short for radar dome) to protect it from environmental influences or to simply integrate it in the case of the end product. A radar sensor can see trough different types of plastic and glass of any colour as long as it is not metallized. This allows for a very flexible design of the housing as long as the rules below are observed. – Cover must not be metallic. – No plastic coating with colors containing metallic or carbon particles. – Distance between cover and front of Radar sensor should be ≥ 6.2 mm – Cover thickness is very important and depends on the used material. Examples can be found in the application note "AN-03-Radome". – Vibrations of the Radar antenna relatively to the cover should be avoided, because this generates signals that can trigger the output – The cover material can act as a lens and focus or disperse the transmitted waves. Use a constant material thickness within the area used for transmission to minimize the effect of the radome to the radiated antenna pattern. Detailed information about the calculation and thickness for different cover materials can be found in the application note “AN-03-Radome”. Japan (MIC) Japanese Radio Law and Japanese Telecommunications Business Law Compliance. This device is granted pursuant to the Japanese Radio Law (電波法). This device should not be modified (otherwise the granted designation number will become invalid) R 202-LSI071                 ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 21 / 25 United States (FCC) and ­Canada (ISED) This module has been granted modular approval for fixed and/or mobile applications. The modular approval allows the end user to integrate the module into a finished product without obtaining subsequent and separate FCC/ISED approvals for intentional radiation, provided no changes or modifications are made to the module circuitry. Changes or modifications could void the user’s authority to operate the equipment. The end user must comply with all of the instructions provided by the Grantee, which indicate installation and/or operating conditions necessary for compliance. The finished product is required to comply with all applicable FCC/ISED equipment authorizations regulations, requirements and equipment functions not associated with the transmitter module portion. Labelling and user information ­requirements If the label of the module is not visible from the outside of the end product, it must include the following texts on the label of the host product: FCC Contains FCC ID: 2ASYV-K-LD2 ISED Contains IC: 24358-KLD2 Modification to this product will void the users’ authority to operate this equipment. The OEM integrator is responsible for the final compliance of the end product with this integrated modular approved transmitter module. This includes measurements with the RF module integrated and activated as defined in KDB 996369 and if applicable appropriate equipment authorizations as defined in §15.101. RF Exposure This module is approved for installation into fixed and/ or mobile host platforms and must not be co-located or operating in conjunction with any other antenna or transmitter except in accordance with FCC/ISED multi-transmitter guidelines. End users must be provided with transmitter operating conditions for satisfying RF Exposure compliance. In addition to marking the product with the appropriate ID’s, the end product shall bear the following statement in a conspicuous location on the label or alternatively in the user manual: This device complies with Part 15 of the FCC Rules and with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.                 ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 22 / 25 Europe (CE-RED) This module is a Radio Equipment Directive assessed radio module that is CE complaint and have been manufactured and tested with the intention of being integrated into a final product. According to the RED every final product that includes a radio module is also a radio product which falls under the scope of the RED. This means that OEM and host manufacturers are ultimately responsible for the compliance of the host and the module. The final product must be reassessed against all of the essential requirements of the RED before it can be placed on the EU market. This includes reassessing the module for compliance against the following RED articles: – Article 3.1( a ) : Health and safety – Article 3.1( b ) : Electromagnetic compatibility ( EMC ) – Article 3.2 : Efficient use of radio spectrum ( RF ) The RED knows different conformity assessment procedures to show compliance against the essential requirements (See RED Guide, chapter 2.6b). As long as the radio module can show compliance to Article 3.2 by the use of a harmonized standard, which is listed in the official journal of the EU (OJEU), it is not necessary to do an EU type examination for the final radio product by a notified body. In this case it is possible to demonstrate conformity according to the essential requirements of the RED by using Module A (Annex II of the RED), which allows to show conformity by internal production control. An OEM integrator can show compliance to article 3.1(a) and 3.1(b) for the final product by doing internal or external tests and following the Module A (Annex II of the RED) assessment procedure. To show compliance against article 3.2 it is possible to reuse the assessment of the K-LD2 as long as it is the only radio module in the final product or if the integrator can guarantee that only one radio module is operating at the same time. Test reports of the K-LD2 are available on request. The ETSI guide EG 203 367 provides detailed guidance on the application of harmonized standards to multi-radio and combined equipment to demonstrate conformity. RF Exposure Information (MPE) This device has been tested and meets applicable limits for Radio Frequency (RF) exposure. A detailed calculation to show compliance to the RED Article 3.1(a) is available on request. Simplified DoC Statement Hereby, RFbeam Microwave GmbH declares that the radio equipment type K-LD2 is in compliance with Directive 2014/53/EU. The declaration of conformity may be consulted at www.rfbeam.ch. As long as a harmonized standard listed in the OJEU can be used to demonstrate conformity in accordance with Article 3.2 of the RED, it is possible to carry out the CE certification in self-declaration without the involvement of a notified body. The K-LD2 shows compliance against the Article 3.2 by the use of the standard EN 300 440 which is a harmonized standard listed in the OJEU, what gives the possibility to show conformity by internal production control.                 ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 23 / 25 We reserve all rights in this document and its subject matter. The recipient herby acknowledges these rights and assures the use of document only for the purpose it was delivered. © RFbeam Microwa Dieses Dokument ist unser geistiges Eigentum. Es darf ohne unsere ausdrückliche Genehmigung weder kopiert, vervielfältigt oder verwertet, noch an Dritte weitergegeben werden. Zuwiderhandlung ist strafbar und wird strafrechtlich verfolgt. Copyright reserved! © RFbeam Microwave OUTLINE DIMENSIONS 5 4 6 Figure 14: Outline dimensions in millimeter 3.90 1.60 A 3 2 1 25.00 ±0.1 3.61 2.40 2.55 ±0.15 7x2.54 8.64 ±0.25 2.30 ±0.15 Pin 1 20.20 ±0.1 B 25.00 ±0.1 Pin 1 20.20 ±0.1 6.00 ±0.1 0.75 ±0.1 C O R D E R I N F O R M AT I O N Project XX YY Object The ordering number consists of different parts with the ­structure below. RFbeam Microwave Farbgutstrasse 3 9008 St. Gallen Switzerland XX YY Material Scale Surface 2:1 Tolerance D State Figure 15: Ordering number structure Index Drawing Nr. Format Prepared Product 1 = K-LD2 – Customer 2 = RFB for standard products – Reviewed 3 HW variant Supply 4 = 00 for standard variant =H for 3.3V … 5V version – 5 SW variant = 02 for standard variant Table 18: Available ordering numbers Ordering number Description K-LD2-RFB-00H-02 Standard K-LD2 with default configuration, without PC software K-LD2-EVAL-RFB-01H Standard K-LD2 evaluation kit with powerful PC software It is possible to order K-LD2 sensors with a preprogramed custom configuration. Contact RFbeam Microwave for more information.                 ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 24 / 25 A4 Blatt / Anz. 1/1 Plotdate: 31.05.2017 REVISION HISTORY 06/2017 – Revision A: Initial Version 09/2018 – Revision B: Changes to Figure 2: Antenna characteristic Changes to Figure 15: Ordering number structure Changes to Table 18: Available ordering numbers Added Table of Contents and changed the title format 02 / 2020 – Revision C: Changed Supply current to RMS and peak current Added relative humidity to the operating conditions Changed the frequency drift and typical output power Added ESD level information Added new chapter integrators information 12/2020 - Revision D: Added information for Japan certification Change of chapter Mechanical enclosure RFbeam does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and RFbeam reserves the right at any time without notice to change said circuitry and specifications.                 ©   RFbeam Microwave GmbH | Schuppisstrasse 7 | CH-9016 St.  Gallen | www.rfbeam.ch | K-LD  2 | data sheet 12 / 2020 – Revision D  |  Page 25 / 25
K-LD2-RFB-00H-02 价格&库存

很抱歉,暂时无法提供与“K-LD2-RFB-00H-02”相匹配的价格&库存,您可以联系我们找货

免费人工找货