GigaDevice Semiconductor Inc.
GD32VW553xx
RISC-V 32-bit MCU
Datasheet
Revision 1.1
(Nov. 2023)
GD32VW553xx Datasheet
Table of Contents
Table of Contents ..................................................................................................... 1
List of Figures .......................................................................................................... 4
List of Tables ............................................................................................................ 5
1. General description ........................................................................................... 7
2. Device overview ................................................................................................. 8
2.1.
Device information ................................................................................................ 8
2.2.
Block diagram ........................................................................................................ 9
2.3.
Pinouts and pin assignment ............................................................................... 10
2.4.
Memory map ........................................................................................................ 12
2.5.
Clock tree ............................................................................................................. 16
2.6.
Pin definitions ...................................................................................................... 17
2.6.1.
GD32VW553Hx QFN40 pin definitions .......................................................................... 17
2.6.2.
GD32VW553Kx QFN32 pin definitions .......................................................................... 21
2.6.3.
GD32VW553xx pin alternate functions .......................................................................... 24
3. Functional description..................................................................................... 26
3.1.
RISC-V core.......................................................................................................... 26
3.2.
On-chip memory .................................................................................................. 26
3.3.
Clock, reset and supply management ................................................................ 27
3.4.
Boot modes.......................................................................................................... 27
3.5.
Power saving modes ........................................................................................... 29
3.6.
Electronic fuse (EFUSE) ...................................................................................... 31
3.7.
General-purpose inputs / outputs (GPIOs) ........................................................ 31
3.8.
CRC calculation unit (CRC)................................................................................. 31
3.9.
True Random number generator (TRNG) ........................................................... 32
3.10.
Direct memory access controller (DMA)......................................................... 32
3.11.
Analog to digital converter (ADC) ................................................................... 32
3.12.
Real time clock (RTC) ...................................................................................... 33
3.13.
Timers and PWM generation ........................................................................... 33
3.14.
Universal synchronous asynchronous receiver transmitter (USART) ......... 35
3.15.
Inter-integrated circuit (I2C) ............................................................................ 35
1
GD32VW553xx Datasheet
3.16.
Serial peripheral interface (SPI) ...................................................................... 35
3.17.
Quad-SPI interface (QSPI) ............................................................................... 36
3.18.
Cryptographic acceleration Unit (CAU) .......................................................... 36
3.19.
Hash acceleration unit (HAU) .......................................................................... 36
3.20.
Public Key Cryptographic Acceleration Unit (PKCAU) .................................. 37
3.21.
Infrared ray port (IFRP) .................................................................................... 37
3.22.
Wireless ............................................................................................................ 38
3.22.1.
Wi-Fi ............................................................................................................................... 38
3.22.2.
BLE (Bluetooth Low Energy) .......................................................................................... 39
3.22.3.
Radio .............................................................................................................................. 39
3.23.
Debug mode ..................................................................................................... 40
3.24.
Package and operation temperature............................................................... 40
4. Electrical characteristics ................................................................................. 41
4.1.
Absolute maximum ratings ................................................................................. 41
4.2.
Operating conditions characteristics ................................................................. 41
4.3.
Power consumption ............................................................................................ 43
4.4.
EMC characteristics ............................................................................................ 48
4.5.
Power supply supervisor characteristics .......................................................... 49
4.6.
Electrical sensitivity ............................................................................................ 50
4.7.
External clock characteristics ............................................................................ 50
4.8.
Internal clock characteristics ............................................................................. 52
4.9.
PLL characteristics ............................................................................................. 53
4.10.
Memory characteristics ................................................................................... 53
4.11.
NRST pin characteristics ................................................................................. 53
4.12.
GPIO characteristics ........................................................................................ 54
4.13.
ADC characteristics ......................................................................................... 57
4.14.
Temperature sensor characteristics ............................................................... 58
4.15.
I2C characteristics ........................................................................................... 59
4.16.
SPI characteristics ........................................................................................... 60
4.17.
USART characteristics..................................................................................... 61
4.18.
TIMER characteristics ...................................................................................... 61
4.19.
WDGT characteristics ...................................................................................... 62
4.20.
Wi-Fi Radio characteristics ............................................................................. 62
2
GD32VW553xx Datasheet
4.21.
Bluetooth LE Radio characteristics ................................................................ 64
4.22.
Parameter conditions....................................................................................... 68
5. Package information ........................................................................................ 69
5.1.
QFN40 package outline dimensions .................................................................. 69
5.2.
QFN32 package outline dimensions .................................................................. 71
5.3.
Thermal characteristics ...................................................................................... 73
6. Ordering information ....................................................................................... 75
7. Revision history ............................................................................................... 76
3
GD32VW553xx Datasheet
List of Figures
Figure 2-1. GD32VW553xx block diagram .......................................................................................... 9
Figure 2-2. GD32VW553Hx QFN40 pinouts ...................................................................................... 10
Figure 2-3. GD32VW553Kx QFN32 pinouts ...................................................................................... 11
Figure 2-4. GD32VW553xx clock tree ................................................................................................ 16
Figure 4-1. Recommended power supply decoupling capacitors(1)(2)(3) ......................................... 42
Figure 4-2. Recommended external NRST pin circuit ..................................................................... 54
Figure 4-3. I/O port AC characteristics definition ............................................................................ 57
Figure 4-4. I2C bus timing diagram ................................................................................................... 59
Figure 4-5. SPI timing diagram - master mode ................................................................................ 60
Figure 4-6. SPI timing diagram - slave mode ................................................................................... 61
Figure 5-1. QFN40 package outline ................................................................................................... 69
Figure 5-2. QFN40 recommended footprint ...................................................................................... 70
Figure 5-3. QFN32 package outline ................................................................................................... 71
Figure 5-4. QFN32 recommended footprint ...................................................................................... 72
4
GD32VW553xx Datasheet
List of Tables
Table 2-1. GD32VW553xx devices features and peripheral list ........................................................ 8
Table 2-2. GD32VW553xx memory map ............................................................................................ 12
Table 2-3. GD32VW553Hx QFN40 pin definitions ............................................................................ 17
Table 2-4. GD32VW553Kx QFN32 pin definitions ............................................................................ 21
Table 2-5. Port A alternate functions summary ............................................................................... 24
Table 2-6. Port B alternate functions summary ............................................................................... 25
Table 2-7. Port C alternate functions summary ............................................................................... 25
Table 3-1. BOOT0 modes.................................................................................................................... 28
Table 3-2. BOOT1 modes.................................................................................................................... 28
Table 3-3. Boot address modes ......................................................................................................... 28
Table 4-1. Absolute maximum ratings (1)(4) ....................................................................................... 41
Table 4-2. DC operating conditions ................................................................................................... 41
Table 4-3. Clock frequency (1) ............................................................................................................. 42
Table 4-4. Operating conditions at Power up / Power down (1)....................................................... 42
Table 4-5. Start-up timings of Operating conditions
(1)(2)(3)
............................................................. 42
Table 4-6. Power saving mode wakeup timings characteristics (1)(2) ............................................. 43
Table 4-7. Wi-Fi Power consumption characteristics ...................................................................... 43
Table 4-8. Wi-Fi Power consumption characteristics (1)(2)(3) ............................................................ 43
Table 4-9. Power consumption characteristics (2)(3)(4)(5)(6) ................................................................ 44
Table 4-10. EMS characteristics (1) .................................................................................................... 48
Table 4-11. Power supply supervisor characteristics ..................................................................... 49
Table 4-12. ESD characteristics (1) ..................................................................................................... 50
Table 4-13. Static latch-up characteristics (1) ................................................................................... 50
Table 4-14. High speed external clock (HXTAL) generated from a crystal / ceramic
characteristics ..................................................................................................................................... 50
Table 4-15. High speed external user clock characteristics (HXTAL in bypass mode) ............... 51
Table 4-16. Low speed external clock (LXTAL) generated from a crystal / ceramic
characteristics ..................................................................................................................................... 51
Table 4-17. Low speed external user clock characteristics (LXTAL in bypass mode) ................ 51
Table 4-18. High speed internal clock (IRC16M) characteristics.................................................... 52
Table 4-19. Low speed internal clock (IRC32K) characteristics ..................................................... 52
Table 4-20. PLLDIG characteristics ................................................................................................... 53
Table 4-21. Flash memory characteristics........................................................................................ 53
Table 4-22. NRST pin characteristics ................................................................................................ 53
Table 4-23. I/O port DC characteristics (1)(3) ...................................................................................... 54
Table 4-24. I/O port AC characteristics (1)(2) ...................................................................................... 56
Table 4-25. ADC characteristics ........................................................................................................ 57
Table 4-26. ADC RAIN max for fADC = 42 MHz (1) ................................................................................. 58
Table 4-27. ADC dynamic accuracy at fADC = 42 MHz (1) .................................................................. 58
Table 4-28. ADC static accuracy at fADC = 42 MHz............................................................................ 58
Table 4-29. Temperature sensor characteristics (1) ......................................................................... 58
5
GD32VW553xx Datasheet
Table 4-30. I2C characteristics
(1)(2)(3)
................................................................................................. 59
Table 4-31. Standard SPI characteristics
Table 4-32. USART characteristics
Table 4-33. TIMER characteristics
(1)
(1)
(1)
...................................................................................... 60
................................................................................................ 61
................................................................................................. 61
Table 4-34. FWDGT min/max timeout period at 32 kHz (IRC32K)
Table 4-35. WWDGT min-max timeout value at 40 MHz (fPCLK1)
Table 4-36. Transmitter power characteristics
Table 4-38. Rx Maximum Input Level
............................................... 62
(1)
.............................................. 62
(1)(2)
.......................................................................... 62
(1)
.......................................................................... 63
Table 4-37. Receiver sensitivity characteristics
(1)
(1)
............................................................................................ 64
Table 4-39. Adjacent Channel Rejection (1)(4) .................................................................................... 64
Table 4-40. Transmitter Characteristics - Bluetooth LE 1 Mbps .................................................... 64
Table 4-41. Transmitter Characteristics - Bluetooth LE 2 Mbps .................................................... 65
Table 4-42. Transmitter Characteristics - Bluetooth LE 125 Kbps ................................................. 65
Table 4-43. Receiver Characteristics - Bluetooth LE 1 Mbps ......................................................... 65
Table 4-44. Receiver Characteristics - Bluetooth LE 2 Mbps ......................................................... 66
Table 4-45. Receiver Characteristics - Bluetooth LE 125 Kbps...................................................... 67
Table 4-46. Receiver Characteristics - Bluetooth LE 500 Kbps...................................................... 67
Table 5-1. QFN40 package dimensions ............................................................................................ 69
Table 5-2. QFN32 package dimensions ............................................................................................ 71
Table 5-3. Package thermal characteristics(1) .................................................................................. 73
Table 6-1. Part ordering code for GD32VW553xx devices .............................................................. 75
Table 7-1. Revision history................................................................................................................. 76
6
GD32VW553xx Datasheet
1.
General description
The GD32VW553xx is a highly integrated 2.4GHz Wi-Fi and BLE System-on-Chip (SoC)
that
includes
an
RISC-V
processor,
a
single
stream
IEEE
802.11b/g/n/ax
MAC/baseband/radio, a power amplifier (PA), and a receive low-noise amplifier (LNA). It
is an optimized SoC designed for a broad array of smart devices for Internet of Things
(IoT) applications.
The GD32VW553xx device incorporates the RISC-V 32-bit processor core operating at
160 MHz frequency to obtain maximum efficiency. It provides up to 4096 KB on-chip
Flash memory and 320KB (288 KB + 32KB Shared) SRAM memory. An extensive range
of enhanced I/Os and peripherals connect to two APB buses. The devices offer a 12-bit
ADCs, up to four general 16-bit timers, one basic timers, one PWM advanced timer, as
well as standard and advanced communication interfaces: one SPI, two I2Cs, one
USARTs, two UARTs, a Wireless (BLE / Wi-Fi). Additional peripherals as cryptographic
acceleration unit (CAU), hash acceleration unit (HAU), public key cryptographic
acceleration unit (PKCAU) and quad-SPI interface (QSPI) are included.
The device operates from a 1.8 to 3.6 V power supply and available in –40 to +85 °C
temperature range for grade 6 devices, -40 to +105 °C temperature range for grade 7
devices. Several power saving modes provide the flexibility for maximum optimization
between wakeup latency and power consumption, an especially important consideration
in low power applications.
The above features make the GD32VW553xx devices suitable for a wide range of
applications, especially in areas such as industrial control, smart home control system,
user interface, power monitor and alarm systems, consumer and handheld equipment,
gaming and GPS, E-bike, IoT and so on.
7
GD32VW553xx Datasheet
2.
Device overview
2.1.
Device information
Table 2-1. GD32VW553xx devices features and peripheral list
Part Number
GD32VW553xx
KIQ7
KMQ6
KMQ7
HIQ6
HIQ7
HMQ6
HMQ7
FLASH (KB)
2048
2048
4096
4096
2048
2048
4096
4096
SRAM (KB)
320
320
320
320
320
320
320
320
Timers
KIQ6
General
2
2
2
2
2
2
2
2
timer(16-bit)
(15-16)
(15-16)
(15-16)
(15-16)
(15-16)
(15-16)
(15-16)
(15-16)
General
2
2
2
2
2
2
2
2
timer(32-bit)
(1-2)
(1-2)
(1-2)
(1-2)
(1-2)
(1-2)
(1-2)
(1-2)
Advanced
1
1
1
1
1
1
1
1
timer(16-bit)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
Basic
1
1
1
1
1
1
1
1
timer(16-bit)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
1
1
1
1
1
1
1
1
Watchdog
2
2
2
2
2
2
2
2
RTC
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
SysTick(64bit)
ADC
Connectivity
USART
2
2
2
2
2
2
2
2
(1-2)
(1-2)
(1-2)
(1-2)
(1-2)
(1-2)
(1-2)
(1-2)
I2C
2
2
2
2
2
2
2
2
SPI
1
1
1
1
1
1
1
1
QSPI
1
1
1
1
1
1
1
1
Wi-Fi
1
1
1
1
1
1
1
1
BLE5.2
1
1
1
1
1
1
1
1
TRNG
1
1
1
1
1
1
1
1
CAU
1
1
1
1
1
1
1
1
HAU
1
1
1
1
1
1
1
1
PKCAU
1
1
1
1
1
1
1
1
GPIO
21
21
21
21
28
28
28
28
Units
1
1
1
1
1
1
1
1
Channels
9
9
9
9
9
9
9
9
UART
Package
QFN32
QFN40
8
GD32VW553xx Datasheet
2.2.
Block diagram
Figure 2-1. GD32VW553xx block diagram
POR/ PDR
JTAG
I-Cache System
RISC-V
CPU
Fmax:160MHz
Flash
Memory
LVD
AHB1: Fmax = 160MHz
F-C BUS
Slave
Master
GP DMA 8 chs M
P
Master
AHB Matrix
ECLIC
Slave
Flash
Memory
Controller
AHB2: Fmax = 160MHz
Slave
SRAM
SRAM
Controller
BLE
Master
IRC16M
16MHz
TRNG CAU HAU PKCAU
Master
WIFI
LDO
1.1V
EFUSE QSPI CRC GPIO RCU
QSPI: Fmax = 160MHz
Slave
Slave
Slave
AHB to APB
Bridge2
Powered By V DD/VDDA
QSPI_flash
memory
HXTAL
8-52MHz
AHB to APB
Bridge1
Slave
PLL
F max : 160MHz
Interrput request
Powered By V DD_RF
WWDGT
12-bit
SAR ADC
Slave
Slave
ADC
FWDGT
Powered By V DDA
UART2
PMU
SPI
SYSCFG
TIMER15
TIMER16
TIMER0
APB1: Fmax = 80MHZ
WIFI_RF
APB2: Fmax = 160MHz
EXTI
USART0
UART1
I2C0
I2C1
RTC
TIMER5
TIMER1
TIMER2
RFI
9
GD32VW553xx Datasheet
2.3.
Pinouts and pin assignment
Figure 2-2. GD32VW553Hx QFN40 pinouts
PC15-OSC32OUT
5
NRST
6
PA8
3
PA9
PC13
PC14-OSC32IN
PA10
2
PA11
PA12-WKUP3
PB3
PA15-WKUP1
PB4
VDD
1
PA13
PA14
PC8-BOOT0
40 39 38 37 36 35 34 33 32 31
GigaDevice
GD32VW553Hx
QFN40
4
30
PB15
29
PB13
28
PB12
27
PB11
26
PB2
25
PB1
24
23
PB0
PU
7
AVDD33_ANA
8
NC
9
22
PA6
RF
10
21
PA5
GND
11 12 13 14 15 16 17 18 19 20
PA7-WKUP2
PA4
PA3
PA2
PA1
PA0-WKUP0
XTAL2
VDDA
XTAL1
AVDD33_CLK
AVDD33_PA
10
GD32VW553xx Datasheet
Figure 2-3. GD32VW553Kx QFN32 pinouts
PA8
PB3
PA12-WKUP3
PB4
PA13
PA14
VDD
PC8-BOOT0
32 31 30 29 28 27 26 25
PA15-WKUP1
PC13
1
2
PC14-OSC32IN
3
PC15-OSC32OUT
4
24
PB15
GigaDevice
GD32VW553Kx
QFN32
23
PB1
GND
22
PB0
21
PA7-WKUP2
NRST
5
20
PA6
PU
6
19
PA5
AVDD33_ANA
7
18
PA4
RF
8
17
PA3
9 10 11 12 13 14 15 16
PA2
PA1
PA0-WKUP0
VDDA
XTAL2
XTAL1
AVDD33_CLK
AVDD33_PA
11
GD32VW553xx Datasheet
2.4.
Memory map
Table 2-2. GD32VW553xx memory map
Pre-defined
Regions
External device
Bus
QSPI
AHB2
Peripheral
AHB1
Address
Peripherals
0xD100 0000 – 0xD200 10000
RISC-V internal peripherals
0x9800 0000 – 0xD0FF FFFF
Reserved
0x9000 0000 - 0x97FF FFFF
QSPI_FLASH (MEM)
0x7000 0000 - 0x8FFF FFFF
Reserved
0x6000 0000 - 0x67FF FFFF
Reserved
0x4C06 3000 - 0x4FFF FFFF
Reserved
0x4C06 1000 - 0x4C06 2FFF
PKCAU
0x4C06 0C00 - 0x4C06 0FFF
Reserved
0x4C06 0800 - 0x4C06 0BFF
TRNG
0x4C06 0400 - 0x4C06 07FF
HAU
0x4C06 0000 - 0x4C06 03FF
CAU
0x4C05 0400 - 0x4C05 FFFF
Reserved
0x4C05 0000 - 0x4C05 03FF
Reserved
0x4C04 0000 - 0x4C04 FFFF
Reserved
0x4C00 0000 - 0x4C03 FFFF
Reserved
0x4904 0000 - 0x4BFF FFFF
Reserved
0x4900 0000 - 0x4903 FFFF
Reserved
0x400B 1000 - 0x48FF FFFF
Reserved
0x400B 0800 - 0x400B 0FFF
Reserved
0x400B 0400 - 0x400B 07FF
Reserved
0x400B 0000 - 0x400B 03FF
Reserved
0x400A 1000 - 0x400A FFFF
Reserved
0x400A 0C00 - 0x400A 0FFF
Reserved
0x400A 0800 - 0x400A 0BFF
Reserved
0x400A 0400 - 0x400A 07FF
Reserved
0x400A 0000 - 0x400A 03FF
Reserved
0x4008 0400 - 0x4009 FFFF
Reserved
0x4008 0000 - 0x4008 03FF
Reserved
0x4003 0000 - 0x4007 FFFF
WIFI
0x4002 BC00 - 0x4002 FFFF
Reserved
0x4002 B000 - 0x4002 BBFF
Reserved
0x4002 A000 - 0x4002 AFFF
Reserved
0x4002 8000 - 0x4002 9FFF
Reserved
0x4002 6800 - 0x4002 7FFF
Reserved
0x4002 6400 - 0x4002 67FF
Reserved
0x4002 6000 - 0x4002 63FF
DMA
0x4002 5C00 - 0x4002 5FFF
Reserved
12
GD32VW553xx Datasheet
Pre-defined
Regions
Bus
APB2
Address
Peripherals
0x4002 5800 - 0x4002 5BFF
QSPI_FLASH(REG)
0x4002 5400 - 0x4002 57FF
Reserved
0x4002 5000 - 0x4002 53FF
Reserved
0x4002 4000 - 0x4002 4FFF
Reserved
0x4002 3C00 - 0x4002 3FFF
Reserved
0x4002 3800 - 0x4002 3BFF
RCU
0x4002 3400 - 0x4002 37FF
Reserved
0x4002 3000 - 0x4002 33FF
CRC
0x4002 2C00 - 0x4002 2FFF
Reserved
0x4002 2800 - 0x4002 2BFF
EFUSE
0x4002 2400 - 0x4002 27FF
Reserved
0x4002 2000 - 0x4002 23FF
FMC
0x4002 1C00 - 0x4002 1FFF
Reserved
0x4002 1800 - 0x4002 1BFF
Reserved
0x4002 1400 - 0x4002 17FF
Reserved
0x4002 1000 - 0x4002 13FF
Reserved
0x4002 0C00 - 0x4002 0FFF
Reserved
0x4002 0800 - 0x4002 0BFF
GPIOC
0x4002 0400 - 0x4002 07FF
GPIOB
0x4002 0000 - 0x4002 03FF
GPIOA
0x4001 8800 - 0x4001 FFFF
Reserved
0x4001 8400 - 0x4001 87FF
TIMER16
0x4001 8000 - 0x4001 83FF
TIMER15
0x4001 7C00 - 0x4001 7FFF
Reserved
0x4001 7800 - 0x4001 7BFF
WIFI_RF
0x4001 6800 - 0x4001 77FF
Reserved
0x4001 6000 - 0x4001 67FF
Reserved
0x4001 5800 - 0x4001 5FFF
Reserved
0x4001 5400 - 0x4001 57FF
Reserved
0x4001 4C00 - 0x4001 53FF
Reserved
0x4001 4800 - 0x4001 4BFF
Reserved
0x4001 4400 - 0x4001 47FF
Reserved
0x4001 4000 - 0x4001 43FF
Reserved
0x4001 3C00 - 0x4001 3FFF
EXTI
0x4001 3800 - 0x4001 3BFF
SYSCFG
0x4001 3400 - 0x4001 37FF
Reserved
0x4001 3000 - 0x4001 33FF
SPI
0x4001 2C00 - 0x4001 2FFF
Reserved
0x4001 2400 - 0x4001 2BFF
Reserved
0x4001 2000 - 0x4001 23FF
ADC
0x4001 1400 - 0x4001 1FFF
Reserved
13
GD32VW553xx Datasheet
Pre-defined
Regions
Bus
APB1
SRAM
Code
AHB
AHB
Address
Peripherals
0x4001 1000 - 0x4001 13FF
UART2
0x4001 0800 - 0x4001 0FFF
Reserved
0x4001 0400 - 0x4001 07FF
Reserved
0x4001 0000 - 0x4001 03FF
TIMER0
0x4000 D000 - 0x4000 FFFF
Reserved
0x4000 CC00 - 0x4000 CFFF
RFI
0x4000 7400 - 0x4000 CBFF
Reserved
0x4000 7000 - 0x4000 73FF
PMU
0x4000 6C00 - 0x4000 6FFF
Reserved
0x4000 5C00 - 0x4000 6BFF
Reserved
0x4000 5800 - 0x4000 5BFF
I2C1
0x4000 5400 - 0x4000 57FF
I2C0
0x4000 4C00 - 0x4000 53FF
Reserved
0x4000 4800 - 0x4000 4BFF
USART0
0x4000 4400 - 0x4000 47FF
UART1
0x4000 4000 - 0x4000 43FF
Reserved
0x4000 3C00 - 0x4000 3FFF
Reserved
0x4000 3800 - 0x4000 3BFF
Reserved
0x4000 3400 - 0x4000 37FF
Reserved
0x4000 3000 - 0x4000 33FF
FWDGT
0x4000 2C00 - 0x4000 2FFF
WWDGT
0x4000 2800 - 0x4000 2BFF
RTC
0x4000 2400 - 0x4000 27FF
Reserved
0x4000 2000 - 0x4000 23FF
Reserved
0x4000 1C00 - 0x4000 1FFF
Reserved
0x4000 1800 - 0x4000 1BFF
Reserved
0x4000 1400 - 0x4000 17FF
Reserved
0x4000 1000 - 0x4000 13FF
TIMER5
0x4000 0C00 - 0x4000 0FFF
Reserved
0x4000 0800 - 0x4000 0BFF
Reserved
0x4000 0400 - 0x4000 07FF
TIMER2
0x4000 0000 - 0x4000 03FF
TIMER1
0x2101 0000 - 0x3FFF FFFF
Reserved
0x2100 0000 - 0x2100 FFFF
BLE
0x2005 0000 - 0x20FF FFFF
Reserved
0x2003 0000 - 0x2004 FFFF
SRAM3 (96KB + shared 32KB)
0x2002 0000 - 0x2002 FFFF
SRAM2 (64KB)
0x2001 0000 - 0x2001 FFFF
SRAM1 (64KB)
0x2000 0000 - 0x2000 FFFF
SRAM0 (64KB)
0x1000 0000 - 0x1FFF FFFF
External memories remap
0x0FFC 0100 - 0x0FFF FFFF
Reserved
14
GD32VW553xx Datasheet
Pre-defined
Regions
Bus
Address
Peripherals
0x0FFC 0000 - 0x0FFC 00FF
EFUSE (256 bytes)
0x0BF8 0000 –0x0FFB FFFF
Reserved
0x0BF4 0000 - 0x0BF7 FFFF
ROM(256KB)
0x0A07 0000 - 0x0BF3 FFFF
Reserved
0x0A04 0000 - 0x0A06 FFFF
Reserved
0x0A02 0000 - 0x0A03 FFFF
Reserved
0x0A01 0000 - 0x0A01 FFFF
Reserved
0x0A00 0000 - 0x0A00 FFFF
Reserved
0x0840 0000 - 0x09FF FFFF
Reserved
0x0800 0000 - 0x083F FFFF
Flash memory
0x0000 0000 - 0x07FF FFFF
External memories remap
15
GD32VW553xx Datasheet
2.5.
Clock tree
Figure 2-4. GD32VW553xx clock tree
BKP HCLK
Prescaler
Hclk÷4
CK_BKP
HCLK
(to AHB bus,RISCV,SRAM,DMA,peripherals)
AHB enable
CK_FWDGT
To FWDGT
RTCSRC
FCLK
32k Hz
IRC32K
(free running clock)
10
APB1
Prescaler
÷1,2,4,8,16
CK_RTC
32.768k Hz
LXTAL OSC
01
RTCDIV
÷1 ~ 32
To RTC
FMC
CK_APB1
PCLK1
80 MHz max
IRC16
MDIV
16 MHz
IRC16M
CK_IRC16M
CK_HXTAL
TIMER1,2,5
CK_APB1 x1
x2 or x4
00
01
AHB
Prescaler
÷1,2...512
CK_SYS
160 MHz max
CK_PLLDIG
to APB1 peripherals
Peripheral enable
SCS
11
160 MHz max
CK_TIMERx
TIMERx enable
to TIMER1,2,5
CK_AHB
APB2
Prescaler
÷1,2,4,8,16
160 MHz max
10
CK_APB2
PCLK2
160 MHz max
to APB2 peripherals
Peripheral enable
8-52 MHz
HXTAL
Clock
Monitor
TIMER0,15,16
CK_APB2 x1
x2 or x4
0
1
160 MHz max
TIMERx enable
ADC
Prescaler
÷2,4,6,8
PLLDIGSEL
CK_TIMERx
to TIMER0,15,16
ADCCK[2]
0
CK_ADC to ADC
42 MHz max
ADC
Prescaler
÷5,6,10,20
PLLDIGDIV_S
YS
PLLDIG
OSEL
VCO
1
TRNGCK
DIV
to TRNG
TRNG enable
xN
PLLDIG
CK240_WIFI
WIFI enable
240 MHz max
240 MHz max
to WIFI
BLEDIV
÷5
CK48_BLE
48 MHz max
BLE enable
to BLE
CKOUT0DIV
÷1,2,3,4,5
000
001
010
CK_IRC16M
CK_LXTAL
CK_HXTAL
011
100
101
CK_PLLDIG
IRC32K
CK_SYS
BLEDIV
÷3
CK80_RFI
80 MHz max
RFI enable
to RFI
CKOUT0SEL[2:0]
I2C0SEL[1:0]
USART0SEL[1:0]
CKOUT1DIV
÷1,2,3,4,5
00
CK_SYS
01
CK_IRC16M
10
CK_HXTAL
11
CK_PLLDIG
CK_APB1
00
CK_APB1
00
CK_SYS
01
CK_USART0
CK_SYS
01
CK_LXTAL
10
to USART0
CK_IRC16M
10
CK_IRC16M
11
CK_IRC16M
11
I2C0CLK
to I2C0
CKOUT1SEL[1:0]
Legend:
HXTAL: High speed crystal oscillator
LXTAL: Low speed crystal oscillator
IRC16M: Internal 16M RC oscillator
IRC32K: Internal 32K RC oscillator
16
GD32VW553xx Datasheet
2.6.
Pin definitions
2.6.1.
GD32VW553Hx QFN40 pin definitions
Table 2-3. GD32VW553Hx QFN40 pin definitions
GD32VW553Hx QFN40
Pin Name
Pins
Pin
I/O
Type(1)
Level(2)
Functions description
Default: PC8
PC8-BOOT0
1
I/O
5VT
Alternate: TIMER2_CH2, I2C0_SDA, I2C1_SDA,
USART0_TX, UART1_TX, EVENTOUT
Additional: BOOT0
Default: JTDI, PA15
PA15WKUP1
Alternate: TIMER1_CH0, TIMER1_ETI, I2C0_SCL,
2
I/O
5VT
I2C1_SCL, USART0_RX, UART1_RX,
EVENTOUT
Additional: WKUP1
Default: PC13
PC13
3
I/O
5VT
Alternate: USART0_CK, EVENTOUT
Additional: RTC_TAMP_0, RTC_OUT, RTC_TS
PC14OSC32IN
PC15OSC32OUT
Default: PC14
4
I/O
5VT
Alternate: EVENTOUT
Additional: OSC32IN
Default: PC15
5
I/O
5VT
Alternate: IFRP_OUT, EVENTOUT
Additional: OSC32OUT
NRST
6
I/O
-
Default: NRST
PU
7
-
-
Default: PU
8
P
-
Default: AVDD33_ANA
NC
9
-
-
-
RF
10
AI/AO
AVDD33_PA
11
P
12
P
-
Default: AVDD33_CLK
XTAL1
13
AI
-
Default: XTAL1
XTAL2
14
AO
-
Default: XTAL2
VDDA
15
P
-
Default: VDDA
AVDD33_AN
A
AVDD33_CL
K
Default: RF
Default: AVDD33_PA
Default: PA0
Alternate: USART0_TX, TIMER1_CH0,
PA0-WKUP0
16
I/O
5VT
TIMER1_ETI, SPI_MOSI, UART1_CTS,
TIMER0_ETI, EVENTOUT
Additional: ADC_IN0, WAKEUP0, RTC_TAMP1
Default: PA1
PA1
17
I/O
5VT
Alternate: USART0_RX, TIMER1_CH1, SPI_MISO,
UART1_RTS, EVENTOUT
17
GD32VW553xx Datasheet
GD32VW553Hx QFN40
Pin Name
Pins
Pin
I/O
Type(1)
Level(2)
Functions description
Additional: ADC_IN1
Default: PA2
Alternate: USART0_CTS, TIMER1_CH2,
PA2
18
I/O
5VT
I2C0_SCL, SPI_SCK, TIMER0_CH0, UART1_TX,
EVENTOUT
Additional: ADC_IN2
Default: PA3
Alternate: USART0_RTS, TIMER1_CH3,
PA3
19
I/O
5VT
I2C0_SDA, SPI_NSS, TIMER0_CH0_ON,
UART1_RX, RTC_OUT, EVENTOUT
Additional: ADC_IN3
Default: PA4
PA4
20
I/O
5VT
Alternate: UART1_TX, SPI_MOSI, QSPI_SCK,
SPI_NSS, TIMER0_CH1, EVENTOUT
Additional: ADC_IN4
Default: PA5
Alternate: UART1_RX, TIMER2_ETI, QSPI_CSN,
PA5
21
I/O
5VT
SPI_MISO, SPI_SCK, TIMER0_CH1_ON ,
EVENTOUT
Additional: ADC_IN5
Default: PA6
Alternate: TIMER2_CH0, QSPI_IO0, I2C1_SCL,
PA6
22
I/O
5VT
SPI_MISO, SPI_SCK, TIMER0_CH1 ,
TIMER1_CH1, UART2_TX, EVENTOUT
Additional: ADC_IN6
Default: PA7
Alternate: I2C1_SDA , TIMER0_CH0_ON,
PA7-WKUP2
23
I/O
5VT
TIMER2_CH1, QSPI_IO1, SPI_NSS, SPI_MOSI,
TIMER0_CH1_ON, UART2_RX, TIMER1_CH2,
EVENTOUT
Additional: ADC_IN7, WAKEUP2
Default: PB0
Alternate: TIMER0_CH1_ON, TIMER0_CH0,
PB0
24
I/O
5VT
TIMER0_CH2, UART1_TX, I2C0_SCL,
TIMER2_ETI, TIMER16_CH0, UART2_CTS,
TIMER0_BRKIN, EVENTOUT
Additional: ADC_IN8
Default: PB1
Alternate: TIMER0_CH2_ON, TIMER0_CH0_ON,
PB1
25
I/O
5VT
TIMER2_CH2, UART1_RX, I2C0_SDA,
TIMER16_CH0_ON, UART2_RTS, EVENTOUT
Additional: BOOT1
Default: PB2
PB2
26
I/O
5VT
Alternate: TIMER1_CH3, TIMER2_CH3,
UART1_CTS, TIMER0_ETI, TIMER16_BRKIN,
EVENTOUT
18
GD32VW553xx Datasheet
GD32VW553Hx QFN40
Pin Name
Pins
Pin
I/O
Type(1)
Level(2)
Functions description
Default: PB11
PB11
27
I/O
5VT
Alternate: CK_OUT1, TIMER1_CH2,
TIMER0_CH1_ON, UART1_RTS,
TIMER15_BRKIN, EVENTOUT
Default: PB12
PB12
28
I/O
5VT
Alternate: TIMER0_BRKIN, TIMER0_CH3,
TIMER1_CH2, I2C1_SCL, EVENTOUT
Default: PB13
PB13
29
I/O
5VT
Alternate: TIMER0_CH0_ON, TIMER1_CH3,
I2C1_SDA, TIMER15_CH0, EVENTOUT
Default: PB15
PB15
30
I/O
5VT
Alternate: RTC_REFIN, TIMER0_CH2_ON,
TIMER2_CH0, I2C0_SCL, I2C1_SCL, UART1_TX,
USART0_TX, IFRP_OUT , EVENTOUT
Default: PA8
Alternate: CK_OUT0, TIMER0_CH0, USART0_RX,
PA8
31
I/O
5VT
UART1_RX, I2C0_SDA, I2C1_SDA, USART0_CK,
TIMER15_CH0, RTC_OUT, TIMER0_CH2_ON ,
EVENTOUT
Default: PA9
PA9
32
I/O
5VT
Alternate: SPI_MOSI , TIMER0_CH1, QSPI_SCK,
USART0_TX, TIMER15_CH0_ON, EVENTOUT
Default: PA10
PA10
33
I/O
5VT
Alternate: SPI_MISO, TIMER0_CH2, QSPI_CSN,
TIMER16_CH0, USART0_RX, EVENTOUT
Default: PA11
PA11
34
I/O
5VT
Alternate: SPI_SCK, TIMER0_CH3, QSPI_IO0,
TIMER16_BRKIN, TIMER1_CH3, EVENTOUT
Default: PA12
PA12WKUP3
Alternate: TIMER0_ETI, TIMER0_CH3, QSPI_IO1,
35
I/O
5VT
SPI_NSS, USART0_CK, TIMER1_CH2,
TIMER16_CH0_ON, EVENTOUT
Additional: WKUP3
Default: JTDO, PB3
PB3
36
I/O
5VT
Alternate: TIMER1_CH1, QSPI_IO2, USART0_RX,
UART1_RX, TIMER15_BRKIN, EVENTOUT
Default: NJTRST, PB4
PB4
37
I/O
5VT
Alternate: TIMER1_CH0, TIMER1_ETI, QSPI_IO3,
USART0_TX, UART1_TX, EVENTOUT
Default: JTMS, PA13
PA13
38
I/O
5VT
Alternate: I2C0_SMBA, I2C1_SCL, USART0_CTS,
UART1_CTS, EVENTOUT
Default: JTCK, PA14
PA14
39
I/O
5VT
Alternate: I2C1_SMBA, I2C1_SDA, USART0_RTS,
UART1_RTS, EVENTOUT
19
GD32VW553xx Datasheet
GD32VW553Hx QFN40
Pin Name
Pins
VDD
40
Pin
I/O
Type(1)
Level(2)
P
-
Functions description
Default: VDD
Note:
(1) Type: I = input, O = output, A = analog, P = power.
(2) I/O Level: 5VT = 5 V tolerant.
20
GD32VW553xx Datasheet
2.6.2.
GD32VW553Kx QFN32 pin definitions
Table 2-4. GD32VW553Kx QFN32 pin definitions
GD32VW553Kx QFN32
Pin Name
Pins
Pin
I/O
Type(1)
Level(2)
Functions description
Default: JTDI, PA15
PA15WKUP1
Alternate: TIMER1_CH0, TIMER1_ETI, I2C0_SCL,
1
I/O
5VT
I2C1_SCL, USART0_RX, UART1_RX,
EVENTOUT
Additional: WKUP1
Default: PC13
PC13
2
I/O
5VT
Alternate: USART0_CK, EVENTOUT
Additional: RTC_TAMP_0, RTC_OUT, RTC_TS
PC14OSC32IN
PC15OSC32OUT
Default: PC14
3
I/O
5VT
Alternate: EVENTOUT
Additional: OSC32IN
Default: PC15
4
I/O
5VT
Alternate: IFRP_OUT, EVENTOUT
Additional: OSC32OUT
Default: NRST
NRST
5
I/O
PU
6
-
Default: PU
7
P
Default: AVDD33_ANA
RF
8
AI/AO
AVDD33_PA
9
P
Default: AVDD33_PA
10
P
Default: AVDD33_CLK
XTAL1
11
AI
Default: XTAL1
XTAL2
12
AO
Default: XTAL2
VDDA
13
P
Default: VDDA
AVDD33_AN
A
AVDD33_CL
K
Default: RF
Default: PA0
Alternate: USART0_TX, TIMER1_CH0,
PA0-WKUP0
14
I/O
5VT
TIMER1_ETI, SPI_MOSI, UART1_CTS,
TIMER0_ETI, EVENTOUT
Additional: ADC_IN0, WAKEUP0, RTC_TAMP1
Default: PA1
PA1
15
I/O
5VT
Alternate: USART0_RX, TIMER1_CH1, SPI_MISO,
UART1_RTS, EVENTOUT
Additional: ADC_IN1
Default: PA2
Alternate: USART0_CTS, TIMER1_CH2,
PA2
16
I/O
5VT
I2C0_SCL, SPI_SCK, TIMER0_CH0, UART1_TX,
EVENTOUT
Additional: ADC_IN2
PA3
17
I/O
5VT
Default: PA3
Alternate: USART0_RTS, TIMER1_CH3,
21
GD32VW553xx Datasheet
GD32VW553Kx QFN32
Pin Name
Pins
Pin
I/O
Type(1)
Level(2)
Functions description
I2C0_SDA, SPI_NSS, TIMER0_CH0_ON,
UART1_RX, RTC_OUT, EVENTOUT
Additional: ADC_IN3
Default: PA4
PA4
18
I/O
5VT
Alternate: UART1_TX, SPI_MOSI, QSPI_SCK,
SPI_NSS, TIMER0_CH1, EVENTOUT
Additional: ADC_IN4
Default: PA5
Alternate: UART1_RX, TIMER2_ETI, QSPI_CSN,
PA5
19
I/O
5VT
SPI_MISO, SPI_SCK, TIMER0_CH1_ON ,
EVENTOUT
Additional: ADC_IN5
Default: PA6
Alternate: TIMER2_CH0, QSPI_IO0, I2C1_SCL,
PA6
20
I/O
5VT
SPI_MISO, SPI_SCK, TIMER0_CH1 ,
TIMER1_CH1, UART2_TX, EVENTOUT
Additional: ADC_IN6
Default: PA7
Alternate: I2C1_SDA , TIMER0_CH0_ON,
PA7-WKUP2
21
I/O
5VT
TIMER2_CH1, QSPI_IO1, SPI_NSS, SPI_MOSI,
TIMER0_CH1_ON, UART2_RX, TIMER1_CH2,
EVENTOUT
Additional: ADC_IN7, WAKUP2
Default: PB0
Alternate: TIMER0_CH1_ON, TIMER0_CH0,
PB0
22
I/O
5VT
TIMER0_CH2, UART1_TX, I2C0_SCL,
TIMER2_ETI, TIMER16_CH0, UART2_CTS,
TIMER0_BRKIN, EVENTOUT
Additional: ADC_IN8
Default: PB1
Alternate: TIMER0_CH2_ON, TIMER0_CH0_ON,
PB1
23
I/O
5VT
TIMER2_CH2, UART1_RX, I2C0_SDA,
TIMER16_CH0_ON, UART2_RTS, EVENTOUT
Additional: BOOT1
Default: PB15
PB15
24
I/O
5VT
Alternate: RTC_REFIN, TIMER0_CH2_ON,
TIMER2_CH0, I2C0_SCL, I2C1_SCL, UART1_TX,
USART0_TX, IFRP_OUT , EVENTOUT
Default: PA8
Alternate: CK_OUT0, TIMER0_CH0, USART0_RX,
PA8
25
I/O
5VT
UART1_RX, I2C0_SDA, I2C1_SDA, USART0_CK,
TIMER15_CH0, RTC_OUT, TIMER0_CH2_ON ,
EVENTOUT
PA12WKUP3
26
I/O
5VT
Default: PA12
22
GD32VW553xx Datasheet
GD32VW553Kx QFN32
Pin Name
Pins
Pin
I/O
Type(1)
Level(2)
Functions description
Alternate: TIMER0_ETI, TIMER0_CH3, QSPI_IO1,
SPI_NSS, USART0_CK, TIMER1_CH2,
TIMER16_CH0_ON, EVENTOUT
Additional: WKUP3
Default: JTDO, PB3
PB3
27
I/O
5VT
Alternate: TIMER1_CH1, QSPI_IO2, USART0_RX,
UART1_RX, TIMER15_BRKIN, EVENTOUT
Default: NJTRST, PB4
PB4
28
I/O
5VT
Alternate: TIMER1_CH0, TIMER1_ETI, QSPI_IO3,
USART0_TX, UART1_TX, EVENTOUT
Default: JTMS, PA13
PA13
29
I/O
5VT
Alternate: I2C0_SMBA, I2C1_SCL, USART0_CTS,
UART1_CTS, EVENTOUT
Default: JTCK, PA14
PA14
30
I/O
5VT
Alternate: I2C1_SMBA, I2C1_SDA, USART0_RTS,
UART1_RTS, EVENTOUT
VDD
31
Default: VDD
P
Default: PC8
PC8-BOOT0
32
I/O
5VT
Alternate: TIMER2_CH2, I2C0_SDA, I2C1_SDA,
USART0_TX, UART1_TX, EVENTOUT
Additional: BOOT0
Note:
(1) Type: I = input, O = output, A = analog, P = power.
(2) I/O Level: 5VT = 5 V tolerant.
23
GD32VW553xx Datasheet
2.6.3.
GD32VW553xx pin alternate functions
Table 2-5. Port A alternate functions summary
Pin Name
PA0
PA1
PA2
PA3
AF0
USART0_T
X
USART0_
RX
USART0_
CTS
USART0_
RTS
PA4
UART1_TX
PA5
UART1_R
X
PA6
PA7
PA8
PA9
PA10
PA11
PA12
AF1
AF2
JTMS
PA14
JTCK
PA15
JTDI
AF4
I2C0_SCL
I2C0_SDA
SPI_MOSI QSPI_SCK
TIMER2_E
TI
TIMER2_C
H0
TIMER0_C TIMER2_C
I2C1_SDA
H0_ON
H1
TIMER0_C USART0_
CK_OUT0
H0
RX
TIMER0_C
SPI_MOSI
H1
TIMER0_C
SPI_MISO
H2
TIMER0_C
SPI_SCK
H3
TIMER0_E TIMER0_C
TI
H3
PA13
AF3
TIMER1_C
H0/TIMER
1_ETI
TIMER1_C
H1
TIMER1_C
H2
TIMER1_C
H3
TIMER1_C
H0/TIMER
1_ETI
AF5
AF6
SPI_MOSI
UART1_C
TS
SPI_MISO
UART1_R
TS
UART1_R
X
SPI_SCK
SPI_MOSI
SPI_SCK
TIMER0_C
H1_ON
I2C0_SMB
A
I2C1_SMB
A
USART0_
CK
USART0_T
X
TIMER16_
CH0
TIMER16_
BRKIN
USART0_
SPI_NSS
CK
USART0_
I2C1_SCL
CTS
USART0_
I2C1_SDA
RTS
I2C0_SCL
I2C1_SCL
I2C0_SDA I2C1_SDA
QSPI_SCK
QSPI_CSN
QSPI_IO0
QSPI_IO1
AF9
AF10
TIMER0_E
TI
TIMER0_C
UART1_TX
H0
TIMER0_C UART1_R
SPI_NSS
H0_ON
X
QSPI_IO0 I2C1_SCL SPI_MISO
SPI_NSS
AF8
SPI_SCK
SPI_NSS
QSPI_CSN SPI_MISO
QSPI_IO1
AF7
RTC_OUT
TIMER0_C
H1
TIMER0_C
H1_ON
TIMER0_C TIMER1_C
UART2_TX
H1
H1
UART2_R TIMER1_C
X
H2
TIMER15_
TIMER0_C
RTC_OUT
CH0
H2_ON
TIMER15_
CH0_ON
USART0_
RX
TIMER1_C
H3
TIMER1_C TIMER16_
H2
CH0_ON
UART1_C
TS
UART1_R
TS
USART0_ UART1_R
RX
X
AF11
AF12
AF13
AF14
AF15
EVENTOU
T
EVENTOU
T
EVENTOU
T
EVENTOU
T
EVENTOU
T
EVENTOU
T
EVENTOU
T
EVENTOU
T
EVENTOU
T
EVENTOU
T
EVENTOU
T
EVENTOU
T
EVENTOU
T
EVENTOU
T
EVENTOU
T
EVENTOU
T
24
GD32VW553xx Datasheet
Table 2-6. Port B alternate functions summary
Pin Name
PB0
PB1
PB2
PB3
PB4
PB11
PB12
PB13
PB15
AF0
AF1
TIMER0_C
H1_ON
TIMER0_C
H2_ON
TIMER1_C
H3
TIMER1_C
JTDO
H1
TIMER1_C
NJTRST H0/TIMER
1_ETI
TIMER1_C
CK_OUT1
H2
TIMER0_B
RKIN
TIMER0_C
H0_ON
RTC_REFI TIMER0_C
N
H2_ON
AF2
AF3
AF4
AF5
TIMER0_C TIMER0_C
UART1_TX
H0
H2
TIMER0_C TIMER2_C UART1_R
H0_ON
H2
X
TIMER2_C UART1_C
H3
TS
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
TIMER2_E TIMER16_ UART2_C TIMER0_B
I2C0_SCL
TI
CH0
TS
RKIN
TIMER16_ UART2_R
I2C0_SDA
CH0_ON
TS
TIMER0_E TIMER16_
TI
BRKIN
USART0_
TIMER15_
UART1_TX
RX
BRKIN
QSPI_IO2
USART0_T UART1_R
X
X
QSPI_IO3
TIMER0_C
H1_ON
TIMER0_C TIMER1_C
H3
H2
TIMER1_C
H3
TIMER2_C
I2C0_SCL
H0
AF15
EVENTOU
T(1)
EVENTOU
T(1)
EVENTOU
T(1)
EVENTOU
T
EVENTOU
T
UART1_R
TS
TIMER15_
BRKIN
EVENTOU
T
EVENTOU
T
EVENTOU
T
EVENTOU
T
I2C1_SCL
TIMER15_
CH0
USART0_T
I2C1_SCL UART1_TX
IFRP_OUT
X
I2C1_SDA
Table 2-7. Port C alternate functions summary
Pin Name
AF0
USART0_
CK
PC14
PC15
AF2
TIMER2_C
H2
PC8
PC13
AF1
IFRP_OUT
AF3
AF4
I2C0_SDA
AF5
AF6
AF7
AF8
USART0_T
I2C1_SDA
UART1_TX
X
AF9
AF10
AF11
AF12
AF13
AF14
AF15
EVENTOU
T
EVENTOU
T
EVENTOU
T
EVENTOU
T
25
GD32VW553xx Datasheet
3.
Functional description
3.1.
RISC-V core
The
devices
of
GD32VW553xx
series
devices
are
32-bit
general-purpose
microcontrollers based on the Nuclei N307 processor. The N307 processor is based on
the RISC-V architecture instruction set. The RISC-V processor includes two AHB buses
known as I-Cache bus and System bus. All memory accesses of the RISC-V processor
are executed on the two buses according to the different purposes and the target memory
spaces. The memory organization uses a Harvard architecture, pre-defined memory map
and up to 4 GB of memory space, making the system flexible and extendable. It supports
64 general purpose registers (GPRs):
3-pipeline stages, using state-of-the-art processor micro-architecture to deliver the
best-of-class performance efficiency and lowest cost.
Machine (M) and User (U) Privilege levels support.
Non-maskable interrupt (NMI) support.
Support dynamic branch predictor.
Configurable instruction prefetch logic, which can prefetch subsequent two
instructions to hide the instruction memory access latency.
Support WFI (Wait for Interrupt) and WFE (Wait for Event) scheme to enter sleep
mode.
Interrupt priority levels configurable and programmable.
Enhancement of vectored interrupt handling for real-time performance.
Support interrupt preemption with priority.
Support interrupt tail chaining.
Standard 4-wire JTAG debug port and 2-wire cJTAG debug port.
Support interactive debug functionalities.
Support 8 triggers for hardware breakpoint.
RV32I / M / A / F / D / C / P / B instruction extensions support.
Support two-level sleep modes: shallow sleep mode, and deep sleep mode.
Support 64-bits widereal-time counter (can be used as System Tick).
Support Physical Memory Protection (PMP) to protect the memory, 8 entries.
Support Instruction Cache (I-Cache), 2-way associative, cache line size 32 bytes,
total 32KB.
3.2.
Support single / double precision FPU.
Support 2 cycle floating point MAC.
Support packed-SIMD DSP.
On-chip memory
Up to 4096 Kbytes of Flash memory.
26
GD32VW553xx Datasheet
Up to 288 Kbytes + 32 Kbyte (shared SRAM) SRAM memory.
4096 Kbytes Flash memory, and 320 Kbytes (288 Kbytes + 32 Kbyte Shared) SRAM at
most is available for storing programs and data. Table 2-2. GD32VW553xx memory
map shows the memory map of the GD32VW553xx series of devices, including code,
SRAM, peripheral, and other pre-defined regions.
3.3.
Clock, reset and supply management
Internal 16 MHz factory-trimmed RC and external 8 to 52 MHz crystal oscillator.
Internal 32 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator.
Integrated system clock PLL.
1.8 to 3.6 V application supply and I/Os.
Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low
voltage detector (LVD).
The Clock Control Unit (CCTL) provides a range of oscillator and clock functions. These
include speed internal RC oscillator and external crystal oscillator, high speed and low
speed two types. Several prescalers allow the frequency configuration of the AHB and
two APB domains. The maximum frequency of the AHB, APB2 and APB1 domains is 160
MHz/160 MHz/80MHz. See Figure 2-4. GD32VW553xx clock tree for details on the
clock tree.
The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the
processor core and peripheral IP components. Power-on reset (POR) and power-down
reset (PDR) are always active, and ensures proper operation starting from 1.55 V and
down to 1.51V. The device remains in reset mode when VDD is below a specified threshold.
The embedded low voltage detector (LVD) monitors the power supply, compares it to the
voltage threshold and generates an interrupt as a warning message for leading the MCU
into security.
Power supply schemes:
VDD range: 1.8 to 3.6 V, external power supply for I/Os and the internal regulator.
Provided externally through VDD pins.
VSSA is 0 V.
VDDA range: 1.8 to 3.6 V, external analog power supply for ADC, reset blocks, RCs
and PLL.
3.4.
Boot modes
At startup, BOOT0 value and BOOT1 value are used to select the boot address. BOOT0
value and BOOT1 value are determined by configurations shown in Table 3-1. BOOT0
modes and Table 3-2. BOOT1 modes respectively.
The BOOT0 value may come from the BOOT0 pin or from the value of SWBOOT0
bit in the EFUSE_CTL0 register to free the GPIO pad if needed.
27
GD32VW553xx Datasheet
The BOOT1 value may come from the PB1 pin or from the value of SWBOOT1 bit
in the EFUSE_CTL0 register to free the GPIO pad if needed.
Table 3-1. BOOT0 modes
SWBOOT0
EFBOOT0
BOOT0 PC8 pin
BOOT0
0
-
0
0
0
-
1
1
1
0
-
0
1
1
-
1
Table 3-2. BOOT1 modes
BOOT1 PB1
SWBOOT1
EFBOOT1
0
-
0
0
0
-
1
1
1
0
-
0
1
1
-
1
pin
BOOT1
Refer to Table 3-3. Boot address modes for boot address.
When BOOT0 value is 0:
The boot address is selected according to EFSB bit value in EFUSE_CTL0 register.
When BOOT0 value is 1:
When the EFBOOTLK bit in the EFUSE_CTL0 register is 0, the boot address is
selected according to BOOT0 value and BOOT1 value.
When the EFBOOTLK bit in the EFUSE_CTL0 register is 1, the boot address is
selected according to BOOT0 value.
Table 3-3. Boot address modes
EFBOO
BOOT0
BOOT1
EFSB
Boot address
Boot area
-
0
-
0
0x08000000
SIP Flash
-
0
-
1
0x0BF46000
secure boot
0
1
0
-
0x0BF40000
Bootloader / ROM
0
1
1
-
0x0A000000
SRAM0
1
1
-
-
0x0BF40000
Bootloader / ROM
TLK
The BOOTx (x=0/1) value (either coming from the pin or the EFBOOTx bit) is latched
upon reset release. It is up to the user to set BOOTx values to select the required boot
mode. The BOOTx pin or EFBOOTx bit (depending on the EFBOOTLK and SWBOOTx
bit value in the EFUSE_CTL0 register) is also re-sampled when exiting from Standby
mode. Consequently, they must be kept in the required Boot mode configuration in
Standby mode. After startup delay, the selection of the boot area is done before releasing
the processor reset.
The embedded bootloader is located in the System memory, which is used to reprogram
28
GD32VW553xx Datasheet
the Flash memory. The bootloader can be activated through one of the following serial
interfaces: USART0 (PB15 and PA8), UART1 (PA4 and PA5), UART2 (PA6 and PA7).
3.5.
Power saving modes
The MCU supports six kinds of power saving modes to achieve even lower power
consumption. They are Sleep, Deep-sleep, Standby, SRAM_sleep, WIFI_sleep and
BLE_sleep mode. These operating modes reduce the power consumption and allow the
application to achieve the best balance between the CPU operating time, speed and
power consumption.
Sleep mode
The sleep mode is corresponding to the SLEEPING mode of the RISC-V. In sleep
mode, only clock of RISC-V is off. To enter the sleep mode, it is only necessary to
clear the CSR_SLEEPVALUE bit in the RISC-V System Control Register, and
execute a WFI or WFE instruction. If the sleep mode is entered by executing a WFI
instruction, any interrupt can wake up the system. If it is entered by executing a WFE
instruction, any wakeup event can wake up the system. The mode offers the lowest
wakeup time as no time is wasted in interrupt entry or exit.
Deep-sleep mode
The deep-sleep mode is based on the SLEEPDEEP mode of the RISC-V. In deepsleep mode, all clocks in the 1.1V domain are off, and all of IRC16M, HXTAL and
PLLs are disabled. The contents of SRAM0/1/2/3 and registers are preserved. The
LDO can operate normally or in low power mode depending on the LDOLP bit in the
PMU_CTL0 register. Before entering the Deep-sleep mode, it is necessary to set the
CSR_SLEEPVALUE bit in the RISC-V System Control Register, and clear the
STBMOD bit in the PMU_CTL0 register. Then, the device enters the deep-sleep
mode after a WFI or WFE instruction is executed. If the Deep-sleep mode is entered
by executing a WFI instruction, any interrupt from EXTI lines can wake up the system.
If it is entered by executing a WFE instruction, any wakeup event from EXTI lines
can wake up the system. When exiting the Deep-sleep mode, the IRC16M is
selected as the system clock. Notice that an additional wakeup delay will be incurred
if the LDO operates in low power mode.
The low-driver mode in deep-sleep mode can be entered by configuring the
LDEN[1:0], LDNP, LDLP, LDOLP bits in the PMU_CTL0 register. The low-driver
mode provides lower drive capability, and the low-power mode take lower power.
Normal-driver & Normal-power: The Deep-sleep mode is not in low-driver mode by
configure LDEN[1:0] to 00 in the PMU_CTL0 register, and not in low-power mode
depending on the LDOLP bit reset in the PMU_CTL0 register.
Normal-driver & Low-power: The Deep-sleep mode is not in low-driver mode by
configure LDEN[1:0] to 00 in the PMU_CTL0 register. The low-power mode enters
depending on the LDOLP bit set in the PMU_CTL0 register.
Low-driver & Normal-power: The low-driver mode in Deep-sleep mode when the
LDO in normal-power mode depending on the LDOLP bit reset in the PMU_CTL0
register enters by configure LDEN[1:0] to 0b11 and LDNP to 1 in the PMU_CTL0
29
GD32VW553xx Datasheet
register.
Low-driver & Low-power: The low-driver mode in Deep-sleep mode when the LDO
in low-power mode depending on the LDOLP bit set in the PMU_CTL0 register
enters by configure LDEN[1:0] to 0b11 and LDLP to 1 in the PMU_CTL0 register.
No Low-driver: The Deep-sleep mode is not in low-driver mode by configure
LDEN[1:0] to 00 in the PMU_CTL0 register.
Note: In order to enter deep-sleep mode smoothly, all EXTI line pending status (in
the EXTI_PD register) and RTC alarm / timestamp / tamper / auto wakeup flag must
be reset. If not, the program will skip the entry process of deep-sleep mode to
continue to execute the following procedure.
Standby mode
The standby mode is based on the SLEEPDEEP mode of the RISC-V, too. In
standby mode, the whole 1.1V domain is power off, the LDO is shut down, and all of
IRC16M, HXTAL and PLLs are disabled. Before entering the standby mode, it is
necessary to set the CSR_SLEEPVALUE bit in the RISC-V System Control Register,
and set the STBMOD bit in the PMU_CTL0 register, and clear WUF bit in the
PMU_CS0 register. Then, the device enters the standby mode after a WFI or WFE
instruction is executed, and the STBF status flag in the PMU_CS0 register indicates
that the MCU has been in standby mode. There are four wakeup sources for the
standby mode, including the external reset from NRST pin, the RTC alarm / time
stamp / tamper / auto wakeup events, the FWDGT reset, and the rising edge on
WKUP pins. The standby mode achieves the lowest power consumption, but spends
longest time to wake up. Besides, the contents of SRAM0 / SRAM1 / SRAM2 /
SRAM3 and registers in 1.1V power domain are lost in standby mode. When exiting
from the standby mode, a power-on reset occurs and the RISC-V will execute
instruction code from the 0x00000000 address.
SRAM_sleep mode
When at least one of SRAM0 / SRAM1 / SRAM2 / SRAM3 is powered off, set the
SRAMxPSLEEP (x = 0/1/2/3) bit in PMU_CTL1 register, then corresponding SRAMx
(x = 0/1/2/3) will enter power off state (wait for several PCLK clocks, SRAM can
completely power off and enter the SRAM sleep mode).
When the SRAMxPWAKE (x = 0/1/2/3) bit in PMU_CTL1 register is set, the SRAMx
(x = 0/1/2/3) will be powered on.
SRAM0 / SRAM1 / SRAM2 / SRAM3 can be configured power on or power off when
in run / sleep / deep_sleep mode.
SRAM0 / SRAM1 / SRAM2 / SRAM3 are power off when in standby mode.
WIFI_sleep mode
The Wi-Fi_sleep mode can enter by software (set WPEN bit to 1 and set WPSLEEP
bit to 1), or by hardware (driven by Wi-Fi hardware signal sleep_wl when WPEN is
1). This mode can exit by clearing WPEN bit to 0, or by setting WPEN bit to 1 then
setting WPSLEEP bit to 1, or by hardware (driven by Wi-Fi hardware signal wake_wl
when WPEN is 1).
When Wi-Fi enter Wi-Fi_sleep mode, Wi-Fi_OFF domain power off.
BLE_sleep mode
30
GD32VW553xx Datasheet
When BLE enter BLE_sleep mode, BLE_OFF domain power off.
When exit from BLE_sleep mode, BLE is active mode, all BLE power domain power
on.
3.6.
Electronic fuse (EFUSE)
One-time programmable nonvolatile EFUSE storage cells organized as 128*8 bit.
All bits in the efuse cannot be rollback from 1 to 0.
Can only be accessed through corresponding registers.
The Efuse controller has Efuse macro that store system paramters. As a non-volatile unit
of storage, the bit of Efuse macro cannot be restored to 0 once it is programmed to 1.
According to the software opration, the Efuse controller can program all bits in the system
parameters.
3.7.
General-purpose inputs / outputs (GPIOs)
Up to 29 fast GPIOs, all mappable on 16 external interrupt lines.
Analog input/output configurable.
Alternate function input/output configurable.
There are up to 29 general purpose I/O pins (GPIO) in GD32VW553xx, named PA0 ~
PA15, PB0 ~ PB4, PB11 ~ PB13, PB15, PC8 and PC13 ~ PC15 to implement logic
input/output functions. Each GPIO port has related control and configuration registers to
satisfy the requirements of specific applications. The external interrupts on the GPIO pins
of the device have related control and configuration registers in the Interrupt/Event
Controller Unit (EXTI). The GPIO ports are pin-shared with other alternative functions
(AFs) to obtain maximum flexibility on the package pins.
Each of the GPIO pins can be configured by software as output (push-pull or open-drain),
input, peripheral alternate function or analog mode. Most of the GPIO pins are shared
with digital or analog alternate functions.
3.8.
CRC calculation unit (CRC)
32-bit data input and 32-bit data output. Calculation period is 4 AHB clock cycles for
32-bit input data size from data entered to the calculation result available.
Free 8-bit register is unrelated to calculation and can be used for any other goals by
any other peripheral devices.
Fixed polynomial: 0x4C11DB7
X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1.
A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital
networks and storage devices to detect accidental changes to raw data. This CRC
31
GD32VW553xx Datasheet
calculation unit can be used to calculate 32 bit CRC code with fixed polynomial.
3.9.
True Random number generator (TRNG)
About 40 periods of TRNG_CLK are needed between two consecutive random
numbers.
Disable TRNG module will significantly reduce the chip power consumption.
32-bit random value seed is generated from analog noise, so the random number is
a true random number.
The true random number generator (TRNG) module can generate a 32-bit random value
by using continuous analog noise.
3.10.
Direct memory access controller (DMA)
8 channels for DMA controller, up to 8 peripherals per channel with fixed hardware
peripheral requests.
Support independent single, 4, 8, 16-beat incrementing burst memory and peripheral
transfer.
Peripherals supported: Timers, ADC, SPI, QSPI, I2Cs, USARTs, CAU and HAU.
The direct memory access (DMA) controller provides a hardware method of transferring
data between peripherals and/or memory without intervention from the MCU, thereby
increasing system performance by off-loading the MCU from copying large amounts of
data and avoiding frequent interrupts to serve peripherals needing more data or having
available data.
Two AHB master interfaces and eight four-word depth 32-bit width FIFOs are presented
in DMA controller, which achieves a high DMA transmission performance. There are 8
independent channels in the DMA controller. Each channel is assigned a specific or
multiple target peripheral devices for memory access request management. Two arbiters
respectively for memory and peripheral are implemented inside to handle the priority
among DMA requests.
Both the DMA controller and the RISC-V core implement data access through the system
bus. An arbitration mechanism is implemented to solve the competition between these
two masters. When the same peripheral is targeted, the MCU access will be suspended
for some specific bus cycles. A round-robin scheduling algorithm is utilized in the bus
matrix to guaranty at least half the bandwidth to the MCU.
3.11.
Analog to digital converter (ADC)
12-bit SAR ADC's conversion rate is up to 3 MSPS.
Hardware oversampling ratio adjustable from 2x to 256x improves resolution to 1632
GD32VW553xx Datasheet
bit.
Input voltage range: 0 ≤ VIN ≤ VDDA.
Temperature sensor.
A 12-bit 3 MSPS multi-channel ADC is integrated in the device. It has a total of 11
multiplexed channels: up to 9 external channels, 1 channel for internal temperature
sensor (VSENSE), 1 channel for internal reference voltage (VREFINT). The input voltage
range is between 0 and VDDA. An on-chip hardware oversampling scheme improves
performance while off-loading the related computational burden from the CPU. The
analog watchdog allows the application to detect whether the input voltage goes outside
the user-defined higher or lower thresholds. A configurable channel management block
can be used to perform conversions in single, continuous, scan or discontinuous mode
to support more advanced use.
The ADC can be triggered from the events generated by the TIMERx (x= 0,1,2,5,15,16)
with internal connection. The temperature sensor can be used to generate a voltage that
varies linearly with temperature. It is internally connected to the ADC_IN9 input channel
which is used to convert the sensor output voltage in a digital value.
To ensure a high accuracy on ADC, the independent power supply VDDA is implemented
to achieve better performance of analog circuits. VDDA can be externally connected to VDD
through the external filtering circuit that avoids noise on V DDA, and VSSA should be
connected to VSS through the specific circuit independently.
3.12.
Real time clock (RTC)
Independent binary-coded decimal (BCD) format timer / counter with twenty 32-bit
backup registers.
Calendar with sub-second, second, minute, hour, week day, day, month and year
automatically correction.
Alarm function with wake up from deep-sleep and standby mode capability.
Atomic clock adjust (max adjust accuracy is 0.95PPM) for calendar calibration
performed by digital calibration function.
The RTC provides a time which includes hour / minute / second / sub-second and a
calendar includes year / month / day / week day. The time and calendar are expressed
in BCD code except sub-second. Sub-second is expressed in binary code. Hour adjust
for daylight saving time. Working in power saving mode and smart wakeup is software
configurable. Support improving the calendar accuracy using extern accurate low
frequency clock.
3.13.
Timers and PWM generation
One 16-bit advanced timer (TIMER0), two 32-bit general timer (TIMER1, TIMER2),
two 16-bit general timers (TIMER15, TIMER16), and one 16-bit basic timer (TIMER5).
33
GD32VW553xx Datasheet
Up to 4 independent channels of PWM, output compare or input capture for each
general timer and external trigger input.
16-bit, motor control PWM advanced timer with programmable dead-time generation
for output match.
Encoder interface controller with two inputs using quadrature decoder.
64-bit SysTick timer up counter.
2 watchdog timers (free watchdog timer and window watchdog timer).
The advanced timer (TIMER0) can be used as a three-phase PWM multiplexed on 6
channels. It has complementary PWM outputs with programmable dead-time generation.
It can also be used as a complete general timer. The 4 independent channels can be
used for input capture, output compare, PWM generation (edge- or center- aligned
counting modes) and single pulse mode output. If configured as a general 16-bit timer, it
has the same functions as the TIMERx timer. It can be synchronized with external signals
or to interconnect with other general timers together which have the same architecture
and features.
The general timer can be used for a variety of purposes including general time, input
signal pulse width measurement or output waveform generation such as a single pulse
generation or PWM output, up to 4 independent channels for input capture/output
compare. TIMER1 and TIMER2 are based on a 32-bit auto-reload up/down counter and
a 16-bit prescaler. TIMER15 and TIMER16 are based on a 16-bit auto-reload up counter
and a 16-bit prescaler. Only TIMER1 and TIMER2 supports an encoder interface with two
inputs using quadrature decoder.
The basic timer TIMER5, is mainly used as a simple 16-bit time base.
The GD32VW553xx have two watchdog peripherals, free watchdog timer and window
watchdog timer. They offer a combination of high safety level, flexibility of use and timing
accuracy.
The free watchdog timer includes a 12-bit down-counting counter and an 8-stage
prescaler. It is clocked from an independent 32 KHz internal RC and as it operates
independently of the main clock, it can operate in deep-sleep and standby modes. It can
be used either as a watchdog to reset the device when a problem occurs, or as a freerunning timer for application timeout management.
The window watchdog is based on a 7-bit down counter that can be set as free-running.
It can be used as a watchdog to reset the device when a problem occurs. It is clocked
from the main clock. It has an early wakeup interrupt capability and the counter can be
frozen in debug mode.
The SysTick timer is dedicated for OS, but could also be used as a standard down counter.
The features are shown below:
A 64-bit up counter.
Maskable system interrupt generation when the counter and comparison values are
equal.
Programmable clock source.
34
GD32VW553xx Datasheet
3.14.
Universal synchronous asynchronous receiver transmitter
(USART)
Maximum speed up to 20 MBits/s.
Supports both asynchronous and clock synchronous serial communication modes.
IrDA SIR encoder and decoder support.
LIN break generation and detection.
ISO 7816-3 compliant smart card interface.
Dual clock domain.
Wake up from Deep-sleep mode.
The USART (USART0, UART1, UART2) are used to translate data between parallel and
serial interfaces, provides a flexible full duplex data exchange using synchronous or
asynchronous transfer. It is also commonly used for RS-232 standard communication.
The USART includes a programmable baud rate generator which is capable of dividing
the system clock to produce a dedicated clock for the USART transmitter and receiver.
The USART also supports DMA function for high speed data communication.
3.15.
Inter-integrated circuit (I2C)
Support both master and slave mode with a frequency up to 1 MHz (Fast mode plus).
Provide arbitration function, optional PEC (packet error checking) generation and
checking.
Supports 7-bit and 10-bit addressing mode and general call addressing mode.
SMBus 3.0 and PMBus 1.3 compatible.
Wakeup from Deep-sleep mode on I2C0 address match.
The I2C interface is an internal circuit allowing communication with an external I2C
interface which is an industry standard two line serial interface used for connection to
external hardware. These two serial lines are known as a serial data line (SDA) and a
serial clock line (SCL). The I2C module provides different data transfer rates: up to 100
KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode
plus. The I2C module also has an arbitration detect function to prevent the situation where
more than one master attempts to transmit data to the I2C bus at the same time. A CRC8 calculator is also provided in I2C interface to perform packet error checking for I2C data.
3.16.
Serial peripheral interface (SPI)
SPI interfaces with a frequency of up to 40 MHz.
Support both master and slave mode.
Hardware CRC calculation and transmit automatic CRC error checking.
SPI quad mode configuration available in master mode.
35
GD32VW553xx Datasheet
The SPI interface uses 4 pins, among which are the serial data input and output lines
(MISO & MOSI), the clock line (SCK) and the slave select line (NSS). SPI can be served
by the DMA controller. The SPI interface may be used for a variety of purposes, including
simplex synchronous transfers on two lines with a possible bidirectional data line or
reliable communication using CRC checking.
3.17.
Quad-SPI interface (QSPI)
Support normal mode, read polling mode and memory map mode.
Fully programmable command format for both normal mode and memory map mode.
Integrated FIFO for transmission/reception.
8, 16, or 32-bit data accesses.
DMA channel for normal mode.
The QSPI is a specialized interface that communicate with Flash memories. This
interface support single, dual or quad SPI FLASH.
3.18.
Cryptographic acceleration Unit (CAU)
Supports DES, TDES or AES (128, 192, or 256) algorithms.
DES/TDES supports Electronic codebook (ECB) or Cipher block chaining (CBC)
mode.
AES supports 128bits-key, 192bits-key or 256 bits-key.
AES supports Electronic codebook (ECB), Cipher block chaining (CBC) mode,
Counter mode (CTR) mode, Galois/counter mode (GCM), Galois message
authentication code mode (GMAC), Counter with CBC-MAC (CCM), cipher message
authentication code mode (CMAC), Cipher Feedback mode (CFB) and Output
Feedback mode (OFB).
DMA transfer for incoming and outgoing data is supported.
The Cryptographic Acceleration Unit supports acceleration of DES, TDES or AES (128,
192, or 256) algorithms. The DES/TDES supports Electronic codebook (ECB) or Cipher
block chaining (CBC) mode. The AES supports Electronic codebook (ECB), Cipher block
chaining (CBC) mode, Counter mode (CTR) mode, Galois/counter mode (GCM), Galois
message authentication code mode (GMAC), Counter with CBC-MAC (CCM), Cipher
Feedback mode (CFB) and Output Feedback mode (OFB).
3.19.
Hash acceleration unit (HAU)
Supports SHA-1, SHA-224 and SHA-256 algorithms, compliant with FIPS PUB 1802 (Federal Information Processing Standards Publication 180-2).
Supports MD5 compliant with IETF RFC 1321 (Internet Engineering Task Force
Request For Comments number 1321).
36
GD32VW553xx Datasheet
Supports HMAC (keyed-hash message authentication code) algorithm.
Automatic swapping to comply with the big-endian or little-endian for MD5, SHA-1,
SHA-224 and SHA-256 algorithms.
Automatic padding to fit module 512.
Support DMA mode for input data flow.
The HAU supports acceleration of SHA-1, SHA-224, SHA-256, MD5 algorithm and the
HMAC (keyed-hash message authentication code) algorithm, which calling the SHA-1,
SHA-224, SHA-256 or MD5 hash function to calculate key, message, digest three times.
3.20.
Public Key Cryptographic Acceleration Unit (PKCAU)
Support RSA/DH algorithms with up to 3136 bits of operands.
Support ECC algorithm with up to 640 bits of operands.
Embedded RAM of 3584 bytes.
Conversion between the Montgomery domain and the natural domain.
only 32-bit access is supported.
Public key encryption is also called asymmetric encryption, asymmetric encryption
algorithms use different keys for encryption and decryption. The Public Key
Cryptographic Acceleration Unit (PKCAU) can accelerate RSA (Rivest, Shamir and
Adleman), Diffie-Hellmann (DH key exchange) and ECC (elliptic curve cryptography) in
GF(p) (Galois domain). These operations are performed in the Montgomery domain to
improve computational efficiency.
3.21.
Infrared ray port (IFRP)
The IFRP output signal is decided by TIMER15_CH0 and TIMER16_CH0.
To get correct infrared ray signal, TIMER15 should generate low frequency
modulation envelope signal, and TIMER16 should generate high frequency carrier
signal.
Infrared ray port (IFRP) is used to control infrared light LED, and send out infrared data
to implement infrared ray remote control.
There is no register in this module, which is controlled by TIMER15 and TIMER16. The
IFRP_OUT pin can be configured by GPIO alternate function selected register.
37
GD32VW553xx Datasheet
3.22.
Wireless
3.22.1.
Wi-Fi
Standards Supported
802.11b / g / n /ax compatible.
802.11e QoS Enhancement (WMM).
802.11i (WPA, WPA2, WPA3). Open, shared key, and pair-wise key authentication
services.
WiFi WPS.
WiFi Direct.
Integrated TCP / IP protocol.
Wi-Fi MAC
Target Wake up Time (TWT) operation.
Two NAV.
Multiple BSSID operation.
OFDMA-based random access.
Spatial reuse.
Transmission and reception of aggregated MPDUs (A-MPDU) for high throughput.
Support for immediate ACK and Block-ACK policies.
Support for power management schemes, including WMM power-save, power-save
multi-poll (PSMP), and multiphase PSMP operation.
Interframe space timing support, including RIFS.
Support for RTS / CTS and CTS-to-self frame sequences for protecting frame
exchanges.
Back-off counters in hardware for supporting multiple priorities as specified in the
WMM specification.
Timing
synchronization
function
(TSF),
network
allocation
vector
(NAV)
maintenance, and target beacon transmission time (TBTT) generation in hardware.
Hardware engine for AES-CCMP, legacy WPA TKIP, legacy WEP ciphers, and
support for key management.
Programmable independent basic service set (IBSS) or infrastructure basic service
set or Access Point functionality.
Wi-Fi PHY
Single antenna 1x1 stream in 20MHz channels.
20M bandwidth.
MU-OFDMA in UL and DL as a non-AP STA.
DL MU-MIMO as a non-AP STA.
Beamforming as a beamformee.
38
GD32VW553xx Datasheet
Rx STBC scheme (1 spatial stream and 2 space-time streams).
Mid-amble.
DCM.
All guard interval (0.8 / 1.6 / 3.2us).
Support of 802.11ax MCS up to MCS9 with Max phy rate as 114.7Mbps.
Per packet TX power control.
Advanced channel estimation / equalization, automatic gain control, CCA,
carrier/symbol recovery, and frame detection.
Digital calibration algorithms to handle CMOS RF chip process, voltage, and
temperature (PVT) variations.
3.22.2.
Per-packet channel quality and signal-strength measurements.
Compliance with FCC and other worldwide regulatory requirements.
BLE (Bluetooth Low Energy)
Standards Supported
BLE5.2.
BLE Linker Layer
Support multiple simulateneous hardware connection.
Advertising Extension.
High duty cycle non-connectable advertising.
Channel selection algorithm #2.
Support multiple simultaneous BLE connections.
BLE Modem
3.22.3.
High speed 2M PHY.
Long range coded PHY.
Data rate: 250, 500, 1000 and 2000kbps.
Radio
Radio is shared between Wi-Fi and BLE.
Fractional-N for multiple reference clock support.
Integrated PA with power control.
Optimized Tx gain distribution for linearity and noise performance.
Direct conversion architecture.
On-chip gain selectable LNA with optimized noise figure.
High dynamic range AGC.
39
GD32VW553xx Datasheet
3.23.
Debug mode
RISC-V External Debug Support Version 0.13.
The GD32VW553xx series provide a large variety of debug, trace and test features. They
are implemented with a standard configuration of the RISC-V module together with a
daisy chained standard TAP controller. Debug functions are integrated into the RISC-V.
The debug system supports standard JTAG debug.
3.24.
Package and operation temperature
QFN40 (GD32VW553Hx) and QFN32 (GD32VW553Kx).
Operation temperature range: -40°C to +105°C (GD32VW553HxQ7), -40°C to
+85°C (GD32VW553HxQ6).
40
GD32VW553xx Datasheet
4.
Electrical characteristics
4.1.
Absolute maximum ratings
The maximum ratings are the limits to which the device can be subjected without
permanently damaging the device. Note that the device is not guaranteed to operate
properly at the maximum ratings. Exposure to the absolute maximum rating conditions
for extended periods may affect device reliability.
Table 4-1. Absolute maximum ratings (1)(4)
Symbol
Parameter
Min
Max
Unit
VDD
External voltage range(2)
- 0.3
3.6
V
VDDA
External analog supply voltage
- 0.3
3.6
V
AVDD33_ANA
RF Analog voltage
- 0.3
3.6
V
AVDD33_PA
RF PA voltage
- 0.3
3.6
V
AVDD33_CLK
RF Clock voltage
- 0.3
3.6
V
- 0.3
VDD + 3.6
V
Input voltage on other I/O
- 0.3
3.6
V
|ΔVDDx|
Variations between different VDD power pins
—
50
mV
IIO
Maximum current for GPIO pin
—
±25
mA
TA
Operating temperature range
-40
+105
°C
Power dissipation at TA = 105°C of QFN40
—
418
Power dissipation at TA = 105°C of QFN32
—
389
TSTG
Storage temperature range
-65
+150
°C
TJ
Maximum junction temperature
—
125
°C
VIN
PD(5)
(1)
(2)
(3)
(4)
(5)
4.2.
Input voltage on 5V tolerant
pin(3)
mW
Guaranteed by design, not tested in production.
All main power and ground pins should be connected to an external power source within the allowable
range.
VIN maximum value cannot exceed 5.5 V.
It is recommended that VDD and VDDA are powered by the same source. The maximum difference between
VDD and VDDA does not exceed 300 mV during power-up and operation.
When RF power off.
Operating conditions characteristics
Table 4-2. DC operating conditions
Min(1) Typ Max(1) Unit
Symbol
Parameter
Conditions
VDD
Supply voltage
—
1.8
3.3
3.6
V
VDDA
Analog supply voltage
—
1.8
3.3
3.6
V
AVDD33_ANA
RF Analog voltage
—
2.5(2)
3.3
3.6
V
AVDD33_PA
RF PA voltage
—
2.5(2)
3.3
3.6
V
AVDD33_CLK
RF Clock voltage
—
2.5(2)
3.3
3.6
V
(1)
(2)
Based on characterization, not tested in production.
RF performance may degrade below 3V.
41
GD32VW553xx Datasheet
Figure 4-1. Recommended power supply decoupling capacitors(1)(2)(3)
VDD
GND
10uF+N*100 nF
VDDA
GND
1uF+10 nF
AVDD33
10 μF+N*1 μF
(1)
(2)
(3)
GND
When using precision internal reference voltage, and a bypass capacitor about 0.1 μF (or 1 μF connected
in parallel, which is recommended) to ground is required.
AVDD33 include AVDD33_PA, AVDD33_ANA, AVDD33_CLK.
All decoupling capacitors need to be as close as possible to the pins on the PCB board.
Table 4-3. Clock frequency (1)
Symbol
Parameter
Conditions
Min
Max
Unit
fHCLK
AHB clock frequency
—
—
160
MHz
fAPB1
APB1 clock frequency
—
—
160
MHz
fAPB2
APB2 clock frequency
—
—
80
MHz
Min
Max
Unit
—
∞
TBD
—
(1)
Guaranteed by design, not tested in production.
Table 4-4. Operating conditions at Power up / Power down (1)
Symbol
tVDD
(1)
Parameter
Conditions
VDD rise time rate
—
VDD fall time rate
Guaranteed by design, not tested in production.
Table 4-5. Start-up timings of Operating conditions
Symbol
Parameter
tstart-up
Start-up time
(1)
(2)
μs /V
(1)(2)(3)
Conditions
Typ
Clock source from HXTAL
181
Clock source from IRC16M
1.03
Unit
ms
Based on characterization, not tested in production.
After power-up, the start-up time is the time between the rising edge of NRST high and the first I/O
42
GD32VW553xx Datasheet
(3)
instruction.
PLL is off.
Table 4-6. Power saving mode wakeup timings characteristics (1)(2)
Symbol
Parameter
Typ
tSleep
Wakeup from Sleep mode
15.2
Wakeup from Deep-sleep mode (LDO On)
67
Wakeup from Deep-sleep mode (LDO in low power mode)
66.8
Wakeup from Deep-sleep mode (LDO On and Low driver mode)
66.6
tDeep-sleep
Wakeup from Deep-sleep mode (LDO in low power and Low driver
mode)
tStandby
(1)
(2)
4.3.
Wakeup from Standby mode
Unit
μs
66.6
1030
Based on characterization, not tested in production.
The wakeup time is measured from the wakeup event to the point at which the application code reads
the first instruction under the below conditions: VDD = VDDA = 3.3 V, IRC16M = System clock = 16 MHz.
Power consumption
GD32VW553xx is designed with advanced power management technologies and
suitable for Internet of Things applications.
Table 4-7. Wi-Fi Power consumption characteristics
Power Mode
MCU State
Wi-Fi State
Active
Active
Active
Wi-Fi Sleep
Active
Mild Sleep
Power on, PLL off, Clock gated
Hibernation
Shutdown
Power save mode: Wi-Fi wake up periodically to
listen beacon frame to stay connected to the AP.
Power save mode: Wi-Fi wake up periodically to
listen beacon frame to stay connected to the AP.
Mostly power off, only the wake
up source is power on
—
Power off
Power off
Table 4-8. Wi-Fi Power consumption characteristics (1)(2)(3)
Power Mode
Description
Consumption
unit
Wi-Fi Tx 802.11b, CCK 1Mbps, Pout = +18dBm(4)
331
mA
Wi-Fi Tx 802.11b, CCK 11Mbps, Pout = +17dBm(4)
315
mA
317
mA
283
mA
316
mA
275
mA
Wi-Fi Tx 802.11g, OFDM 6Mbps, Pout =
+18dBm(4)
Active
Wi-Fi Tx 802.11g, OFDM 54Mbps, Pout =
+15dBm(4)
Wi-Fi Tx 802.11n, HT 20M MCS0, Pout =
+18dBm(4)
Wi-Fi Tx 802.11n, HT 20M MCS7, Pout =
+14dBm(4)
43
GD32VW553xx Datasheet
Power Mode
Description
Consumption
unit
316
mA
265
mA
Wi-Fi Rx 802.11b, CCK 1Mbps, -90dBm(5)
99
mA
Wi-Fi Rx 802.11b, CCK 11Mbps,
-80Bm(5)
100
mA
Wi-Fi Rx 802.11g, OFDM 6Mbps,
-80dBm(5)
101
mA
Wi-Fi Rx 802.11g, OFDM 54Mbps,
-70dBm(5)
102
mA
Wi-Fi Rx 802.11n, HT 20M MCS0,
-75dBm(5)
100
mA
Wi-Fi Rx 802.11n, HT 20M MCS7,
-65dBm(5)
103
mA
Wi-Fi Rx 802.11ax, HE 20M MCS0,
-75dBm(5)
101
mA
Wi-Fi Rx 802.11ax, HE 20M MCS9,
-60dBm(5)
107
mA
MCU in Run mode(6)
37.6
mA
DTIM=1
1.4
mA
DTIM=3
0.55
mA
0.31
mA
TBD
μA
—
mA
Wi-Fi Tx 802.11ax, HE 20M MCS0, Pout =
+18dBm(4)
Wi-Fi Tx 802.11ax, HE 20M MCS9, Pout =
+12dBm(4)
Wi-Fi Sleep
Mild
Sleep(7)
DTIM=10
Hibernation
MCU in Standby
Shutdown
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
mode(8)
—
Below data are measured at antenna port of GD Wi-Fi Demo board.
Unless otherwise specified, all values given for TA condition and test result is mean value.
DC Power = 3.3 V, HXTAL = 40 MHz, System clock = 160 MHz.
Continuous Tx, Duty cycle = 100%.
Rx Packet Length = 1024 Bytes.
VDD = VDDA = 3.3 V, HXTAL = 40 MHz, System clock = 160 MHz, all peripherals enabled, except Wi-Fi.
The DTIM power consumption is equal to the average power consumption of multiple beacon intervals.
VDD = VDDA = 3.3 V, LXTAL off, IRC32K on, RTC on.
Table 4-9. Power consumption characteristics (2)(3)(4)(5)(6)
Symbol
Parameter
Conditions
Min Typ(1)
Max
Unit
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System clock = 160 MHz, All peripherals
—
35.52
—
mA
—
18.72
—
mA
—
28.26
—
mA
—
15.49
—
mA
—
25.74
—
mA
enabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System clock = 160 MHz, All peripherals
disabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
IDD+IDDA
System clock = 120 MHz, All peripherals
enabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System clock = 120 MHz, All peripherals
disabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System clock = 108 MHz, All peripherals
enabled
44
GD32VW553xx Datasheet
Symbol
Parameter
Conditions
Min Typ(1)
Max
Unit
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System clock = 108 MHz, All peripherals
—
14.24
—
mA
—
23.93
—
mA
—
13.55
—
mA
—
19.22
—
mA
—
12.74
—
mA
—
15.21
—
mA
—
10.61
—
mA
—
12.43
—
mA
—
7.55
—
mA
—
7.72
—
mA
—
5.03
—
mA
—
5.18
—
mA
—
3.37
—
mA
—
3.41
—
mA
—
2.51
—
mA
disabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System clock = 96 MHz, All peripherals
enabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System clock = 96 MHz, All peripherals
disabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System clock = 72 MHz, All peripherals
enabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System clock = 72 MHz, All peripherals
disabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System clock = 48 MHz, All peripherals
enabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System clock = 48 MHz, All peripherals
disabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System clock = 36 MHz, All peripherals
enabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System clock = 36 MHz, All peripherals
disabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System clock = 25 MHz, PLL off, All
peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System clock = 25 MHz, PLL off, All
peripherals disabled
VDD = VDDA = 3.3 V, use IRC16M, System
clock = 16 MHz, PLL off, All peripherals
enabled
VDD = VDDA = 3.3 V, use IRC16M, System
clock = 16 MHz, PLL off, All peripherals
disabled
VDD = VDDA = 3.3 V, use IRC16M, System
clock = 8 MHz, PLL off, All peripherals
enabled
VDD = VDDA = 3.3 V, use IRC16M, System
45
GD32VW553xx Datasheet
Symbol
Parameter
Conditions
Min Typ(1)
Max
Unit
clock = 8 MHz, PLL off, All peripherals
disabled
VDD = VDDA = 3.3 V, use IRC16M, System
clock = 4 MHz, PLL off, All peripherals
—
2.53
—
mA
—
2.08
—
mA
—
2.09
—
mA
—
1.86
—
mA
—
30.88
—
mA
—
14.09
—
mA
—
24.8
—
mA
—
12.01
—
mA
—
22.62
—
mA
—
11.11
—
mA
—
21.14
—
mA
—
10.77
—
mA
—
17.14
—
mA
—
9.25
—
mA
enabled
VDD = VDDA = 3.3 V, use IRC16M, System
clock = 4 MHz, PLL off, All peripherals
disabled
VDD = VDDA = 3.3 V, use IRC16M, System
clock = 2 MHz, PLL off, All peripherals
enabled
VDD = VDDA = 3.3 V, use IRC16M, System
clock = 2 MHz, PLL off, All peripherals
disabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 160 MHz, CPU clock off,
All peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 160 MHz, CPU clock off,
All peripherals disabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 120 MHz, CPU clock off,
All peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 120 MHz, CPU clock off,
All peripherals disabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 108 MHz, CPU clock off,
All peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 108 MHz, CPU clock off,
All peripherals disabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 96 MHz, CPU clock off, All
peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 96 MHz, CPU clock off, All
peripherals disabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 72 MHz, CPU clock off, All
peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 72 MHz, CPU clock off, All
46
GD32VW553xx Datasheet
Symbol
Parameter
Conditions
Min Typ(1)
Max
Unit
peripherals disabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 48 MHz, CPU clock off, All
—
13.82
—
mA
—
8.28
—
mA
—
11.40
—
mA
—
7.27
—
mA
—
7.02
—
mA
—
4.33
—
mA
—
4.39
—
mA
—
2.60
—
mA
—
3.02
—
mA
—
2.12
—
mA
—
2.32
—
mA
—
1.88
—
mA
—
1.98
—
mA
—
1.75
—
mA
peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 48 MHz, CPU clock off, All
peripherals disabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 36 MHz, CPU clock off, All
peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 36 MHz, CPU clock off, All
peripherals disabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 25 MHz, PLL off, CPU
clock off, All peripherals enabled
VDD = VDDA = 3.3 V, HXTAL = 25 MHz,
System Clock = 25 MHz, PLL off, CPU
clock off, All peripherals disabled
VDD = VDDA = 3.3 V, use IRC16M, System
Clock = 16 MHz, PLL off, CPU clock off, All
peripherals enabled
VDD = VDDA = 3.3 V, use IRC16M, System
Clock = 16 MHz, PLL off, CPU clock off, All
peripherals disabled
VDD = VDDA = 3.3 V, use IRC16M, System
Clock = 8 MHz, PLL off, CPU clock off, All
peripherals enabled
VDD = VDDA = 3.3 V, use IRC16M, System
Clock = 8 MHz, PLL off, CPU clock off, All
peripherals disabled
VDD = VDDA = 3.3 V, use IRC16M, System
Clock = 4 MHz, PLL off, CPU clock off, All
peripherals enabled
VDD = VDDA = 3.3 V, use IRC16M, System
Clock = 4 MHz, PLL off, CPU clock off, All
peripherals disabled
VDD = VDDA = 3.3 V, use IRC16M, System
Clock = 2 MHz, PLL off, CPU clock off, All
peripherals enabled
VDD = VDDA = 3.3 V, use IRC16M, System
Clock = 2 MHz, PLL off, CPU clock off, All
peripherals disabled
47
GD32VW553xx Datasheet
Symbol
Parameter
Min Typ(1)
Conditions
Max
Unit
VDD = VDDA = 3.3 V, LDO in normal power
and normal driver mode, IRC32K off, RTC
—
188.93
—
μA
—
170.50
—
μA
—
150.00
—
μA
—
130.77
—
μA
—
99.07
—
μA
—
3.30
—
μA
—
3.05
—
μA
—
2.73
—
μA
off, All GPIOs analog mode
VDD = VDDA = 3.3 V, LDO in low power and
normal driver mode, IRC32K off, RTC off,
All GPIOs analog mode
Supply current
(Deep-Sleep
VDD = VDDA = 3.3 V, LDO in normal power
and low driver mode, IRC32K off, RTC off,
All GPIOs analog mode
mode)
VDD = VDDA = 3.3 V, LDO in low power and
low driver mode, IRC32K off, RTC off, All
GPIOs analog mode
VDD = VDDA = 3.3 V, LDO in low power and
low driver mode, IRC32K off, RTC off, All
GPIOs analog mode, Wi-Fi、SRAM1、
SRAM2、SRAM3 sleep
VDD = VDDA = 3.3 V, LXTAL off, IRC32K on,
RTC on
Supply current VDD = VDDA = 3.3 V, LXTAL off, IRC32K on,
(Standby mode)
RTC off
VDD = VDDA = 3.3 V, LXTAL off, IRC32K off,
RTC off
(1)
(2)
(3)
(4)
(5)
(6)
4.4.
Based on characterization, not tested in production.
Unless otherwise specified, all values given for TA condition and test result is mean value.
When System Clock is greater than 16 MHz, a crystal 25 MHz is used, and the HXTAL bypass function
is closed, using PLL.
When analog peripheral blocks such as ADCs, HXTAL, LXTAL, IRC16M, or IRC32K are ON, an additional
power consumption should be considered.
With large margin, it will be adjusted according to the mass production data.
When Wi-Fi power off.
EMC characteristics
EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and
negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result
is given in Table 4-10. EMS characteristics, based on the EMS levels and classes
compliant with IEC 61000 series standard.
Table 4-10. EMS characteristics (1)
Symbol
VESD
Parameter
Voltage applied to all device pins to
induce a functional disturbance
Conditions
Level/Class
VDD = VDDA = AVDD33 = 3.3 V,
TA = 25 °C, Wi-Fi on, QFN40,
TBD
fHCLK = 160 MHz
48
GD32VW553xx Datasheet
Symbol
Parameter
Conditions
Level/Class
conforms to IEC 61000-4-2
Fast transient voltage burst applied to
VFTB
induce a functional disturbance through
100 pF on VDD and GND
(1)
4.5.
VDD = VDDA = AVDD33 = 3.3 V,
TA = 25 °C, Wi-Fi on, QFN40,
TBD
fHCLK = 160 MHz
conforms to IEC 61000-4-4
Based on characterization, not tested in production.
Power supply supervisor characteristics
Table 4-11. Power supply supervisor characteristics
Symbol
VLVD(1)
VLVDhyst(2)
VPOR(1)
VPDR(1)
VPDRhyst(2)
Parameter
Conditions
Min
Typ
Max
Unit
LVDT[2:0] = 000, rising edge
—
2.19
—
V
LVDT[2:0] = 000, falling edge
—
2.08
—
V
LVDT[2:0] = 001, rising edge
—
2.33
—
V
LVDT[2:0] = 001, falling edge
—
2.22
—
V
LVDT[2:0] = 010, rising edge
—
2.47
—
V
LVDT[2:0] = 010, falling edge
—
2.36
—
V
LVDT[2:0] = 011, rising edge
—
2.61
—
V
Low Voltage Detector
LVDT[2:0] = 011, falling edge
—
2.50
—
V
Threshold
LVDT[2:0] = 100, rising edge
—
2.75
—
V
LVDT[2:0] = 100, falling edge
—
2.64
—
V
LVDT[2:0] = 101, rising edge
—
2.90
—
V
LVDT[2:0] = 101, falling edge
—
2.79
—
V
LVDT[2:0] = 110, rising edge
—
3.04
—
V
LVDT[2:0] = 110, falling edge
—
2.92
—
V
LVDT[2:0] = 111, rising edge
—
3.17
—
V
LVDT[2:0] = 111, falling edge
—
3.06
—
V
—
—
100
—
mV
—
1.55
—
V
—
1.51
—
V
—
40
—
mV
LVD hysteresis
Power on reset
threshold
Power down reset
threshold
PDR hysteresis
—
49
GD32VW553xx Datasheet
Symbol
Parameter
tRSTTEMPO(2)
Reset temporization
(1)
(2)
4.6.
Conditions
Min
Typ
Max
Unit
—
2.6
—
ms
Based on characterization, not tested in production.
Guaranteed by design, not tested in production.
Electrical sensitivity
The device is strained in order to determine its performance in terms of electrical
sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample.
Static latch-up (LU) test is based on the two measurement methods.
Table 4-12. ESD characteristics (1)
Symbol
VESD(HBM)
VESD(CDM)
(1)
(2)
Parameter
Electrostatic discharge
voltage (human body model)
Electrostatic discharge
voltage (charge device model)
Conditions
Min
Typ
Max
Unit
—
—
TBD
V
—
—
TBD
V
Min
Typ
Max
Unit
—
—
TBD
mA
—
—
TBD
V
TA = 25 °C;
ESDA/JEDEC JS-0012017
TA = 25 °C;
ESDA/JEDEC JS-0022018
Based on characterization, not tested in production.
There is space for adjustment, it will be tested soon.
Table 4-13. Static latch-up characteristics (1)
Symbol
Parameter
Conditions
I-test
LU
TA = 25 °C; JESD78E
Vsupply over voltage
4.7.
(1)
Based on characterization, not tested in production.
(2)
There is space for adjustment, it will be tested soon.
External clock characteristics
Table 4-14. High speed external clock (HXTAL) generated from a crystal / ceramic
characteristics
(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fHXTAL
Frequency Range
—
19.2
40
52
MHz
CHXTAL
Crystal load Capacitance
—
9
10
12
pF
ESR
Equivalent Series Resistance
—
—
—
70
Ω
f_tol
Frequency tolerance
-20
—
20
ppm
tSUHXTAL(1)
Crystal startup time
—
0.75
—
ms
Initial and over
temperature
VDD = 3.3 V, TA = 25 °C,
fHXTAL = 40 MHz
Based on characterization, not tested in production.
50
GD32VW553xx Datasheet
Table 4-15. High speed external user clock characteristics (HXTAL in bypass
mode)
Symbol
Parameter
Conditions
Min
fHXTAL_ext
Frequency Range
—
—
40
—
MHz
VHXTAL
OSCIN Input Voltage
—
0.7
—
2.5
V
Ducy(HXTAL)
Duty cycle
—
45
50
55
%
@1kHz, fHXTAL = 40 MHz
—
—
-125 dBc/Hz
@10kHz fHXTAL = 40 MHz
—
—
-138 dBc/Hz
@100kHz fHXTAL = 40 MHz
—
—
-143 dBc/Hz
-20
—
PN
Phase Noise
f_tol
Frequency tolerance Initial and over temperature
Typ Max
20
Unit
ppm
Table 4-16. Low speed external clock (LXTAL) generated from a crystal / ceramic
characteristics
fLXTAL
(1)
Parameter
Conditions
Min
Typ
Max Unit
Crystal or ceramic frequency
VDD = 3.3 V
—
32.768
—
kHz
—
—
15
—
pF
Lower driving capability
—
4.5
—
—
6.5
—
Recommended matching
CLXTAL
(2)(3)
capacitance on OSC32IN
and OSC32OUT
Medium low driving
gm(2)
Oscillator transconductance
capability
Medium high driving
capability
Higher driving capability
VDD = VDDA = 3.3 V,
Lower driving capability
VDD = VDDA = 3.3 V, Medium
IDDLXTAL(1)
Crystal or ceramic operating
low driving capability
current
VDD = VDDA = 3.3 V, Medium
high driving capability
VDD = VDDA = 3.3 V, Higher
driving capability
tSULXTAL(1)(4)
(1)
(2)
(3)
(4)
Crystal or ceramic startup
time
VDD = 3.3 V
μA/V
—
13
—
—
19
—
—
0.8
—
—
0.94
—
μA
—
1.34
—
—
1.74
—
—
2
—
s
Based on characterization, not tested in production.
Guaranteed by design, not tested in production.
CLXTAL1 = CLXTAL2 = 2*(CLOAD - CS), For CLXTAL1 and CLXTAL2, it is recommended matching capacitance on
OSC32IN and OSC32OUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or
ceramic manufacturer. For CS, it is PCB and MCU pin stray capacitance.
tSULXTAL is the startup time measured from the moment it is enabled (by software) to the 32.768 kHz
oscillator stabilization flags is SET. This value varies significantly with the crystal manufacturer.
Table 4-17. Low speed external user clock characteristics (LXTAL in bypass
51
GD32VW553xx Datasheet
mode)
Symbol
Parameter
External clock source or
fLXTAL_ext(1)
oscillator frequency
4.8.
voltage
Typ
Max
Unit
VDD = 3.3 V
—
32.768
1000
kHz
0.7*VDD
—
—
VDD = 3.3 V
OSC32IN input pin low level
(2)
voltage
V
—
—
0.3*VDD
tH/L(LXTAL)(2)
OSC32IN high or low time
—
450
—
—
tR/F(LXTAL)(2)
OSC32IN rise or fall time
—
—
—
50
CIN(2)
OSC32IN input capacitance
—
—
5
—
pF
Duty cycle
—
30
—
70
%
Ducy(LXTAL)
(1)
(2)
Min
OSC32IN input pin high level
VLXTALH(2)
VLXTALL
Conditions
(2)
ns
Based on characterization, not tested in production.
Guaranteed by design, not tested in production.
Internal clock characteristics
Table 4-18. High speed internal clock (IRC16M) characteristics
Symbol
fIRC16M
Parameter
High Speed Internal Oscillator
(IRC16 M) frequency
Conditions
Min
VDD = VDDA = 3.3 V
—
16
—
MHz
-2.0
—
+2.0
%
-1.0
—
+1.0
%
—
—
0.5
—
%
VDD = VDDA = 3.3 V
45
50
55
%
VDD = VDDA = 3.3 V
—
70
—
μA
VDD = VDDA = 3.3 V
—
1.51
—
μs
2.7 V ≤ VDD = VDDA ≤ 3.63 V,
IRC16 M oscillator Frequency
TA = -40 °C ~ +105 °C(1)
accuracy, Factory-trimmed
VDD = VDDA = 3.3 V,
ACCIRC16M
TA = 25°C
IRC16 M oscillator Frequency
accuracy, User trimming step(1)
DucyIRC16M(2)
IDDAIRC16M(1)
tSUIRC16M(1)
(1)
(2)
IRC16 M oscillator duty cycle
IRC16 M oscillator operating
current
IRC16 M oscillator startup time
Typ Max Unit
Based on characterization, not tested in production.
Guaranteed by design, not tested in production.
Table 4-19. Low speed internal clock (IRC32K) characteristics
Symbol
Parameter
Low Speed Internal
fIRC32K(1)
oscillator (IRC32K)
frequency
IDDAIRC32K(2)
tSUIRC32K(2)
(1)
Conditions
Min
Typ
Max
Unit
—
32
—
kHz
VDD = VDDA = 3.3 V
—
0.31
—
μA
VDD = VDDA = 3.3 V
—
26.9
—
μs
VDD = VDDA = 3.3 V,
TA = -40 °C ~ +105 °C
IRC32K oscillator
operating current
IRC32K oscillator startup
time
Guaranteed by design, not tested in production.
52
GD32VW553xx Datasheet
(2)
4.9.
Based on characterization, not tested in production.
PLL characteristics
Table 4-20. PLLDIG characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fPLLIN(2)
PLL input clock frequency
—
19.2
40
52
MHz
fPLLOUT(2)
PLL output clock frequency
—
—
—
480
MHz
—
—
960
—
MHz
fVCO(2)
(1)
(2)
4.10.
PLL VCO output clock
frequency
tLOCK(1)
PLL lock time
—
—
—
50
μs
IDDA(1)
Current consumption
—
—
1.8
—
mA
JitterPLL(1)
Absolute RMS Jitter
XTAL freq = 40 MHz
—
8
—
ps
Based on characterization, not tested in production.
Guaranteed by design, not tested in production.
Memory characteristics
Table 4-21. Flash memory characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
TA = -40 °C ~ +105 °C
100
—
—
kcycles
Number of guaranteed
PECYC(1)
program /erase cycles
before failure(Endurance)
tRET(1)
Data retention time
—
—
20
—
years
tPROG(2)
word programming time
TA = -40 °C ~ +105 °C
—
1000
—
μs
tERASE(2)
Page(3) erase time
TA = -40 °C ~ +105 °C
—
100
—
ms
tMERASE(2)
Mass erase time
TA = -40 °C ~ +105 °C
—
12
—
s
(1)
(2)
(3)
4.11.
Based on characterization, not tested in production.
Guaranteed by design, not tested in production.
4KB.
NRST pin characteristics
Table 4-22. NRST pin characteristics
Symbol
VIL(NRST)
(1)
VIH(NRST)
(1)
Vhyst(1)
VIL(NRST)
(1)
VIH(NRST)
(1)
Vhyst(1)
VIL(NRST)
Conditions
Min
Typ
Max
0.3VDD
—
TBD
TBD
—
0.7VDD
Schmidt trigger Voltage hysteresis
—
370
—
NRST Input low level voltage
0.3VDD
—
TBD
TBD
—
0.7VDD
—
420
—
0.3VDD
—
TBD
TBD
—
0.7VDD
NRST Input low level voltage
NRST Input high level voltage
NRST Input high level voltage
VDD = VDDA = 1.8 V
VDD = VDDA = 3.3 V
Schmidt trigger Voltage hysteresis
(1)
VIH(NRST)
Parameter
(1)
NRST Input low level voltage
NRST Input high level voltage
VDD = VDDA = 3.6 V
Unit
V
mV
V
mV
53
V
GD32VW553xx Datasheet
Symbol
Vhyst
Rpu
(1)
(2)
(1)
Parameter
Conditions
Schmidt trigger Voltage hysteresis
(2)
—
Pull-up equivalent resistor
Min
Typ
Max
Unit
—
440
—
mV
—
40
—
kΩ
Based on characterization, not tested in production.
Guaranteed by design, not tested in production.
Figure 4-2. Recommended external NRST pin circuit
VDD
VDD
Ext ernal reset circuit
RPU
10 kΩ
NRST
K
100 nF
GND
4.12.
GPIO characteristics
Table 4-23. I/O port DC characteristics (1)(3)
Symbol
Parameter
Standard IO Low
VIL
level input voltage
5V-tolerant IO Low
level input voltage
Standard IO Low
VIH
level input voltage
5V-tolerant IO Low
level input voltage
VOL
(IO_speed = MAX)
VOL
(IO_speed = MAX)
VOH
(IO_speed = MAX)
VOH
Low level output
voltage for an IO Pin
(IIO = +8 mA)
Low level output
voltage for an IO Pin
(IIO = +20 mA)
High level output
voltage for an IO Pin
(IIO = +8 mA)
High level output
Conditions
Min
Typ
Max
Unit
1.8 V ≤ VDD ≤ 3.6 V
—
—
0.3 VDD
V
1.8 V ≤ VDD ≤ 3.6 V
—
—
0.3 VDD
V
1.8 V ≤ VDD ≤ 3.6 V
0.7 VDD
—
—
V
1.8 V ≤ VDD ≤ 3.6 V
0.7 VDD
—
—
V
VDD = 1.8V
—
0.14
—
V
VDD = 2.7V
—
0.11
—
VDD = 3.3V
—
0.10
—
VDD = 3.6V
—
0.10
—
VDD = 1.8V
—
0.41
—
VDD = 2.7V
—
0.27
—
VDD = 3.3V
—
0.25
—
VDD = 3.6V
—
0.25
—
VDD = 1.8V
—
1.59
—
VDD = 2.7V
—
2.56
—
VDD = 3.3V
—
3.17
—
VDD = 3.6V
—
3.47
—
VDD = 1.8V
—
1.17
—
V
V
V
V
V
V
54
GD32VW553xx Datasheet
Symbol
Parameter
Conditions
Min
Typ
Max
(IO_speed = MAX)
voltage for an IO Pin
VDD = 2.7V
—
2.32
—
(IIO = +20 mA)
VDD = 3.3V
—
2.96
—
VDD = 3.6V
—
3.28
—
VDD = 1.8V
—
0.20
—
VDD = 2.7V
—
0.14
—
VDD = 3.3V
—
0.13
—
VDD = 3.6V
—
0.13
—
VDD = 1.8V
—
0.70
—
VDD = 2.7V
—
0.37
—
VDD = 3.3V
—
0.33
—
VDD = 3.6V
—
0.32
—
VDD = 1.8V
—
1.50
—
VDD = 2.7V
—
2.51
—
VDD = 3.3V
—
3.12
—
VDD = 3.6V
—
3.43
—
VDD = 1.8V
—
0.94
—
VOL
(IO_speed = 25 MHz)
VOL
(IO_speed = 25 MHz)
VOH
(IO_speed = 25 MHz)
Low level output
voltage for an IO Pin
(IIO = +8 mA)
Low level output
voltage for an IO Pin
(IIO = +20 mA)
High level output
voltage for an IO Pin
(IIO = +8 mA)
Unit
V
V
V
V
V
V
V
High level output
voltage for an IO Pin
VOH
(IIO = +17 mA)
(IO_speed = 25 MHz)
High level output
VDD = 2.7V
—
2.16
—
voltage for an IO Pin
VDD = 3.3V
—
2.83
—
(IIO = +20 mA)
VDD = 3.6V
—
3.16
—
VDD = 1.8V
—
0.40
—
VDD = 2.7V
—
0.25
—
VDD = 3.3V
—
0.23
—
VDD = 3.6V
—
0.22
—
VDD = 1.8V
—
0.9
—
VOL
(IO_speed = 10 MHz)
Low level output
voltage for an IO Pin
(IIO = +8 mA)
V
V
V
V
Low level output
voltage for an IO Pin
VOL
(IIO = +12 mA)
(IO_speed = 10 MHz)
Low level output
VDD = 2.7V
—
0.54
—
voltage for an IO Pin
VDD = 3.3V
—
0.47
—
(IIO = +16 mA)
VDD = 3.6V
—
0.46
—
VDD = 1.8V
—
1.21
—
VDD = 2.7V
—
2.36
—
VDD = 3.3V
—
3.00
—
VDD = 3.6V
—
3.32
—
VDD = 1.8V
—
0.88
—
VOH
(IO_speed = 10 MHz)
High level output
voltage for an IO Pin
(IIO = +8 mA)
V
V
V
V
High level output
voltage for an IO Pin
VOH
(IIO = +10 mA)
(IO_speed = 10 MHz)
High level output
VDD = 2.7V
—
1.92
—
voltage for an IO Pin
VDD = 3.3V
—
2.66
—
(IIO = +16 mA)
VDD = 3.6V
—
3.00
—
Low level output
VDD = 1.8V
—
0.22
—
VOL
V
V
V
55
GD32VW553xx Datasheet
Symbol
Parameter
Conditions
Min
Typ
Max
VDD = 2.7V
—
0.15
—
VDD = 3.3V
—
0.14
—
VDD = 3.6V
—
0.13
—
VDD = 1.8V
—
0.56
—
Low level output
VDD = 2.7V
—
0.70
—
voltage for an IO Pin
VDD = 3.3V
—
0.59
—
VDD = 3.6V
—
0.57
—
VDD = 1.8V
—
1.49
—
VDD = 2.7V
—
2.51
—
VDD = 3.3V
—
3.13
—
VDD = 3.6V
—
3.44
—
VDD = 1.8V
—
0.99
—
(IO_speed = 2 MHz) voltage for an IO Pin
(IIO = +1 mA)
Unit
V
Low level output
voltage for an IO Pin
(IIO = +2 mA)
VOL
(IO_speed = 2 MHz)
(IIO = +4 mA)
VOH
(IO_speed = 2 MHz)
V
High level output
voltage for an IO Pin
(IIO = +1 mA)
V
V
V
High level output
voltage for an IO Pin
VOH
(IIO = +2 mA)
(IO_speed = 2 MHz)
High level output
VDD = 2.7V
—
1.73
—
voltage for an IO Pin
VDD = 3.3V
—
2.55
—
(IIO = +4 mA)
VDD = 3.6V
—
2.90
—
All pins
—
—
40
—
PU
—
—
10
—
All pins
—
—
40
—
PU
—
—
10
—
Internal
RPU
(2)
Internal
RPD
V
kΩ
pull-up
resistor
(2)
V
pull-down
resistor
kΩ
(1) Based on characterization, not tested in production.
(2) Guaranteed by design, not tested in production.
(3) All pins except PC13 / PC14 / PC15. Since PC13 to PC15 are supplied through the Power Switch, which
can only be obtained by a small current(typical source capability:3 mA shared between these IOs, but
sink capability is same as other IO), the speed of GPIOs PC13 to PC15 should not exceed 2 MHz when
they are in output mode (maximum load: 30 pF).
Table 4-24. I/O port AC characteristics (1)(2)
GPIOx_MDy[1:0] bit value(3)
Parameter
GPIOx_CTL->MDy[1:0]=10
Maximum
(IO_Speed = 2 MHz)
frequency(4)
GPIOx_CTL->MDy[1:0] = 01
Maximum
(IO_Speed = 10 MHz)
frequency(4)
GPIOx_CTL->MDy[1:0]=11
Maximum
(IO_Speed = 25 MHz)
frequency(4)
Conditions
Max
Unit
1.8 V ≤ VDD ≤ 3.6 V , CL = 10pF
3.47
1.8 V ≤ VDD ≤ 3.6 V , CL = 30pF
3.15
1.8 V ≤ VDD ≤ 3.6 V , CL = 50pF
2.77
1.8 V ≤ VDD ≤ 3.6 V , CL = 10pF
24.33
1.8 V ≤ VDD ≤ 3.6 V , CL = 30pF
20.41 MHz
1.8 V ≤ VDD ≤ 3.6 V , CL = 50pF
15.63
1.8 V ≤ VDD ≤ 3.6 V , CL = 10pF
142.45
1.8 V ≤ VDD ≤ 3.6 V , CL = 30pF
100.55 MHz
1.8 V ≤ VDD ≤ 3.6 V, CL = 50pF
48.38
MHz
56
GD32VW553xx Datasheet
GPIOx_MDy[1:0] bit
value(3)
GPIOx_CTL->MDy[1:0]=11(IO_S
peed = MAX)
(1)
(2)
(3)
(4)
Parameter
Maximum
frequency(4)
Conditions
Max
Unit
1.8 V ≤ VDD ≤ 3.6 V, CL = 10pF
246.91
1.8 V ≤ VDD ≤ 3.6 V , CL = 30pF
159.87 MHz
1.8 V ≤ VDD ≤ 3.6 V , CL = 50pF
117.79
Based on characterization, not tested in production.
Unless otherwise specified, all test results given for TA = 25 ℃.
The I/O speed is configured using the GPIOx_OSPD0->OSPDy [1:0] bits. Refer to the GD32VW553xx
user manual which is selected to set the GPIO port output speed.
The maximum frequency is defined in Figure 4-3, and maximum frequency cannot exceed 100 MHz.
Figure 4-3. I/O port AC characteristics definition
90%
EXTERNAL
OUTPUT
ON 50pF
90%
50%
50%
10%
tr(IO)out
10%
tf(IO)out
T
If (tr + tf) ≤ 2/3 T, then maximum frequency is achieved.
The duty cycle is (45%-55%) when loaded by 50 pF.
4.13.
ADC characteristics
Table 4-25. ADC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VDDA(2)
Operating voltage
—
1.62
3.3
3.6
V
VIN(2)
ADC input voltage range
—
0
—
VDDA
V
fADC(2)
ADC clock(3)
2.4 V ≤ VDDA ≤ 3.6 V
—
—
42
1.62 V ≤ VDDA ≤ 2.4 V
—
—
14
fS(2)
Sampling rate
12-bit
0.007
—
3
MSPS
VAIN(2)
Analog input voltage
9 external; 2 internal
0
—
VDDA
V
RAIN(2)
External input impedance
See Equation 1
—
—
178.8
kΩ
—
—
—
0.2
kΩ
—
—
6.57
pF
RADC(2)
CADC(2)
ts(2)
Input sampling switch
resistance
MHz
Input sampling
No pin / pad capacitance
capacitance
included
Sampling time
fADC(3) = 42 MHz
0.036
—
11.42
μs
12-bit
14
—
492
1 / fADC
—
—
—
1
μs
Total conversion
tCONV(2)
time(including sampling
time)
tSU(2)
(1)
(2)
(3)
Startup time
Based on characterization, not tested in production.
Guaranteed by design, not tested in production.
When the supply voltage of VDDA is 2.4V to 3.6V, the maximum frequency of fADC is 42 MHz, and when
the supply voltage of VDDA is 1.62V to 2.4V, the maximum frequency of fADC is 14 MHz.
57
GD32VW553xx Datasheet
Equation 1: RAIN max formula R AIN <
Ts
fADC *CADC *ln(2N+2 )
-R ADC
The formula above (Equation 1) is used to determine the maximum external impedance allowed
for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 4-26. ADC RAIN max for fADC = 42 MHz (1)
(1)
Ts(cycles)
ts(μs)
RAINmax(kΩ)
1.5
0.036
0.36
2.5
0.06
0.73
14.5
0.345
5.21
27.5
0.655
10.07
55.5
1.32
20.52
83.5
1.99
30.9
111.5
2.655
41.44
143.5
3.416
53.39
479.5
11.42
178.8
Based on characterization, not tested in production.
Table 4-27. ADC dynamic accuracy at f ADC = 42 MHz (1)
Symbol
Parameter
Test conditions
Min
Typ
Max
Unit
ENOB
Effective number of bits
fADC = 42 MHz,
—
11
—
bits
Signal-to-noise and distortion ratio
VDDA = 3.3 V,
—
68.21
—
Signal-to-noise ratio
Input Frequency = 20
—
68.39
—
—
-81.5
—
SNDR
SNR
kHz,
THD
(1)
Total harmonic distortion
Temperature = 25℃
dB
Based on characterization, not tested in production.
Table 4-28. ADC static accuracy at fADC = 42 MHz
Symbol
Parameter
Offset
Offset error
DNL
Differential linearity error
INL
Integral linearity error
(1)
4.14.
Test conditions
Typ(1) Max
fADC = 42 MHz,
VDDA = 3.3 V
±1
—
±0.9
—
±1.1
—
Unit
LSB
Based on characterization, not tested in production.
Temperature sensor characteristics
Table 4-29. Temperature sensor characteristics (1)
Symbol
Parameter
Min
Typ
Max
Unit
TL
VSENSE linearity with temperature
—
±1
—
℃
Avg_Slope
Average slope
—
4.3
—
mV/℃
V25
Voltage at 25 °C
—
1.42
—
V
Startup time
—
8
—
μs
ADC sampling time when reading the temperature
—
13.7
—
μs
tSTART
tS_temp
(1)
(2)
(2)
Based on characterization, not tested in production.
Shortest sampling time can be determined in the application by multiple iterations.
58
GD32VW553xx Datasheet
4.15.
I2C characteristics
Table 4-30. I2C characteristics (1)(2)(3)
Standard
Symbol
Parameter
Conditions
SCL clock high
tSCL(H)
time
mode
Fast mode
Fast mode
plus
Unit
Min
Max
Min
Max
Min
Max
—
4.0
—
0.6
—
0.2
—
μs
tSCL(L)
SCL clock low time
—
4.7
—
1.3
—
0.5
—
μs
tsu(SDA)
SDA setup time
—
250
—
100
—
50
—
ns
—
0(3)
3450
0
900
0
450
ns
—
—
1000
—
300
—
120
ns
—
—
300
3(4)(5)
300
3(4)(6)
120
ns
—
4.0
—
0.6
—
0.26
—
μs
—
4.7
—
0.6
—
0.26
—
μs
—
4.0
—
0.6
—
0.26
—
μs
—
4.7
—
1.3
—
0.5
—
μs
th(SDA)
SDA data hold time
SDA and SCL rise
tr(SDA/SCL)
time
SDA and SCL fall
tf(SDA/SCL)
time
Start condition hold
th(STA)
time
Repeated Start
ts(STA)
condition
setup time
Stop condition
ts(STO)
setup time
Stop to Start
tbuff
condition time (bus
free)
(1)
(2)
(3)
(4)
(5)
(6)
Guaranteed by design, not tested in production.
To ensure the standard mode I2C frequency, fPCLK1 must be at least 2 MHz. To ensure the fast mode I2C
frequency, fPCLK1 must be at least 4 MHz. To ensure the fast mode plus I2C frequency, f PCLK1 must be at
least a multiple of 10 MHz.
The external device should provide a data hold time of 300 ns at least in order to bridge the undefined
region of the falling edge of SCL.
Based on characterization, not tested in production.
In the condition of I2C frequency = 400 kHz, IO_Speed = 50 MHz and Pull-up resistor = 1 kΩ.
In the condition of I2C frequency = 1 MHz, IO_Speed = 50 MHz and Pull-up resistor = 1 kΩ.
Figure 4-4. I2C bus timing diagram
tsu(STA)
SDA
70%
30%
tf(SDA)
tr(SDA)
tSCL(H)
th(STA)
SCL
tbuff
th(SDA)
tsu(SDA)
70%
30%
tSCL(L)
tr(SCL)
tf(SCL)
tsu(STO)
59
GD32VW553xx Datasheet
4.16.
SPI characteristics
Table 4-31. Standard SPI characteristics (1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fSCK
SCK clock frequency
—
—
—
40
MHz
tSCK(H)
SCK clock high time
12.5
14.5
ns
12.5
14.5
ns
Master mode, fPCLKx = 160 MHz, 10.5
presc = 4
tSCK(L)
Master mode, fPCLKx = 160 MHz, 10.5
SCK clock low time
presc = 4
SPI master mode
tV(MO)
Data output valid time
—
—
—
TBD
ns
tSU(MI)
Data input setup time
—
4.4
—
—
ns
Data input hold time
—
0
—
—
ns
tH(MI)
SPI slave mode
(1)
tSU(NSS)
NSS enable setup time
—
0
—
—
ns
tH(NSS)
NSS enable hold time
—
2.3
—
—
ns
tA(SO)
Data output access time
—
—
TBD
—
ns
tDIS(SO)
Data output disable time
—
—
TBD
—
ns
tV(SO)
Data output valid time
—
—
TBD
—
ns
tSU(SI)
Data input setup time
—
0
—
—
ns
tH(SI)
Data input hold time
—
1.6
—
—
ns
Based on characterization, not tested in production.
Figure 4-5. SPI timing diagram - master mode
tSCK
SCK (CKPH=0 CKPL=0)
SCK (CKPH=0 CKPL=1)
SCK (CKPH=1 CKPL=0)
tSCK(H)
tSCK(L)
SCK (CKPH=1 CKPL=1)
tSU(MI)
MISO
D[0]
LF=1,FF16=0
D[7]
tH(MI)
MOSI
D[0]
D[7]
tV(MO)
tH(MO)
60
GD32VW553xx Datasheet
Figure 4-6. SPI timing diagram - slave mode
NSS
tSCK
tSU(NSS)
SCK (CKPH=0 CKPL=0)
tSCK(H)
SCK (CKPH=0 CKPL=1)
tSCK(L)
tH(NSS)
tH(SO)
tDIS(SO)
tV(SO)
tA(SO)
MISO
D[0]
D[7]
tSU(SI)
D[0]
MOSI
D[7]
tH(SI)
4.17.
USART characteristics
Table 4-32. USART characteristics (1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fSCK
SCK clock frequency
fPCLKx = 80MHz
—
—
40
MHz
tSCK(H)
SCK clock high time
fPCLKx = 80 MHz
12.50
—
—
ns
tSCK(L)
SCK clock low time
fPCLKx =80 MHz
12.50
—
—
ns
(1)
4.18.
Guaranteed by design, not tested in production.
TIMER characteristics
Table 4-33. TIMER characteristics (1)
Symbol
Parameter
tres
Timer resolution time
fEXT
Conditions
Min
Max
Unit
—
1
—
tCK_TIMERx
fCK_TIMERx = 160 MHz
6.25
—
ns
Timer external clock
—
0
fTIMERxCLK/2
MHz
frequency
fCK_TIMERx = 160 MHz
0
80
MHz
TIMERx except
RES
Timer resolution
16-bit counter clock period
tCOUNTER
when internal clock is
selected
(TIMER1& TIMER2)
—
16
bit
TIMER1& TIMER2
—
32
—
1
65536
0.00625
409.6
fCK_TIMERx = 160 MHz
tCK_TIMERx
μs
61
GD32VW553xx Datasheet
Symbol
Parameter
Conditions
Min
32-bit counter clock period
—
1
fCK_TIMERx = 160 MHz
—
—
—
fCK_TIMERx = 160 MHz
—
when internal clock is
selected
tMAX_COUNT
(1)
4.19.
Maximum possible count
(32-bit)
Max
Unit
65536 × 65536 tCK_TIMERx
26.84
65536 ×
65536× 65536
s
tCK_TIMERx
488.6
s
Guaranteed by design, not tested in production.
WDGT characteristics
Table 4-34. FWDGT min/max timeout period at 32 kHz (IRC32K)
Min timeout
Max timeout
RLD[11:0] =0x000
RLD[11:0] = 0xFFF
000
0.03125
511.90625
1/8
001
0.03125
1023.78125
1/16
010
0.03125
2047.53125
1/32
011
0.03125
4095.03125
1/64
100
0.03125
8190.03125
1/128
101
0.03125
16380.03125
1/256
110 or 111
0.03125
32760.03125
Prescaler divider
PSC[2:0] bits
1/4
(1)
(1)
Unit
ms
Guaranteed by design, not tested in production.
Table 4-35. WWDGT min-max timeout value at 40 MHz (fPCLK1) (1)
PSC[2:0]
1/1
00
102.4
1/2
01
204.8
1/4
10
409.6
1/8
11
819.2
(1)
4.20.
Min timeout value
Prescaler divider
CNT[6:0] = 0x40
Unit
Max timeout value
CNT[6:0] = 0x7F
Unit
6.55
μs
13.10
ms
26.21
52.42
Guaranteed by design, not tested in production.
Wi-Fi Radio characteristics
Below data are measured at GD32VW553xx RF pin.
Table 4-36. Transmitter power characteristics (1)(2)
Parameter
Tx Power
Rate
Typ
11b,1Mbps
22.3
11b,11Mbps
22.3
11g,6Mbps
20.9
11g,54Mbps
18.7
11n,HT20,MCS0
20.3
Unit
dBm
62
GD32VW553xx Datasheet
Parameter
(1)
(2)
Rate
Typ
11n,HT20,MCS7
18
11ax,HE20,MCS0
20.8
11ax,HE20,MCS9
15.6
Unit
Tx Power level is Limited by 802.11 Mask & EVM spec.
Based on characterization, not tested in production.
Table 4-37. Receiver sensitivity characteristics (1)
Parameter
Rx Sensitivity
Rate
Typ
11b,1Mbps
-100.3
11b,2Mbps
-96.9
11b,5.5Mbps
-94.8
11b,11Mbps
-91.8
11g,6Mbps
-95.2
11g,9Mbps
-94.5
11g,12Mbps
-93.4
11g,18Mbps
-90.5
11g,24Mbps
-87.8
11g,36Mbps
-84.8
11g,48Mbps
-80
11g,54Mbps
-78.7
11n,HT20,MCS0
-95.1
11n,HT20,MCS1
-92.6
11n,HT20,MCS2
-90.3
11n,HT20,MCS3
-87.2
11n,HT20,MCS4
-83.9
11n,HT20,MCS5
-79.5
11n,HT20,MCS6
-77.9
11n,HT20,MCS7
-76.2
11ax,HE20,MCS0
-94.9
11ax,HE20,MCS1
-92.1
11ax,HE20,MCS2
-89.7
11ax,HE20,MCS3
-86.3
11ax,HE20,MCS4
-83.2
11ax,HE20,MCS5
-78.7
11ax,HE20,MCS6
-77.5
11ax,HE20,MCS7
-76.2
11ax,HE20,MCS8
-71.5
11ax,HE20,MCS9
-69.7
11ax,HE20,MCS0-DCM
-95.1
11ax,HE20,MCS1-DCM
-94.6
11ax,HE20,MCS3-DCM
-89.9
11ax,HE20,MCS4-DCM
-86.8
Unit
dBm
63
GD32VW553xx Datasheet
Parameter
(1)
Rate
Typ
Unit
11ax,HE20,MCS0-ER
-95.6
11ax,HE20,MCS0-ER-106
-96.5
11ax,HE20,MCS0-ER-DCM
-96.5
11ax,HE20,MCS0-ER-DCM-106
-96.7
11ax,HE20,MCS1-ER
-92.6
11ax,HE20,MCS1-ER-DCM
-95.2
11ax,HE20,MCS2-ER
-90.1
Based on characterization, not tested in production.
Table 4-38. Rx Maximum Input Level (1)
Parameter
Rx Maximum Level Input
(1)
Rate
Typ
Unit
11b,1Mbps
>8.5
11b,11Mbps
>8.5
11g,6Mbps
>8.5
11g,54Mbps
TBD
11n,HT20,MCS0
>8.5
11n,HT20,MCS7
TBD
11ax,HE20,MCS0
>8.5
11ax,HE20,MCS9
TBD
dBm
Based on characterization, not tested in production.
Table 4-39. Adjacent Channel Rejection (1)(4)
Typ
Parameter
Interference pattern
Rate
by IQxel(2)
interference
45
TBD
11g, 6Mbps
30
TBD
11g, 54Mbps
11.5
TBD
11n, HT20,MCS0
27
TBD
11n,HT20,MCS7
10
TBD
11ax,HE20,MCS0
25
TBD
11ax,HE20,MCS9
-0.5
TBD
Rejection
Unit
pattern(3)
11b, 11Mbps
Adjacent Channel
4.21.
In-house
(1)
(2)
(3)
ACR result depends on interference source.
Waveform generated by LitePoint IQxel series instrument, gap = SIFS
Waveform generated by GD32VW553xx baseband, gap = SIFS
(4)
Based on characterization, not tested in production.
dB
Bluetooth LE Radio characteristics
Table 4-40. Transmitter Characteristics - Bluetooth LE 1 Mbps
Parameter
Conditions
RF transmit power
RF power control range
Min
-30
Typ
Max
Unit
5
15
dBm
64
GD32VW553xx Datasheet
Gain control step
—
1
—
dB
Max |fn|n=0, 1, 2, ..k
—
0.89
—
kHz
Carrier frequency
Max |f0 − fn|
—
1.53
—
kHz
offset and drift
Max |fn − fn−5|
—
0.74
—
kHz
|f1 − f0|
—
0.85
—
kHz
∆ f1avg
—
250.61
—
kHz
—
216.5
—
kHz
∆ f2avg/∆ f1avg
—
0.88
—
—
±2 MHz offset
—
-47
—
dBm
±3 MHz offset
—
-50
—
dBm
>±3 MHz offset
—
-51
—
dBm
Modulation
Min ∆f2max (for at least
characteristics
99.9% of all ∆f2max)
In-band spurious
emissions
Table 4-41. Transmitter Characteristics - Bluetooth LE 2 Mbps
Parameter
RF transmit power
Conditions
Min
Typ
Max
-30
5
15
dBm
Gain control step
—
1
—
dB
Max |fn|n=0, 1, 2, ..k
—
1.06
—
kHz
RF power control range
Unit
Carrier frequency offset
Max |f0 − fn|
—
1.58
—
kHz
and drift
Max |fn − fn−5|
—
0.78
—
kHz
|f1 − f0|
—
0.72
—
kHz
∆ f 1avg
—
499.8
—
kHz
—
436
—
kHz
∆ f2avg/∆ f1avg
—
0.89
—
—
±4 MHz offset
—
-48
—
dBm
±5 MHz offset
—
-51
—
dBm
>±5 MHz offset
—
-53
—
dBm
Modulation
Min ∆f2max (for at least
characteristics
99.9% of all ∆f2max)
In-band spurious
emissions
Table 4-42. Transmitter Characteristics - Bluetooth LE 125 Kbps
Parameter
RF transmit power
Carrier frequency offset
and drift
Modulation
characteristics
Conditions
Min
Typ
Max
Unit
-30
5
15
dBm
Gain control step
—
1
—
dB
Max |fn|n=0, 1, 2, ..k
—
0.47
—
kHz
Max |f0 − fn|
—
1.55
—
kHz
|fn − fn−3|
—
1.19
—
kHz
∆f1avg
—
251.38
—
kHz
—
248.18
—
kHz
RF power control range
Min ∆f1max (for at least
99.9% of all ∆f1max)
Table 4-43. Receiver Characteristics - Bluetooth LE 1 Mbps
Parameter
Conditions
Min
Typ
Max
Unit
Sensitivity @30.8%
—
—
-100.5
—
dBm
65
GD32VW553xx Datasheet
Parameter
Conditions
Min
Typ
Max
Unit
—
—
10
—
dBm
—
—
9
—
dB
F = F0 + 1 MHz
—
-2
—
dB
F = F0 – 1 MHz
—
-4
—
dB
F = F0 + 2 MHz
—
-31
—
dB
Adjacent channel
F = F0 – 2 MHz
—
-36
—
dB
selectivity C/I
F = F0 + 3 MHz
—
-37
—
dB
F = F0 – 3 MHz
—
-44
—
dB
F ≥ F0 + 4 MHz
—
-37
—
dB
F ≤ F0 – 4 MHz
—
-56
—
dB
Image frequency
+ 4 MHz
—
-37
—
dB
Adjacent channel to
F = Fimage + 1 MHz
—
-47
—
dB
image frequency
F = Fimage - 1 MHz
—
-37
—
dB
30 MHz ~ 2000 MHz
—
-5.5
—
dBm
Out-of-band blocking
2003 MHz ~ 2399 MHz
—
-8.5
—
dBm
performance
2484 MHz ~ 2997 MHz
—
-7.5
—
dBm
3000 MHz ~ 12.75 GHz
—
-5.5
—
dBm
—
—
-27
—
dBm
PER
Maximum received
signal @30.8% PER
Co-channel C/I
Intermodulation
Table 4-44. Receiver Characteristics - Bluetooth LE 2 Mbps
Parameter
Conditions
Min
Typ
Max
Unit
—
—
-97.5
—
dBm
—
—
10
—
dBm
—
—
8
—
dB
F = F0 + 2 MHz
—
-4
—
dB
F = F0 – 2 MHz
—
-7
—
dB
F = F0 + 4 MHz
—
-35
—
dB
Adjacent channel
F = F0 – 4 MHz
—
-48
—
dB
selectivity C/I
F = F0 + 6 MHz
—
-45
—
dB
F = F0 – 6 MHz
—
-53
—
dB
F ≥ F0 + 8 MHz
—
-53
—
dB
F ≤ F0 – 8 MHz
—
-55
—
dB
Image frequency
+ 4 MHz
—
-35
—
dB
Adjacent channel to
F = Fimage + 2 MHz
—
-45
—
dB
image frequency
F = Fimage - 2 MHz
—
-4
—
dB
30 MHz ~ 2000 MHz
—
-5.5
—
dBm
2003 MHz ~ 2399 MHz
—
-18.5
—
dBm
2484 MHz ~ 2997 MHz
—
-15.5
—
dBm
Sensitivity @30.8%
PER
Maximum received
signal @30.8% PER
Co-channel C/I
Out-of-band blocking
performance
66
GD32VW553xx Datasheet
Parameter
Intermodulation
Conditions
Min
Typ
Max
Unit
3000 MHz ~ 12.75 GHz
—
-15.5
—
dBm
—
—
-27
—
dBm
Table 4-45. Receiver Characteristics - Bluetooth LE 125 Kbps
Parameter
Conditions
Min
Typ
Max
Unit
—
—
-107.5
—
dBm
—
—
10
—
dBm
—
—
2
—
dB
F = F0 + 1 MHz
—
-14
—
dB
F = F0 – 1 MHz
—
-14
—
dB
F = F0 + 2 MHz
—
-30
—
dB
Adjacent channel
F = F0 – 2 MHz
—
-34
—
dB
selectivity C/I
F = F0 + 3 MHz
—
-32
—
dB
F = F0 – 3 MHz
—
-46
—
dB
F ≥ F0 + 4 MHz
—
-42
—
dB
F ≤ F0 – 4 MHz
—
-65
—
dB
Image frequency
+ 4 MHz
—
-42
—
dB
Adjacent channel to
F = Fimage + 1 MHz
—
-53
—
dB
image frequency
F = Fimage - 1 MHz
—
-32
—
dB
Sensitivity @30.8%
PER
Maximum received
signal @30.8% PER
Co-channel C/I
Table 4-46. Receiver Characteristics - Bluetooth LE 500 Kbps
Parameter
Conditions
Min
Typ
Max
Unit
—
—
-102
—
dBm
—
—
10
—
dBm
—
—
5
—
dB
F = F0 + 1 MHz
—
-9
—
dB
F = F0 – 1 MHz
—
-10
—
dB
F = F0 + 2 MHz
—
-29
—
dB
Adjacent channel
F = F0 – 2 MHz
—
-32
—
dB
selectivity C/I
F = F0 + 3 MHz
—
-32
—
dB
F = F0 – 3 MHz
—
-46
—
dB
F ≥ F0 + 4 MHz
—
-39
—
dB
F ≤ F0 – 4 MHz
—
-61
—
dB
Image frequency
+ 4 MHz
—
-39
—
dB
Adjacent channel to
F = Fimage + 1 MHz
—
-52
—
dB
image frequency
F = Fimage - 1 MHz
—
-32
—
dB
Sensitivity @30.8%
PER
Maximum received
signal @30.8% PER
Co-channel C/I
67
GD32VW553xx Datasheet
4.22.
Parameter conditions
Unless otherwise specified, all values given for VDD = VDDA = AVDD33_ANA = AVDD33_PA =
AVDD33_CLK = 3.3 V, TA = 25 ℃.
68
GD32VW553xx Datasheet
5.
Package information
5.1.
QFN40 package outline dimensions
Figure 5-1. QFN40 package outline
D2
L
D
40
1
1
PIN 1
Laser Mark
Ne
E2
2
E
2
h
h
40
K
DETAIL A
b
e
Nd
TOP VIEW
EXPOSED THERMAL
PAD ZONE
c
A1
A
b1
BOTTOM VIEW
SIDE VIEW
DETAIL A
Table 5-1. QFN40 package dimensions
Symbol
Min
Typ
Max
A
0.70
0.75
0.80
A1
—
0.02
0.05
b
0.15
0.20
0.25
b1
—
0.14
—
c
0.18
0.20
0.25
D
4.90
5.00
5.10
D2
3.30
3.40
3.50
E
4.90
5.00
5.10
E2
3.30
3.40
3.50
e
—
0.40
—
h
0.30
0.35
0.40
K
0.20
—
—
L
0.35
0.40
0.45
Nd
—
3.60
—
Ne
—
3.60
—
(Original dimensions are in millimeters)
69
GD32VW553xx Datasheet
Figure 5-2. QFN40 recommended footprint
5.70
31
40
4.10
1
0.125
3.85
5.70
3.35
0.25
30
3.35
10
11
20
21
0.40
0.80
(Original dimensions are in millimeters)
70
GD32VW553xx Datasheet
QFN32 package outline dimensions
Figure 5-3. QFN32 package outline
D2
eee C A B
b1
32
L
32
eee C A B
D
A
1
h
1
PIN 1#
(Lasermark)
2
K
E2
Ne
h
E
2
2X
aaa C
2X
aaa
b
e
B
C
Nd
TOP VIEW
BOTTOM VIEW
ddd M C A B
EXPOSED THERMAL
PAD ZONE
A
bbb C
C
A1
ccc
c
5.2.
C
SIDE VIEW
Table 5-2. QFN32 package dimensions
Symbol
Min
Typ
Max
A
0.80
0.85
0.90
A1
0
0.02
0.05
b
0.15
0.20
0.25
b1
—
0.14
—
c
—
0.152
—
D
3.90
4.00
4.10
D2
2.60
2.70
2.80
E
3.90
4.00
4.10
E2
2.60
2.70
2.80
e
—
0.40
—
h
0.30
0.35
0.40
K
—
0.35
—
L
0.25
0.30
0..35
Nd
—
2.80
—
Ne
—
2.80
—
aaa
—
0.10
—
bbb
—
0.10
—
ccc
—
0.08
—
ddd
—
0.10
—
eee
—
0.10
—
(Original dimensions are in millimeters)
71
GD32VW553xx Datasheet
Figure 5-4. QFN32 recommended footprint
4.70
25
32
3.30
R 0.125
1
3.05
4.70
2.65
0.25
24
2.65
8
16
9
17
0.70
0.40
(Original dimensions are in millimeters)
72
GD32VW553xx Datasheet
5.3.
Thermal characteristics
Thermal resistance is used to characterize the thermal performance of the package
device, which is represented by the Greek letter “θ”. For semiconductor devices,
thermal resistance represents the steady-state temperature rise of the chip junction
due to the heat dissipated on the chip surface.
θJA: Thermal resistance, junction-to-ambient.
θJB: Thermal resistance, junction-to-board.
θJC: Thermal resistance, junction-to-case.
ᴪJB: Thermal characterization parameter, junction-to-board.
ᴪJT: Thermal characterization parameter, junction-to-top center.
θJA =(TJ -TA )/PD
(5-1)
θJB =(TJ -TB )/PD
(5-2)
θJC =(TJ -TC )/PD
(5-3)
Where, TJ = Junction temperature.
TA = Ambient temperature
TB = Board temperature
TC = Case temperature which is monitoring on package surface
PD = Total power dissipation
θJA represents the resistance of the heat flows from the heating junction to ambient
air. It is an indicator of package heat dissipation capability. Lower θJA can be
considerate as better overall thermal performance. θJA is generally used to estimate
junction temperature.
θJB is used to measure the heat flow resistance between the chip surface and the
PCB board.
θJC represents the thermal resistance between the chip surface and the package top
case. θJC is mainly used to estimate the heat dissipation of the system (using heat
sink or other heat dissipation methods outside the device package).
Table 5-3. Package thermal characteristics(1)
Symbol
Condition
θJA
Natural convection, 2S2P PCB
θJB
Cold plate, 2S2P PCB
θJC
Cold plate, 2S2P PCB
Package
Value
QFN40
47.85
QFN32
51.44
QFN40
17.97
QFN32
18.71
QFN40
16.85
Unit
°C/W
°C/W
°C/W
73
GD32VW553xx Datasheet
Symbol
Condition
ᴪJB
Natural convection, 2S2P PCB
ᴪJT
Natural convection, 2S2P PCB
Package
Value
QFN32
21.85
QFN40
18.15
QFN32
17.69
QFN40
1.55
QFN32
0.99
Unit
°C/W
°C/W
(1): Thermal characteristics are based on simulation, and meet JEDEC specification.
74
GD32VW553xx Datasheet
6.
Ordering information
Table 6-1. Part ordering code for GD32VW553xx devices
Ordering code
Flash (KB)
Package
Package type
GD32VW553HMQ7
4096
QFN40
Green
GD32VW553HMQ6
4096
QFN40
Green
GD32VW553HIQ7
2048
QFN40
Green
GD32VW553HIQ6
2048
QFN40
Green
GD32VW553KMQ7
4096
QFN32
Green
GD32VW553KMQ6
4096
QFN32
Green
GD32VW553KIQ7
2048
QFN32
Green
GD32VW553KIQ6
2048
QFN32
Green
Temperature
operating range
Industrial
-40 °C to +105 °C
Industrial
-40 °C to +85 °C
Industrial
-40 °C to +105 °C
Industrial
-40 °C to +85 °C
Industrial
-40 °C to +105 °C
Industrial
-40 °C to +85 °C
Industrial
-40 °C to +105 °C
Industrial
-40 °C to +85 °C
75
GD32VW553xx Datasheet
7.
Revision history
Table 7-1. Revision history
Revision No.
Description
Date
1.0
Initial Release
Oct. 13, 2023
1.1
1. Update the flash size of GD32VW553HMQ6 in Table 2-1.
GD32VW553xx devices features and peripheral list.
Nov. 14, 2023
76
GD32VW553xx Datasheet
Important Notice
This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including
any product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property
laws and treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under
such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property
rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for
identification purposes only.
The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any
liability arising out of the application or use of any Product described in this document. Any information provided in this document
is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test
the functionality and safety of any application made of this information and any resulting product. Except for customized products
which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured
for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or
authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear
installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments,
transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including
resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the
failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses").
Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and
regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as
it’s suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the
Products. Customers shall indemnify and hold the Company as well as it’s suppliers and/or distributors harmless from and against
all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any
Unintended Uses of the Products.
Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,
corrections, modifications or improvements to this document and Products and services described herein at any time, without
notice.
© 2023 GigaDevice – All rights reserved
77