RTL8213B-CG
10/100/1000M Copper
to
100Base-FX/1000Base-X Fiber
Media Converter
DRAFT DATASHEET
(CONFIDENTIAL: Development Partners Only)
Rev. 1.0
30 Dec. 2018
Track ID: xxxx-xxxx-xx
Realtek Semiconductor Corp.
No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan
Tel.: +886-3-578-0211
Fax: +886-3-577-6047
www.realtek.com
RTL8213B
DRAFT Datasheet
COPYRIGHT
©2018 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any
means without the written permission of Realtek Semiconductor Corp.
DISCLAIMER
Realtek provides this document ‘as is’, without warranty of any kind. Realtek may make improvements
and/or changes in this document or in the product described in this document at any time. This document
could include technical inaccuracies or typographical errors.
TRADEMARKS
Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document
are trademarks/registered trademarks of their respective owners.
USING THIS DOCUMENT
This document is intended for the hardware and software engineer’s general information on the Realtek
RTL8213B IC.
Though every effort has been made to ensure that this document is current and accurate, more information
may have become available subsequent to the production of this guide.
ELECTROSTATIC DISCHARGE (ESD) WARNING
This product can be damaged by Electrostatic Discharge (ESD). When handling, care must be taken.
Damage due to inappropriate handling is not covered by warranty.
Do not open the protective conductive packaging until you have read the following, and are at an approved
anti-static workstation.
Use an approved anti-static mat to cover your work surface.
Use a conductive wrist strap attached to a good earth ground
Always discharge yourself by touching a grounded bare metal surface or approved anti-static mat before picking up
an ESD-sensitive electronic component
If working on a prototyping board, use a soldering iron or station that is marked as ESD-safe
Always disconnect the microcontroller from the prototyping board when it is being worked on
REVISION HISTORY
Revision
1.0
Release Date
2018/12/30
Summary
First Release.
Unmanaged Gigabit Media Converter
ii
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
Table of Contents
1.
GENERAL DESCRIPTION .................................................................................................................................................... 1
2.
FEATURES ................................................................................................................................................................................. 3
3.
SYSTEM APPLICATIONS ...................................................................................................................................................... 5
4.
APPLICATION EXAMPLES .................................................................................................................................................. 5
4.1.
UNMANAGED MEDIA CONVERTER ......................................................................................................................................................... 5
5.
BLOCK DIAGRAM .................................................................................................................................................................. 6
6.
PIN ASSIGNMENTS ................................................................................................................................................................ 7
6.1.
6.2.
7.
PIN DESCRIPTIONS ............................................................................................................................................................... 9
7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9.
8.
MEDIA DEPENDENT INTERFACE PINS ................................................................................................................................................ 9
HIGH SPEED SERIAL INTERFACE PINS ............................................................................................................................................... 9
GENERAL PURPOSE INTERFACES ........................................................................................................................................................ 9
LED PINS ................................................................................................................................................................................................ 9
CONFIGURATION STRAPPING PINS .................................................................................................................................................. 10
MANAGEMENT INTERFACE PINS ..................................................................................................................................................... 11
MISCELLANEOUS PINS ...................................................................................................................................................................... 11
EMBEDDED SWITCH REGULATOR PINS .......................................................................................................................................... 12
POWER AND GND PINS ..................................................................................................................................................................... 12
PHYSICAL LAYER FUNCTIONAL OVERVIEW ........................................................................................................... 13
8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.
8.10.
9.
PACKAGE IDENTIFICATION .................................................................................................................................................................. 7
PIN ASSIGNMENTS TABLE ................................................................................................................................................................... 8
MDI INTERFACE ................................................................................................................................................................................. 13
1000BASE-T TRANSMIT FUNCTION ............................................................................................................................................... 13
1000BASE-T RECEIVE FUNCTION................................................................................................................................................... 13
100BASE-TX TRANSMIT FUNCTION .............................................................................................................................................. 13
100BASE-TX RECEIVE FUNCTION.................................................................................................................................................. 14
10BASE-T TRANSMIT FUNCTION .................................................................................................................................................... 14
10BASE-T RECEIVE FUNCTION ....................................................................................................................................................... 14
AUTO-NEGOTIATION FOR UTP ........................................................................................................................................................ 14
CROSSOVER DETECTION AND AUTO CORRECTION ..................................................................................................................... 15
POLARITY CORRECTION .................................................................................................................................................................... 15
GENERAL FUNCTION DESCRIPTIONS ......................................................................................................................... 16
9.1.
RESET.................................................................................................................................................................................................... 16
9.1.1. Hardware Reset ............................................................................................................................................................................ 16
9.1.2. Software Reset............................................................................................................................................................................... 16
9.2.
IEEE 802.3X FULL DUPLEX FLOW CONTROL .............................................................................................................................. 17
9.3.
HALF DUPLEX FLOW CONTROL ...................................................................................................................................................... 17
9.3.1. Back-Pressure Mode ................................................................................................................................................................... 17
9.4.
SEARCH AND LEARNING ................................................................................................................................................................... 18
9.5.
SVL AND IVL/SVL ........................................................................................................................................................................... 18
Unmanaged Gigabit Media Converter
iii
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
9.6.
ILLEGAL FRAME FILTERING ............................................................................................................................................................. 18
9.7.
IEEE 802.3 RESERVED GROUP ADDRESSES FILTERING CONTROL .......................................................................................... 19
9.8.
BROADCAST/MULTICAST/UNKNOWN DA STORM CONTROL ................................................................................................... 20
9.9.
PORT SECURITY FUNCTION .............................................................................................................................................................. 20
9.10.
MIB COUNTERS .................................................................................................................................................................................. 20
9.11.
PORT MIRRORING ............................................................................................................................................................................... 20
9.12.
VLAN FUNCTION............................................................................................................................................................................... 21
9.12.1.
Port-Based VLAN ................................................................................................................................................................... 21
9.12.2.
IEEE 802.1Q Tag-Based VLAN .......................................................................................................................................... 21
9.12.3.
Protocol-Based VLAN ........................................................................................................................................................... 21
9.13.
QOS FUNCTION ................................................................................................................................................................................... 22
9.13.1.
Input Bandwidth Control ...................................................................................................................................................... 22
9.13.2.
Priority Assignment ............................................................................................................................................................... 22
9.13.3.
Priority Queue Scheduling ................................................................................................................................................... 23
9.13.4.
IEEE 802.1p/Q and DSCP Remarking .............................................................................................................................. 23
9.13.5.
ACL-Based Priority ............................................................................................................................................................... 23
9.14.
IEEE 802.1X FUNCTION ................................................................................................................................................................... 24
9.14.1.
Port-Based Access Control .................................................................................................................................................. 24
9.14.2.
Authorized Port-Based Access Control ............................................................................................................................. 24
9.14.3.
Port-Based Access Control Direction ................................................................................................................................ 24
9.14.4.
MAC-Based Access Control ................................................................................................................................................. 24
9.14.5.
MAC-Based Access Control Direction .............................................................................................................................. 24
9.14.6.
Optional Unauthorized Behavior ....................................................................................................................................... 24
9.15.
IEEE 802.1D FUNCTION ................................................................................................................................................................... 25
9.16.
REALTEK CABLE TEST (RTCT) ....................................................................................................................................................... 25
9.17.
LED INDICATORS ............................................................................................................................................................................... 26
9.18.
GREEN ETHERNET .............................................................................................................................................................................. 28
9.18.1.
Link-On and Cable Length Power Saving ........................................................................................................................ 28
9.18.2.
Link-Down Power Saving..................................................................................................................................................... 28
9.19.
REGULATOR ......................................................................................................................................................................................... 28
10.
INTERFACE DESCRIPTIONS ............................................................................................................................................ 29
10.1.
10.2.
10.3.
11.
MASTER I2C FOR EEPROM AUTO-LOAD .................................................................................................................................... 29
REALTEK SLAVE I2C-LIKE INTERFACE FOR EXTERNAL CPU TO ACCESS THE RTL8213B ................................................ 30
SLAVE MII MANAGEMENT SMI INTERFACE FOR EXTERNAL CPU TO ACCESS RTL8213B .............................................. 31
ELECTRICAL CHARACTERISTICS ................................................................................................................................ 32
11.1.
ABSOLUTE MAXIMUM RATINGS...................................................................................................................................................... 32
11.2.
RECOMMENDED OPERATING RANGE ............................................................................................................................................. 32
11.3.
THERMAL CHARACTERISTICS .......................................................................................................................................................... 33
11.3.1.
Assembly Description ............................................................................................................................................................ 33
11.3.2.
Material Properties ................................................................................................................................................................ 33
11.3.3.
Simulation Conditions ........................................................................................................................................................... 33
11.3.4.
Thermal Performance of QFN-56 on PCB Under Still Air Convection.................................................................... 34
11.4.
DC CHARACTERISTICS ...................................................................................................................................................................... 34
11.5.
SWITCH REGULATOR ......................................................................................................................................................................... 34
11.6.
AC CHARACTERISTICS ...................................................................................................................................................................... 35
Unmanaged Gigabit Media Converter
iv
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
11.6.1.
11.6.2.
11.6.3.
11.6.4.
11.6.5.
Master I2C for EEPROM Auto-load Interface Timing Characteristics .................................................................... 35
Slave I2C-like Mode Timing Characteristics ................................................................................................................... 36
Slave MII Management SMI for External CPU Access Interface Timing Characteristics ................................... 37
SGMII/1000Base-X Characteristics .................................................................................................................................. 38
Power and Reset Characteristics ....................................................................................................................................... 40
12.
MECHANICAL DIMENSIONS ............................................................................................................................................ 41
13.
ORDERING INFORMATION .............................................................................................................................................. 42
Unmanaged Gigabit Media Converter
v
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
List of Tables
TABLE 1. PIN ASSIGNMENTS TABLE ................................................................................................................................................................... 8
TABLE 2. MEDIA DEPENDENT INTERFACE PINS ............................................................................................................................................... 9
TABLE 3. HIGH SPEED SERIAL INTERFACE PINS............................................................................................................................................... 9
TABLE 4. GENERAL PURPOSE INTERFACES PINS .............................................................................................................................................. 9
TABLE 5. LED PINS ............................................................................................................................................................................................. 10
TABLE 6. CONFIGURATION STRAPPING PINS .................................................................................................................................................. 10
TABLE 7. MANAGEMENT INTERFACE PINS ..................................................................................................................................................... 11
TABLE 8. MISCELLANEOUS PINS ........................................................................................................................................................................... 11
TABLE 9. EMBEDDED SWITCH REGULATOR PINS .............................................................................................................................................. 12
TABLE 10. POWER AND GND PINS ....................................................................................................................................................................... 12
TABLE 11. MEDIA DEPENDENT INTERFACE PIN MAPPING .............................................................................................................................. 15
TABLE 12. RESERVED MULTICAST ADDRESS CONFIGURATION TABLE ........................................................................................................ 19
TABLE 13. LED DEFINITIONS ................................................................................................................................................................................ 26
TABLE 14. SLAVE MII MANAGEMENT SMI ACCESS FORMAT ........................................................................................................................ 31
TABLE 15. ABSOLUTE MAXIMUM RATINGS........................................................................................................................................................ 32
TABLE 16. RECOMMENDED OPERATING RANGE................................................................................................................................................ 32
TABLE 17. ASSEMBLY DESCRIPTION .................................................................................................................................................................... 33
TABLE 18. MATERIAL PROPERTIES ....................................................................................................................................................................... 33
TABLE 19. SIMULATION CONDITIONS .................................................................................................................................................................. 33
TABLE 20. THERMAL PERFORMANCE OF QFN-56 ON PCB UNDER STILL AIR CONVECTION ................................................................. 34
TABLE 21. DC CHARACTERISTICS ........................................................................................................................................................................ 34
TABLE 22. SWITCH REGULATOR ........................................................................................................................................................................... 34
TABLE 23. MASTER I2C FOR EEPROM AUTO-LOAD TIMING CHARACTERISTICS .................................................................................... 35
TABLE 24. SLAVE I2C-LIKE MODE TIMING CHARACTERISTICS ..................................................................................................................... 36
TABLE 25. MDIO TIMING CHARACTERISTICS AND REQUIREMENT .............................................................................................................. 37
TABLE 26. SGMII/1000BASE-X DIFFERENTIAL TRANSMITTER CHARACTERISTICS ................................................................................. 38
TABLE 27. SGMII/1000BASE-X DIFFERENTIAL RECEIVER CHARACTERISTICS ........................................................................................ 39
TABLE 28. POWER AND RESET CHARACTERISTICS ........................................................................................................................................... 40
TABLE 29. ORDERING INFORMATION ................................................................................................................................................................... 42
Unmanaged Gigabit Media Converter
vi
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
List of Figures
FIGURE 1. UNMANAGED MEDIA CONVERTER ................................................................................................................................................... 5
FIGURE 2. BLOCK DIAGRAM ................................................................................................................................................................................ 6
FIGURE 3. PIN ASSIGNMENTS (QFN-40)............................................................................................................................................................ 7
FIGURE 4. CONCEPTUAL EXAMPLE OF POLARITY CORRECTION................................................................................................................ 15
FIGURE 5. PROTOCOL-BASED VLAN FRAME FORMAT AND FLOW CHART ............................................................................................. 22
FIGURE 6. PULL-UP AND PULL-DOWN OF LED PINS FOR SINGLE-COLOR LED .................................................................................... 27
FIGURE 7. PULL-UP AND PULL-DOWN OF LED PINS FOR BI-COLOR LED ............................................................................................. 27
FIGURE 8. SMI START AND STOP COMMAND ................................................................................................................................................. 29
FIGURE 9. MASTER I2C FOR EEPROM AUTO-LOAD INTERFACE CONNECTION EXAMPLE ................................................................. 29
FIGURE 10. 8-BIT EEPROM SEQUENTIAL READ .............................................................................................................................................. 29
FIGURE 11. REALTEK SLAVE I2C-LIKE FOR EXTERNAL CPU ACCESS INTERFACE CONNECTION EXAMPLE........................................ 30
FIGURE 12. REALTEK SLAVE I2C-LIKE INTERFACE WRITE COMMAND ........................................................................................................ 30
FIGURE 13. REALTEK SLAVE I2C-LIKE INTERFACE READ COMMAND.......................................................................................................... 30
FIGURE 14. SLAVE MII MANAGEMENT SMI INTERFACE CONNECTION EXAMPLE ..................................................................................... 31
FIGURE 15. MASTER I2C FOR EEPROM AUTO-LOAD TIMING CHARACTERISTICS ................................................................................... 35
FIGURE 16. SCK/SDA POWER ON TIMING ......................................................................................................................................................... 35
FIGURE 17. SLAVE I2C-LIKE MODE TIMING CHARACTERISTICS.................................................................................................................... 36
FIGURE 18. MDIO SOURCED BY THE MASTER .................................................................................................................................................. 37
FIGURE 19. MDIO SOURCED BY THE RTL8213B (SLAVE) ............................................................................................................................. 37
FIGURE 20. SGMII/1000BASE-X DIFFERENTIAL TRANSMITTER EYE DIAGRAM ....................................................................................... 38
FIGURE 21. SGMII/1000BASE-X DIFFERENTIAL RECEIVER EYE DIAGRAM .............................................................................................. 39
FIGURE 22. POWER AND RESET CHARACTERISTICS .......................................................................................................................................... 40
Unmanaged Gigabit Media Converter
vii
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
1.
General Description
The RTL8213B-CG is a QFN40, high-performance media converter featuring low-power integrated 1-port
Giga-PHY that support 1000Base-T, 100Base-TX, and 10Base-T.
For specific applications, the RTL8213B supports one SerDes interface that could be configured as a
SGMII/1000Base-X/100FX interface. The RTL8213B integrates a SRAM for packet buffering, nonblocking switch fabric, and internal register management into a single CMOS device. Only a 25MHz crystal
is required; an optional EEPROM is offered for internal register configuration.
The embedded packet storage SRAM in the RTL8213B features superior memory management technology
to efficiently utilize memory space. The RTL8213B integrates a 2048-entry look-up table with a 4-way
XOR Hashing algorithm for address searching and learning. The table provides read/write access from the
Slave I2C-like serial Interface, or Slave Media Independent Interface Management (MIIM) Interface. Each
of the entries can be configured as a static entry. Normal entry aging time is between 200 and 400 seconds.
Sixteen Filtering Databases are used to provide Independent VLAN Learning and Shared VLAN Learning
(IVL/SVL) functions.
The Extension GMAC1 of the RTL8213B implements a 1000Base-X/100Base-FX interface.
The RTL8213B supports standard 802.3x flow control frames for full duplex, and optional backpressure
for half duplex. It determines when to invoke the flow control mechanism by checking the availability of
system resources, including the packet buffers and transmitting queues. The RTL8213B supports
broadcast/multicast output dropping, and will forward broadcast/multicast packets to non-blocked ports
only. For IP multicast applications, the RTL8213B can forward IPv4 IGMPv1/v2/v3 and IPv6 MLDv1/v2
snooping protocol packets.
In order to support flexible traffic classification, the RTL8213B supports 48-entry ACL rule check and
multiple actions options. Each port can optionally enable or disable the ACL rule check function. The ACL
rule key can be based on packet physical port, Layer2, Layer3, and Layer4 information. When an ACL rule
matches, the action taken is configurable to Drop/Permit/Redirect/Mirror, change priority value in 802.1q/Q
tag, force output tag format and rate policing. The rate policing mechanism supports from 8Kbps to 1Gbps
(in 8Kbps steps).
In Bridge operation the RTL8213B supports 16 sets of port configurations: disable, block, learning, and
forwarding for Spanning Tree Protocol and Multiple Spanning Tree Protocol. To meet security and
management application requirements, the RTL8213B supports IEEE 802.1x Port-based/MAC-based
Access Control. A 1-set Port Mirroring function is configured to mirror traffic (RX, TX, or both) appearing
on one of the switch’s ports. Support is provided on each port for multiple RFC MIB Counters, for easy
debug and diagnostics.
To improve real-time and multimedia networking applications, the RTL8213B supports eight priority
assignments for each received packet. These are based on (1) Port-based priority; (2) 802.1p/Q VLAN tag
priority; (3) DSCP field in IPv4/IPv6 header; and (4) ACL-assigned priority. Each output port supports a
weighted ratio of eight priority queues to fit bandwidth requirements in different applications. The input
bandwidth control function helps limit per-port traffic utilization. There is one leaky bucket for average
packet rate control for each queue of all ports. Queue scheduling algorithm can use Strict Priority (SP) or
Weighted Fair Queue (WFQ) or Weighted Round Robin (WRR) or mixed.
Unmanaged Gigabit Media Converter
1
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
The RTL8213B provides a 4096-entry VLAN table for 802.1Q port-based, tag-based, and protocol-based
VLAN operation to separate logical connectivity from physical connectivity. The RTL8213B supports four
Protocol-based VLAN configurations that can optionally select EtherType, LLC, and RFC1042 as the
search key. Each port may be set to any topology via EEPROM upon reset, or Slave I2C-like serial Interface,
or Slave Media Independent Interface Management (MIIM) Interface after reset.
Unmanaged Gigabit Media Converter
2
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
2.
Features
Embedded single-port 10/100/1000Base-T PHY
Each port supports full duplex 10/100/1000M
connectivity (half duplex only supported in
10/100M mode)
2048-entry MAC address table with 4-way hash
algorithm
Up to 2048-entry L2/L3 Filtering Database
Per-port MAC learning limitation
System base MAC learning limitation
Extra Interface (Extension GMAC1) supports
SGMII (1.25Gbps) Interface
1000Base-X Interface
Supports
Spanning
configuration
Full-duplex and half-duplex operation with IEEE
802.3x flow control and backpressure
Supports 9216-byte jumbo
forwarding at wire speed
Realtek Cable Test (RTCT) function
Supports 48-entry ACL Rules
packet
length
Layer3, and Layer4 information
Actions include mirror, redirect, dropping,
IEEE 802.1s Multiple Spanning Tree with up to
16 Spanning Tree instances
Supports IEEE 802.1x Access Control Protocol
Port-Based Access Control
Supports Auto protection from Denial-of-Service
attacks
Supports trap IGMP/MLD packets to external CPU
Supports Quality of Service (QoS)
priority adjustment, traffic policing, CVLAN
decision, and SVLAN assignment
Supports per port Input Bandwidth Control
Traffic classification based on IEEE 802.1p/Q
Supports five types of user defined ACL rule
priority definition, physical Port, IP DSCP field,
ACL definition, VLAN based priority, MAC
based priority and SVLAN based priority
format for 48 ACL rules
Optional per-port enable/disable of ACL function
Eight Priority Queues per port
Optional setting of per-port action to take when
ACL mismatch
Per queue flow control
Supports IEEE 802.1Q VLAN
Min-Max Scheduling
Supports 4096 VLANs and 32 Extra Enhanced
Strict Priority and Weighted Fair Queue (WFQ),
VLANs
Weighted Round
scheduling
Supports Un-tag definition in each VLAN
Protocol-based
Per-port and per-VLAN egress VLAN tagging
and un-tagging
Supports IVL, SVL, and IVL/SVL
Unmanaged Gigabit Media Converter
packet
Supports rate limiting (12 shared meters, with
8kbps granulation)
Supports RFC MIB Counter
VLAN
Up to 4 Protocol-based VLAN entries
(WRR)
rate of each queue
decision
and
Robin
One leaky bucket to constrain the average packet
Supports VLAN policing and VLAN forwarding
Tag-based,
Behavior
MAC-Based Access Control
Search keys support physical port, Layer2,
Port-based,
Port
IEEE 802.1w Rapid Spanning Tree
100FX Interface
Tree
MIB-II (RFC 1213)
Ethernet-Like MIB (RFC 3635)
Interface Group MIB (RFC 2863)
3
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
RMON (RFC 2819)
Bridge MIB (RFC 1493)
protects system from attack by hackers
Bridge MIB Extension (RFC 2674)
Supports Stacking VLAN and Port Isolation with
eight Enhanced Filtering Databases
Supports IEEE 802.1ad Stacking VLAN
Supports 64 SVLANs
Supports MAC-based 1:N VLAN
Supports Port Mirror function for one monitor port
for multiple mirroring ports
Link-On Cable Length Power Saving
Link-Down Power Saving
Port 3 supports 3 parallel LED outputs
Port 6 supports 2 parallel LED outputs
Supports Slave I2C-like interface or Slave MII
Management interface to access configuration
register
Supports
2K-byte
configuration
Build in 3.3V to 1.1V switch regulator with power
MOS
25MHz crystal or 3.3V OSC input
5x5 QFN 40-pin package
Security Filtering
Disable learning for each port
Disable learning-table aging for each port
Drop unknown DA for each port
Broadcast/Multicast/Unknown DA storm control
Unmanaged Gigabit Media Converter
Supports Realtek Green Ethernet features
4
EEPROM
space
Track ID: xxxx-xxxx-xx
for
Rev. 1.0
RTL8213B
Datasheet
3.
4.
System Applications
Unmanaged Media converter
Application Examples
4.1. Unmanaged Media Converter
CPU
Address Table
MIB Counter
Packet Buffer
Queue Manager
ALE
Configuration
Slave SMI/
I2C-Like
ACL
Giga
MAC 3
Extension
GMAC 1
EEPROM
Giga
PHY 3
1000Base-X/100Base-FX
RJ-45
Jack
SFP
Figure 1.
Unmanaged Gigabit Media Converter
Unmanaged Media Converter
5
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
5.
Block Diagram
RTL8213B Block Diagram
UTP
Giga-PHY
PCS
SRAM
Controller
Queue
Managment
SGMII
(1.25Gbps)
Extension
GMAC
1
SerDes
1000Base-X/
100Base-FX
SWR
P3
GMAC
Lookup
Engine
3.3V to 1.1V
SWR
Packet Buffer
SRAM
Linking Lists
2048 MAC
Address Table
4096 VLAN
Table
LED
LED
PLL
I2C Host
SCK/SDA
MDC/MDIO
25MHz
Crystal
Figure 2.
Unmanaged Gigabit Media Converter
Management
Interface
Control
Registers
+
MIB Counter
Block Diagram
6
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
XTALI
XTALO
AVDDH
GPO52/P3LED0/SMI_SEL
GPIO51/P3LED1
GPO50/P3LED2/EN_PHY
GPIO48/P6LED0/MID29
GPO45/P6LED1/DISAUTOLOAD
DVDDL
DVDDIO
30
29
28
27
26
25
24
23
22
21
Pin Assignments
GND_SWR
P3MDIAP
36
EN_SWR
P3MDIAN
37
RTL8213B
15
14
AVDDH
P3MDIBP
38
13
HSIN
P3MDIBN
39
XXXXXXX GXXXB
12
HSIP
AVDDL
40
11
SVDDL
QFN40
E-PAD: GND
EPAD Size 3.7mm x 3.7mm
Figure 3.
10
16
HSOP
35
9
AVDDH
HSON
LX
8
17
DVDDL
34
7
PLLVDDL
AVDDH
LX
6
18
AVDDL
33
5
nRESET
MDIREF
HV_SWR
4
19
P3MDIDN
32
3
SCK
P3MDIDP
HV_SWR
2
20
P3MDICN
31
1
SDA
P3MDICP
6.
Package Size 5mm x 5mm
Pin Assignments (QFN-40)
6.1. Package Identification
Green package is indicated by the ‘G’ in GXXX (Figure 3).
Unmanaged Gigabit Media Converter
7
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
6.2. Pin Assignments Table
Upon Reset: Defined as a short time after the end of a hardware reset.
After Reset: Defined as the time after the specified ‘Upon Reset’ time.
I: Input Pin
AI: Analog Input Pin
O: Output Pin
AO: Analog Output Pin
I/O: Bi-Directional Input/Output Pin
AI/O: Analog Bi-Directional Input/Output Pin
P: Digital Power Pin
AP: Analog Power Pin
G: Digital Ground Pin
AG: Analog Ground Pin
IPU: Input Pin With Pull-Up Resistor;
OPU: Output Pin With Pull-Up Resistor;
(Typical Value = 75K Ohm)
(Typical Value = 75K Ohm)
Name
P3MDICP
P3MDICN
P3MDIDP
P3MDIDN
MDIREF
AVDDL
AVDDH
DVDDL
HSON
HSOP
SVDDL
HSIP
HSIN
AVDDH
EN_SWR
GND_SWR
LX
LX
HV_SWR
HV_SWR
Unmanaged Gigabit Media Converter
Table 1.
Pin Assignments Table
Pin
Type
Name
No.
1
AI/O
DVDDIO
2
AI/O
DVDDL
3
AI/O
GPO45/P6LED1/DISAUTOLOAD
4
AI/O
GPO48/P6LED0/MID29
5
AO
GPO50/P3LED2/EN_PHY
6
AP
GPIO51/P3LED1
7
AP
GPO52/P3LED0 /SMI_SEL
8
P
AVDDH
9
AO
XTALO
10
AO
XTALI
11
AP
SDA/MDIO
12
AI
SCK/MDC
13
AI
nRESET
14
AP
PLLVDDL
15
AI
AVDDH
16
AG
P3MDIAP
17
AO
P3MDIAN
18
AO
P3MDIBP
19
AP
P3MDIBN
20
AP
AVDDL
8
Pin
No.
21
22
Type
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
I/OPU
I/OPU
I/OPU
I/OPU
I/OPU
AP
AO
AI
I/O
I/O
IPU
AP
AP
AI/O
AI/O
AI/O
AI/O
AP
Track ID: xxxx-xxxx-xx
P
P
Rev. 1.0
RTL8213B
DRAFT Datasheet
7.
Pin Descriptions
7.1. Media Dependent Interface Pins
Pin Name
P3MDIAP/N
P3MDIBP/N
P3MDICP/N
P3MDIDP/N
7.2.
High Speed Serial Interface Pins
Pin Name
HSOP/N
HSIP/N
Table 2.
Media Dependent Interface Pins
Drive
Pin No. Type
Description
(mA)
36
AI/O
10
Port 3 Media Dependent Interface A~D.
For 1000Base-T operation, differential data from the media is transmitted
37
and received on all four pairs. For 100Base-TX and 10Base-T operation,
38
only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs
39
MDIAP/N and MDIBP/N.
1
2
Each of the differential pairs has an internal 100-ohm termination resistor.
3
4
Table 3.
High Speed Serial Interface Pins
Drive
Pin No. Type
Description
(mA)
10
AO
10
High Speed Serial Output Pins: 125MHz/1.25GHz Differential serial
interface to transmit data. Keep floating when unused.
9
12
AI
10
High Speed Serial Input Pins: 125MHz/1.25GHz Differential serial
interface to receive data. Keep floating when unused.
13
7.3. General Purpose Interfaces
Table 4.
Pin No.
23
24
25
26
27
General Purpose Interfaces Pins
Other
Configuration
GPIO
Function
Strapping
GPO45
P6LED1
DISAUTOLOAD
GPO48
P6LED0
MID29
GPO50
P3LED2
EN_PHY
GPIO51
P3LED1
GPO52
P3LED0
SMI_SEL
7.4. LED Pins
The RTL8213B LED Pins work in parallel mode. LED0, LED1, LED2 of Port 3 and LED0, LED1 of Port
6 indicate information that can be defined via register or EEPROM.
When the LED pin is pulled low, the LED output polarity will be high active. When the LED pin is pulled
high, the LED output polarity will change from high active to low active. See section 9.17 LED Indicators,
page 26 for more details.
Unmanaged Gigabit Media Converter
9
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
Table 5.
Pin Name
Pin No. Type
P3LED2/
GPO50/
EN_PHY
P3LED1/
GPIO51
25
I/OPU
26
I/OPU
P3LED0/
GPO52/
SMI_SEL
P6LED1/
GPO45/
DISAUTOLOAD
P6LED0/
GPO48/
MID29
27
I/OPU
23
I/OPU
24
I/OPU
LED Pins
Drive
Description
(mA)
P3LED2 Output Signal.
P3LED2 indicates information is defined by register or EEPROM.
See section 9.17 LED Indicators, page 26 for more details.
P3LED1 Output Signal.
P3LED1 indicates information is defined by register or EEPROM.
See section 9.17 LED Indicators, page 26 for more details.
P3LED0 Output Signal.
P3LED0 indicates information is defined by register or EEPROM.
See section 9.17 LED Indicators, page 26 for more details.
P6LED1 Output Signal.
P6LED1 indicates information is defined by register or EEPROM.
See section 9.17 LED Indicators, page 26 for more details.
P6LED0 Output Signal.
P6LED0 indicates information is defined by register or EEPROM.
See section 9.17 LED Indicators, page 26 for more details.
7.5. Configuration Strapping Pins
Pin Name
DISAUTOLOAD/
GPO45/
P6LED1
MID29/
GPO48/
P6LED0
EN_PHY/
GPO50/
P3LED2
Table 6.
Configuration Strapping Pins
Pin No. Type Description
23
I/OPU Disable EEPROM Autoload.
Pull Up: Disable EEPROM autoload
Pull Down: Enable EEPROM autoload
Note 1: This pin must be kept floating, or pulled high or low via an external 4.7k
ohm resistor upon power on or reset.
When this pin is pulled low, the LED output polarity will be high active. When this
pin is pulled high, the LED output polarity will change from high active to low active.
See section 9.17 LED Indicators, page 26 for more details.
24
I/OPU Slave SMI (MDC/MDIO) Device Address.
Pull Up: Slave SMI (MDC/MDIO) Device Address is d’29
Pull Down: Slave SMI (MDC/MDIO) Device Address is 0
Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm
resistor upon power on or reset.
25
I/OPU Enable Embedded PHY.
Pull Up: Enable embedded PHY
Pull Down: Disable embedded PHY
Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm
resistor upon power on or reset.
When this pin is pulled low, the LED output polarity will be high active. When this
pin is pulled high, the LED output polarity will change from high active to low active.
See section 9.17 LED Indicators, page 26 for more details.
Unmanaged Gigabit Media Converter
10
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
Pin Name
SMI_SEL/
GPO52/
P3LED0
Pin No. Type Description
27
I/OPU Slave I2C-like/Slave MII Management Interface Selection.
Pull Up: Slave I2C-like interface
Pull Down: Slave MII Management interface
Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm
resistor upon power on or reset.
When this pin is pulled low, the LED output polarity will be high active. When this
pin is pulled high, the LED output polarity will change from high active to low active.
See section 9.17 LED Indicators, page 26 for more details.
7.6. Management Interface Pins
Pin Name
SCK/
MDC
SDA/
MDIO
Table 7.
Management Interface Pins
Pin No. Type Description
32
I/O Master I2C Interface Clock for EEPROM auto-download.
Slave I2C Interface Clock for external CPU to access DUT.
Slave MII Management Interface Clock (selected via the hardware strapping
SMI_SEL).
31
I/O Master I2C Interface Data for EEPROM auto-download.
Slave I2C Interface Data for external CPU to access DUT.
Slave MII Management Interface Data (selected via the hardware strapping
SMI_SEL).
7.7. Miscellaneous Pins
Pin Name
MDIREF
GPO45/
P6LED1/
DISAUTOLOAD
GPO48/
P6LED0/
MID29
GPO50/
P3LED2/
EN_PHY
GPIO51/
P3LED1
GPO52/
P3LED0/
SMI_SEL
XTALO
23
Table 8. Miscellaneous Pins
Type Description
AO Reference Resistor.
A 2.49K ohm (1%) resistor must be connected between MDIREF and GND.
I/OPU General Purpose Output Interface IO45.
24
I/OPU General Purpose Output Interface IO48.
25
I/OPU General Purpose Output Interface IO50.
26
I/OPU General Purpose Input/Output Interface IO51.
27
I/OPU General Purpose Output Interface IO52.
Pin No.
5
29
AO
Unmanaged Gigabit Media Converter
25MHz Crystal Clock Output Pin.
11
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
Pin Name
XTALI
nRESET
Pin No.
30
33
Type Description
AI 25MHz Crystal Clock Input Pin.
25MHz +/-50ppm tolerance crystal reference.
When using a crystal, connect a loading capacitor between crystal pin and ground.
When either using an oscillator or driving an external 25MHz clock from another
device, XTALO should kept floating.
IPU System Reset Input Pin.
When low active will reset the RTL8213B-CG.
7.8. Embedded Switch Regulator Pins
Pin Name
EN_SWR
GND_SWR
Pin No.
15
16
Table 9. Embedded Switch Regulator Pins
Type Description
AI
Enable embedded switch regulator.
Pull Up: Enable embedded switch regulator.
Pull Down: Disable embedded switch regulator.
Note: pulled high or low via an external 4.7k ohm resistor to enable or disable
embedded switch regulator.
AG Regulator Ground.
LX
17, 18
AO
Regulator output. It should connect to the external inductor.
HV_SWR
19, 20
AP
Regulator Power Supply Input.
7.9. Power and GND Pins
Pin Name
DVDDIO
Pin No.
21
DVDDL
AVDDH
AVDDL
SVDDL
PLLVDDL
GND
8, 22
7, 14, 28, 35
6, 40
11
34
E-PAD
Unmanaged Gigabit Media Converter
Table 10. Power and GND Pins
Type Description
P
Digital I/O High Voltage Power for LED, Management Interface,
and nRESET.
P
Digital Low Voltage Power.
AP
Analog High Voltage Power.
AP
Analog Low Voltage Power.
AP
SerDes Low Voltage Power.
AP
PLL Low Voltage Power.
G
GND.
12
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
8.
Physical Layer Functional Overview
8.1. MDI Interface
The RTL8213B embeds Single10/100/1000M Ethernet PHYs in one chip. Each port uses a single common
MDI interface to support 1000Base-T, 100Base-TX, and 10Base-T. This interface consists of four signal
pairs-A, B, C, and D. Each signal pair consists of two bi-directional pins that can transmit and receive at
the same time. The MDI interface has internal termination resistors, and therefore reduces BOM cost and
PCB complexity. For 1000Base-T, all four pairs are used in both directions at the same time. For 10/100
links and during auto-negotiation, only pairs A and B are used.
8.2. 1000Base-T Transmit Function
The 1000Base-TX transmit function performs 8B/10B coding, scrambling, and 4D-PAM5 encoding. These
code groups are passed through a waveform-shaping filter to minimize EMI effects, and are transmitted
onto 4-pair CAT5 cable at 125MBaud/s through a D/A converter.
8.3. 1000Base-T Receive Function
Input signals from the media pass through the sophisticated on-chip hybrid circuit to subtract the transmitted
signal from the input signal for effective reduction of near-end echo. The received signal is then processed
with state-of-the-art technology, e.g., adaptive equalization, BLW (Baseline Wander) correction, cross-talk
cancellation, echo cancellation, timing recovery, error correction, and 4D-PAM5 decoding. The 8-bit-wide
data is recovered and is sent to the GMII interface at a clock speed of 125MHz. The RX MAC retrieves the
packet data from the internal receive MII/GMII interface and sends it to the packet buffer manager.
8.4. 100Base-TX Transmit Function
The 100Base-TX transmit function performs parallel to serial conversion, 4B/5B coding, scrambling,
NRZ/NRZI conversion, and MLT-3 encoding. The 5-bit serial data stream after 4B/5B coding is then
scrambled as defined by the TP-PMD Stream Cipher function to flatten the power spectrum energy such
that EMI effects can be reduced significantly.
The scrambled seed is based on PHY addresses and is unique for each port. After scrambling, the bit stream
is driven onto the network media in the form of MLT-3 signaling. The MLT-3 multi-level signaling
technology moves the power spectrum energy from high frequency to low frequency, which also reduces
EMI emissions.
Unmanaged Gigabit Media Converter
13
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
8.5. 100Base-TX Receive Function
The receive path includes a receiver composed of an adaptive equalizer and DC restoration circuits (to
compensate for an incoming distorted MLT-3 signal), an MLT-3 to NRZI and NRZI to NRZ converter to
convert analog signals to digital bit-stream, and a PLL circuit to clock data bits with minimum bit error rate.
A de-scrambler, 5B/4B decoder, and serial-to-parallel conversion circuits are followed by the PLL circuit.
Finally, the converted parallel data is fed into the MAC.
8.6. 10Base-T Transmit Function
The output 10Base-T waveform is Manchester-encoded before it is driven onto the network media. The
internal filter shapes the driven signals to reduce EMI emissions, eliminating the need for an external filter.
8.7. 10Base-T Receive Function
The Manchester decoder converts the incoming serial stream to NRZ data when the squelch circuit detects
the signal level is above squelch level.
8.8. Auto-Negotiation for UTP
The RTL8213B obtains the states of duplex, speed, and flow control ability for each port in UTP mode
through the auto-negotiation mechanism defined in the IEEE 802.3 specifications. During auto-negotiation,
each port advertises its ability to its link partner and compares its ability with advertisements received from
its link partner. By default, the RTL8213B advertises full capabilities (1000Full, 100Full, 100Half, 10Full,
10Half) together with flow control ability.
Unmanaged Gigabit Media Converter
14
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
8.9. Crossover Detection and Auto Correction
The RTL8213B automatically determines whether or not it needs to crossover between pairs (see Table 11)
so that an external crossover cable is not required. When connecting to another device that does not perform
MDI crossover, when necessary, the RTL8213B automatically switches its pin pairs to communicate with
the remote device. When connecting to another device that does have MDI crossover capability, an
algorithm determines which end performs the crossover function.
The crossover detection and auto correction function can be disabled via register configuration. The pin
mapping in MDI and MDI Crossover mode is given below.
Pairs
A
B
C
D
1000Base-T
A
B
C
D
Table 11. Media Dependent Interface Pin Mapping
MDI
MDI Crossover
100Base-TX
10Base-T
1000Base-T
100Base-TX
TX
TX
B
RX
RX
RX
A
TX
Unused
Unused
D
Unused
Unused
Unused
C
Unused
10Base-T
RX
TX
Unused
Unused
8.10. Polarity Correction
The RTL8213B automatically corrects polarity errors on the receiver pairs in 1000Base-T and 10Base-T
modes. In 100Base-TX mode, the polarity is irrelevant.
In 1000Base-T mode, receive polarity errors are automatically corrected based on the sequence of idle
symbols. Once the de-scrambler is locked, the polarity is also locked on all pairs. The polarity becomes
unlocked only when the receiver loses lock.
In 10Base-T mode, polarity errors are corrected based on the detection of valid spaced link pulses. The
detection begins during the MDI crossover detection phase and locks when the 10Base-T link is up. The
polarity becomes unlocked when the link is down.
RTL8213B
Link Partner
+
RX _
+
_ TX
+
TX _
_
+
Figure 4.
Unmanaged Gigabit Media Converter
+
_ RX
Conceptual Example of Polarity Correction
15
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
9.
General Function Descriptions
9.1. Reset
9.1.1. Hardware Reset
In a power-on reset, an internal power-on reset pulse is generated and the RTL8213B will start the reset
initialization procedures. These are:
Determine various default settings via the hardware strap pins at the end of the nRESET signal
Auto-load the configuration from EEPROM if EEPROM is detected
Complete the embedded SRAM BIST process
Initialize the packet buffer descriptor allocation
Initialize the internal registers and prepare them to be accessed by the external CPU
9.1.2. Software Reset
The RTL8213B supports two software resets; a chip reset and a soft reset.
9.1.2.1 CHIP_RESET
When CHIP_RESET is set to 0b1 (write and self-clear), the chip will take the following steps:
1. Download configuration from strap pin and EEPROM
2. Start embedded SRAM BIST (Built-In Self Test)
3. Clear all the Lookup and VLAN tables
4. Reset all registers to default values
5. Restart the auto-negotiation process
9.1.2.2 SOFT_RESET
When SOFT_RESET is set to 0b1 (write and self-clear), the chip will take the following steps:
1. Clear the FIFO and re-start the packet buffer link list
2. Restart the auto-negotiation process
Unmanaged Gigabit Media Converter
16
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
9.2. IEEE 802.3x Full Duplex Flow Control
The RTL8213B supports IEEE 802.3x flow control in 10/100/1000M modes. Flow control can be decided
in two ways:
When Auto-Negotiation is enabled, flow control depends on the result of NWay
When Auto-Negotiation is disabled, flow control depends on register definition
9.3. Half Duplex Flow Control
In half duplex mode, the CSMA/CD media access method is the means by which two or more stations share
a common transmission medium. To transmit, a station waits (defers) for a quiet period on the medium
(that is, no other station is transmitting) and then sends the intended message in bit-serial form. If the
message collides with that of another station, then each transmitting station intentionally transmits for an
additional predefined period to ensure propagation of the collision throughout the system. The station
remains silent for a random amount of time (backoff) before attempting to transmit again.
When a transmission attempt has terminated due to a collision, it is retried until it is successful. The
scheduling of the retransmissions is determined by a controlled randomization process called ‘Truncated
Binary Exponential Backoff’. At the end of enforcing a collision (jamming), the switch delays before
attempting to retransmit the frame. The delay is an integer multiple of slot time (512 bit times). The number
of slot times to delay before the nth retransmission attempt is chosen as a uniformly distributed random
integer ‘r’ in the range:
0 ≤ r < 2k
where:
k = min (n, backoffLimit). The backoffLimit for the RTL8213B is 9.
The half duplex back-off algorithm in the RTL8213B does not have the maximum retry count limitation of
16 (as defined in IEEE 802.3). This means packets in the switch will not be dropped if the back-off retry
count is over 16.
9.3.1. Back-Pressure Mode
In Back-Pressure mode, the RTL8213B sends a 4-byte jam pattern (data=0xAA) to collide with incoming
packets when congestion control is activated. The Jam pattern collides at the fourth byte counted from the
preamble. The RTL8213B supports 48PASS1, which receives one packet after 48 consecutive jam
collisions (data collisions are not included in the 48). Enable this function to prevent port partition after 63
consecutive collisions (data collisions + consecutive jam collisions).
Unmanaged Gigabit Media Converter
17
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
9.4. Search and Learning
Search
When a packet is received, the RTL8213B uses the destination MAC address, Filtering Identifier (FID) and
Enhanced Filtering Identifier (EFID) to search the 2048-entry look-up table. The 48-bit MAC address, 4bit FID and 3-bit EFID use a hash algorithm, to calculate an 11-bit index value. The RTL8213B uses the
index to compare the packet MAC address with the entries (MAC addresses) in the look-up table. This is
the ‘Address Search’. If the destination MAC address is not found, the switch will broadcast the packet
according to VLAN configuration.
Learning
The RTL8213B uses the source MAC address, FID, and EFID of the incoming packet to hash into a 9-bit
index (4-entry). It then compares the source MAC address with the data (MAC addresses) in this index. If
there is a match with one of the entries, the RTL8213B will update the entry with new information. If there
is no match and the 4 entries are not all occupied by other MAC addresses, the RTL8213B will record the
source MAC address and ingress port number into an empty entry. This process is called ‘Learning’.
Address aging is used to keep the contents of the address table correct in a dynamic network topology. The
look-up engine will update the time stamp information of an entry whenever the corresponding source
MAC address appears. An entry will be invalid (aged out) if its time stamp information is not refreshed by
the address learning process during the aging time period. The aging time of the RTL8213B is between 200
and 400 seconds (typical is 300 seconds).
9.5. SVL and IVL/SVL
The RTL8213B supports a 16-group Filtering Identifier (FID) for L2 search and learning. In default
operation, all VLAN entries belong to the same FID. This is called Shared VLAN Learning (SVL). If
VLAN entries are configured to different FIDs, then the same source MAC address with multiple FIDs can
be learned into different look-up table entries. This is called Independent VLAN Learning and Shared
VLAN Learning (IVL/SVL).
9.6. Illegal Frame Filtering
Illegal frames such as CRC error packets, runt packets (length maximum length) will be discarded by the RTL8213B. The maximum packet length may be set
from 1518 bytes to 16K bytes.
Unmanaged Gigabit Media Converter
18
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
9.7. IEEE 802.3 Reserved Group Addresses Filtering Control
The RTL8213B supports the ability to drop/forward IEEE 802.3 specified reserved group MAC addresses:
01-80-C2-00-00-00 to 01-80-C2-00-00-2F. The default setting enables forwarding of these reserved group
MAC address control frames. Frames with group MAC address 01-80-C2-00-00-01 (802.3x Pause) will
always be filtered. Table 12 shows the Reserved Multicast Address (RMA) configuration mode from 0180-C2-00-00-00 to 01-80-C2-00-00-2F.
Table 12. Reserved Multicast Address Configuration Table
Assignment
Value
Bridge Group Address
01-80-C2-00-00-00
IEEE Std 802.3, 1988 Edition, Full Duplex PAUSE Operation
01-80-C2-00-00-01
IEEE Std 802.3ad Slow Protocols-Multicast Address
01-80-C2-00-00-02
IEEE Std 802.1X PAE Address
01-80-C2-00-00-03
Provider Bridge Group Address
01-80-C2-00-00-08
Undefined 802.1 Address
01-80-C2-00-00-04 ~
01-80-C2-00-00-07
&
01-80-C2-00-00-09 ~
01-80-C2-00-00-0C
&
01-80-C2-00-00-0F
Provider Bridge MVRP Address
01-80-C2-00-00-0D
IEEE Std 802.1AB Link Layer Discovery Protocol Address
01-80-C2-00-00-0E
All LANs Bridge Management Group Address
01-80-C2-00-00-10
Load Server Generic Address
Loadable Device Generic Address
Undefined 802.1 Address
01-80-C2-00-00-11
01-80-C2-00-00-12
01-80-C2-00-00-13 ~
01-80-C2-00-00-17
&
01-80-C2-00-00-19
&
01-80-C2-00-00-1B ~
01-80-C2-00-00-1F
01-80-C2-00-00-18
01-80-C2-00-00-1a
01-80-C2-00-00-20
01-80-C2-00-00-21
01-80-C2-00-00-22
|
01-80-C2-00-00-2F
01-00-0C-CC-CC-CC
01-00-0C-CC-CC-CD
(01:80:c2:00:00:0e or
01:80:c2:00:00:03 or
01:80:c2:00:00:00)
&& ethertype = 0x88CC
Generic Address for All Manager Stations
Generic Address for All Agent Stations
GMRP Address
GVRP Address
Undefined GARP Address
CDP (Cisco Discovery Protocol)
CSSTP (Cisco Shared Spanning Tree Protocol)
LLDP
Unmanaged Gigabit Media Converter
19
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
9.8. Broadcast/Multicast/Unknown DA Storm Control
The RTL8213B enables or disables per-port broadcast/multicast/unknown DA storm control by setting
registers (default is disabled). After the receiving rate of broadcast/multicast/unknown DA packets exceeds
a reference rate (number of Kbps per second or number of packets per second), all other
broadcast/multicast/unknown DA packets will be dropped. The reference rate is set via register
configuration.
9.9. Port Security Function
The RTL8213B supports three types of security function to prevent malicious attacks:
Per-port enable/disable SA auto-learning for an ingress packet
Per-port enable/disable look-up table aging update function for an ingress packet
Per-port enable/disable drop all unknown DA packets
9.10. MIB Counters
The RTL8213B supports a set of counters to support management functions.
MIB-II (RFC 1213)
Ethernet-Like MIB (RFC 3635)
Interface Group MIB (RFC 2863)
RMON (RFC 2819)
Bridge MIB (RFC 1493)
Bridge MIB Extension (RFC 2674)
9.11. Port Mirroring
The RTL8213B supports one set of port mirroring functions for all ports. The TX, or RX, or both TX/RX
packets from multiple mirrored port can be mirrored to one monitor port.
Unmanaged Gigabit Media Converter
20
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
9.12. VLAN Function
The RTL8213B supports 4096 VLAN groups. These can be configured as port-based VLANs,
IEEE 802.1Q tag-based VLANs, and Protocol-based VLANs. Two ingress-filtering and egress-filtering
options provide flexible VLAN configuration:
Ingress Filtering
The acceptable frame type of the ingress process can be set to ‘Admit All’, ‘Admit only Untagged’ or ‘Admit only
Tagged’
‘Admit’ or ‘Discard’ frames associated with a VLAN for which that port is not in the member set
Egress Filtering
‘Forward’ or ‘Discard’ Leaky VLAN frames between different VLAN domains
‘Forward’ or ‘Discard’ Multicast VLAN frames between different VLAN domains
The VLAN tag can be inserted or removed at the output port. The RTL8213B will insert a Port VID (PVID)
for untagged frames, or remove the tag from tagged frames. The RTL8213B also supports a special insert
VLAN tag function to separate traffic from the WAN and LAN sides in Router and Gateway applications.
9.12.1. Port-Based VLAN
This default configuration of the VLAN function can be modified via an attached Slave I2C-like serial
Interface, or Slave Media Independent Interface Management (MIIM) Interface. The 4096-entry VLAN
Table designed into the RTL8213B provides full flexibility for users to configure the input ports to associate
with different VLAN groups. Each input port can join with more than one VLAN group.
Port-based VLAN mapping is the simplest implicit mapping rule. Each ingress packet is assigned to a
VLAN group based on the input port. It is not necessary to parse and inspect frames in real-time to
determine their VLAN association. All the packets received on a given input port will be forwarded to this
port’s VLAN members.
9.12.2. IEEE 802.1Q Tag-Based VLAN
The RTL8213B supports 4096 VLAN entries to perform 802.1Q tag-based VLAN mapping. In 802.1Q
VLAN mapping, the RTL8213B uses a 12-bit explicit identifier in the VLAN tag to associate received
packets with a VLAN. The RTL8213B compares the explicit identifier in the VLAN tag with the 4096
VLAN Table to determine the VLAN association of this packet, and then forwards this packet to the
member set of that VLAN. Two VIDs are reserved for special purposes. One of them is all 1’s, which is
reserved and currently unused. The other is all 0’s, which indicates a priority tag. A priority-tagged frame
should be treated as an untagged frame.
Two VLAN ingress filtering functions are supported in registers by the RTL8213B. One is the ‘VLAN tag
admit control, which provides the ability to receive VLAN-tagged frames only. Untagged or priority tagged
(VID=0) frames will be dropped. The other is ‘VLAN member set ingress filtering’, which will drop frames
if the ingress port is not in the member set.
9.12.3. Protocol-Based VLAN
The RTL8213B supports a 4-group Protocol-based VLAN configuration. The packet format can be RFC
1042, LLC, or Ethernet, as shown in Figure 5. There are 4 configuration tables to assign the frame type and
Unmanaged Gigabit Media Converter
21
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
corresponding field value. Taking IP packet configuration as an example, the user can configure the frame
type to be ‘Ethernet’, and value to be ‘0x0800’. Each table will index to one of the entries in the 4096-entry
VLAN table. The packet stream will match the protocol type and the value will follow the VLAN member
configuration of the indexed entry to forward the packets.
Ethernet
DA/SA
TYPE
……
RFC_1042
DA/SA
Length
AA- AA-03
00-00-00
LLC_Other
DA/SA
Length
DSAP/SSAP
……
TYPE
……
Frame Input
Type/Length is
00-00~05-FF?
No
6 bytes after
Type/Length are
AA-AA-03-00-00-00?
No
Frame Type
= Ethernet
Frame Type
= LLC_ Other
Frame Type
= RFC_1042
Figure 5.
Protocol-Based VLAN Frame Format and Flow Chart
9.13. QoS Function
The RTL8213B supports 8 priority queues and input bandwidth control. Packet priority selection can
depend on Port-based priority, 802.1p/Q Tag-based priority, IPv4/IPv6 DSCP-based priority, and ACLbased priority. When multiple priorities are enabled in the RTL8213B, the packet’s priority will be assigned
based on the priority selection table.
Each queue has one leaky bucket for Average Packet Rate. Per-queue in each output port can be set as Strict
Priority (SP) or Weighted Round Robin (WRR), or Weighted Fair Queue (WFQ) for packet scheduling
algorithm.
9.13.1. Input Bandwidth Control
Input bandwidth control limits the input bandwidth. When input traffic is more than the RX Bandwidth
parameter, this port will either send out a ‘pause ON’ frame, or drop the input packet depending on register
setup. Per-port input bandwidth control rates can be set from 8Kbps to 1Gbps (in 8Kbps steps).
9.13.2. Priority Assignment
Priority assignment specifies the priority of a received packet according to various rules. The RTL8213B
can recognize the QoS priority information of incoming packets to give a different egress service priority.
Unmanaged Gigabit Media Converter
22
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
The RTL8213B identifies the priority of packets based on several types of QoS priority information:
Port-based priority
802.1p/Q-based priority
IPv4/IPv6 DSCP-based priority
ACL-based priority
VLAN-based priority
MAC-based priority
SVLAN-based priority
9.13.3. Priority Queue Scheduling
The RTL8213B supports MAX-MIN packet scheduling.
Packet scheduling offers two modes:
Average Packet Rate (APR) leaky bucket, which specifies the average rate of one queue
Weighted Fair Queue (WFQ), which decides which queue is selected in one slot time to guarantee the minimal packet
rate of one queue
Weighted Round Robin (WRR)
In addition, each queue of each port can select Strict Priority or WFQ or WRR packet scheduling according
to packet scheduling mode.
9.13.4. IEEE 802.1p/Q and DSCP Remarking
The RTL8213B supports the IEEE 802.1p/Q and IP DSCP (Differentiated Services Code Point) remarking
function. When packets egress from one of the 8 queues, the packet’s 802.1p/Q priority and IP DSCP can
optionally be remarked to a configured value. 802.1p/Q priority & IP DSCP value can be remarked based
on internal priority or original 802.1p/Q priority & IP DSCP value in packets.
9.13.5. ACL-Based Priority
The RTL8213B supports 48-entry ACL (Access Control List) rules. When a packet is received, its physical
port, Layer2, Layer3, and Layer4 information are recorded and compared to ACL entries. If a received
packet matches multiple entries, the entry with the lowest address is valid. If the entry is valid, the action
bit will be applied to which related action bit is enable.
If a packet hits an ACL rule and the priority action bit is ‘enable’, then this packet gets a 3-bit ACL-priority
from the ACL module.
Unmanaged Gigabit Media Converter
23
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
9.14. IEEE 802.1x Function
The RTL8213B supports IEEE 802.1x Port-based/MAC-based Access Control.
Port-Based Access Control for each port
Authorized Port-Based Access Control for each port
Port-Based Access Control Direction for each port
MAC-Based Access Control for each port
MAC-Based Access Control Direction
Optional Unauthorized Behavior
9.14.1. Port-Based Access Control
Each port of the RTL8213B can be set to 802.1x port-based authenticated checking function usage and
authorized status. Ports with 802.1X unauthorized status will drop received/transmitted frames.
9.14.2. Authorized Port-Based Access Control
If a dedicated port is set to 802.1x port-based access control, and passes the 802.1x authorization, then its
port authorization status can be set to authorized.
9.14.3. Port-Based Access Control Direction
Ports with 802.1X unauthorized status will drop received/transmitted frames only when port authorization
direction is ‘BOTH’. If the authorization direction of an 802.1X unauthorized port is IN, incoming frames
to that port will be dropped, but outgoing frames will be transmitted.
9.14.4. MAC-Based Access Control
MAC-Based Access Control provides authentication for multiple logical ports. Each logical port represents
a source MAC address. There are multiple logical ports for a physical port. When a logical port or a MAC
address is authenticated, the relevant source MAC address has the authorization to access the network. A
frame with a source MAC address that is not authenticated by the 802.1x function will be dropped or trapped
to the CPU.
9.14.5. MAC-Based Access Control Direction
Unidirectional and Bi-directional control are two methods used to process frames in 802.1x. As the system
cannot predict which port the DA is on, a system-wide MAC-based access control direction setup is
provided for determining whether receiving or bi-direction should be authorized.
If MAC-based access control direction is BOTH, then received frames with unauthenticated SA or
unauthenticated DA will be dropped. When MAC-based access control direction is IN, only received frames
with unauthenticated SA will be dropped.
9.14.6. Optional Unauthorized Behavior
Port-Based Network Access Control and MAC-Based Access Control offer a whole system control to
determine unauthorized frame dropping, or trapping to CPU.
Unmanaged Gigabit Media Converter
24
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
9.15. IEEE 802.1D Function
When using IEEE 802.1D, the RTL8213B supports 16 sets and four status’ for each port for CPU
implementation 802.1D (STP) and 802.1s (MSTP) function:
Disabled: The port will not transmit/receive packets, and will not perform learning
Blocking: The port will only receive BPDU spanning tree protocol packets, but will not transmit any packets, and will
not perform learning
Learning: The port will receive any packet, including BPDU spanning tree protocol packets, and will perform learning,
but will only transmit BPDU spanning tree protocol packets
Forwarding: The port will transmit/receive all packets, and will perform learning
The RTL8213B also supports a per-port transmission/reception enable/disable function. Users can control
the port state via register.
9.16. Realtek Cable Test (RTCT)
The RTL8213B physical layer transceivers use DSP technology to implement the Realtek Cable Test
(RTCT) feature. The RTCT function can be used to detect short, open or impedance mismatch in each
differential pair. The RTL8213B also provides LED support to indicate test status and results.
Unmanaged Gigabit Media Converter
25
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
9.17. LED Indicators
The RTL8213B supports parallel LEDs for each port. Port 3 has three LED indicator pins, LED0, LED1,
LED2, and Port 6 has two LED indicator pins, LED0, LED1. Each pin may have different indicator
information (defined in Table 13). Refer to section 7.4 LED Pins, page 9 for pin details.
LED Status
LED_Off
Dup/Col
Link/Act
Spd1000
Spd100
Spd10
Spd1000/Act
Spd100/Act
Spd10/Act
Spd100 (10)/Act
Act
Table 13. LED Definitions
Description
LED Output off.
Duplex/Collision Indicator. Blinking when collision occurs. Low for full duplex, and high for half
duplex mode.
Link, Activity Indicator. Low for link established. Link/Act Blinking when the corresponding port is
transmitting or receiving.
1000Mbps Speed Indicator. Low for 1000Mbps.
100Mbps Speed Indicator. Low for 100Mbps.
10Mbps Speed Indicator. Low for 10Mbps.
1000Mbps Speed/Activity Indicator. Low for 1000Mbps. Blinking when the corresponding port is
transmitting or receiving.
100Mbps Speed/Activity Indicator. Low for 100Mbps. Blinking when the corresponding port is
transmitting or receiving.
10Mbps Speed/Activity Indicator. Low for 10Mbps. Blinking when the corresponding port is
transmitting or receiving.
10/100Mbps Speed/Activity Indicator. Low for 10/100Mbps. Blinking when the corresponding port
is transmitting or receiving.
Activity Indicator. Act blinking when the corresponding port is transmitting or receiving.
The LED pin also supports pin strapping configuration functions. The PnLED0, PnLED1, and PnLED2
pins are dual-function pins: input operation for configuration upon reset, and output operation for LED after
reset. When the pin input is pulled high upon reset, the pin output is active low after reset. When the pin
input is pulled down upon reset, the pin output is active high after reset (see Figure 6 and Figure 7). Typical
values for pull-up/pull-down resistors are 4.7K.
The PnLED1 can be combined with PnLED0 or PnLED2 as a Bi-color LED.
The PnLED1 should operate with the same polarity as other Bi-color LED pins. For example:
P3LED1 should pull up upon reset if P3LED1 is combined with P3LED2 as a Bi-color LED, and P3LED2 input is
pulled high upon reset. In this configuration, the output of these pins is active low after reset
P3LED1 should be pulled down upon reset if P3LED1 is combined with P3LED2 as a Bi-color LED, and P3LED2
input is pulled down upon reset. In this configuration, the output of these pins is active high after reset
Unmanaged Gigabit Media Converter
26
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
Pull-Up
Pull-Down
DVDDIO
4.7K
ohm
470 ohm
RTL8213B
LED Pin
470 ohm
4.7K
ohm
RTL8213B
LED Pin
LED Pins Output Active High
LED Pins Output Active Low
Figure 6.
Pull-Up
SPD 1000
Pull-Up and Pull-Down of LED Pins for Single-Color LED
4.7K
ohm
Pull-Down
DVDDIO
SPD 100
470ohm
470ohm
RTL8213B
Yellow
SPD100
Green
RTL8213B
Unmanaged Gigabit Media Converter
Yellow
SPD1000
4.7K ohm
Green
4.7K ohm
LED Pins Output Active High
LED Pins Output Active Low
Figure 7.
4.7K ohm
Pull-Up and Pull-Down of LED Pins for Bi-Color LED
27
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
9.18. Green Ethernet
9.18.1. Link-On and Cable Length Power Saving
The RTL8213B provides link-on and dynamic detection of cable length and dynamic adjustment of power
required for the detected cable length. This feature provides high performance with minimum power
consumption.
9.18.2. Link-Down Power Saving
The RTL8213B implements link-down power saving on a per-port basis, greatly cutting power
consumption when the network cable is disconnected. After it detects an incoming signal, it wakes up from
link-down power saving and operates in normal mode.
9.19. Regulator
The RTL8213B embeds a 3.3V-1.1V switch regulator to simplify the power solution. The 1.1V output
power is used for the digital core and analog circuits. Do not use the regulator for other chips, even if the
rating is enough.
Unmanaged Gigabit Media Converter
28
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
Interface Descriptions
10.
10.1. Master I2C for EEPROM Auto-load
The EEPROM interface of the RTL8213B uses the serial I2C bus to read the serial EEPROM. When the
RTL8213B is powered up, it drives SCK and SDA to read the configuration data from the EEPROM by
strapping configuration.
SDA
SCK
START
Figure 8.
STOP
SMI Start and Stop Command
3.3V
NC-1.5K ohm
I2C Master
SCK
EERPOM
EEPROM_SCL
3.3V
1.5K ohm
SDA
EEPROM_SDA
4.7K ohm
DISAUTOLOAD
Figure 9.
1 CONTROL BYTE
S
1
0
1
0
0
0
R/ A
0 W# C
(0) K
Master I2C for EEPROM Auto-load Interface Connection Example
1 ADDRESS BYTE
A
C
K
ADDR[7:0]
The 1st DATA BYTE
1 CONTROL BYTE
S
1
0
1
0
0
0
R/ A
0 W# C
(1) K
A
C
K
MSB to LSB
ACK by
Slave(EEPROM)
The 2nd DATA BYTE
MSB to LSB
ACK by
Slave(EEPROM)
ACK by
Slave(EEPROM)
N
O
A
C P
K
MSB to LSB
ACK by Master
NOACK by Master
Figure 10. 8-Bit EEPROM Sequential Read
Unmanaged Gigabit Media Converter
29
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
10.2. Realtek Slave I2C-Like Interface for External CPU to Access
the RTL8213B
When EEPROM auto-load is complete, the RTL8213B registers can be accessed through SCK and SDA
via an external CPU. The device address of the RTL8213B is 0x4. For the start and end of a write/read
command, SCK needs one extra clock before/after the start/stop signals.
3.3V
1.5K ohm
I2C Slave
External CPU
S_SCK
M_SCL
3.3V
1.5K ohm
S_SDA
M_SDA
3.3V
4.7K ohm*
SMI_SEL
Figure 11. Realtek Slave I2C-Like for External CPU Access Interface Connection Example
1 CONTROL BYTE
S
1
0
1
1
1
0
R/ A
0 W# C
(0) K
The 1st ADDRESS
BYTE (reg_addr[7:0])
The 2nd ADDRESS
BYTE (reg_addr[15:8])
A
C
K
ADDR[7:0]
MSB to LSB
ACK by Slave
The 1st DATA BYTE
(write_data[7:0])
A
C
K
ADDR[15:8]
MSB to LSB
ACK by Slave
The 2nd DATA BYTE
(write_data[15:8])
MSB to LSB
ACK by Slave
A
C P
K
A
C
K
MSB to LSB
ACK by Slave
ACK by Slave
Figure 12. Realtek Slave I2C-Like Interface Write Command
1 CONTROL BYTE
S
1
0
1
1
1
0
R/ A
0 W# C
(1) K
The 1st ADDRESS
BYTE (reg_addr[7:0])
ADDR[7:0]
MSB to LSB
ACK by Slave
ACK by Slave
The 2nd ADDRESS
BYTE (reg_addr[15:8])
A
C
K
ADDR[15:8]
The 1st DATA BYTE
(read_data[7:0])
A
C
K
The 2nd DATA BYTE
(read_data[15:8])
A
C
K
MSB to LSB
MSB to LSB
MSB to LSB
ACK by Master
ACK by Slave
N
O
A
C P
K
NOACK by Master
Figure 13. Realtek Slave I2C-Like Interface Read Command
Unmanaged Gigabit Media Converter
30
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
10.3. Slave MII Management SMI Interface for External CPU to
Access RTL8213B
The RTL8213B registers can be accessed via Slave MDC and MDIO via an external CPU (Decided by
Strapping Configuration).
SMI Slave
33 ohm
S_MDC
External CPU
M_MDC
3.3V
1.5K ohm
S_MDIO
M_MDIO
4.7K ohm
SMI_SEL
Figure 14. Slave MII Management SMI Interface Connection Example
Table 14. Slave MII Management SMI Access Format
Management Frame Fields
PRE
ST
OP
DEVAD
REGAD
TA
DATA
IDLE
1…1
01
10
AAAAA
RRRRR
Z0
DDDDDDDDDDDDDDDD
Z
Read
1…1
01
01
AAAAA
RRRRR
10
DDDDDDDDDDDDDDDD
Z
Write
Note: By default the Slave needs no less than 32bit Preambles (PRE) before accessing the slave via the Slave SMI interface. An
external CPU can configure the Slave to enable the preamble suppression function. When preamble suppression is enabled the
Slave does not need preamble before accessing the slave.
Unmanaged Gigabit Media Converter
31
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
11.
Electrical Characteristics
11.1. Absolute Maximum Ratings
WARNING: Absolute maximum ratings are limits beyond which permanent damage may be caused to the
device, or device reliability will be affected. All voltages are specified reference to GND unless otherwise
specified.
Table 15. Absolute Maximum Ratings
Parameter
Min
Junction Temperature (Tj)
Storage Temperature
-45
DVDDIO, AVDDH, HV_SWR Supply Referenced to GND,
GND-0.3
AGND, and GND_SWR
DVDDL, AVDDL, SVDDL, PLLVDDL Supply Referenced to
GND-0.3
GND, AGND, and GND_SWR
Digital Input Voltage
GND-0.3
Max
+125
+125
Units
C
C
+3.63
V
+1.21
V
VDDIO+0.3
V
11.2. Recommended Operating Range
Table 16. Recommended Operating Range
Parameter
Min
Typical
Ambient Operating Temperature (Ta)
0
DVDDIO Supply Voltage Range
3.135
3.3
AVDDH and HV_SWR Supply Voltage Range
3.135
3.3
DVDDL, AVDDL, SVDDL, and PLLVDDL Supply Voltage Range
1.045
1.1
Unmanaged Gigabit Media Converter
32
Max
70
3.465
3.465
1.155
Track ID: xxxx-xxxx-xx
Units
C
V
V
V
Rev. 1.0
RTL8213B
DRAFT Datasheet
11.3. Thermal Characteristics
11.3.1. Assembly Description
Package
PCB
Table 17. Assembly Description
Type
QFN-40
Dimension (L×W)
5×5 mm2
Thickness
0.85 mm
PCB Dimension (L×W)
78.1×61.4 mm2
PCB Thickness
1.6 mm
4-Layer:
- 1st layer (1oz): 20% coverage of Cu
Number of Cu Layer-PCB
- 2nd layer (1oz): 80% coverage of Cu
- 3rd layer (1oz): 80% coverage of Cu
- 4th layer (1oz): 75% coverage of Cu
11.3.2. Material Properties
Item
Package
Die
Silver Paste
Lead Frame
Mold Compound
PCB
Table 18. Material Properties
Material
Thermal Conductivity K (W/m-k)
Si
147
1033BF
2.5
CDA7025
168
7372
0.9
Cu
400
FR4
0.2
11.3.3. Simulation Conditions
Table 19. Simulation Conditions
0.52W
4L (2S2P) / 2L (1S1P)
Air Flow = 0m/s
Input Power
Test Board (PCB)
Control Condition
Unmanaged Gigabit Media Converter
33
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
11.3.4. Thermal Performance of QFN-56 on PCB Under Still Air
Convection
4L PCB
2L PCB
Table 20. Thermal Performance of QFN-56 on PCB Under Still Air Convection
θJA
θJB
θJC
30.9
6.59
15.4
42.2
7.93
17.6
ΨJT
0.30
0.42
Note:
θJA: Junction to ambient thermal resistance
θJB: Junction to board thermal resistance
θJC: Junction to case thermal resistance
ΨJT: Junction-to-top-center thermal characterization parameter
11.4. DC Characteristics
Table 21. DC Characteristics
SYM
Min
Typical
Max
System Idle (All UTP Ports Link Down, and Extension Port Link Down, without LEDs)
13
Power Supply Current for VDDH
IDVDDIO, IAVDDH
Parameter
Units
mA
Power Supply Current for VDDL
IDVDDL, IAVDDL, ISVDDL,
132
mA
IPLLVDDL
1000M Active (All UTP Ports 1000M Link/Active, and Extension Port Link/Active as 1000Base-X, without LEDs)
70
Power Supply Current for VDDH
IDVDDIO, IAVDDH
mA
Power Supply Current for VDDL
IDVDDL, IAVDDL, ISVDDL,
218
mA
IPLLVDDL
VDDIO=3.3V
TTL Input High Voltage
Vih
2.0
V
TTL Input Low Voltage
Vil
0.7
V
Output High Voltage
Voh
2.7
V
Output Low Voltage
Vol
0.6
V
Note: Power Consumption test condition, DVDDIO=3.3V, AVDDH=3.3V, DVDDL=1.1V, AVDDL=1.1V, SVDDL=1.1V,
and PLLVDDL=1.1V. Embedded Switch Regulator disabled.
11.5. Switch Regulator
Symbol
FSW
TSS
Parameter
Oscillator Frequency
Soft-Start Time
Unmanaged Gigabit Media Converter
Table 22. Switch Regulator
Min
-
34
Typ
2
1.5
Max
-
Units
MHz
ms
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
11.6. AC Characteristics
11.6.1. Master I2C
Characteristics
for
EEPROM
Auto-load
Interface
Timing
Tsck
t1
t2
SCK
t3 t4
t5 t6
t7
Data Output
SDA
Data Output
Data Input
t8
Data Input
t11
Figure 15. Master I2C for EEPROM Auto-load Timing Characteristics
t9
nRESET
SCK
SDA
Figure 16. SCK/SDA Power on Timing
Symbol
Tsck
t1
t2
t3
t4
t5
t6
t7
t8
t9
Table 23. Master I2C for EEPROM Auto-load Timing Characteristics
Description
Type
Min
Typical
SCK Clock Period
O
9
SCK High Time
O
4.05
4.5
SCK Low Time
O
4.05
4.5
START Condition Setup Time
O
2
START Condition Hold Time
O
2
Data Input Hold Time
O
0
Data Input Setup Time
O
10
Data output delay
O
2.15
STOP Condition Setup Time
O
2
SCK/SDA Active from Reset Ready
O
76.8
Unmanaged Gigabit Media Converter
35
Max
2.35
-
Track ID: xxxx-xxxx-xx
Units
µs
µs
µs
µs
µs
µs
µs
µs
µs
ms
Rev. 1.0
RTL8213B
DRAFT Datasheet
Symbol
t11
-
Description
Time the bus free before new START
SCK Rise Time (10% to 90%)
SCK Fall Time (90% to 10%)
Duty Cycle
Type
O
O
O
O
Min
10
40
Typical
50
Max
100
100
60
Units
µs
ns
ns
%
11.6.2. Slave I2C-like Mode Timing Characteristics
t1
t2
SCK
t3
SDA
t4
t5
Data Input
t6
Data Input
t7
t8
Data Output
Figure 17. Slave I2C-like Mode Timing Characteristics
Symbol
t1
t2
t3
t4
t5
t6
t7
t8
Table 24. Slave I2C-like Mode Timing Characteristics
Description
Type
Min
Typical
SCK High Time
I
250
SCK Low Time
I
250
START Condition Setup Time
I
150
START Condition Hold Time
I
150
Data Hold Time
I
150
Data Setup Time
I
150
Clock to Data Output Delay
O
10
STOP Condition Setup Time
I
150
-
Unmanaged Gigabit Media Converter
36
Max
100
-
Track ID: xxxx-xxxx-xx
Units
ns
ns
ns
ns
ns
ns
ns
ns
Rev. 1.0
RTL8213B
DRAFT Datasheet
11.6.3. Slave MII Management SMI for External CPU Access Interface
Timing Characteristics
The RTL8213B supports MDIO slave mode. The Master (CPU) can access the Slave (RTL8213B) registers
via the MDIO interface. The MDIO is a bi-directional signal that can be sourced by the Master or the Slave.
In a write command, the master sources the MDIO signal. In a read command, the slave sources the MDIO
signal.
The timing characteristics t1, t2, and t3 (Table 25) of the Master (the RTL8213B link partner CPU) are provided by
the Master when the Master sources the MDIO signal (Write command)
The timing characteristics t4 (Table 25) of the Slave (RTL8213B) are provided by the RTL8213B when the RTL8213B
sources the MDIO signal (Read command)
t1
VIH
MDC
VIL
VIH
MDIO
VIL
t2
t3
Figure 18. MDIO Sourced by the Master
VIH
MDC
VIL
VIH
MDIO
VIL
t4
Figure 19. MDIO Sourced by the RTL8213B (Slave)
Table 25. MDIO Timing Characteristics and Requirement
Parameter
SYM Description/Condition
Type Min
MDC Clock Period
t1
Clock Period
I
125
MDIO to MDC Rising Setup Time
t2
Input Setup Time
I
8
(Write Data)
MDIO to MDC Rising Hold Time
t3
Input Hold Time
I
8
(Write Data)
MDC to MDIO Delay Time (Read
t4
Clock (Rising Edge) to Data O
0
Data)
Delay Time
Unmanaged Gigabit Media Converter
37
Typical
-
Max
-
Units
ns
ns
-
-
ns
-
80
ns
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
11.6.4. SGMII/1000Base-X Characteristics
Table 26. SGMII/1000Base-X Differential Transmitter Characteristics
Parameter
SYM
Min
Typ
Max Units
Notes
Unit Interval
UI
799.92
800
800.08
ps
800ps ± 100ppm
Eye Mask
T_X1
0.15
UI
Eye Mask
T_X2
0.4
UI
Eye Mask
T_Y1
150
mV Eye Mask
T_Y2
600
mV Output Differential Voltage
VTX-DIFFp-p
300
700
800
mV Minimum TX Eye Width
TTX-EYE
0.7
UI
Output Jitter
TTX-JITTER
0.3
UI
TTX-JITTER-MAX = 1 - TTX-EYE-MIN = 0.30UI
Data dependent jitter
0.0875
UI
Output Rise Time
TTX-RISE
0.125
0.25
UI
20% ~ 80%
Output Fall Time
TTX-FALL
0.125
0.25
UI
20% ~ 80%
Output impedance
RTX
40
140
ohm single-end
AC Coupling Capacitor
CTX
80
100
120
nF
Transmit Length in PCB
LTX
10
inch -
Figure 20. SGMII/1000Base-X Differential Transmitter Eye Diagram
Unmanaged Gigabit Media Converter
38
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
Draft Datasheet
Table 27. SGMII/1000Base-X Differential Receiver Characteristics
Parameter
SYM
Min
Typ
Max
Units
Notes
Unit Interval
UI
799.92
800
800.08
ps
800ps ± 100ppm
Eye Mask
R_X1
0.15
UI
Eye Mask
R_Y1
100
mV Eye Mask
R_Y2
600
mV Input Differential Voltage
VRX-DIFFp-p
200
1200
mV Minimum RX Eye Width
TRX-EYE
0.4
UI
Input Jitter Tolerance
TRX-JITTER
0.6
UI
TRX-JITTER-MAX = 1 - TRX-EYE-MIN = 0.6UI
Differential Resistance
RRX
80
100
120
ohm -
Figure 21. SGMII/1000Base-X Differential Receiver Eye Diagram
Unmanaged Gigabit Media Converter
39
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
11.6.5. Power and Reset Characteristics
t1
AVDDH
Power
t2
t4
DVDDIO/
HV_SWR
Power
0V
2.7V(+-5%)
t5
0.8V(+-5%)
LV Power
0V
t3
t6
t7
nRESET pin
0V
Figure 22. Power and Reset Characteristics
Table 28. Power and Reset Characteristics
Parameter
SYM Description/Condition
Type Min Typical
AVDDH Rising Time
t1
AVDDH power rise settling time
I
0.5
HV Power Rising Time
t2
DVDDIO, HV_SWR(If embedded
I
0.5
SWR be used) power rise settling time
LV Power Rising Time
t3
DVDDL and AVDDL power rise settling
I
0.1
time
HV Power Ready Time after
t4
The duration from HV power more than
I
more than HV POR threshold
HV POR threshold to HV power ready
LV Power Ready Time after
t5
The duration from LV power more than
I
more than LV POR threshold
LV POR threshold to LV power ready
Reset Delay Time
t6
The duration from ‘all power steady’ to
I
10
the reset signal released to high
Reset Low Time
t7
The duration of reset signal remaining
I
10
low time before issuing a reset to
RTL8213B
Note 1: If the powers supply voltage of the RTL8213B lower than normal operation condition happened,
Reset (POR) or Pin Reset is needed for normal operation of the RTL8213B.
Note 2: DVDDIO power must be ready no later than HV_SWR power if embedded SWR be used.
Note 3: AVDDH power must be ready no later than DVDDIO power.
Unmanaged Gigabit Media Converter
40
Max
-
Units
ms
ms
-
ms
10
ms
10
ms
-
ms
-
ms
the Power On
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
12.
Mechanical Dimensions
Plastic Quad Flat No Lead Package 40 Leads 5x5mm2 Outline
Symbol
A
A1
A3
b
D/E
D2/E2
e
L
Min
0.80
0.00
0.15
3.45
0.30
Dimension in mm
Nom
0.85
0.02
0.20 REF
0.20
5.00 BSC
3.70
0.40 BSC
0.40
Max
0.90
0.05
Min
0.031
0.000
0.25
0.006
3.75
0.136
0.50
0.012
Dimension in inch
Nom
0.033
0.001
0.008 REF
0.008
0.197 BSC
0.146
0.016 BSC
0.016
Max
0.035
0.002
0.010
0.147
0.020
Notes:
1. CONTROLLING DIMENSION:MILLIMETER(mm).
2. REFERENCE DOCUMENTL:JEDEC MO-220.
Unmanaged Gigabit Media Converter
41
Track ID: xxxx-xxxx-xx
Rev. 1.0
RTL8213B
DRAFT Datasheet
13.
Ordering Information
Table 29. Ordering Information
Part Number
Package
RTL8213B-CG
QFN 40-Pin ‘Green’ Package
Note: See page 7 for package identification.
Status
Mass Production
Realtek Semiconductor Corp.
Headquarters
No. 2, Innovation Road II, Hsinchu Science Park,
Hsinchu 300, Taiwan, R.O.C.
Tel: 886-3-5780211 Fax: 886-3-5776047
www.realtek.com
Unmanaged Gigabit Media Converter
42
Track ID: xxxx-xxxx-xx
Rev. 1.0